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Note to the instructor:  These slides are provided solely for classroom use in academic institutions 
by the instructor using the text, Advance Digital Design with the Verilog HDL by Michael Ciletti, 
published by Prentice Hall. This material may not be used in off-campus instruction, resold, 
reproduced or generally distributed in the original or modified format for any purpose without the 
permission of the Author.  This material may not be placed on any server or network, and is 
protected under all copyright laws, as they currently exist. I am providing these slides to you subject 
to your agreeing that you will not provide them to your students in hardcopy or electronic format or 
use them for off-campus instruction of any kind.  Please email to me your agreement to these 
conditions. 
 
 I will greatly appreciate your assisting me by calling to my attention any errors or any other 
revisions that would enhance the utility of these slides for classroom use. 
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COURSE OVERVIEW 
 

 
 

 
 Review of combinational and sequential logic design 
 Modeling and verification with hardware description languages 
 Introduction to synthesis with HDLs 
 Programmable logic devices 
 State machines, datapath controllers, RISC CPU 
 Architectures and algorithms for computation and signal processing 
 Synchronization across clock domains 
 Timing analysis 
 Fault simulation and testing, JTAG, BIST 
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COMBINATIONAL LOGIC 
 

 
Combinational logic forms Boolean functions of the input variables.  The outputs at any time, t, 
are a function of only the inputs at time t.  The variables are assumed to be binary. 

 
 

Combinational
Logic

y1

y2

y3

a
b
c
d  

 
 

y1 = f1(a, b, c, d) 
 

y2 = f2(a, b, c, d) 
 

y3 = f3(a, b, c, d) 
 

y4 = f4(a, b, c, d)

A binary variable may have a value of 0 or 1.  
Later, the logic value system will be 

expanded to have more values to support a 
hardware description language. 

 
POSITIVE LOGIC: Low voltage 
corresponds to logic 0 and a high 
voltage corresponds to a logic 1. 

 



 Copyright 2000, 2003  MD Ciletti    8 

 

LOGIC GATES 
 

 
 
 
 

ENB

And Gate
y = a .  b

Or Gate
y = a + b

Nand Gate

y = a .  b

a
b

a
b

y

y

y
a
b

a
b

Nor Gate

y = a +  b

y a
b

y

ya
b

Xor Gate
y = a ^ b

Xnor Gate

y = a ^ b

a y

Buffer
y = a

a a

Inverter
y = a

Three-State Buffer
y = a if ENB = 1, else y = z

y y
 

 



 Copyright 2000, 2003  MD Ciletti    9 

 

LOGIC GATES - NOTATION 
 

 
 

+ denotes logical "or" 
 
. denotes logical "and" 
 
^ denotes exclusive or 
 

⊕ denotes "exclusive or" 
 
' denotes logical negation 
 
overbar denotes logical negation 

  

LOGIC GATES -  CMOS TECHNOLOGY 
 

 
 

CMOS Inverter         3-input Nand Gate 
 

d

dd

in out
d

dd

in out
d

dd

in out

 

V V V Vdd

B

A
Y

A B C

C
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BOOLEAN ALGEBRA (p 16) 
 

 
A binary Boolean algebra consists of a set B = {0, 1} and the operators + and ., having 
commutative and distributive properties such that for two Boolean variables A and B having 
values in B, a + b = b + a, and a . b = b . a.  The operators + and . have identity elements 0 and 
1, respectively, such that for any Boolean variable a, a + 0 = a, and a . 1 = a.  Each Boolean 
variable a has a complement, denoted by a', such that a + a' = 1, and a . a' = 0. 
 
Terminology:   
 

• + is called the sum operator, the "OR" operator, or the disjunction operator. 
 

• . is called the product operator, the "AND" operator, or the conjunction operator. 
 
• The multi-dimensional space spanned by a set of n binary-valued Boolean variables is 

denoted by Bn. 
 

• A point in Bn is called a vertex of and is represented by an n-dimensional vector of 
binary valued elements, e.g. (100). 

 
• A binary variable can be associated with the dimensions of a binary Boolean space, 

and a point is identified with the values of the variables. 
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BOOLEAN CUBES 
 

 
• A literal is an instance of a variable or its complement. 

 
• A point in Bn is called a cube.   

 
• A product of literals is a cube. 

 
• A cube contains one or more vertices. 

 
 

a

b

c

(a'b'c')

b

c

(ab'c')

(abc')

(abc)(a'bc)

(a'b'c)

(a'bc')

(100)
a

(111)

(110)
(010)

(001)

(011)

(101) (ab'c)

(000)  



 Copyright 2000, 2003  MD Ciletti    12 

 

BOOLEAN FUNCTIONS 
 

 
A completely specified m-dimensional Boolean function is a mapping from Bn into Bm, denoted by f: Bn → 
Bm.  An incompletely specified function is defined over a subset of Bn, and is considered to have a value of 
"don't-care" at points outside of the subset of definition: f: Bn → {0, 1, *}, where * denotes don't-care. 
 
 

"On" Set: {x: x ∈ Bn and f(x) = 1 } 
 
"Off" Set: {x: x ∈ Bn and f(x) = 0 } 
 
"dc" Set: {x: x ∈ Bn and f(x) = * } 

 
The don't-care set accommodates input patterns that never care, or outputs that will not be 
observed. 
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BOOLEAN ALGEBRA 
 

Combinations with 0, 1 a + 0 = a a . 1 =a
a + 1 = 1 a . 0 = 0

Commutative a + b = b + a ab = ba

Associative (a + b) + c = a + (b + c) (ab)c = a(bc) = abc
      = a + b + c

Distributive a(b + c) = ab + ac a + bc = (a + b)(a + c)

Idempote a + a = a a . a = a

Involution (a')' = a

Complementarity a + a' = 1 a . a' = 0

SOP Form POS FormBoolean Algebra Laws
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DeMorgan's Laws 
 

 
(a + b + c + ...)' = a'b'c'....  and  (abc)' = a' + b' + c' 

 
For two variables:    (a + b)' = a' . b' 
 

a b

(a + b)

(a + b)'

a'

b'

a

b

a' . b'

 



 Copyright 2000, 2003  MD Ciletti    15 

 

DeMorgan's Laws 
 

 
(a + b + c + ...)' = a'b'c'....  and  (abc)' = a' + b' + c' 

 
For two variables:    (a . b)' = a' + b' 
 

(a . b)'

(a . b) a'

b'

(a' + b')

a b
a

b
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THEOREMS FOR BOOLEAN ALGEBRAIC MINIMIZATION 
 

 

Logical Adjacency ab + ab' = a (a + b) (a + b') = a

Absorption a + ab = a a(a + b) = a
ab' + b = a + b (a + b')b = ab

    or: a + a'b = a + b (a' + b)a = ab

Multiplication and (a + b)(a' + c) = ac + a'b ab + a'c = (a + c)(a' + b)
Factoring

Consensus ab + bc +a'c = ab + a'c (a + b)(b + c)(a' + c) =
(a + b)(a' + c)

SOP Form POS FormTheorem

ab'
ab

a b

Logical Adjacency

a
b

c

bc

ab

Covered by ab

Covered by a'c

The consensus term,
bc, is redundant.

Consensus
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THEOREMS ... MINIMIZATION (Cont.) 
 

 
 

Exclusive-Or Laws

Combinations with 0, 1

Commutative

Distributive
Associative

a ⊕  0 =  a
a ⊕  1 =  a'
a ⊕  a =  0
a ⊕  a' = 1
a ⊕  b = b ⊕  a
(a ⊕  b) ⊕  c = a ⊕  (b ⊕  c) = a ⊕  b ⊕  c
a (b ⊕  c) = ab ⊕  ac
(a ⊕  b)' = a ⊕  b' = a' ⊕  b = ab + a'b'
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REPRESENTATION OF COMBINATIONAL LOGIC 
 

 
Common representations of combinational logic: 
 

• Truth Table 
• Boolean Equations 

• Binary Decision Diagrams 
• Circuit Schematic 

 
EXAMPLE: HALF-ADDER TRUTH TABLE 

 
 

b
a sum

c_out

a

b

sum

c_out
Add_half

a b c_out sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Inputs Outputs
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REPRESENTATION OF COMBINATIONAL LOGIC (Cont.) 
 

 
 
 

EXAMPLE: HALF-ADDER BOOLEAN EQUATIONS 
 

 
 

 
   sum = a'b + ab' = a ⊕ b 

 
c_out = a . b 

 

b
a sum

c_out

a

b

sum

c_out
Add_half
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SOP NOTATION (p 23) 
 

 
• A cube is formed as the product of literals in which a literal appears in either 

uncomplemented or complemented form.   
 

Example: ab'cd is a cube; ab'cbd is not. 
 
• A Boolean expression is a set of cubes, and is typically expressed in sum-of-products form 

(SOP) as the "or" of product terms (cubes).    
 

Example: abc' + bd 
 
• Each term of a Boolean expression in SOP form is called an implicant of the function.  
 
• A minterm is a cube in which every variable appears.  The variable will be in either true 

(uncomplemented) or complemented (but not both) form.  Thus, a minterm corresponds to a 
point (vertex) in Bn. (A term that is not a minterm represents two or more points in Bn).  The 
minterms correspond to the rows of the truth table at which the function has a value of 1.   

 
Example: The cube ab'cd is a minterm in B4. 
 
Example: The cube abc is not a minterm.  It represents abcd + abcd'. 
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SOP NOTATION 
 

 
 
• A Boolean expression in SOP form is said to be canonical if every cube has all of the literals 

in complemented or uncomplemented form. 
 

Example: The expression abcd + a'bcd is a canonical sum of products. 
 
• A canonic SOP function is also called a standard sum of products (SSOP). 
 
• Decimal notation: a minterm is denoted by mi, and the pattern of 1s and 0s in the binary 

equivalent of the decimal number i indicates the true and complemented literals.  
•  

Example: m7 = a'bcd. 
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SOP NOTATION (Cont.) 
 

 
 
 
 

In Bn There is a one-to-one 
correspondence between a minterm 
and a vertex of a n-dimensional cube. 

a

b

c

m4

m7

m6
m2

m1

m3

m0

m5

 
Example: m3 = a' . b . c_in 
 
A Boolean function is a set of  minterms (vertices) at which the function is asserted 
 
A Boolean function is expressed as a sum of minterms. 
 
Example:    c_out = m1 + m3 + m5 + m7 = Σ m(1, 3, 5, 7) 
 
    sum = m3 + m5 + m6 + m7 = Σ m(3, 5, 6, 7) 
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SOP NOTATION (Cont.) 
 

 
Example: 

 

a

b

c

(100)
m4

(111)
m7

(110)
m6

(010)
m2

(011)
m3

(101)
m5

(000)
m0

f(a, b, c) = m1 + m2 + m3

(001)
m1
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POS NOTATION (p 26) 
 

 
A Boolean function can be expressed in a "product of sums" form. 
 
Example (Full adder): 
 

c_out' = a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in' 
 
c_out = (a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in')' 
 
Apply DeMorgan's Law: 
 
 
c_out = (a'b'c_in')' . (a'b'c_in)' . (a'bc_in')' . (ab'c_in')' 

a b c_in c_out sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Inputs Outputs

 
c_out = (a + b + c_in) . (a + b + c_in') . (a + b' _c_in) . (a' + b + c_in) 

 
A Boolean expression in POS form is said to be canonical (standard) if each factor has all of 
the literals in complemented or uncomplemented form, but not both. 
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POS NOTATION (Cont.) 
 

 
A maxterm is an OR-ed sum of literals in which each variable appears exactly once in true or 
complemented form.  A canonic POS expansion consists of a product of the maxterms of the 
truth table of a function.   The decimal notation of a maxterm is based on the rows of the truth 
table at which the function is zero (i.e. where f' is asserted).  The complements of the variables 
are used to form the POS expression.  
 
Example: 

  c_out' = a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in' 
 
c_out = M0 . M1 . M2 . M4 = Π M(0, 1, 2, 4) 
 
c_out = (a + b + c_in) . (a + b + c_in') . (a + b' _c_in) . (a' + b + c_in) 

 
   

Note: A canonical SOP expression can be a very efficient representation of a 
Boolean function because there might be very few terms at which the function is 
asserted.  Alternatively, f' expressed as a POS expression might be very efficient 
because there are only a few terms at which the function is de-asserted. 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS 
 

 
A SOP expression has a direct hardware implementation as a two-level And-Or logic circuit. 
 
The cost of  hardware implementing a Boolean expression is related to the number of terms in 
the expression and to the number of literals in a term.   
 
Although a Boolean expression can always be expressed in a canonical form, with every cube 
containing every literal (in complemented or uncomplemented form), such descriptions usually 
have more efficient descriptions.  In practice, minimization is important. 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
A Boolean expression in SOP form is said to be minimal if it contains a minimal number of 
product terms and literals (i.e. a given term cannot be replaced by another that has fewer 
literals). 
 
A minimum SOP form corresponds to a two-level logic circuit having the fewest gates and the 
fewest number of gate inputs. 
 
A Boolean expression in POS form is said to be minimal of it contains a minimal number of 
factors and literals (i.e. a given factor cannot be replace by another having fewer literals). 
 
Three approaches: 
 
(1)  Karnaugh maps and extended karnaugh maps (Feasible for up to 6 variables) 
 
(2) Quine-McCluskey minimization (computer-based)  
 
(3)  Boolean minimization (manual) uses the theorems describing relationships between 
Boolean variables to find simpler equivalent expressions (It is not straightforward, is not easy, 
and requires experience.  Now embedded in synthesis tools such as mis II.)  
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
In a Boolean expression, a cube that is contained in another cube is redundant. 
 
A Boolean expression is nonredundant (irredundant) if no cube contains another cube. 
 
Example: Redundant Expression  f(a, b) = a + ab 
 
The expression is redundant because ab is a subset of a. 
 
After removing the redundant cube:  f(a, b) = a 
 
Example: Nonredundant Expression f(c, d) = c'd' + cd 
 
The cubes of a nonredundant expression do not share a common vertex, i.e. their 
corresponding sets of vertices are pairwise disjoint. 
 
Note:  The minimum SOP form and minimum POS forms of a Boolean expression are not 
unique. 
 
Basic approach: To simplify/minimize a Boolean expression, repeatedly combine cubes that 
differ in only the same literal, and eliminate redundant implicants. 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
Example: 
 

f(a, b, c) = abc + a'bc + abc' + a'b'c + ab'c' + a'b'c'

f(a, b, c) = ab + bc + a'c + b'c' + a'b'

ab a'b'

bc a'c b'c'

 
a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

a'c
bc

ab

b'c'

a'b'
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
An equivalent, minimal expression removes the cubes ab + a'b' and adds the cube  ac'. 
 
 

f(a, b, c) = ac' + a'c + bc + b'c' 
 
 

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

a'c

bc

ac'

b'c'  
 
 
Note:  f(a, b, c) = ac' + a'c + a'b'c + abc is also equivalent, but not minimal. 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Another equivalent and minimal expression is given by: 
 
 

f(a, b, c) = abc + a'bc + abc' + a'b'c + ab'c' + a'b'c'

f(a, b, c) = bc + ab + a'b' + b'c'

ab

b'c'

a'b'

bc

 

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

bc

b'c'

ab

a'b'
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
Implicant: Each term of a Boolean expression in SOP form is called an implicant of the 
function.  An implicant may cover more than one vertex of the function. 
 

(101)

a

b

c

(100)

(111)

(110)
(010)

(001)

(011)

(000)

cube:ab

f(a, b, c) = abc + abc'
              = ab

vertex

implicant

 
 
 
An implicant covers a vertex if the vertex is included in the set of vertices at which the 
implicant is asserted.  The fewer the number of literals in a cube, the larger the set of covered 
vertices.  So the hardware implementation is minimized if a cube has as few literals as 
possible 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Prime Implicant:  An implicant which does not imply any other implicant of the function is called 
a prime implicant.  A prime implicant is a cube that is not properly contained in some other 
cube of the function. 
 
Example:  f(a, b, c, d) = a'b'cd +  a'bcd + ab'cd + abcd + a'b'c'd' 
 
        = a'cd + acd + a'b'c'd' 
 
        = cd + a'b'c'd' 
 
Note that a'cd and acd both imply cd, so they are not prime implicants.  The term a'b'c'd is a 
prime implicant.   
 
A prime implicant cannot be combined with another implicant to eliminate a literal or to be 
eliminated from the expression by absorption. 
 
An implicant that implies another implicant is said to be "covered" by it; the set of its vertices is 
a subset of the vertices of the implicant that covers it.  The covering implicant, having fewer 
literals, has more vertices. 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
The set of prime implicants of a Boolean expression is unique. 
 

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

f(a, b, c) = ab'c' + abc' + abc + a'b'c

f(a, b, c) = ac' + ab + a'b'c

(001)
m1

(110)
m6

ab

ac'

Implicants

Prime Implicants  
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Essential prime implicant:  A prime implicant that is not covered by any set of other implicants 
is an essential  prime implicant. 
 
Example:  f(a, b, c) = a'bc + abc + ab'c' + abc' 

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

ab

ac'

bc

 
 
Prime Implicants:   {ac', ab, bc} 
Essential Prime Implicants: {ac', bc} 
 
SOP Expression:   f (a, b, c) = ac' + ab + bc 
Minimal SOP Expression: f (a, b, c) = ac' + bc 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
Process for minimization:  
 
(1) Find the set of all prime implicants 
 
(2) Find a minimal subset which covers all of the prime implicants (includes essential prime 
implicants). 
 
Minimal Cover:  A subset of prime implicants that covers all of the prime implicants is called a 
minimal cover for the function. 
 
Example:  f(a, b, c, d) = a'b'cd +  a'bcd + ab'cd + abcd + a'b'c'd' 
 
        = a'cd + acd + a'b'c'd' 
 
        = cd + a'b'c'd' 
 
Prime implicants:   {cd, a'b'c'd'} 
 
Minimal cover:    {cd, a'b'c'd'} 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
Combine terms that are logically adjacent, i.e. that differ in only one literal. 
 
Example:   ab + ab' = a 
Example:  ab'cd + ab'cd' = ab'c(d + d') = ab'c 
Example:   
c_out = a' . b . c_in + a . b' . c_in + a . b . c_in' + a . b. c_in

c_out = b . c_in + a . c_in + a . b  
 

a b

c_in

sum sum

c_out c_out

c_out

sum
c_out

sum
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
 
Apply logical adjacency to complementary expressions. 
 
Example: 
 
Consider the expression:   (c + db)(a + e') + c'(d' + b')(a + e')  
 
and note that:      (c + db)' = c'(d' + b')   
 
Then 
   (c + db)(a + e') + c'(d' + b')(a + e') = (c + db)(a + e') + (c + db)'(a + e') 
              = a + e' 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Use absorption and consensus to eliminate redundant terms. 
 
Absorption:    a + ab = a 

 
Example (Absorption):  a'bc + a'bcd = a'bc 
 
Consensus:  ab + bc + a'c = ab + a'c 

 

ab + bc +a'c = ab + a'c

a
b

c

bc

ab

Covered by ab

Covered by a'c

The consensus term,
bc, is redundant.

Consensus

 

Example: Consensus ab + bc + a'c = ab + a'c

e'fg' + fgh + e'fh = e'fg' + fgh
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Use absorption repeatedly to eliminate literals. 
 
Example:  efgh' + e'f'g'h' + e'f = efgh' + e'(f + f'g'h') 
 
               = efgh' + e'(f + g'h') 
 
               = f(egh' + e') + e'g'h' 
 
               = f(gh' + e') + e'g'h' 
                
               = fgh' + e'f + e'g'h' 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Introduce redundant terms to support absorption and logical adjacency. 
 
A logical expression in SOP form is preserved under the following operations: 
 
  (1) Add the term: aa' 
 
  (2) Add the consensus term, bc, to the terms ab + a'c 
 
  (3) Add ab to a or to b. 
 
A logical expression in POS form is preserved under the following operations: 
 
  (1) Multiply by the factor (a + a') 
 
  (2) Introduce the consensus factor, (b + c), in (a + b) (a' + c) 
 
  (3) Multiply a  by the factor (a + b) 
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SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.) 
 

 
Consensus: ab + bc + a'c = ab + a'c  
 
Example: Completion of consensus

Consider: bcd + bce + ab + a'c

Terms from consensus

Add the consensus term:

b'c + bcd + bce + ab + bc + a'c
Absorb terms:

ab + c  
 
Expanding with the consensus term is helpful when it can absorb other terms or eliminate a 
literal. 
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SIMPLIFICATION WITH EXCLUSIVE-OR 
 

 
a ⊕ 0 =  a 
 
a ⊕ 1 =  a' 
 
a ⊕ a =  0 
 
a ⊕ a' =  1 
 
a ⊕ b = b ⊕ a        Commutative Law 
 
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) = a ⊕ b ⊕ c     Associative Law 
 
a(b ⊕ c) = ab ⊕ ac       Distributive Law 
 
(a ⊕ b)' = a ⊕ b' = a' ⊕ b = ab + a'b'   Distributive Law 

  
Example:  sum = a' . b' . c_in + a' . b . c_in' + a . b' . c_in' + a . b . c_in 
 
   sum = (a ⊕ b) ⊕ c_in = a ⊕ b ⊕ c_in 
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KARNAUGH MAPS (SOP FORM) (p 36) 
 

 
 
Karnaugh maps reveal logical adjacencies and opportunities for eliminating a literal from two 
or more cubes.  K-maps facilitate finding the largest possible cubes that cover all 1s without 
redundancy.  Requires manual effort. 
 
Example:   

cd

00

10

11

01

00 01 11 10

1
ab

0 0 1

0 1 0

0 1 x 0

1 0 0 1

x
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent   

 
• The map shows all possible (16) vertices 

for a 4-variable function. 

• Row ordering assures that each row 
(column) is logically adjacent to its 
physically adjacent neighboring row 
(column).   

• The top-most and bottom-most rows are 
adjacent. 

• The left-most and right-most columns are 
adjacent. 

• Logically adjacent cells that contain a 1 
can be combined. 

• A rectangular cluster of cells that are 
logically adjacent can be combined. 

• Use don't-cares to form prime implicants. 
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KARNAUGH MAPS (Cont.) 
 

 
 

00

10

00 01 11 10

1

d

0 0 1

1 1

1 x 0

1 0 0 1

x
m0 m1 m3 m2

m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent  

11

01 0

0
m4Combined:  Combined: a'b'd' + b'c'd' + ab'd' + b'cd' = b'd' 

ab
cCorners: Corners:   a'b'c'd' + a'b'cd' + a'b'c'd' + ab'c'd' = a'b'd' + b'c'd'  

    ab'cd' + ab'c'd' + ab'cd' + a'b'cd' = ab'd' + b'cd' 
 

 
Inner block: a'bc'd + a'bcd + abc'd + abcd = bc'd + bcd = bd 
      
   f = b'd' + bd = (b ⊕ d)' 
 
Note: Each corner terms imply b'd', and b'd' does not imply another implicant.  Therefore, it is 
a prime implicant.  It is also an essential prime implicant.  Similarly, bd is an essential prime 
implicant. 
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KARNAUGH MAPS (Cont.) 
 

 
To form a minimal realization from a Karnaugh map, (1) identify all of the essential prime 
implicants, using don't-cares as needed (2) use the prime implicants to form a cover of the 
remaining 1s in the  map (ignoring don't-cares). 
 

00

10

11

01

00 01 11 10

0
ab

cd

0 x 1

0 1 1

1 1 1 0

0 0 0 1

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent

 

 
In general, the covering set of prime 
implicants is not unique. 

 
Prime Implicants: m3, m2, m7, m6 → a'c  (essential) 
    m2, m10 → b'cd'  (essential) 
    m7, m15 → bcd  
    m13, m15 → abd 
    m12, m13  → abc'  (essential) 
 
Minimal Covers:  (1) a'c, b'cd', bcd, abc' 
    (2) a'c, b'cd', abd, abc' 
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KARNAUGH MAPS (Cont.) 
 

 
General Process to Form a Minimal Cover: 
 
(1) Select an uncovered minterm and identify all of its neighboring cells containing a 1 or an x.  
A single term (not necessarily a minterm) that covers the minterm and all of its adjacent 
neighbors having a 1 or an x is an essential prime implicant.  Add the term to the set of 
essential prime implicants. 
 
(2) Repeat (1) until all of the essential prime implicants have been selected. 
 
(3) Find a minimal set of prime implicants that cover the other 1s in the map (do not cover cells 
containing x). 
 
The above steps may produce more than one possible minimal cover.  Select the  cover 
having the fewest literals.   
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KARNAUGH MAPS (POS FORM) (p 39) 
 

 

The minimal product of sums form of a Boolean expression is found by finding a minimal cover  
of the 0s in the Karnaugh map, then applying DeMorgan's Theorem to the result. 
 

00

10

11

01

00 01 11 10

0
ab

cd

0 x 1

0 1 1

1 1 1 0

0 0 0 1

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 y  

m0, m1, m4, m5: a'b'c'd' + a'b'c'd + a'bc'd' + a'bc'd → a'c' 
 

m0, m1, m8, m9: a'b'c'd' + a'b'c'd + ab'c'd' + ab'c'd  → b'c' 
 
m9, m11: ab'c'd + ab'cd → ab'd 
 
m14: abcd' 

 
Result: f '(a, b, c, d) = a'c' + b'c' + ab'd + abcd' 
 
f(a, b, c, d) = (a + c)(b + c)(a' + b + d')(a' + b' + c' + d) 
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K-MAPS AND DON'T-CARES 
 

 

Don't cares represent situations where an input cannot occur, or the output does not matter.  
Use (cover) don't cares when they lead to an improved representation. 
 
Example.  Suppose a function is asserted when the BCD representation of a 4-variable input is 
0, 3, 6 or 9.   f(a, b, c, d) = a'b'c'd' + a'b'cd + abc'd' + abc'd + abcd + abcd' + ab'c'd + ab'cd has 
32 literals. 

00

10

11

01

00 01 11 10

1
ab

cd

0 1 0

0 0 1

- - -

0 1 - -

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

-

 
 
Without don't cares 

00

10

11

01

00 01 11 10

1
ab

cd

0 1 0

0 0 1

- - - -

0 1 - -

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10  
 
With don't cares 

 
Without don't-cares (16 literals): f(a, b, c, d) = a'b'c'd' + a'b'cd + a'bcd' + ab'c'd 
 
With don't cares (12 literals): f(a, b, c, d) = a'b'c'd' + b'cd + bcd' + ad 
 
f(a, b, c, d) = a'b'c'd' + b'cd + ab + ac'd 
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EXTENDED KARNAUGH MAPS 
 

 

A 4-variable Karnaugh map can be extended by entering variables to indicate assertion 
contingent on the variable being asserted; no entry indicates that the function is not asserted if 
the variable is not asserted. 
 
Example: 
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EXTENDED KARNAUGH MAPS (Cont.) 
 

 
 
Process: 
 
(1) Find the minimal cover with the variables de-asserted. 
 
(2) For each variable, find the minimal sum with all 1s changed to x in the map, and all other variables set to 0.  
Form the product of the minimal sum and the variable. 
 
(3) Form the sum obtained by combining (1) with the sum of the results of (2) . 
 
Note: The result is a minimal representation if the map-entered variables can be assigned independently. 
 
Note: fe is contained in e and f. 
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GLITCHES AND STATIC HAZARDS (p 42) 
 

 
The output of a combinational circuit may make a transition even though the patterns applied at 
its inputs do not imply a change.  These unwanted switiching transients are called "glitches."   
  
Glitches are a consequence of the circuit structure and the application of patterns that cause the 
glitch to occur.  A circuit in which a glitch may occur under the application of appropriate inputs 
signals is said to have a hazard. 
 
A static 1-hazard occurs if an output has an initial value of 1, and an input pattern that does not 
imply an output transition causes the output to change to 0 and then return to 1. 
 

1-Hazard  
 
A static 0-hazard occurs if an output has an initial value of 0, and an input pattern that does not 
imply an output transition causes the output to change to 1 and then return to 0. 
 

0-Hazard  
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GLITCHES AND STATIC HAZARDS 
 

 
Static hazards are caused by differential  propagation delays on reconvergent fanout paths. 
 
A "minimal"realization of a circuit might not be hazard-free. 
 
Static hazards can be eliminated by introducing redundant cubes in the cover of the output 
expression (the added cubes are called a hazard cover).  
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STATIC HAZARDS: Example 
 

 
A
C

B

F Reconvergent
fanout paths

1

1     0

1

0     1 0     1

F0

F1

1     0

1     0 1

 
 
 
Consider   F = AC + BC' 
 
Initial inputs:  A = 1, B = 1, C = 1 and F = 1 
 
New inputs: A = 1, B = 1, C = 0 and F = 1 
 
• In a physical realization of the circuit (i.e. non-zero propagation delays), the path to F1 will be 

longer than the path to F0, causing a change in C to reach F1 later than it reaches F0. 
 
• Consequently, when C changes from 1 to 0, the output undergoes a momentary transition to 0 

and returns to 1. 
 
• The presence of a static hazard is apparent in the Karnaugh map of the output. 
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STATIC HAZARDS: Example (Cont.) 
 

 

Static 1-Hazard occurs
when F0 and F1 are both

momentarily 0.

y

 
 

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0F = AC + BC'

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0
Redundant

cube

 
 
• AC de-asserts before BC' asserts 

• Hazards might not be significant in a 
synchronous sequential circuit if the clock 
period can be extended.  

 
• A hazard is problematic if the signal serves 

as the input to an asynchronous 
subsystem. (e.g a counter or a reset 
circuit). 

 
• In this example, the hazard occurs because 

the cube AC is initially asserted, while BC' 
is not.  The switched input causes AC to 
de-assert before BC' can assert. 

 
• Hazard Removal: A hazard can be 

removed by covering the adjacent prime 
implicants by a redundant cube (AB, a 
'hazard cover") to eliminate the 
dependency on C (the boundary between 
the cubes is now covered). 
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STATIC HAZARDS: Example (Cont.) 
 

 
• Hazard covers require extra hardware. 
 
Example: For the hazard-free cover: F = AC + BC' + AB 
 

A
C

B

F
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ELIMINATION OF STATIC HAZARDS (SOP Form) 
 

 
If the output cubes of the initial and final inputs are covered by the same prime implicant, a 
glitch cannot occur.  Otherwise, if the output cubes of the initial and final inputs are not 
covered by the same prime implicant a glitch can occur, depending on the accumulated delays 
along the signal propagation paths from the inputs to the output. 
 
 
For a circuit whose static 1-hazard is caused by a transition in a single bit of a single signal: 
 

• Form a SOP cover in which every pair of adjacent 1s is covered by a cube.  This 
gurantees that every single-bit input change is covered by such a prime implicant. 

 
• The set of prime implicants is a hazard-free cover for a two-level (And-Or) realization 

of the circuit, but a better alternative might be found. 
 



 Copyright 2000, 2003  MD Ciletti    58 

 

ELIMINATION OF STATIC HAZARDS (Cont.) 
 

 
To eliminate a static 0-hazard: 
 

• Method #1: Cover the adjacent 0s in the corresponding POS expression. 
 
• Method #2: First eliminate the static 1-hazards.  Then form complement function and 

consider whether the implicants of the 0s of the expression that is free of static 1-hazards 
also cover all adjacent 0s of the original function.  If they do not, then a static 0-hazard 
exists. 
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EXAMPLE:  ELIMINATION OF STATIC HAZARDS 
 

 
Static 1-hazard: 
 
f = Σ m(0, 1, 4, 5, 6, 7, 14, 15) = a'c' + bc 
 

00

10

11

01

00 01 11 10

1
ab

cd

1 0 0

1 1 1

0 0 1 1

0 0 0 0

1
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Cover the cube
boundaries by
adding a'bd or a'b
to eliminate the
static 1- hazard

a'c'

bc

 
 
f = a'c' + bc + a'b 
 

• With a = 0, b = 1, and D = 1, a glitch 
can occur as c changes from 1 to 0 or 
visa-versa.   

• Adding the redundant prime implicant 
term eliminates the static 1-hazard. 

• Note: m4 and m6 interface 

Static 0-hazard (First method): 
From 0s of the K-map and DeMorgan's Law: 
 
f' = ac' + b'c and f = (a' + c) (b + c') 
 

11 10

00

10

11

01

00 01

1
ab

cd

1 0 0

1 1 1

0 0 1 1

0 0 0 0

1
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Cover by
adding (a' + b)
to eliminate
static-0 hazard
Note: ab'd
covers too, but
is not mimimal

 
f = (a' + c) (b + c') (a' + b) 
 
Add a'b to f', and including the redundant 
prime implicant product factor (a' + b) in f to 
eliminate the static 0-hazard. 
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EXAMPLE:  ELIMINATION OF STATIC HAZARDS (Cont.) 
 

 
Note: In this example, the POS expression that eliminates the static 0-hazard is equivalent to the 
expression that eliminates the static 1-hazard. 
 

f = (a' + c) (b + c') (a' + b)  
 
f = a'ba' + a'bb + a'c'a' + a'c'b + cba' + cbb + cc'a' + cc'b 
 
f = a'b + a'c' + bc 

 
 
Note: see text for additonal details 
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DYNAMIC HAZARDS (Multiple glitches) 
 

 
• A circuit has a dynamic hazard if an input transition is supposed to cause a single transition 

in an output, but causes two or more transitions before reached its expected value.  
 

Dynamic Hazard

 
 

• Dynamic hazards are a consequence of multiple static hazards caused by multiply 
reconvergent paths in a multilevel circuit. 

 
• Dynamic hazards are not easy to eliminate. 
 
• Elimination of all static hazards eliminates dynamic hazards. 

 
• Approach: Transform a multilevel circuit into a two-level circuit and eliminate all of the static 

hazards. 
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DYNAMIC HAZARDS (Cont.) 
 

 
EXAMPLE: 
 
 

A
C

B

F_static

F_dynamic

First
reconvergence

Second
reconvergence

F0

F1
C_late

 
 

F_static has a static 1-hazard. 
 
F_dynamic has a dynamic 
hazard. 

 



 Copyright 2000, 2003  MD Ciletti    63 

 

DYNAMIC HAZARDS (Cont.) 
 

 

 

 

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0
Redundant

cube

 
 
The redundant cube eliminates the 
static 1-hazard and assures that 
F_dynamic will not depend on the 
arrival of the effect of the transition 
in C. 
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DYNAMIC HAZARDS (Cont.) 
 

 
 

 

 
A
C

B

F_static

F_dynamic

F0

F1
C_late

F2  
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BUILDING BLOCKS: NAND-NOR STRUCTURES (p 55) 
 

 

 
In CMOS technology, AND gates and OR gates are not implemented as efficiently as NAND 
gates and NOR gates.  An SOP form or a POS form can always be converted to a NAND logic 
structure or a NOR logic structure.  The "NAND"  gate and "NOR" gate are universal logic 
gates - any Boolean function can be realized from only NAND gates or only NOR gates. 
 
DeMorgan's Theorem provides equivalent structures for NAND and NOR gates. 
 
 

Gate DeMorgan Equivalent

a
b

b

b

b
a

a

a

y

y = (a . b)'

y = (a + b)'

y = a' + b'

y = a' . b'

 
 
 

Networks realizing SOP forms can be transformed to a realization that uses only nand gates 
and inverters. 
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EXAMPLE: SOP TO NAND STRUCTURES 
 

 

Y = G + EF + AB'D + CD 
 

G

E
F

A
B'
D

C
D

Y

G

E
F

A
B'
D

C
D

Y

G

E
F

A
B'
D

C
D

Y

(a) (b) (c)  
 

• In the original And-Or structure: replace And by Nand, place inversion bubbles at 
inputs of Or, include inverter for G to balance bubble at input of Or. 

 
• In the new circuit, replace Or gates having bubble inputs by equivalent Nand gates. 

 
 
Check:  Y = [(G') (EF)' (AB'D)' (CD)']' = (G')' + [(EF)' ]' + [(AB'D)' ]' + [(CD)']' 
 
  Y = G + EF + AB'D + CD 
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EXAMPLE: POS TO NOR STRUCTURES 
 

 

Y = D(B + C) (A + E + F') (A + G) 
 

D

B
C

A
E
F'

A
G

Y

(a) (b)

D

B
C

A
E
F'

A
G

Y

(c)

D

B
C

A
E
F'

A
G

Y

 
 

• In the original Or-And structure: replace Or by Nor, place inversion bubbles at inputs of 
And, include inverter for D to balance bubble at input of the And gate. 

 
• In the new circuit, replace And gates having bubble inputs by equivalent Nor gates. 

 
Check: Y = [D' + (B + C)' + (A + E + F')' + (A + G)']' = (D')' [(B + C)']' [(A + E+ F')']' [(A + G)']' 
 
  Y = D (B + C) (A + E + F') (A + G) 
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EXAMPLE: GENERAL STRUCTURES 
 

 

Conversion to Nand: 
 

• In the original structure: replace And by Nand; place inversion bubbles at inputs of Or.  
 

• To convert the new circuit to a Nand structure, replace Or gates having bubble inputs 
by equivalent Nand gates. 

 
• If, after the above change have been made,  the output of a Nand gate drives the input 

of a nand gate, place an inverter at the input of the driven Nand gate. 
 

(a) (b)

Matched
bubbles

 
 

• If the output of an Or gate having bubbles at its inputs drives an Or gate with bubbles 
at its inputs, place an inverter between the gates. 

 

(a)

Matched
bubbles

(b)  
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EXAMPLE: GENERAL STRUCTURES (Cont.) 
 

 

Conversion to Nor: 
• Replace Or by Nor; place inversion bubbles at inputs of And.  
•  
• To convert the new circuit to a Nor structure, replace And gates having bubble inputs 

by equivalent Nor gates. 
 

• If, after the above change have been made,  the output of a Nor gate drives the input 
of a Nor gate, place an inverter at the input of the driven Nor gate. 

 

(a) (b)

Matched
bubbles

 
 

• If the output of an And gate having bubbles at its inputs drives an And gate with 
bubbles at its inputs, place an inverter between the gates. 

Matched

(a)

bubbles

(b)  
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 BUILDING BLOCKS: MULTIPLEXERS (p 60) 
  

 
MUXES PROVIDE STEERING FOR DATAPATHS. 

 
 

a

b

sel y_out

 
 
 

y_out = sel . a + sel' . b 
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MULTIPLEXERS 
 

 

• A multiplexer has n datapath inputs and a single output.  An m-bit address determines 
which of the inputs is connected to the output. 

 
 

Address

Data_In

Data_In [n-1]

Data_In [0]

m

Address[m-1: 0]

Data_Out

Multiplexer  
 

Input channel selection: 
 

Data_Out = Data_In [Address[k]] 
 
 

• A multiplexer is used to control the flow of data in a digital machine. 



 Copyright 2000, 2003  MD Ciletti    72 

 

DEMULTIPLEXERS 
 

 

A demultiplexer has a single datapath input, n datapath outputs, and m address inputs.  The 
m-bit address determines which of the n outputs is connected to the input.    
 
 

Address

Data_In

Data_Out [n-1]

Data_Out [0]

m

Address[m-1: 0]

Data_In

Demultiplexer

 
 
Output channel selection: 
 

Data_Out [n-1: 0] = Data_In [Address[k]] 
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ENCODERS 
 

 

An encoder has n inputs and m outputs, with n = 2m.  Ordinarily, only one of the inputs is 
asserted at a time.  A unique output bit pattern (code) is assigned to each of the n inputs.  The 
asserted output is determined by the index of the asserted bit of the n-bit binary input word. 
 
 

Data_In Data_Out

Encoder

n m

Data_Out

Data_In[n-1]

Encoder

m

Data_In[0]  
 
Example: n = 4, m = 2, Data_In [3] = 1 and Data_In [k] = 0 for 0 < k < n, k ≠ 3  
 
  Data_Out [1:0] = 112 = 310  

 
A Mux does not change the data input, but encoders transform the data input to form the data 
output.  The encoder assigns a unique bit pattern to each input line. 
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PRIORITY ENCODERS 
 

 

 
A priority encoder allows multiple input bits to be asserted simultaneously, and uses a priority 
rule to form an output bit pattern. 
 
Example: 
 

Data_In [3:0] Data_out [1:0] 
 - - - 1  00 
 - - 1 -  01 
 - 1 - -  10 
 1 - - -   11 

 
 
  Note: "-" denotes a don't care condition. 
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DECODERS 
 

 

A decoder has m inputs and n outputs, with n = 2m.  Only one of the outputs is asserted at a 
time.  The asserted output is determined by the decimal equivalent of the m-bit binary input 
word. 
 
 

Data_In Data_out

Decoder

m n

Data_In

Data_Out[n-1]

Decoder

m

Data_Out[0]  
 

 
Example: n = 4, m = 2    
 
   Data_In = 112 and Data_Out [3]  = 1 and Data_Out[k] = 0 for k ≠ 3  
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STORAGE ELEMENTS: R-S LATCH 
 

 

• Storage elements are used to store information in a binary format (e.g. state, data, address, 
opcode, machine status).   

• Storage elements may be clocked or unclocked. 
• Two types: level-sensitive, edge-sensitive 
 
Example: R-S latch (Unclocked) The state of an R-S latch is dependent on the value of its R 
and S inputs. 
 

S' R' Qnext Q'next

R

S

Q

Q'

Not
Allowed

Set

0

0

1

1

0

1

0

1

1

1

0

Q

1

0

1

Q'

Reset

Hold

S R Qnext Q'next

Hold

Reset

0

0

1

1

0

1

0

1

Q

0

1

0

Q'

1

0

0

Set
Not

Allowed

Q

Q'

S'

R'

 

 
Note: Avoid applying 11 to a R-S Nor latch, 
and 00 to an R'S' Nand latch.  The circuit is 
unstable and oscillation will result. 
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STORAGE ELEMENTS: TRANSPARENT LATCHES 
 

 

Latches are level-sensitive storage elements; data storage is dependent on the level (value ) 
of the input clock (or enable) signal.  The output of a transparent latch changes in response to 
the data input while the latch is enabled.  Changes at the input are visible at the output 

data

 
 

q_out

enable

 
 

data

enable
10 20 30 400

1

tsim50

10 20 30 400

1

tsim50

10 20 30 400

1

tsim50

q_out
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STORAGE ELEMENTS: FLIP-FLOPS 
 

 

 
Flip-flops are edge-sensitive storage elements; data storage is synchronized to an edge of a 
clock.  The value of data stored depends on the data that is present at the data input(s) when 
the clock makes a transition at its active (rising or falling) edge. 
 
Example: D-type  flip-flop  

Q

clk

D

Q'

D Q Qnext

0 0 0
0 1 0
1 0 1
1 1 1

 
 
clk

D

Q

t

t

t

Ignored

 

• Characteristic equation: qnext = D. 
 

• This example is active on the rising 
(positive) edge of the clock. 

 
• Intermediate data transitions are 

ignored. 
 
• Timing constraints (setup, hold, 

minimum pulse width) must be met. 
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MASTER-SLAVE FLIP-FLOP   
 

 

A master-slave configuration of two data latches samples the input during the active cycle of 
the clock applied to the master stage.  The input is propagated to the output during the slave 
cycle of the clock. 
 
Master-slave implementation of a negative edge-triggered D-type flip-flop: 
 
 

D

Enable

Q
Data
Latch

D

Enable

Q
Data
Latch

Q'

q

q'

clock

data

Master Slave

 
 

Timing constraint: the output of the master stage must settle before the enabling edge of the 
slave stage.   The master stage is enabled on the inactive edge of the clock, and the slave 
stage is enabled on the active edge.  Timing constraints apply to the active edge. 
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CMOS TECHNOLOGY - MASTER-SLAVE FLIP-FLOP   
 

 

CMOS Transmission Gate: 
 

output_sig

~enable

enable

input_sig

 
 
D-type flip-flops in CMOS technology are 
formed by combining transmission gates 
with glue logic to form a master-slave circuit. 

 
 

clock

Data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_bar

Q

Clear_bar  
 

t

Data

clock

Q

Clear_bar
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CMOS TECHNOLOGY MASTER-SLAVE FLIP-FLOP  (Cont.) 
 

 

 

clock

data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_

Q

clear_

1
0

0
1

1
0

clock(n-∆) = 0

w1 w2

w3

w4

w01
w04

 
 

clock

data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_

Q

clear_

clock(n+∆) = 1

0
1

1
0

w1 w2

w3

w4

w04
w01

 

 
• Master stage: output capacitor (node w2) 

is charged and sustained by the feedback 
loop.  The delays of the master stage 
determine the setup conditions of the flip-
flop. 

 
 
• Slave stage:  The output of the slave 

stage is sustained while the master stage 
is charging.  At the active edge of the flip-
flop, the output of the master stage 
charges the output of the slave stage, 
which is sustained by the feedback loop 
during the active cycle. 

 
• Note: the read operation is non-

destructive. 
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J-K FLIP-FLOP 
 

 
 

 
J-K Flip-flops are edge-sensitive storage 
elements; data storage is synchronized 
to an edge of a clock.  The value of data 
stored is conditional, depending on the 
data that is present at the j and k inputs 
when the clock makes a transition at its 
active (rising or falling) edge.  Cell 
libraries may omit the J-K flip-flop and 
implement the functionality with a D-type 
flip-flop combined with input logic. 
 
 
• Characteristic Equation: qnext = jq' + k'q 

q

clk

j

q'

j k q qnext

0 0 q q
0 1 q 0
1 0 q 1
1 1 q q'

clk

j

q

t

t

t

k

k
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T FLIP-FLOP 
 

T-type flip-flops are edge-sensitive 
storage elements; data storage is 
synchronized to an edge of a clock.  The 
value of data stored is conditional, 
depending on the T-input and the state 
of the device when the clock makes a 
transition at its active (rising or falling) 
edge.  If T is asserted, the output 
toggles, otherwise it has no change.  
 
A T-type flip-flop can be more efficient in 
implementing a counter. 
 
• Characteristic Equation:  
 
 qnext = q T' + q' T = q ⊕ T 

 
• Note: connect T to the j and k inputs of a 

j-k flip-flop to for a T-type flip-flop. 
 

q

clk q'

T q qnext

0 q q
1 q q'

clk

T
t

t

T

q

t  
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 BUILDING BLOCKS: THREE-STATE DEVICES 
  

 
 

Three-state devices provide high-impedance interface devices. 
 
 

0
0
1
1

0
1
0
1

Hi-Z
0

Hi-Z
1

x_in en y_out

0
0
1
1

0
1
0
1

0
Hi-Z

1
Hi-Z

x_in en y_out

0
0
1
1

0
1
0
1

Hi-Z
1

Hi-Z
0

x_in en y_out

0
0
1
1

0
1
0
1

1
Hi-Z

0
Hi-Z

x_in en y_out

y_outx_in

en

y_outx_in

en

y_outx_in

en

y_outx_in

en

 
 
 

Typical applications: i/o pad and bus isolation. 
 

register

inbound_dat
a

reg_to_bus

send_data

rcv_data

data_to_from_bus

32

32 32
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 BUILDING BLOCKS: THREE-STATE DEVICES (Cont.) 
  

 
Combine a multiplexer with a three-state device to reduce bus loading of multiple bus drivers. 

 
 
 

Mux

reg_a_to_bus

reg_b_to_bus

enab_a

enab_b

data_to_from_bussel

32

32

32
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 BUILDING BLOCKS: BUSSES 
  

 
• Busses provide parallel datapaths and 

control interfaces and between functional 
units. 

• Synchronous and asynchronous busses 
• Handshaking protocols are required for 

coherent communication 
• Key Issues: Bus Contention and Arbitration 
 
Example: Register-to-Register transfer on a 4-
bit datapath. 
 

OE_b_3

IE_b_1

CLK

DB 4

 
 

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

DB3 DB2 DB1 DB0

Data Bus

IE_b_0

OE_b_0

IE_b_1

OE_b_1

IE_b_2

OE_b_2

IE_b_3

OE_b_3

CLK

Register outputs are
internally three-stated.  
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SEQUENTIAL MACHINES  (p 80) 
  

 
• Sequential machines, also called finite state machines, are characterized by an input/output 

relationship in which the value of the outputs at a given time depend on the history of the 
applied inputs as well as their present value.  

 
Example: A machine that is to count the number of 1s in a serially transmitted frame of bits. 

 
• The history of the inputs applied to a sequential machine is represented by the state of the 

machine, and requires hardware elements that store information, i.e. requires memory to store  
the state of the machine as an encoded binary word. 

 
• All sequential machines require feedback that allows the next state of the machine to be 

determined from the present state and inputs. 
 

Next State forming
Logic

Inputs

Memory
Present
State (PS)
Outputs

Feedback of present state

Next State
(NS)

 
 

The set of states of a sequential 
machine is always finite, and the 
number of states is determined by 
the number of bits that represent 
the state. 
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SEQUENTIAL MACHINES (Cont.) 
  

 
• Sequential machines may be asynchronous or synchronous (clocked). 
 
• The state transitions of a (edge-triggered) flip-flop-based synchronous machine are 

synchronized by the active edge (i.e. rising or falling)  of a common clock.  State changes give 
rise to changes in the combinational logic that determines the next state and the output of the 
machine.   

 
period

Rising edge

Falling edge

 
 

• A lower bound on the cycle time (period) of the machine's clock is set by the requirement that 
the period of the clock must be long enough to allow all transients activated by an a transition 
of the clock to settle at the outputs of the combinational logic before the next active edge 
occurs.   
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SEQUENTIAL MACHINES (Cont.) 
  

 
 
• The inputs to the flip-flops must remain stable for a sufficient interval before and after the active 

edge of the clock.  The former constraint establishes an upper bound on the longest path 
through the circuit, which constrains the latest allowed arrival of data. The latter constraint 
imposes a lower bound on the shortest path through the combinational logic that is driving the 
storage device.   It constrains the earliest time at which data from the previous cycle could be 
overwritten. 

 
• Together, these constraints ensure that valid data is stored.  Otherwise, timing violations may 

occur at the inputs to the flip-flops, with the result that invalid data is stored.   
 
• In an edge-triggered clocking scheme, the clock isolates a storage register's inputs from its 

output, thereby allowing feedback without race conditions. 
 
• The outputs of a state machine controls the synchronous datapath operations and register 

operations of more general digital machine.   
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 FINITE STATE MACHINES 
  

 
• Synchronous (i.e. clocked) finite state machines (FSMs) have widespread application in digital 

systems, e.g. as datapath controllers in computational units and processors.   Synchronous 
FSMs are characterized by a finite number of states and by clock-driven state transitions. 

 
• Mealy Machine:  The next state and the outputs depend on the present state and the inputs.   
 
• Moore Machine: The next state depends on the present state and the inputs, but the output 

depends on only the present state.   
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FINITE STATE MACHINES (Cont.) 
  

 
 

Next State and Output
Combinational

Logic

Inputs

State
Register

Outputs

Next State
Combinational

Logic

Inputs
State

Register
OutputsOutput

Combinational
Logic

clock

clock

Moore machine

Mealy machine
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 MEALY FINITE STATE MACHINE - EXAMPLE 
  

 
A serially-transmitted BCD (8421 code) word is to be converted into an Excess-3 code. An 
Excess-3 code word is obtained by adding 3 to the decimal value and taking the binary 
equivalent.  Excess-3 code is self-complementing [Wakerly, p. 80], i.e. the 9's complement of a 
code word is obtained by complementing the bits of the word. 
 
 

Decimal 8-4-2-1 Excess-3
Digit Code Code

(BCD)

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

 

 

Excess-3
Code

Converter

clk

Bout = 8Excess-3

1 0 0 0
+

1 1 10

Bin = 8 bcd

Bout

0 0 1 1
1 0 1 1

LSBMSB

0 0 0 1
t

LSB MSB

t

MSB
Bin
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 MEALY FINITE STATE MACHINE - EXAMPLE (Cont.) 
  

 
The serial code converter is described by the state transition graph of a Mealy FSM. 
 

      State Transition Graph 

S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

 

  
 

state
next state/output

input
0 1

S_0 S_1 / 1   S_2 / 0
S_1 S_3 / 1   S_4 / 0
S_2 S_4 / 0   S_4 / 1
S_3 S_5 / 0   S_5 / 1
S_4 S_5 / 1   S_6 / 0
S_5 S_0 / 0   S_0 / 1
S_6 S_0 / 1       - / -

Next State/OutputTable

 
 
• The vertices of the state transition graph of a Mealy machine are labeled with the states. 
• The branches are labeled with (1) the input that causes a transition to the indicated next state, 

and (2) with the output that is asserted in the present state for that input.   
• The state transition is synchronized to a clock. 
• The state table summarizes the machine's behavior in tabular format. 
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 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 
  

 
To design a D-type flip-flop realization of a FSM having the behavior described by a state 
transition graph, (1) select a state code, (2) encode the state table, (3) develop Boolean 
equations describing the input of a D-type flip-flop, and (4) using K-maps, optimize the Boolean 
equations. 
 
 

state
next state/output

input
0 1

S_0 S_1 / 1   S_2 / 0
S_1 S_3 / 1   S_4 / 0
S_2 S_4 / 0   S_4 / 1
S_3 S_5 / 0   S_5 / 1
S_4 S_5 / 1   S_6 / 0
S_5 S_0 / 0   S_0 / 1
S_6 S_0 / 1       - / -

Next State/Output Table

 
1

0 1

q0

S_0

S_6 S_4

S_2

S_5 S_31

1 0

0 1

0 0

q2 q1

S_1

State Assigment

 

q2 q1 q0 q2
+ q1

+ q0
+

input
0 1

state next state output

input
0 1

S_0 000 001 101 1 0

001 111 011 1 0

101 011 011 0 1

111 110 110 0 1

011 110 010 1 0

110 000 000 0 1

010 000 - 1 -

100 - - - -

S_1

S_2

S_3

S_4

S_5

S_6

Encoded Next state/ Output Table
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 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 
  

 

 
 
Note: We will optimize the equations 
individually.  In general - this does not 
necessarily produce the optimal (area, speed) 
realization of the logic.  We'll address this 
when we consider synthesis. 

 
 
 
 
 
 
 
 
 
q2

+ =  q1'q0'Bin + q2'q0Bin' + q2q1q0

q2
+ =  q1'q0'Bin + q2'q0Bin' + q2q1q0

q2
+ =  q1'q0'Bin   q2'q0Bin'   q2q1q0

q2
+ =  q1'q0'Bin   q2'q0Bin'   q2q1q0
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 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 
  

 
Realization of the sequential BCD-to-Excess-3 code converter (Mealy machine): 
 
 

q1'
q0'

q2'
q0

q0q1
q2

D

Q

Q

D

Q

Q

D

Q

Q

Bout

Bin

clk

q2'

q2

q1'

q1

q0

q0'

q1'

q0

Bin

Bin'
Bin'
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 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 
  

 
 
 

Simulation results for Mealy machine: 
 

0 10 0
1 11 0

B_in
B_out  
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 DESIGN OF A SERIAL LINE CODE CONVERTER (p 89) 
  

 
Serial Line Codes [Wakerly] are used for serial data transmission or storage.  Data recovery 
requires a clock to define the boundaries of the data bits, a synchronizing signal to define word 
boundaries, and a data stream.  As an alternative to having three separate signal channels, a 
phone system or a disk read/write head will have a single channel and use a coding scheme to 
enable clock recovery and synchronization. 
 
NRZ Code (Non-Return to Zero): The signal waveform duplicates the bit pattern over the entire 
bit time.  Phase lock loops (PLL) can recover the clock if there are no long series of 1s or 0s. 
 
NRZI Code (Non-Return to Zero Invert-on-Ones) A 0 in the bit stream causes the value of the 
previous bit to be transmitted; a 1 in the bit stream causes the value of the complement of the 
previous bit to be transmitted.   A PLL can recover the clock if there is no long string of 0s. 
 
RZ Code (Return-to-Zero): A 0 in the bit stream is transmitted as a 0 for the entire bit time.  A 1 in 
the bit stream is transmitted as a 1 for 1/2 of the bit time, and 0 for the remaining bit time 
(typically). A PLL can recover the clock if there is no long string of 0s.  
 
Manchester Code:  A 0 in the bit stream is transmitted as a 0 for the lead half of the bit time, and 
as a 1 for the remaining half.  A 1 in the bit stream is transmitted as a 1 for the leading half of the 
bit time, and as a 0 for the remaining bit time.   Requires higher bandwidth, but allows clock 
recovery independent of the data stream.  
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 SERIAL LINE CODE FORMATS 
  

 
 

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in
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 MEALY FSM - SERIAL LINE CODE CONVERTER (p 92) 
  

 
Objective:  Design a Mealy-type FSM that converts a data stream in NRZ format to a data stream 
in Manchester code format. 
 
 
 

NRZ-to-
Manchester

Code
Converter

DataManchesterDataNRZ

 
 
 

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1  
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 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.) 
  

 
 State Transition Graph 
 

 

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1  
 
 
State Table: 

 

state
next state/output

input
0 1

S_0 S_1 / 0   S_2 / 1
S_1 S_0 / 1        -
S_2      -        S_0 / 0

 

State Code: 
 

0 1

q0

S_0

S_21

0

q1

S_1

 
 
Encoded State Table: 
 

q1 q0 q1
+ q0

+

input
0 1

state next state output

input
0 1

S_0 00 01 10 0 1

01 00 - 1 -

10 - 00 - 0

S_1

S_2  
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 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.) 
  

 

q1 q0 q1
+ q0

+

input
0 1

state next state output

input
0 1

S_0 00 01 10 0 1

01 00 00 1 -

10 00 00 - 0

S_1

S_2  
Karnaugh Maps: 

 

10

01

00

0 1

0

Bin
q1 q0

1

1 1
S_0 S_0

S_1

-

S_2
- 0

S_1

-

S_2

Bout = q1' (q0 + Bin )

11

10

01

00

0 1

1

Bin

q1 q0

0

0 0
S_0 S_0

S_1

-

S_2
0 0

S_1

-

S_2

q0
+ =   q1'q0'Bin'

1111

10

01

00

0 1
0

Bin

q1 q0

1

0 0
S_0 S_0

S_1

0
S_2

- -
S_1

0
S_2

q1
+ =   q1'q0'Bin  

 
 

q0'

B_in'

D

Q

Q

D

Q

Q

Bout

clk
q1'

q1

q0

q0'

q1'

q0'
Bin

q1'
Bin
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 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.) 
  

 

Input and output bit times coincide

 
 

Note:  The Mealy machine's output is 
subject to glitches in the input bit 
stream. 
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 SERIAL LINE CODE CONVERTER - MOORE FSM (p 93) 
  

 

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZ

NRZI

RZ

Manchester

time

clock_1

clock_2
 

State Table:  
 

state
next state/output

input
0 1

S_0 S_1 / 0   S_3 / 1
S_1 S_2 / 1        -
S_3      -        S_0 / 1
S_2 S_1 / 0   S_3 / 0

 
State Transition Graph: 
 

0S_0
0

S_1
0

S_3
1

S_2
11

0

0

011
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 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.) 
  

 
 
State Transition Graph 
 

0S_0
0

S_1
0

S_3
1

S_2
11

0 011

<00> <01>

<10><11>

state code

 
 
 
State code: 

0 1

q0

S_0

S_2 S_31

0

q1

S_1

 

Encoded State Table: 
 

q1 q0 q1
+ q0

+

input
0 1

state next state output

S_0 00 01 11 0

01 10 - 0

11 - 00 1

S_1

S_3

10 01 11 1S_2  
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 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.) 
  

 
Encoded State Table: 

state next state
q1 q0 q1

+ q0
+

input
0 1

output

S_0 00 01 11 0

01 10 - 0

11 - 00 1

S_1

S_3

10 01 11 1S_2  
 

q0

D

Q

Q

D

Q

Q
Bout

clk

q0'

q0

q1

q1'

q1'

q0'

Bin

 

 
Karnaugh Maps 
 

1

0

0 1

0

q0
q1

0

1 1
S_0 S_0

S_1 S_1

B_out = q1

10

01

00

0 1

1

Bin
q1 q0

1

0 -
S_0 S_0

S_1

0

S_2
1 1

S_1

-

S_2

q0
+ =   q0'

11
S_3 S_3

11

10

01

00

0 1

0

Bin
q1 q0

1

1 -
S_0 S_0

S_1

1
S_2

- 0
S_1

0
S_2

q1
+ =   q1'q0 + q0'Bin

S_3 S_3
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 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.) 
  

 

NRZ bit time

Manchester bit time

 
 

 
The Manchester encoder must run at 
twice the frequency of the incoming 
data. 
 
The output bit stream lags the input bit 
stream by one-half the input cycle 
time. 
 



 Copyright 2000, 2003  MD Ciletti    108 

 

 EQUIVALENT STATES (p 95) 
  

 
Two states are equivalent if they have the same next state and output for all inputs.  Equivalent 
states can be combined without changing the input/output behavior of the machine.  Combine 
equivalent states to simplify the state table and the STG.  For every FSM there is a unique 
equivalent machine that is minimal. 

 
 

 

S_0 S_6 S_3 0 0
S_1 S_1 S_6 0 1
S_2 S_2 S_5 0 1
S_3 S_7 S_3 0 1
S_4 S_7 S_2 0 0
S_5 S_7 S_2 0 0
S_6 S_0 S_1 0 0
S_7 S_4 S_5 S_3 0 0

0
Input

Output

1 0 1

Next State
Input

State

Equivalent
States

 

 
S_4

S_5

S_7S_2

0 / 01 / 0

0 / 01 / 0
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 COMBINATION OF EQUIVALENT STATES 
  

 
 
 

Consider conditions for pair-wise 
equivalence and eliminate states that 
cannot be equivalent.  Form an array 
representing pair-wise combinations of 
states. 
 
(1) Eliminate cells that have a different 
output for the same input (Shaded 
cells) 
 
(2) For the remaining states, identify the 
conditions that are necessary for 
equivalence, and enter into the array 
(Labeled cells). 
 
The remaining cells identify equivalent 
states. 

 
S_1

S_2

S_3

S_4

S_6

S_7

S_0 S_1 S_2 S_3 S_4 S_6

S_1 - S_7
S_6 - S_3

S_6 - S_7
S_3 - S_2

S_6 - S_4

S_3 - S_1

S_6 - S_4

S_2 - S_7
S_4 - S_3

S_7 - S_0
S_2 - S_1

S_2 - S_3 S_0 - S_4
S_1 - S_3
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 COMBINATION OF EQUIVALENT STATES (Cont.) 
  

 
 
 

S_0 S_4 S_3 0 0
S_1 S_1 S_4 0 1
S_3 S_0 S_3 0 1
S_4 S_0 S_1 0 0

0
Input

Output

1 0 1

Next State
Input

State
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 COMBINATION OF EQUIVALENT STATES (Cont.) 
  

 
 
(3) Strike out any cells having the label of 
a shaded state-pair. (Labeled cells with \). 
 
 
(4) Remove cells that have a label that 
has been struck out in (3)  (Shaded cells 
with labels). 

 

S_2 - S_3

S_1

S_2

S_3

S_4

S_6

S_7

S_0 S_1 S_2 S_3 S_4 S_6

S_1 - S_7
S_6 - S_3

S_6 - S_7
S_3 - S_2

S_3 - S_1

S_2 - S_7
S_4 - S_3

S_0 - S_4
S_1 - S_3S_6 - S_4

S_6 - S_4

S_7 - S_0
S_2 - S_1
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