
The Microprocessor and its Architecture 
 



Contents 
 Internal architecture of the Microprocessor: 

 The programmer’s model, i.e. The registers model 

 The processor model (organization) 

 Real mode memory addressing using memory 
segmentation 

 Protected mode memory addressing using memory 
segmentation 

 Memory paging mechanism 



Objectives for this Chapter 
 Describe the function and purpose of program-

visible registers 

 Describe the Flags register and the purpose of each 
flag bit 

 Describe how memory is accessed using 
segmentation in both the real mode and the 
protected mode 

 Describe the program-invisible registers 

 Describe the structures and operation of the 
memory paging mechanism 

 Describe the processor model 



The Intel Family 



Programming  
Model 

General Purpose 
Registers 

Special Purpose 
Registers 

Segment  
Registers 

80386 and above 
(32-bit data registers) 



General-Purpose Registers 
 The top portion of the programming model contains 

the general purpose registers:           EAX, EBX, ECX, 
EDX, EBP, ESI, and EDI.   

 Although general in nature, each have a special 
purpose and name:  

 Can carry both Data & Address offsets 

 EAX – Accumulator 

 Used also as AX (16 bit), AH (8 bit), and AL (8 bit) 

 EBX – Base Index often used to hold offset address 
of a memory location  (BX, BH, and BL) 



General-Purpose Registers (continued) 
 ECX – count, for shifts, rotates, and loops (CX, CH, and CL) 

 EDX – data, used with multiply and divide (DX, DH, and 
DL) 

 EBP – base pointer used to address stack data (BP) 

 ESI – source index (SI) for memory locations, e.g. with 
string instructions 

 EDI – destination index (DI) for memory locations string 
operations 



Special-Purpose Registers 
 ESP, EIP, and EFLAGS 

 Each has a specific task  

 ESP – Stack pointer: addresses the stack segment used with 
functions (procedures) (SP) 

 EIP – Instruction Pointer: addresses the next instruction in a 
program in the code segment (IP) 

 EFLAGS – indicates latest conditions of the microprocessor 
(FLAGS)  



EFLAGS 

80386DX 



The Flags 

 C – Carry/borrow of result also show error conditions 
 P – the parity flag  odd or even parity (little used today) 
 A – auxiliary flag used with BCD arithmetic, e.g. using DAA and 

DAS (decimal adjust after add/sub) 
 Z – zero  
 S – sign  (-ve (S=1)or +ve (S=0)) 
 O – Overflow  
 D – direction - Determines auto incr/dec direction for string 

instructions (STD, CLD) 
 I – interrupt- Enables (using STI) or disables (using CLI) the 

processing of hardware interrupts arriving at the INTR input pin  
 T – Trap- (turns trapping on/off for program debugging) 

Basic Flag Bits (8086 etc.) 



Newer Flag Bits 
 IOPL – 2-bit I/O privilege level in protected mode  
 NT – nested task 
 RF – resume flag (used with debugging) 
 VM – virtual mode: multiple DOS programs each 

with a 1 MB memory partition 
 AC – alignment check: detects addressing on wrong 

boundary for words/double words 
 VIF – virtual interrupt flag 
 VIP – virtual interrupt pending 
 ID = CPUID instruction available 

   The instruction gives info on CPU version and manufacturer 



Segment Registers  
 The segment registers are:  

 CS (code),  

 DS (data),  

 ES (extra data. used with string instructions),  

 SS (stack),  

 FS, and GS. 

 Segment registers define a section of memory (segment) for a 
program.   

 A segment is either 64K (216) bytes of fixed length (in the real 
mode) or up to 4G (232) bytes of variable length (in the 
protected mode). 

 All code (programs) reside in the code segment. 



Real Mode Memory Addressing 
 The only mode available on for 8088-8086 
 Real mode memory is the first 1M (220) bytes of the 

memory system (real, conventional, DOS memory) 
 All real mode 20-bit addresses are a combination of a 

segment address (in a segment register) plus an offset 
address (in another register)  

 The segment register address (16-bits) is appended with 
a 0H or 00002 (or multiplied by 10H) to form a  20-bit 
start of segment address  

 The effective memory address =  
 this 20-bit segment address + a 16-bit offset address in a 

register 
 Segment length is fixed = 216 = 64K bytes 
  



1 MB 

20-bit (5-byte) 
Physical  
Memory address 

64 KB 
Segment 

16-bit 

Appended byte 0H 

+ 

EA (Effective Address) 

(1 MB) 



Effective Address Calculations 
 EA = segment register (SR) x 10H plus offset 

  (a) SR: 1000H  

   10000 + 0023 = 10023 

  (b) SR: AAF0H    

   AAF00 + 0134 = AB034 

  (c) SR: 1200H    

   12000 + FFF0 = 21FF0 



Overlapping segments  

Top of CS: 
090F0 
  FFFF+ 
190EF  

 
 



Defaults 
 

 CS for program (code)  

 SS for stack 

 DS for data 

 ES for string destination  

 Default offset addresses that go with them: 

Segment Offset (16-bit) 

8080, 8086, 80286 

Offset (32-bit) 

80386 and above 

Purpose 

CS IP EIP Program 

SS SP, BP ESP, EBP Stack 

DS BX, DI, SI, 8-bit or 16-bit # EAX, EBX, ECX, EDX, 

ESI, EDI, 8-bit or 32-bit # 

Data 

ES DI EDI String 

destination 



Segmentation: Pros and Cons 
Advantages:  

 Allows easy and efficient relocation of code and data 

 A program can be located anywhere in memory without 
any change to the program 

 Program writing needs not worry about actual memory 
structure of the computer used to execute it 

 To relocate code or data only the segment number needs 
to be changed 

Disadvantages: 

 Complex hardware and for address generation 

 Software: Programs limited by segment size          (only 
64KB with the 8086) 



Limitations of the above real mode segmentation scheme 

 Segment size is fixed at 64 KB 

 Segment can not begin at an arbitrary memory 
address… 

 With 20-bit memory addressing, can only begin at 
addresses starting with 0H, i.e. at 16 byte intervals  

 Difficult to use with 24 or 32-bit memory addressing 
with segment registers remaining at 16-bits 

 

 80286 and above use 24, 32, 36 bit addresses but still 16-
bit segment registers  

  Use memory segmentation in the protected mode  


