
The Microprocessor and its Architecture 
 



Contents 
 Internal architecture of the Microprocessor: 

 The programmer’s model, i.e. The registers model 

 The processor model (organization) 

 Real mode memory addressing using memory 
segmentation 

 Protected mode memory addressing using memory 
segmentation 

 Memory paging mechanism 



Objectives for this Chapter 
 Describe the function and purpose of program-

visible registers 

 Describe the Flags register and the purpose of each 
flag bit 

 Describe how memory is accessed using 
segmentation in both the real mode and the 
protected mode 

 Describe the program-invisible registers 

 Describe the structures and operation of the 
memory paging mechanism 

 Describe the processor model 



The Intel Family 



Programming  
Model 

General Purpose 
Registers 

Special Purpose 
Registers 

Segment  
Registers 

80386 and above 
(32-bit data registers) 



General-Purpose Registers 
 The top portion of the programming model contains 

the general purpose registers:           EAX, EBX, ECX, 
EDX, EBP, ESI, and EDI.   

 Although general in nature, each have a special 
purpose and name:  

 Can carry both Data & Address offsets 

 EAX – Accumulator 

 Used also as AX (16 bit), AH (8 bit), and AL (8 bit) 

 EBX – Base Index often used to hold offset address 
of a memory location  (BX, BH, and BL) 



General-Purpose Registers (continued) 
 ECX – count, for shifts, rotates, and loops (CX, CH, and CL) 

 EDX – data, used with multiply and divide (DX, DH, and 
DL) 

 EBP – base pointer used to address stack data (BP) 

 ESI – source index (SI) for memory locations, e.g. with 
string instructions 

 EDI – destination index (DI) for memory locations string 
operations 



Special-Purpose Registers 
 ESP, EIP, and EFLAGS 

 Each has a specific task  

 ESP – Stack pointer: addresses the stack segment used with 
functions (procedures) (SP) 

 EIP – Instruction Pointer: addresses the next instruction in a 
program in the code segment (IP) 

 EFLAGS – indicates latest conditions of the microprocessor 
(FLAGS)  



EFLAGS 

80386DX 



The Flags 

 C – Carry/borrow of result also show error conditions 
 P – the parity flag  odd or even parity (little used today) 
 A – auxiliary flag used with BCD arithmetic, e.g. using DAA and 

DAS (decimal adjust after add/sub) 
 Z – zero  
 S – sign  (-ve (S=1)or +ve (S=0)) 
 O – Overflow  
 D – direction - Determines auto incr/dec direction for string 

instructions (STD, CLD) 
 I – interrupt- Enables (using STI) or disables (using CLI) the 

processing of hardware interrupts arriving at the INTR input pin  
 T – Trap- (turns trapping on/off for program debugging) 

Basic Flag Bits (8086 etc.) 



Newer Flag Bits 
 IOPL – 2-bit I/O privilege level in protected mode  
 NT – nested task 
 RF – resume flag (used with debugging) 
 VM – virtual mode: multiple DOS programs each 

with a 1 MB memory partition 
 AC – alignment check: detects addressing on wrong 

boundary for words/double words 
 VIF – virtual interrupt flag 
 VIP – virtual interrupt pending 
 ID = CPUID instruction available 

   The instruction gives info on CPU version and manufacturer 



Segment Registers  
 The segment registers are:  

 CS (code),  

 DS (data),  

 ES (extra data. used with string instructions),  

 SS (stack),  

 FS, and GS. 

 Segment registers define a section of memory (segment) for a 
program.   

 A segment is either 64K (216) bytes of fixed length (in the real 
mode) or up to 4G (232) bytes of variable length (in the 
protected mode). 

 All code (programs) reside in the code segment. 



Real Mode Memory Addressing 
 The only mode available on for 8088-8086 
 Real mode memory is the first 1M (220) bytes of the 

memory system (real, conventional, DOS memory) 
 All real mode 20-bit addresses are a combination of a 

segment address (in a segment register) plus an offset 
address (in another register)  

 The segment register address (16-bits) is appended with 
a 0H or 00002 (or multiplied by 10H) to form a  20-bit 
start of segment address  

 The effective memory address =  
 this 20-bit segment address + a 16-bit offset address in a 

register 
 Segment length is fixed = 216 = 64K bytes 
  



1 MB 

20-bit (5-byte) 
Physical  
Memory address 

64 KB 
Segment 

16-bit 

Appended byte 0H 

+ 

EA (Effective Address) 

(1 MB) 



Effective Address Calculations 
 EA = segment register (SR) x 10H plus offset 

  (a) SR: 1000H  

   10000 + 0023 = 10023 

  (b) SR: AAF0H    

   AAF00 + 0134 = AB034 

  (c) SR: 1200H    

   12000 + FFF0 = 21FF0 



Overlapping segments  

Top of CS: 
090F0 
  FFFF+ 
190EF  

 
 



Defaults 
 

 CS for program (code)  

 SS for stack 

 DS for data 

 ES for string destination  

 Default offset addresses that go with them: 

Segment Offset (16-bit) 

8080, 8086, 80286 

Offset (32-bit) 

80386 and above 

Purpose 

CS IP EIP Program 

SS SP, BP ESP, EBP Stack 

DS BX, DI, SI, 8-bit or 16-bit # EAX, EBX, ECX, EDX, 

ESI, EDI, 8-bit or 32-bit # 

Data 

ES DI EDI String 

destination 



Segmentation: Pros and Cons 
Advantages:  

 Allows easy and efficient relocation of code and data 

 A program can be located anywhere in memory without 
any change to the program 

 Program writing needs not worry about actual memory 
structure of the computer used to execute it 

 To relocate code or data only the segment number needs 
to be changed 

Disadvantages: 

 Complex hardware and for address generation 

 Software: Programs limited by segment size          (only 
64KB with the 8086) 



Limitations of the above real mode segmentation scheme 

 Segment size is fixed at 64 KB 

 Segment can not begin at an arbitrary memory 
address… 

 With 20-bit memory addressing, can only begin at 
addresses starting with 0H, i.e. at 16 byte intervals  

 Difficult to use with 24 or 32-bit memory addressing 
with segment registers remaining at 16-bits 

 

 80286 and above use 24, 32, 36 bit addresses but still 16-
bit segment registers  

  Use memory segmentation in the protected mode  


