
Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

8051 ASSEMBLY
LANGUAGE

PROGRAMMING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

INSIDE THE
8051

Registers

Register are used to store information
temporarily, while the information
could be

a byte of data to be processed, or
an address pointing to the data to be
fetched

The vast majority of 8051 register are
8-bit registers

There is only one data type, 8 bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

INSIDE THE
8051

Registers
(cont’)

The 8 bits of a register are shown from
MSB D7 to the LSB D0

With an 8-bit data type, any data larger
than 8 bits must be broken into 8-bit
chunks before it is processed

D0D1D2D3D4D5D6D7

8 bit Registers

most
significant bit

least
significant bit

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

INSIDE THE
8051

Registers
(cont’)

The most widely used registers
A (Accumulator)

For all arithmetic and logic instructions

B, R0, R1, R2, R3, R4, R5, R6, R7
DPTR (data pointer), and PC (program
counter)

R6
R5
R4
R3
R2
R1
R0
B
A

R7

DPTR

PC PC (Program counter)

DPH DPL

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

INSIDE THE
8051

MOV
Instruction

MOV destination, source ;copy source to dest.
The instruction tells the CPU to move (in reality,
COPY) the source operand to the destination
operand

MOV A,#55H ;load value 55H into reg. A
MOV R0,A ;copy contents of A into R0

;(now A=R0=55H)
MOV R1,A ;copy contents of A into R1

;(now A=R0=R1=55H)
MOV R2,A ;copy contents of A into R2

;(now A=R0=R1=R2=55H)
MOV R3,#95H ;load value 95H into R3

;(now R3=95H)
MOV A,R3 ;copy contents of R3 into A

;now A=R3=95H

“#” signifies that it is a value

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

INSIDE THE
8051

MOV
Instruction

(cont’)

Notes on programming
Value (proceeded with #) can be loaded
directly to registers A, B, or R0 – R7

MOV A, #23H
MOV R5, #0F9H

If values 0 to F moved into an 8-bit
register, the rest of the bits are assumed
all zeros

“MOV A, #5”, the result will be A=05; i.e., A
= 00000101 in binary

Moving a value that is too large into a
register will cause an error

MOV A, #7F2H ; ILLEGAL: 7F2H>8 bits (FFH)

If it’s not preceded with #,
it means to load from a
memory locationAdd a 0 to indicate that

F is a hex number and
not a letter

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

INSIDE THE
8051

ADD
Instruction

ADD A, source ;ADD the source operand
;to the accumulator

The ADD instruction tells the CPU to add the source
byte to register A and put the result in register A
Source operand can be either a register or
immediate data, but the destination must always
be register A

“ADD R4, A” and “ADD R2, #12H” are invalid
since A must be the destination of any arithmetic
operation

MOV A, #25H ;load 25H into A
MOV R2, #34H ;load 34H into R2
ADD A, R2 ;add R2 to Accumulator

;(A = A + R2)

MOV A, #25H ;load one operand
;into A (A=25H)

ADD A, #34H ;add the second
;operand 34H to A

There are always
many ways to write
the same program,
depending on the
registers used

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

Structure of
Assembly
Language

In the early days of the computer,
programmers coded in machine language,
consisting of 0s and 1s

Tedious, slow and prone to error

Assembly languages, which provided
mnemonics for the machine code instructions,
plus other features, were developed

An Assembly language program consist of a series
of lines of Assembly language instructions

Assembly language is referred to as a low-
level language

It deals directly with the internal structure of the
CPU

8051
ASSEMBLY

PROGRAMMING

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

Structure of
Assembly
Language

8051
ASSEMBLY

PROGRAMMING

Assembly language instruction includes
a mnemonic (abbreviation easy to remember)

the commands to the CPU, telling it what those
to do with those items

optionally followed by one or two operands
the data items being manipulated

A given Assembly language program is
a series of statements, or lines

Assembly language instructions
Tell the CPU what to do

Directives (or pseudo-instructions)
Give directions to the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

Structure of
Assembly
Language

ORG 0H ;start(origin) at location
0
MOV R5, #25H ;load 25H into R5
MOV R7, #34H ;load 34H into R7
MOV A, #0 ;load 0 into A
ADD A, R5 ;add contents of R5 to A

;now A = A + R5
ADD A, R7 ;add contents of R7 to A

;now A = A + R7
ADD A, #12H ;add to A value 12H

;now A = A + 12H
HERE: SJMP HERE ;stay in this loop

END ;end of asm source file

8051
ASSEMBLY

PROGRAMMING

An Assembly language instruction
consists of four fields:
[label:] Mnemonic [operands] [;comment]

Mnemonics
produce
opcodes

The label field allows
the program to refer to a
line of code by name

Comments may be at the end of a
line or on a line by themselves
The assembler ignores comments

Directives do not
generate any machine
code and are used
only by the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

The step of Assembly language
program are outlines as follows:

1) First we use an editor to type a program,
many excellent editors or word
processors are available that can be used
to create and/or edit the program

Notice that the editor must be able to produce
an ASCII file
For many assemblers, the file names follow
the usual DOS conventions, but the source file
has the extension “asm“ or “src”, depending
on which assembly you are using

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

(cont’)

2) The “asm” source file containing the
program code created in step 1 is fed to
an 8051 assembler

The assembler converts the instructions into
machine code
The assembler will produce an object file and
a list file
The extension for the object file is “obj” while
the extension for the list file is “lst”

3) Assembler require a third step called
linking

The linker program takes one or more object
code files and produce an absolute object file
with the extension “abs”
This abs file is used by 8051 trainers that
have a monitor program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

(cont’)

4) Next the “abs” file is fed into a program
called “OH” (object to hex converter)
which creates a file with extension “hex”
that is ready to burn into ROM

This program comes with all 8051 assemblers
Recent Windows-based assemblers combine
step 2 through 4 into one step

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

Steps to Create
a Program

EDITOR
PROGRAM

ASSEMBLER
PROGRAM

LINKER
PROGRAM

OH
PROGRAM

myfile.asm

myfile.obj

myfile.abs

myfile.lst
Other obj files

myfile.hex

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

lst File

The lst (list) file, which is optional, is
very useful to the programmer

It lists all the opcodes and addresses as
well as errors that the assembler detected
The programmer uses the lst file to find
the syntax errors or debug

1 0000 ORG 0H ;start (origin) at 0
2 0000 7D25 MOV R5,#25H ;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H into R7
4 0004 7400 MOV A,#0 ;load 0 into A
5 0006 2D ADD A,R5 ;add contents of R5 to A

;now A = A + R5
6 0007 2F ADD A,R7 ;add contents of R7 to A

;now A = A + R7
7 0008 2412 ADD A,#12H ;add to A value 12H

;now A = A + 12H
8 000A 80EF HERE: SJMP HERE;stay in this loop
9 000C END ;end of asm source file

address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

PROGRAM
COUNTER AND

ROM SPACE

Program
Counter

The program counter points to the
address of the next instruction to be
executed

As the CPU fetches the opcode from the
program ROM, the program counter is
increasing to point to the next instruction

The program counter is 16 bits wide
This means that it can access program
addresses 0000 to FFFFH, a total of 64K
bytes of code

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

PROGRAM
COUNTER AND

ROM SPACE

Power up

All 8051 members start at memory
address 0000 when they’re powered
up

Program Counter has the value of 0000
The first opcode is burned into ROM
address 0000H, since this is where the
8051 looks for the first instruction when it
is booted
We achieve this by the ORG statement in
the source program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

PROGRAM
COUNTER AND

ROM SPACE

Placing Code in
ROM

Examine the list file and how the code
is placed in ROM

1 0000 ORG 0H ;start (origin) at 0
2 0000 7D25 MOV R5,#25H ;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H into R7
4 0004 7400 MOV A,#0 ;load 0 into A
5 0006 2D ADD A,R5 ;add contents of R5 to A

;now A = A + R5
6 0007 2F ADD A,R7 ;add contents of R7 to A

;now A = A + R7
7 0008 2412 ADD A,#12H ;add to A value 12H

;now A = A + 12H
8 000A 80EF HERE: SJMP HERE ;stay in this loop
9 000C END ;end of asm source file

HERE: SJMP HERE80EF000A
ADD A, #12H24120008
ADD A, R72F0007
ADD A, R52D0006
MOV A, #074000004
MOV R7, #34H7F340002
MOV R5, #25H7D250000

Assembly LanguageMachine LanguageROM Address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

PROGRAM
COUNTER AND

ROM SPACE

Placing Code in
ROM
(cont’)

After the program is burned into ROM,
the opcode and operand are placed in
ROM memory location starting at 0000

FE000B

80000A

120009

240008

2F0007

2D0006

000005

740004

340003

7F0002

250001

7D0000

CodeAddress
ROM contents

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

PROGRAM
COUNTER AND

ROM SPACE

Executing
Program

A step-by-step description of the
action of the 8051 upon applying
power on it

1. When 8051 is powered up, the PC has
0000 and starts to fetch the first opcode
from location 0000 of program ROM

Upon executing the opcode 7D, the CPU
fetches the value 25 and places it in R5
Now one instruction is finished, and then the
PC is incremented to point to 0002, containing
opcode 7F

2. Upon executing the opcode 7F, the value
34H is moved into R7

The PC is incremented to 0004

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

PROGRAM
COUNTER AND

ROM SPACE

Executing
Program

(cont’)

(cont’)

3. The instruction at location 0004 is
executed and now PC = 0006

4. After the execution of the 1-byte
instruction at location 0006, PC = 0007

5. Upon execution of this 1-byte instruction
at 0007, PC is incremented to 0008

This process goes on until all the instructions
are fetched and executed
The fact that program counter points at the
next instruction to be executed explains some
microprocessors call it the instruction pointer

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

PROGRAM
COUNTER AND

ROM SPACE

ROM Memory
Map in 8051

Family

No member of 8051 family can access
more than 64K bytes of opcode

The program counter is a 16-bit register

Byte Byte Byte

0000

0FFF

0000 0000

3FFF

7FFF

8751

AT89C51
DS89C420/30

DS5000-32

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

8051 DATA
TYPES AND
DIRECTIVES

Data Type

8051 microcontroller has only one data
type - 8 bits

The size of each register is also 8 bits
It is the job of the programmer to break
down data larger than 8 bits (00 to FFH,
or 0 to 255 in decimal)
The data types can be positive or negative

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
Directives

The DB directive is the most widely
used data directive in the assembler

It is used to define the 8-bit data
When DB is used to define data, the
numbers can be in decimal, binary, hex,
ASCII formats

ORG 500H
DATA1: DB 28 ;DECIMAL (1C in Hex)
DATA2: DB 00110101B ;BINARY (35 in Hex)
DATA3: DB 39H ;HEX

ORG 510H
DATA4: DB “2591” ;ASCII NUMBERS

ORG 518H
DATA6: DB “My name is Joe”

;ASCII CHARACTERS

The “D” after the decimal
number is optional, but using

“B” (binary) and “H”
(hexadecimal) for the others is

required

The Assembler will
convert the numbers
into hex

Place ASCII in quotation marks
The Assembler will assign ASCII
code for the numbers or characters

Define ASCII strings larger
than two characters

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
Directives

(cont’)

ORG (origin)
The ORG directive is used to indicate the
beginning of the address
The number that comes after ORG can be
either in hex and decimal

If the number is not followed by H, it is decimal
and the assembler will convert it to hex

END
This indicates to the assembler the end of
the source (asm) file
The END directive is the last line of an
8051 program

Mean that in the code anything after the END
directive is ignored by the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
directives

(cont’)

EQU (equate)
This is used to define a constant without
occupying a memory location
The EQU directive does not set aside
storage for a data item but associates a
constant value with a data label

When the label appears in the program, its
constant value will be substituted for the label

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
directives

(cont’)

EQU (equate) (cont’)

Assume that there is a constant used in
many different places in the program, and
the programmer wants to change its value
throughout

By the use of EQU, one can change it once and
the assembler will change all of its occurrences

COUNT EQU 25
...
MOV R3, #COUNT

Use EQU for the
counter constant

The constant is used to
load the R3 register

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

FLAG BITS AND
PSW REGISTER

Program Status
Word

The program status word (PSW)
register, also referred to as the flag
register, is an 8 bit register

Only 6 bits are used
These four are CY (carry), AC (auxiliary carry), P
(parity), and OV (overflow)

– They are called conditional flags, meaning
that they indicate some conditions that
resulted after an instruction was executed

The PSW3 and PSW4 are designed as RS0 and
RS1, and are used to change the bank

The two unused bits are user-definable

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

FLAG BITS AND
PSW REGISTER

Program Status
Word (cont’)

P--OVRS0RS1F0ACCY

CY PSW.7 Carry flag.
AC PSW.6 Auxiliary carry flag.
-- PSW.5 Available to the user for general purpose
RS1 PSW.4 Register Bank selector bit 1.
RS0 PSW.3 Register Bank selector bit 0.
OV PSW.2 Overflow flag.
-- PSW.1 User definable bit.
P PSW.0 Parity flag. Set/cleared by hardware each

instruction cycle to indicate an odd/even
number of 1 bits in the accumulator.

18H – 1FH311

10H – 17H201

08H – 0FH110

00H – 07H000

AddressRegister BankRS0RS1

Carry out from the d7 bit

A carry from D3 to D4

Reflect the number of 1s
in register AThe result of

signed number
operation is too
large, causing
the high-order
bit to overflow
into the sign bit

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW

XCJNE

XMOV C, bit

XORL C, /bit

XORL C, bit

XANL C, /bit

XANL C, bit

XCPL C

0CLR C

1SETB C

XPLC

XRPC

XDA

X0DIV

X0MUL

XXXSUBB

XXXADDC

XXXADD

ACOVCYInstruction

Instructions that affect flag bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-2

Show the status of the CY, AC and P flag after the addition of 38H
and 2FH in the following instructions.

MOV A, #38H

ADD A, #2FH ;after the addition A=67H, CY=0

Solution:

38 00111000

+ 2F 00101111

67 01100111

CY = 0 since there is no carry beyond the D7 bit

AC = 1 since there is a carry from the D3 to the D4 bi

P = 1 since the accumulator has an odd number of 1s (it has five 1s)

The flag bits affected by the ADD
instruction are CY, P, AC, and OV

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-3

Show the status of the CY, AC and P flag after the addition of 9CH
and 64H in the following instructions.

MOV A, #9CH

ADD A, #64H ;after the addition A=00H, CY=1

Solution:

9C 10011100

+ 64 01100100

100 00000000

CY = 1 since there is a carry beyond the D7 bit

AC = 1 since there is a carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has zero 1s)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-4

Show the status of the CY, AC and P flag after the addition of 88H
and 93H in the following instructions.

MOV A, #88H

ADD A, #93H ;after the addition A=1BH, CY=1

Solution:

88 10001000

+ 93 10010011

11B 00011011

CY = 1 since there is a carry beyond the D7 bit

AC = 0 since there is no carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has four 1s)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

REGISTER
BANKS AND

STACK

RAM Memory
Space

Allocation

There are 128 bytes of RAM in the
8051

Assigned addresses 00 to 7FH
The 128 bytes are divided into three
different groups as follows:

1) A total of 32 bytes from locations 00 to
1F hex are set aside for register banks
and the stack

2) A total of 16 bytes from locations 20H to
2FH are set aside for bit-addressable
read/write memory

3) A total of 80 bytes from locations 30H to
7FH are used for read and write storage,
called scratch pad

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

8051
REGISTER

BANKS AND
STACK

RAM Memory
Space

Allocation
(cont’)

Scratch pad RAM

Bit-Addressable RAM

Register Bank 3

Register Bank 2

Register Bank 1 (stack)

Register Bank 0

00

07
08

0F
10
17
18

1F
20

2F
30

7F

RAM Allocation in 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks

These 32 bytes are divided into 4
banks of registers in which each bank
has 8 registers, R0-R7

RAM location from 0 to 7 are set aside for
bank 0 of R0-R7 where R0 is RAM location
0, R1 is RAM location 1, R2 is RAM
location 2, and so on, until memory
location 7 which belongs to R7 of bank 0
It is much easier to refer to these RAM
locations with names such as R0, R1, and
so on, than by their memory locations

Register bank 0 is the default when
8051 is powered up

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

R7

R6

R5

R4

R3

R2

R1

R0

Bank 0 Bank 1 Bank 2 Bank 3

7

6

5

4

3

2

0

1

F

E

D

C

B

A

8

9

1F

1E

1D

1C

1B

1A

18

19

17

16

15

14

13

12

10

11

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

Register banks and their RAM address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

We can switch to other banks by use
of the PSW register

Bits D4 and D3 of the PSW are used to
select the desired register bank
Use the bit-addressable instructions SETB
and CLR to access PSW.4 and PSW.3

11Bank 3

01Bank 2

10Bank 1

00Bank 0

RS0(PSW.3)RS1(PSW.4)
PSW bank selection

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

Example 2-5

MOV R0, #99H ;load R0 with 99H
MOV R1, #85H ;load R1 with 85H

Example 2-6

MOV 00, #99H ;RAM location 00H has 99H
MOV 01, #85H ;RAM location 01H has 85H

Example 2-7

SETB PSW.4 ;select bank 2
MOV R0, #99H ;RAM location 10H has 99H
MOV R1, #85H ;RAM location 11H has 85H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

8051
REGISTER

BANKS AND
STACK

Stack

The stack is a section of RAM used by
the CPU to store information
temporarily

This information could be data or an
address

The register used to access the stack
is called the SP (stack pointer) register

The stack pointer in the 8051 is only 8 bit
wide, which means that it can take value
of 00 to FFH
When the 8051 is powered up, the SP
register contains value 07

RAM location 08 is the first location begin used
for the stack by the 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

8051
REGISTER

BANKS AND
STACK

Stack
(cont’)

The storing of a CPU register in the
stack is called a PUSH

SP is pointing to the last used location of
the stack
As we push data onto the stack, the SP is
incremented by one

This is different from many microprocessors

Loading the contents of the stack back
into a CPU register is called a POP

With every pop, the top byte of the stack
is copied to the register specified by the
instruction and the stack pointer is
decremented once

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

8051
REGISTER

BANKS AND
STACK

Pushing onto
Stack

Example 2-8

Show the stack and stack pointer from the following. Assume the
default stack area.

MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 6
PUSH 1
PUSH 4

Solution:

25

12

F3

After PUSH 4

SP = 0A

08

09

0A

0B

SP = 09SP = 08Start SP = 07

2508250808

12090909

0A0A0A

0B0B0B

After PUSH 1After PUSH 6

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

8051
REGISTER

BANKS AND
STACK

Popping From
Stack

Example 2-9

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.
POP 3 ; POP stack into R3
POP 5 ; POP stack into R5
POP 2 ; POP stack into R2

Solution:

6C

After POP 2

SP = 08

08

09

0A

0B

SP = 09SP = 0AStart SP = 0B

6C086C086C08

760976097609

0AF90AF90A

0B0B540B

After POP 5After POP 3

Because locations 20-2FH of RAM are reserved
for bit-addressable memory, so we can change the
SP to other RAM location by using the instruction
“MOV SP, #XX”

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

8051
REGISTER

BANKS AND
STACK

CALL
Instruction And

Stack

The CPU also uses the stack to save
the address of the instruction just
below the CALL instruction

This is how the CPU knows where to
resume when it returns from the called
subroutine

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

8051
REGISTER

BANKS AND
STACK

Incrementing
Stack Pointer

The reason of incrementing SP after
push is

Make sure that the stack is growing
toward RAM location 7FH, from lower to
upper addresses
Ensure that the stack will not reach the
bottom of RAM and consequently run out
of stack space
If the stack pointer were decremented
after push

We would be using RAM locations 7, 6, 5, etc.
which belong to R7 to R0 of bank 0, the default
register bank

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

8051
REGISTER

BANKS AND
STACK

Stack and Bank
1 Conflict

When 8051 is powered up, register
bank 1 and the stack are using the
same memory space

We can reallocate another section of RAM
to the stack

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

8051
REGISTER

BANKS AND
STACK

Stack And Bank
1 Conflict

(cont’)

Example 2-10

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.
MOV SP, #5FH ;make RAM location 60H

;first stack location
MOV R2, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 2
PUSH 1
PUSH 4

Solution:

25

12

F3

After PUSH 4

SP = 62

60

61

62

63

SP = 61SP = 60Start SP = 5F

2560256060

12616161

626262

636363

After PUSH 1After PUSH 2

