
800 East 96th Street, Indianapolis, Indiana, 46240 USA

Teach Yourself

in 24HoursJoseph Schmuller

UML

THIRD EDITION

01.067232640X.FM.qxd 2/20/04 10:28 AM Page i

Sams Teach Yourself UML in 24 Hours, Third Edition
Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32640-X

Library of Congress Catalog Card Number: 2003098381

Printed in the United States of America

First Printing: March 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accu-
rate as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information,
please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

1-317-428-3341

international@pearsontechgroup.com

Associate Publisher
Michael Stephens

Acquisitions Editor
Todd Green

Development Editor
Songlin Qiu

Managing Editor
Charlotte Clapp

Senior Project Editor
Matthew Purcell

Copy Editor
Publication Services, Inc.

Indexer
Publication Services, Inc.

Proofreader
Publication Services, Inc.

Technical Editor
Jeffrey Pajor

Publishing Coordinator
Cindy Teeters

Multimedia Developer
Dan Scherf

Interior Designer
Gary Adair

Cover Designer
Alan Clements

Page Layout
Publication Services, Inc.

Graphics
Laura Robbins

01.067232640X.FM.qxd 2/20/04 10:28 AM Page ii

Contents at a Glance

Introduction. 1

Part I Getting Started

HOUR 1 Introducing the UML. 7

2 Understanding Object-Orientation. 31

3 Working with Object-Orientation . 47

4 Working with Relationships. 61

5 Understanding Aggregations, Composites, Interfaces, and

Realizations . 79

6 Introducing Use Cases . 91

7 Working with Use Case Diagrams . 103

8 Working with State Diagrams . 123

9 Working with Sequence Diagrams . 135

10 Working with Communication Diagrams . 157

11 Working with Activity Diagrams. 173

12 Working with Component Diagrams . 197

13 Working with Deployment Diagrams. 213

14 Understanding Packages and Foundations. 225

15 Fitting the UML into a Development Process . 249

Part II A Case Study

HOUR 16 Introducing the Case Study . 267

17 Performing a Domain Analysis . 285

18 Gathering System Requirements . 307

19 Developing the Use Cases . 325

20 Getting into Interactions . 339

21 Designing Look, Feel, and Deployment . 351

22 Understanding Design Patterns. 367

01.067232640X.FM.qxd 2/20/04 10:28 AM Page iii

Part III Looking Ahead

HOUR 23 Modeling Embedded Systems . 383

24 Shaping the Future of the UML . 403

Part IV Appendices

A Quiz Answers . 421

B Working with a UML Modeling Tool . 435

C A Summary in Pictures. 457

Index . 467

01.067232640X.FM.qxd 2/20/04 10:28 AM Page iv

Table of Contents

Introduction 1

What’s New in This Edition . 1

Who Should Read This Book? . 2

Organization of This Book . 2

Conventions Used Throughout This Book . 3

Part I Getting Started 5

HOUR 1: Introducing the UML 7

Adding a Method to the Madness . 8

How the UML Came to Be . 9

Components of the UML . 10

Class Diagram . 11

Object Diagram . 12

Use Case Diagram . 13

State Diagram . 13

Sequence Diagram . 14

Activity Diagram . 16

Communication Diagram . 16

Component Diagram . 18

Deployment Diagram . 19

Some Other Features . 20

Notes . 20

Keywords and Stereotypes . 20

New Diagrams in UML 2.0 . 22

Composite Structure Diagram . 22

Interaction Overview Diagram . 23

Timing Diagram . 24

Something Old, Something New—The Package Diagram 25

01.067232640X.FM.qxd 2/20/04 10:28 AM Page v

Why So Many Diagrams? . 26

But Isn’t It Just a Bunch of Pictures? . 26

Summary . 27

Q&A . 28

Workshop . 29

Quiz . 29

Exercises . 29

HOUR 2: Understanding Object-Orientation 31

Objects, Objects Everywhere . 32

Some Object-Oriented Concepts . 34

Abstraction . 34

Inheritance . 35

Polymorphism . 36

Encapsulation . 37

Message Sending . 38

Associations . 40

Aggregation . 41

The Payoff . 42

Summary . 43

Q&A . 45

Workshop . 45

Quiz . 45

HOUR 3: Working with Object-Orientation 47

Visualizing a Class. 47

Attributes . 48

Operations . 50

Attributes, Operations, and Visualization . 51

Responsibilities and Constraints . 52

Attached Notes . 54

Classes—What They Do and How to Find Them . 54

Summary . 57

vi Sams Teach Yourself UML in 24 Hours

01.067232640X.FM.qxd 2/20/04 10:28 AM Page vi

Contents vii

Q&A . 58

Workshop . 58

Quiz . 58

Exercises . 59

HOUR 4: Working with Relationships 61

Associations. 61

Constraints on Associations . 63

Association Classes . 63

Links . 64

Multiplicity . 64

Qualified Associations . 65

Reflexive Associations . 67

Inheritance and Generalization . 67

Discovering Inheritance . 69

Abstract Classes . 70

Dependencies . 70

Class Diagrams and Object Diagrams . 71

Summary . 73

Q&A . 75

Workshop . 75

Quiz . 76

Exercises . 76

HOUR 5: Understanding Aggregations, Composites,
Interfaces, and Realizations 79

Aggregations . 79

Constraints on Aggregations . 80

Composites . 81

Composite Structure Diagram . 81

Interfaces and Realizations . 82

Interfaces and Ports . 86

Visibility . 87

Scope . 87

01.067232640X.FM.qxd 2/20/04 10:28 AM Page vii

viii Sams Teach Yourself UML in 24 Hours

Summary . 88

Q&A . 89

Workshop . 89

Quiz . 89

Exercises . 89

HOUR 6: Introducing Use Cases 91

Use Cases: What They Are . 91

Use Cases: Why They’re Important. 92

An Example: The Soda Machine . 92

The “Buy Soda” Use Case . 93

Additional Use Cases . 94

Including a Use Case . 96

Extending a Use Case . 97

Starting a Use Case Analysis . 98

Summary . 98

Q&A . 100

Workshop . 100

Quiz . 100

Exercises . 101

HOUR 7: Working with Use Case Diagrams 103

Representing a Use Case Model . 103

The Soda Machine Revisited . 104

Tracking the Steps in the Scenarios . 105

Visualizing Relationships Among Use Cases . 106

Inclusion . 106

Extension . 107

Generalization . 109

Grouping . 110

Use Case Diagrams in the Analysis Process. 110

Applying Use Case Models: An Example . 111

Understanding the Domain . 111

01.067232640X.FM.qxd 2/20/04 10:28 AM Page viii

Contents ix

Understanding the Users . 111

Understanding the Use Cases . 113

Drilling Down . 113

Taking Stock of Where We Are . 115

Structural Elements . 116

Relationships . 116

Grouping . 117

Annotation . 117

Extension . 117

. . . And More. 117

The Big Picture. 117

Summary. 117

Q&A . 120

Workshop . 120

Quiz . 120

Exercises . 121

HOUR 8: Working with State Diagrams 123

What Is a State Diagram? . 123

The Fundamental Symbol Set . 124

Adding Details to the State Icon . 124

Adding Details to the Transitions: Events and Actions 125

Adding Details to the Transitions: Guard Conditions. 127

Substates . 127

Sequential Substates . 128

Concurrent Substates . 128

History States . 129

New in UML 2.0 . 130

Why Are State Diagrams Important? . 131

Building the Big Picture . 131

Summary. 131

Q&A . 133

01.067232640X.FM.qxd 2/20/04 10:28 AM Page ix

x Sams Teach Yourself UML in 24 Hours

Workshop . 133

Quiz . 133

Exercises . 134

HOUR 9: Working with Sequence Diagrams 135

What Is a Sequence Diagram? . 135

Objects. 136

Messages . 136

Time . 137

Cars and Car Keys . 138

A Class Diagram . 138

A Sequence Diagram . 139

The Soda Machine . 141

Sequence Diagrams: The Generic Sequence Diagram . 144

Creating an Object in the Sequence . 146

Framing a Sequence: Sequence Diagramming in UML 2.0 149

Interaction Occurrences . 149

Combined Interaction Fragments . 151

Building the Big Picture . 153

Summary. 153

Q&A . 155

Workshop . 155

Quiz . 155

Exercises . 156

HOUR 10: Working with Communication Diagrams 157

What Is a Communication Diagram? . 158

Cars and Car Keys . 159

Changing States and Nesting Messages . 160

The Soda Machine . 162

Creating an Object . 163

One More Point About Numbering. 164

01.067232640X.FM.qxd 2/20/04 10:28 AM Page x

Contents xi

A Few More Concepts . 164

Multiple Receiving Objects in a Class . 165

Representing Returned Results . 165

Active Objects . 166

Synchronization . 166

Building the Big Picture . 168

Summary. 168

Q&A . 170

Workshop . 170

Quiz . 170

Exercises . 171

HOUR 11: Working with Activity Diagrams 173

The Basics: What Is an Activity Diagram? . 174

Decisions, Decisions, Decisions . 174

Concurrent Paths . 175

Signals . 175

Applying Activity Diagrams . 177

A Process: Creating a Document . 177

Swimlanes . 177

Hybrid Diagrams . 180

New Concepts from UML 2.0 . 181

The Objects of an Activity . 181

Taking Exception . 183

Deconstructing an Activity . 184

Marking Time and Finishing a Flow . 186

Special Effects. 187

An Overview of an Interaction . 188

Building the Big Picture . 191

Summary. 191

Q&A . 193

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xi

xii Sams Teach Yourself UML in 24 Hours

Workshop . 194

Quiz . 194

Exercises . 194

HOUR 12: Working with Component Diagrams 197

What Is (and What Isn’t) a Component? . 197

Components and Interfaces . 198

Reviewing Interfaces . 198

Replacement and Reuse . 199

What Is a Component Diagram? . 200

Representing a Component in UML 1.x and UML 2.0 200

Representing Interfaces . 201

Boxes—Black and White . 202

Applying Component Diagrams. 203

Component Diagrams in the Big Picture . 209

Summary. 209

Q&A . 211

Workshop . 211

Quiz . 211

Exercises . 211

HOUR 13: Working with Deployment Diagrams 213

What Is a Deployment Diagram? . 213

Applying Deployment Diagrams . 216

A Home System . 216

A Token-Ring Network . 216

ARCnet . 218

Thin Ethernet . 218

The Ricochet Wireless Network . 219

Deployment Diagrams in the Big Picture . 221

Summary. 221

Q&A . 223

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xii

Contents xiii

Workshop . 223

Quiz . 223

Exercises . 223

HOUR 14: Understanding Packages and Foundations 225

Package Diagrams . 226

The Purpose of a Package . 226

Interpackage Relationships . 226

Merging Packages . 228

A Hierarchy . 230

An Analogy . 231

Moving On . 232

To Boldly Go . 232

Packaging the Infrastructure of UML . 234

The Core . 235

Profiles . 237

And Now At Last . . . the UML!. 239

The Four Layers Again . 240

Packaging the Superstructure of the UML . 241

Extending the UML . 243

Stereotypes . 243

Graphic Stereotypes . 244

Constraints . 245

Tagged Values . 245

Summary. 246

Q&A . 247

Workshop . 248

Quiz . 248

Exercise . 248

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xiii

xiv Sams Teach Yourself UML in 24 Hours

HOUR 15: Fitting the UML into a Development Process 249

Methodologies: Old and New . 250

The Old Way . 250

A New Way . 251

What a Development Process Must Do . 251

GRAPPLE . 253

RAD3: The Structure of GRAPPLE . 254

Requirements Gathering. 255

Analysis . 257

Design . 259

Development . 260

Deployment . 261

The GRAPPLE Wrap-up . 261

Summary. 262

Q&A . 263

Workshop . 263

Quiz . 263

Part II A Case Study 265

HOUR 16: Introducing the Case Study 267

Getting Down to Business. 267

GRAPPLEing with the Problem . 268

Discovering Business Processes . 268

Serving a Customer . 269

Preparing the Meal . 278

Cleaning the Table . 279

Lessons Learned . 281

Summary. 282

Q&A . 283

Workshop . 283

Quiz . 284

Exercises . 284

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xiv

HOUR 17: Performing a Domain Analysis 285

Analyzing the Business Process Interview . 286

Developing the Initial Class Diagram. 287

Grouping the Classes . 289

Forming Associations . 290

Associations with Customer . 291

Associations with Server . 294

Associations with Chef . 295

Associations with Busser . 295

Associations with Manager . 296

A Digression . 297

Forming Aggregates and Composites . 298

Filling Out the Classes . 300

Customer . 300

Employee . 301

Check . 302

General Issues About Models . 303

Model Dictionary . 303

Diagram Organization . 303

Lessons Learned . 303

Summary. 304

Q&A . 305

Workshop . 305

Quiz . 305

Exercises . 305

HOUR 18: Gathering System Requirements 307

Developing the Vision . 308

Setting Up for Requirements Gathering . 316

The Requirements JAD Session . 317

The Outcome . 320

Now What? . 323

Contents xv

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xv

Summary. 323

Q&A . 324

Workshop . 324

Quiz . 324

Exercise . 324

HOUR 19: Developing the Use Cases 325

The Care and Feeding of Use Cases . 325

The Use Case Analysis . 326

The Server Package . 327

Take an Order . 328

Transmit the Order to the Kitchen . 329

Change an Order . 330

Track Order Status . 330

Notify Chef About Party Status . 331

Total Up a Check . 333

Print a Check . 333

Summon an Assistant . 334

Remaining Use Cases . 336

Components of the System . 336

Summary. 337

Q&A . 338

Workshop . 338

Quiz . 338

Exercises . 338

HOUR 20: Getting into Interactions 339

The Working Parts of the System . 339

The Server Package . 339

The Chef Package . 340

The Busser Package . 341

The Assistant Server Package . 341

The Assistant Chef Package . 341

xvi Sams Teach Yourself UML in 24 Hours

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xvi

The Bartender Package . 341

The Coat-Check Clerk Package . 342

Interactions in the System . 342

Take an Order . 343

Change an Order . 344

Track Order Status . 346

Implications . 347

Summary. 348

Q&A . 349

Workshop . 350

Quiz . 350

Exercises . 350

HOUR 21: Designing Look, Feel, and Deployment 351

Some General Principles of GUI Design . 351

The GUI JAD Session . 353

From Use Cases to User Interfaces. 354

UML Diagrams for GUI Design . 357

Mapping Out System Deployment . 358

The Network . 358

The Nodes and the Deployment Diagram . 359

Next Steps . 359

And Now a Word from Our Sponsor . 361

Empowering a Sales Force . 361

Expanding in the Restaurant World . 362

Summary. 363

Q&A . 365

Workshop . 366

Quiz . 366

Exercises . 366

Contents xvii

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xvii

HOUR 22: Understanding Design Patterns 367

Parameterization . 367

Design Patterns . 370

Chain of Responsibility . 371

Chain of Responsibility: Restaurant Domain . 372

Chain of Responsibility: Web Browser Event Models 373

Your Own Design Patterns . 374

The Advantages of Design Patterns . 377

Summary. 377

Q&A . 379

Workshop . 379

Quiz . 379

Exercise . 379

Part III Looking Ahead 381

HOUR 23: Modeling Embedded Systems 383

Back to the Restaurant . 383

The Mother of Invention . 384

Fleshing Out the GetAGrip . 385

What Is an Embedded System? . 387

Embedded Systems Concepts . 388

Time . 388

Threads . 388

Interrupts . 389

Operating System . 390

Modeling the GetAGrip . 393

Classes . 393

Use Cases . 394

Interactions . 395

General State Changes . 398

Deployment . 398

xviii Sams Teach Yourself UML in 24 Hours

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xviii

Flexing Their Muscles. 399

Summary. 400

Q&A . 401

Workshop . 401

Quiz . 401

Exercises . 401

HOUR 24: Shaping the Future of the UML 403

Extensions for Business . 403

Lessons from the Business Extensions . 405

Graphic User Interfaces . 405

Connecting to Use Cases . 405

Modeling the GUI. 406

Expert Systems . 408

Components of an Expert System . 408

An Example . 410

Modeling the Knowledge Base . 411

Web Applications. 414

That’s All, Folks . 416

Summary. 417

Q&A . 418

Workshop . 418

Quiz . 418

Exercises . 418

Part IV Appendixes 419

APPENDIX A Quiz Answers 421

Hour 1 . 421

Hour 2 . 421

Hour 3 . 422

Hour 4 . 422

Hour 5 . 423

Contents xix

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xix

Hour 6 . 424

Hour 7 . 424

Hour 8 . 425

Hour 9 . 425

Hour 10 . 426

Hour 11 . 426

Hour 12 . 427

Hour 13 . 428

Hour 14 . 428

Hour 15 . 428

Hour 16 . 429

Hour 17 . 430

Hour 18 . 430

Hour 19 . 430

Hour 20 . 431

Hour 21 . 431

Hour 22 . 432

Hour 23 . 432

Hour 24 . 433

APPENDIX B Working with a UML Modeling Tool 435

What You Should Find in a Modeling Tool . 435

Working with UML in Visio Professional Edition . 436

Getting Started . 438

The Class Diagram. 438

The Object Diagram . 448

The Sequence Diagram . 451

A Few Words About a Few Tools . 456

Rational Rose . 456

Select Component Architect . 456

Visual UML . 456

xx Sams Teach Yourself UML in 24 Hours

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xx

APPENDIX C A Summary in Pictures 457

Activity Diagram . 457

Class Diagram . 459

Communication Diagram . 460

Component Diagram . 461

Composite Structure Diagram . 461

Deployment Diagram . 462

Object Diagram . 462

Package Diagram . 463

Parameterized Collaboration . 463

Sequence Diagram . 464

State Diagram . 465

Timing Diagram . 465

Use Case Diagram . 466

Index 467

Contents xxi

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xxi

About the Author

Joseph Schmuller, a veteran of over 20 years in Information Technology, is a
Technical Architect with Blue Cross–Blue Shield of Florida. From 1991 through 1997,
he was Editor in Chief of PC AI Magazine. He has written numerous articles and
reviews on advanced computing technology and is the author of ActiveX No experi-
ence required and Dynamic HTML Master the Essentials. Holder of a Ph.D. from the
University of Wisconsin, he is an Adjunct Professor at the University of North
Florida.

Dedication

To my wonderful mother, Sara Riba Schmuller,

Who taught me how to teach myself.

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xxii

Acknowledgments

Writing a book is an arduous process, and creating a new edition is no day at the
beach, either. Happily, the world-class team at Sams Publishing has made it a lot eas-
ier on every occasion. It’s a pleasure once again to acknowledge their contributions.

For the first edition, Acquisitions Editor Chris Webb and Development Editor Matt
Purcell helped turn my thoughts into readable prose. Technical Editors Bill Rowe and
Michael Tobler made sure the content was technically sound. Senior Editor Susan
Moore and the outstanding artists and Production Staff turned the manuscript and
its numerous diagrams into production quality.

For the second edition, Associate Publisher Michael Stephens, Development Editor
Christy Franklin, Production Editor Matt Wynalda, and Technical Editor Paul
Gustavson did an exemplary job from start to finish.

In this edition, Acquisitions Editor Todd Green catalyzed the process. Todd and
Development Editor Songlin Qiu kept everything running smoothly. They also
showed the patience of saints, for which I’m most grateful. Project Editor Matt
Purcell (back for a return engagement in a new role) did an outstanding job on the
comprehensibility of the material, and Project Manager Jan Fisher was indispens-
able in keeping the book on track. Technical Editor Jeffrey Pajor supplied expertise
that significantly tightened up the content.

As always, my sincerest thanks to my agent, David Fugate of Waterside Productions.

During the writing of all the editions of this book, my professional colleagues have
provided empathy and cooperation. In particular, conversations with Keith Barrett
and Rob Warner helped clarify my thinking on a number of issues. Sadly, the time
of my involvement with the first edition marked the untimely passing of Tom
Williamson, the director of the division in which Keith, Rob, and I worked. Tom was
an advisor, mentor, colleague, and friend.

I thank my dearest friends, the Spragues of Madison, Wisconsin, for their continuing
support and friendship. I thank my mother and my brother David for their love and
for always being there for me, and Kathryn (LOML and GOMD) for always being
everything to me.

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xxiii

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can
e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.
We do have a User Services group, however, where I will forward specific technical questions
related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, e-mail address, and phone number. I will carefully review your comments
and share them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our
Web site at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title
of a book in the Search field to find the page you’re looking for.

01.067232640X.FM.qxd 2/20/04 10:28 AM Page xxiv

Introduction

It’s all about vision. A complex system comes into being when someone has a vision
of how technology can make things better. Developers have to fully understand the
vision and keep it firmly in mind as they create the system that realizes the vision.

System development projects are successful to the extent they bridge the gap
between visionary and developer. The Unified Modeling Language (UML) is a tool
for building the bridge. It helps you capture the vision for a system and then enables
you to communicate the vision to anyone who has a stake in the system. It does this
via a set of symbols and diagrams. Each diagram plays a different role within the
development process.

The goal of this book—for all three editions—is to give you a firm foundation in the
UML in 24 hours of study. Each hour presents examples to strengthen your under-
standing, and most of the hours provide exercises that enable you to put your new-
found knowledge to use.

What’s New in This Edition
In preparing this edition, I went through the first two and tightened up the prose,
adding and updating material where necessary. Some of the additions were neces-
sary because of UML 2.0, the newly adopted version. Others were necessitated by the
passage of time and the advancement of technology.

As in the first two editions, Hour 14, “Understanding Packages and Foundations,”
presents theoretical concepts at the foundation of the UML. In this edition, I’ve
expanded this hour considerably in order to accommodate new concepts from
UML 2.0.

I’ve refined some of the thinking behind the models and diagrams and added quiz
questions and exercises. As part of the refinement, in this edition I precede every
interaction diagram with a class diagram that shows the operations of the classes.
The goal is to clarify the messages that appear in the interaction diagrams and
make them more intuitive. If you know a little about the UML, you’ll understand
what I just said. If not . . . well, then . . . you won’t. By the end of the book, however,
I’m certain you will.

02.067232640X.Intro.qxd 2/20/04 10:44 AM Page 1

Who Should Read This Book?
This book is aimed at system analysts, managers, designers, and developers who
have to quickly master the fundamentals of the UML. If you have to start working
with the UML immediately, or if you have to know the UML enough to understand
the work of others who use it, this book is for you.

Organization of This Book
The book is in three parts. Part I, “Getting Started,” gives an overview of the UML
and then moves into object-orientation, which forms the foundation concepts for
diagramming objects and classes. I examine the use case—a construct for showing
how a system looks to a user—and then show how to diagram use cases. I spend
extra time on the concepts behind object-orientation and use cases, because these
two ideas form the basis for the parts of the UML you’re most likely to use most of
the time. The remaining hours in Part I get you working with the rest of the UML
diagrams.

Part II, “A Case Study,” presents a simplified methodology for development along
with a fictional case study. Thus, the hours in Part II show how the UML fits into the
context of a development project. You’ll see how the elements of the UML work
together in a model of a system.

Part III, “Looking Ahead,” shows the application of the UML to design patterns and
embedded systems and then examines its application in a couple of other areas.

Numerous vendors provide software packages that enable you to create UML dia-
grams and coordinate them into a model. In Appendix B, “Working with a UML
Modeling Tool,” I give you an idea of what it’s like to work with one as I walk you
through the creation of three UML diagrams in Microsoft Visio Professional Edition. I
also briefly address three other modeling tools.

For Parts I–III, however, all you’ll need are pencil and paper to draw the diagrams,
and a healthy curiosity about how to use models as a foundation for system design.

2 Sams Teach Yourself UML in 24 Hours

02.067232640X.Intro.qxd 2/20/04 10:44 AM Page 2

Conventions Used Throughout This Book
As you read through this book, you’ll see that

. Each hour begins with a “What You’ll Learn in This Hour” list.

. New Terms appear in a special font. Here’s an example:

Extending downward from each object is a dashed line called the object’s
lifeline.

. Throughout the book, a special sidebar element presents useful information
that’s somewhat off the main flow:

Objects by the Hour
Hour 2, “Understanding Object-Orientation,” Hour 3, “Working with Object-Orientation,”
and Hour 4, “Working with Relationships,” deal with object-oriented concepts. These
concepts play major roles throughout the book.

Let’s start modeling!

Introduction 3

By the
Way

02.067232640X.Intro.qxd 2/20/04 10:44 AM Page 3

02.067232640X.Intro.qxd 2/20/04 10:44 AM Page 4

PART I

Getting Started

HOUR 1 Introducing the UML 7

HOUR 2 Understanding Object-Orientation 31

HOUR 3 Working with Object-Orientation 47

HOUR 4 Working with Relationships 61

HOUR 5 Understanding Aggregations, Composites
Interfaces, and Realizations 79

HOUR 6 Introducing Use Cases 91

HOUR 7 Working with Use Case Diagrams 103

HOUR 8 Working wih State Diagrams 123

HOUR 9 Working with Sequence Diagrams 135

HOUR 10 Working with Communication Diagrams 157

HOUR 11 Working with Activity Diagrams 173

03.067232640X.PartI.qxd 2/20/04 10:44 AM Page 5

HOUR 12 Working with Component Diagrams 197

HOUR 13 Working with Deployment Diagrams 213

HOUR 14 Understanding Packages and Foundations 225

HOUR 15 Fitting the UML into a Development Process 249

03.067232640X.PartI.qxd 2/20/04 10:44 AM Page 6

HOUR 1

Introducing the UML

What You’ll Learn in This Hour:
. Why the UML is necessary
. How the UML came to be
. How to represent UML components in diagrams
. Why it’s important to use a number of different types of diagrams

The Unified Modeling Language (UML) is one of the most exciting and useful tools
in the world of system development. Why? The UML is a visual modeling language
that enables system builders to create blueprints that capture their visions in a stan-
dard, easy-to-understand way, and provides a mechanism to effectively share and
communicate these visions with others.

Communicating the vision is of utmost importance. Before the advent of the UML,
system development was often a hit-or-miss proposition. System analysts would try
to assess the needs of their clients, generate a requirements analysis in some nota-
tion that the analyst understood (but not always the client), give that analysis to a
programmer or team of programmers, and hope that the final product was the sys-
tem the client wanted.

Some Terms
Throughout this book, consider a system to be a combination of
software and hardware that provides a solution for a business
problem. System development is the creation of a system for a
client, the person who has the problem to be solved. An analyst
documents the client’s problem and relays it to developers,
programmers who build the software that solves the problem
and deploy the software on computer hardware.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 7

8 Hour 1

Because system development involves communication among people, the poten-
tial for error lurked at every stage of the process. The analyst might have misun-
derstood the client. The analyst might have produced a document the client
couldn’t comprehend. To add to the mess, analysts often created wordy, volumi-
nous requirements documents that were difficult for others on the project team to
work with. Paradoxically, the sheer weight of these documents often allowed
important requirements (and dependencies among requirements) to slip through
the cracks. Thus the results of the analysis might not have been clear to the pro-
grammers, who subsequently might have created a program that was difficult to
use and didn’t solve the client’s original problem.

Is it any wonder that many of the long-standing systems in use today are clunky,
cumbersome, and hard to use?

Adding a Method to the Madness
In the early days of computing, few programmers relied on in-depth analyses of
the problem at hand. If they did any analysis at all, it was typically on the back
of a napkin. They often wrote programs from the ground up, creating code as
they went along. Although this added an aura of romance and daring to the
process, it has proved to be inappropriate in today’s high-stakes business world.

Today a well-thought-out plan is crucial. A client has to understand what a devel-
opment team is going to do, and must be able to indicate changes if the team
hasn’t fully grasped the client’s needs (or if the client changes his or her mind
along the way). Also, development is typically a team-oriented effort, so each
member of the team has to know where his or her work fits into the big picture
(and what that big picture is).

As the world becomes more complex, the computer-based systems that inhabit
the world also must increase in complexity. They often involve multiple pieces of
hardware and software, networked across great distances, linked to databases
that contain mountains of information. If you want to create successful systems,
how do you get your hands around the complexity?

The key is to organize the design process in a way that analysts, clients, program-
mers, and others involved in system development can understand and agree on.
The UML provides the organization.

Just as you wouldn’t build a complex structure like an office building without first
creating a detailed blueprint, you wouldn’t build a complex system to inhabit

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 8

Introducing the UML 9

that office building without first creating a detailed design plan. The plan should
be one that you could show a client just as surely as an architect shows a blue-
print to the person who’s paying for a building. That design plan should result
from a careful analysis of the client’s needs.

Short time frames for development are another feature of the contemporary sys-
tem development landscape. When the deadlines fall on top of one another, a
solid design is an absolute necessity.

Still another aspect of modern life necessitates solid design: corporate takeovers.
When one company acquires another, the new organization might change
important aspects of an in-progress development project (the implementation
tool, the coding language, and more). A bulletproof project blueprint will facili-
tate the changeover. If the design is solid, a change in implementation can pro-
ceed smoothly.

The need for solid designs has brought about a need for a design notation that
analysts, developers, and clients will accept as a standard—just as the notation in
schematic diagrams of circuits serves as a standard for electronics engineers and
the notation in Feynman diagrams serves as a standard for physicists. The UML is
that notation.

How the UML Came to Be
The UML is the brainchild of Grady Booch, James Rumbaugh, and Ivar Jacobson.
Dubbed “the Three Amigos,” these gentlemen worked in separate organizations
through the 1980s and early 1990s, each devising his own methodology for
object-oriented analysis and design. Their methodologies achieved preeminence
over those of numerous competitors. By the mid-1990s, they began to borrow
ideas from each other, so they decided to evolve their work together.

Objects by the Hour
Hour 2, “Understanding Object-Orientation,” Hour 3 “Working with Object-
Orientation,” and Hour 4, “Working with Relationships,” deal with object-oriented con-
cepts. These concepts play major roles throughout the book.

In 1994 Rumbaugh joined Rational Software Corporation, where Booch was
already working. Jacobson enlisted at Rational a year later.

The rest, as they say, is history. Draft versions of the UML began to circulate
throughout the software industry, and the resulting feedback brought substantial

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 9

10 Hour 1

changes. Because many corporations felt the UML would serve their strategic pur-
poses, a UML consortium sprung up. Members included DEC, Hewlett-Packard,
Intellicorp, Microsoft, Oracle, Texas Instruments, Rational, and others. In 1997
the consortium produced version 1.0 of the UML and submitted it to the Object
Management Group (OMG) in response to the OMG’s request for a proposal for a
standard modeling language.

The consortium expanded, generated version 1.1, and submitted it to the OMG,
who adopted it in late 1997. The OMG took over the maintenance of the UML
and produced two more revisions in 1998. The UML has become a de facto stan-
dard in the software industry, and it continues to evolve. Versions 1.3, 1.4, and
1.5 have come into being, and OMG recently put its stamp of approval on ver-
sion 2.0. The earlier versions, referred to generically as version 1.x, have been the
basis of most models and most UML modeling books. Throughout this book, I’ll
show you differences between the old and the new.

Components of the UML
The UML consists of a number of graphical elements that combine to form dia-
grams. Because the UML is a language, it has rules for combining these elements.
Rather than tell you about these elements and rules, let’s jump right into the dia-
grams because they’re what you’ll use to do system analysis.

Jumping Right In
This approach is analogous to learning a foreign language by using it, instead of by
learning its grammar and conjugating its verbs. After you’ve spent some time using
a foreign language, it’s easier to understand the grammatical rules and verb conjuga-
tions anyway.

The purpose of the diagrams is to present multiple views of a system; this set of
multiple views is called a model. A UML model of a system is something like a
scale model of a building along with an artist’s rendition of the building. It’s
important to note that a UML model describes what a system is supposed to do. It
doesn’t tell how to implement the system.

The subsections that follow briefly describe the most common diagrams of the
UML and the concepts they represent. Later in Part I you’ll examine each one
much more closely. Bear in mind that hybrids of these diagrams are possible, and
that the UML provides ways for you to extend its diagrams.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 10

Introducing the UML 11

Models
The concept of a model is useful throughout the scientific and engineering fields. In
the most general sense, when you create a model you’re using something that you
know a great deal about to help you understand something you know very little
about. In some fields, a model is a set of equations. In others, a model is a comput-
er simulation. Many types of models are possible.

For our purposes, a model is a set of UML diagrams that we can examine, assess,
and modify in order to understand and develop a system.

Class Diagram
Think about the things in the world around you. (A pretty broad request, admit-
tedly, but try it anyway!) The things that surround you have attributes (proper-
ties) and they behave in certain ways. We can think of these behaviors as a set of
operations.

You’ll also see that things naturally fall into categories (automobiles, furniture,
washing machines. . .). We refer to these categories as classes. A class is a catego-
ry or group of things that have the same attributes and the same behaviors.
Here’s an example. Anything in the class of washing machines has attributes
such as brand name, model, serial number, and capacity. Behaviors for things in
this class include the operations “accept clothes,” “accept detergent,” “turn on,”
and “turn off.”

Figure 1.1 shows an example of the UML notation that captures these attributes
and behaviors of a washing machine. A rectangle is the icon that represents the
class. It’s divided into three areas. The uppermost area contains the name, the
middle area holds the attributes, and the lowest area holds the operations.

By the
Way

brandName
modelName
serialNumber
capacity

acceptClothes()
acceptDetergent()
turnOn()
turnOff()

WashingMachine FIGURE 1.1
The UML class
icon.

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 11

12 Hour 1

Notice the spacing in the names of the class, the attributes, and the operations. In
UML, a multiword classname has initial capital letters for all the words and elimi-
nates whitespace between each word (for example, WashingMachine). Attribute-
names and operation-names follow the same convention, but the first letter of the
first word isn’t capitalized (for example, acceptClothes()). A pair of parentheses
follows the name of each operation—for reasons we’ll get into in Hour 3.

As you’ll see in Hour 4, a class diagram consists of a number of these rectangle
icons connected by lines that show how the classes relate to one another.

Why bother to think about classes of things and their attributes and behaviors?
In order to interact with our complex world, most modern software simulates
some aspect of the world. Decades of experience suggest that it’s easiest to devel-
op software that does this when the software represents classes of real-world
things. Class diagrams provide the representations that developers work from.

Class diagrams help on the analysis side, too. They enable analysts to talk to
clients in the clients’ terminology and thus stimulate the clients to reveal impor-
tant details about the problem they want solved.

Object Diagram
An object is an instance of a class—a specific thing that has specific values of the
class’s attributes. Your washer, for example, might have the brand name
Laundatorium, the model name Washmeister, a serial number of GL57774, and a
capacity of 16 pounds.

The icons in Figure 1.2 show how the UML represents an object. Note that the
icon is a rectangle, just like the class icon, but the name is underlined. In the icon
on the left, the name of the specific instance is on the left side of a colon, and the
name of the class is on the right side of the colon. The name of the instance
begins with a lowercase letter. It’s also possible to have an anonymous object, as
the icon on the right of Figure 1.2 shows. This just means that you don’t supply a
specific name for the object, although you do show the class it belongs to.

myWasher:WashingMachine :WashingMachine
FIGURE 1.2
Two UML object
icons—The icon on
the left represents
a named object,
the icon on the
right represents an
anonymous object.

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 12

Introducing the UML 13

Use Case Diagram
A use case is a description of a system’s behavior from a user’s standpoint. For
system developers, the use case is a valuable tool: It’s a tried-and-true technique
for gathering system requirements from a user’s point of view. Obtaining informa-
tion from the user’s point of view is important if the goal is to build a system that
real people (and not just computerphiles) can use.

We’ll discuss use cases in greater detail in Hours 6, “Introducing Use Cases”; 7,
“Working with Use Case Diagrams”; 18, “Gathering System Requirements”; and
19, “Developing the Use Cases.” For now, here’s a quick example. You use a wash-
ing machine, obviously, to wash your clothes. Figure 1.3 shows how you’d repre-
sent this in a UML use case diagram.

FIGURE 1.3
The UML use case
diagram.

Washing Machine

Wash clothes

Washing Machine User

The little stick figure that corresponds to the washing machine user is called an
actor. The ellipse represents the use case. Note that the actor—the entity that initi-
ates the use case—can be a person or another system. Note also that the use case is
inside a rectangle that represents the system, and the actor is outside the rectangle.

Pronunciation Tip
To help clarify the meaning of this concept, say the use in “use case” with a soft “s,”
as though it rhymes with truce. Don’t say it as though it rhymes with snooze.

State Diagram
At any given time, an object is in a particular state. A person can be a newborn,
infant, child, adolescent, teenager, or adult. An elevator is either moving or sta-
tionary. A washing machine can be either in the soaking, washing, rinsing, spin-
ning, or off state.

The UML state diagram shown in Figure 1.4 captures this bit of reality. The figure
shows that the washing machine transitions from one state to the next.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 13

14 Hour 1

The symbol at the top of the figure represents the start state and the symbol at
the bottom represents the end state.

Transitions
Transitions from state to state aren’t always linear. Sometimes conditions dictate
one path or another. We’ll talk about this in Hour 8, “Working with State Diagrams.”

Sequence Diagram
Class diagrams and object diagrams represent static information. In a function-
ing system, however, objects interact with one another, and these interactions
occur over time. The UML sequence diagram shows the time-based dynamics of
the interaction.

Continuing with the washing machine example, the components of the machine
include a timer, a water pipe (for fresh water input), and a drum (the part that
holds the clothes and the water). These, of course, are also objects. (As you’ll see,
an object can consist of other objects.)

What happens when you invoke the “Wash clothes” use case? Assuming you’ve
completed the “add clothes,” “add detergent,” and “turn on” operations, the
sequence of steps goes something like this:

1. At the beginning of “Soaking,” water enters the drum via the water pipe.

2. The drum remains stationary for 5 minutes.

Soaking

Washing

Rinsing

Spinning

FIGURE 1.4
The UML state
diagram.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 14

Introducing the UML 15

3. At the end of “Soaking,” water stops entering the drum.

4. At the beginning of “Washing,” the drum rotates back and forth and con-
tinues doing this for 15 minutes.

5. At the end of “Washing,” the drum pumps out the soapy water.

6. The drum stops rotating.

7. At the beginning of “Rinsing,” water entry restarts.

8. The drum rotates back and forth.

9. After 15 minutes water entry stops.

10. At the end of “Rinsing,” the drum pumps out the rinse water.

11. The drum stops rotating.

12. At the beginning of “Spinning,” the drum rotates clockwise and continues
for 5 minutes.

13. At the end of “Spinning,” the drum rotation stops.

14. The wash is done.

Imagine that the timer, the water pipe, and the drum are objects. Assume that
each object has one or more operations. The objects work together by sending
messages to each other. Each message is a request from the sender-object to the
receiver-object. The request asks the receiver to complete one of its (the receiver’s)
operations.

Let’s get specific about the operations. The timer can

. Time the soaking

. Time the washing

. Time the rinsing

. Time the spinning

The water pipe can

. Start a flow

. Stop a flow

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 15

16 Hour 1

The drum can

. Store water

. Rotate back and forth

. Rotate clockwise

. Stop rotating

. Pump water

Figure 1.5 shows how to use these operations to create a sequence diagram that
captures the messages among the timer, water pipe, drum, and drain represented
as anonymous objects at the top of the diagram. Each arrow represents a message
that goes from one object to another. Time, in this diagram, proceeds from top to
bottom. So the first message is timeSoak(), which the timer sends to itself. The sec-
ond message is sendWater(), which the timer sends to the water pipe. The final
message, stopRotating(), goes from the timer to the drum.

Notice that an object (in this case, the timer) can send a message to itself. Notice
also that the arrowheads do not all have the same shape. You’ll learn more about
that in Hour 9, “Working with Sequence Diagrams.”

Note: If you don’t remember what an anonymous object is, go back and look at
Figure 1.2.

Activity Diagram
The activities that occur within a use case or within an object’s behavior typically
occur in a sequence, as in the steps listed in the preceding subsection. Figure 1.6
shows how the UML activity diagram represents steps 4 through 6 of that
sequence.

Transitions Again
In an earlier note I mentioned that the transitions from state to state aren’t always
linear, but sometimes take one path or another. It’s the same for activity diagrams.
You’ll see that in Hour 11, “Working with Activity Diagrams.”

Communication Diagram
The elements of a system work together to accomplish the system’s objectives, and
a modeling language must have a way of representing this. The aforementioned

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 16

Introducing the UML 17

sequence diagram does this. The UML communication diagram shown in Figure 1.7
also does this, but in a slightly different way. Rather than show you the communi-
cation diagram that’s equivalent to the sequence diagram in Figure 1.5, Figure 1.7
shows you one that captures just the first few messages among the timer, the
water pipe, and the drum. Rather than represent time in the vertical dimension,
this diagram shows the order of messages by attaching a number to the message
label.

:Timer :WaterPipe :Drum

timeSoak()

sendWater()

stopFlow()

timeWash()

timeRinse()

sendWater()

timeSpin()

rotateBackAndForth

pumpWater()

stopRotating()

rotateBackAndForth()

pumpWater()

stopRotating()

rotateClockwise()

stopRotating()

storeWater()

storeWater()

FIGURE 1.5
The UML sequence
diagram.

04.067232640X.chap01.qxd 2/20/04 10:55 AM Page 17

18 Hour 1

Both the sequence diagram and the communication diagram show interactions
among objects. For this reason, the UML refers to them collectively as interaction
diagrams.

Drum rotates back and forth 15 minutes

Drum pumps out soapy water

Drum stops rotating

FIGURE 1.6
The UML activity
diagram.

:Timer

:Drum

:WaterPipe3:storeWater()

2:sendWater()

1:timeSoak()
FIGURE 1.7
The UML
communication
diagram.

Changing Names
The name communication diagram is new in version 2.0. In version 1.x, this was
called a collaboration diagram. Don’t be surprised if you find the two terms used
interchangeably as version 2.0 settles in.

Component Diagram
This diagram and the next one move away from the world of washing machines
because the component diagram and the deployment diagram are geared
expressly toward computer systems.

Modern software development proceeds via components, which is particularly
important in team-based development efforts. Without elaborating too much at

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 18

Introducing the UML 19

this point, Figure 1.8 shows how the UML version 1.x represents a software
component.

A Component FIGURE 1.8
The software com-
ponent icon in
UML 1.x.

Here’s where UML 2.0 makes an entrance. In response to the many modelers who
felt this symbol was awkward, UML 2.0 provides a revised symbol. Figure 1.9
shows the new way to represent a software component.

«component»

A Component

FIGURE 1.9
The software com-
ponent icon in
UML 2.0.

What’s the Angle?
What are those angle brackets around the word “component” in Figure 1.9? That
notation has a special status within UML. You’ll read about it in the subsection enti-
tled “Keywords and Stereotypes” a couple of pages from here.

Deployment Diagram
The UML deployment diagram shows the physical architecture of a computer-
based system. It can depict the computers, show their connections with one
another, and show the software that sits on each machine. Each computer is rep-
resented as a cube, with interconnections between computers drawn as lines con-
necting the cubes. Figure 1.10 presents an example.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 19

20 Hour 1

Some Other Features
Earlier I mentioned that the UML provides features that enable you to extend the
diagrams. This section describes a couple of prominent ones.

Notes
It often happens that one part of a diagram doesn’t present an unambiguous
explanation of why it’s there or how to work with it. When that’s the case, the
UML note is helpful. Think of a note as the graphic equivalent of a yellow sticky.
Its icon is a rectangle with a folded corner. Inside the rectangle is explanatory
text. Figure 1.11 shows an example. You attach the note to a diagram element by
connecting a dashed line from the element to the note.

FIGURE 1.10
The UML
deployment
diagram.

Vectra VL Series 7 Dell Dimension XPS R450

Cobalt Networks Qube Microserver 2700WG

Class1

Some explanatory text
about Class1

FIGURE 1.11
In any diagram
you can add
explanatory
comments by
attaching a note.

Keywords and Stereotypes
The UML provides a number of useful items, but it’s not an exhaustive set. Every
now and then you’ll create a model that requires some new concepts and new
symbols. Stereotypes enable you to create new UML elements by basing them on
existing elements. It’s sort of like buying a suit off the rack and having it altered

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 20

Introducing the UML 21

to fit your particular measurements (as opposed to creating one out of a bolt of
cloth). Think of a stereotype as just this kind of alteration. You represent it as a
name enclosed in two pairs of angle brackets called guillemets, and then you
add that name to a UML symbol. The guillemet-enclosed name is called a key-
word.

Sometimes the UML does this for you. Rather than create an entirely new symbol
for something, the UML adds a keyword to an existing element. The keyword
indicates that the element is used in a somewhat different way than originally
intended. The concept of an interface (which you’ll read about at length in Hour 5,
“Understanding Aggregations, Composites, Interfaces, and Realizations”) provides
a good example. An interface is a class that just has operations and has no
attributes. It’s a set of behaviors you might want to use again and again through-
out your model (for reasons that become clearer in Hour 5). Instead of inventing
a new element to represent an interface, UML uses a class icon with the keyword
«Interface» situated just above the classname. (See Figure 1.12.)

«Interface»

InterfaceName

FIGURE 1.12
A stereotype is an
existing UML
element with the
addition of a
keyword in
guillemets. The
keyword indicates
that the element is
used in a some-
what different way
than originally
intended.

The stereotype concept is particularly useful when you use a UML modeling tool.
One important feature of a modeling tool is a “dictionary” that keeps track of all
the elements you create in your model—classes, use cases, components, and oth-
ers. (“Dictionary” is my own term. Different tools call it different names.) The dic-
tionary can only work with existing UML elements and with stereotypes based on
these elements. Thus, stereotyping allows you to create something new and store
it in the dictionary. This is important because the dictionary helps you organize
and manage your model and enables you to reuse the elements you create.

In Hour 14, “Understanding Packages and Foundations,” I look under the hood of
the UML and examine the foundations of concepts like the stereotype. For now
just bear in mind that to visualize a stereotype you add a keyword to a UML icon.
Also bear in mind that as you work with UML (particularly if you work with a

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 21

22 Hour 1

UML modeling tool), you’ll find that UML comes with some built-in stereotypes
and predefined keywords (like «component» and «Interface»).

De-Evolution?
I first brought up this guillemet notation in the “Component Diagram” subsection a
couple of pages ago. I mentioned that the UML 1.x software component symbol in
Figure 1.8 has given way to the UML 2.0 notation in Figure 1.9. Everything I just told
you about stereotypes indicates that you use a stereotype to create a symbol when
you don’t have one. In the case of the component icon, however, it all worked in
reverse from 1.x to 2.0—a class icon with a keyword replaced an existing symbol.

New Diagrams in UML 2.0
In addition to new takes on UML 1.x diagrams (like the software component
icon), UML 2.0 adds some new ideas to the mix.

Composite Structure Diagram
When you’re modeling a class, you might find it useful to show something about
the class’s internal structure. This often happens if the class consists of component
classes.

For example, let’s assume that a person consists of a mind and a body. In Hour 5
you’ll see the traditional way of modeling that statement. It consists of lines and
symbols that join the Person class to the Mind class and to the Body class.

With UML 2.0’s composite structure diagram you add a dimension. You put each
component class inside the whole. This conveys the idea that you’re looking
inside the class into its structure. Figure 1.13 shows you what I mean.

Version 1.x allowed this kind of notation in class diagrams. Version 2.0 explicitly
identifies this technique as its own kind of diagram.

By the
Way

Person

MInd Body

FIGURE 1.13
The composite
structure diagram
models a class’s
internal structure.

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 22

Introducing the UML 23

Philosophy on the Line
As you’ll see when we get deeper into object-orientation, a line that joins two class-
es (like Mind and Body) usually has a name. In Figure 1.13 how should we label the
line that joins Mind and Body? Philosophers have been puzzling over that one for
ages! They’ve been arguing over the name of that association, whether it even
exists, whether the Mind component exists, and on and on and on. . . .

Interaction Overview Diagram
Consider once again the activity diagram (Figure 1.6). This shows you a series
of steps, that is, “activities.” Suppose each of those activities involves a
sequence of messages among objects. If you replaced some of the activities with
sequence diagrams or communication diagrams (or a combination of the two),
you’d have UML 2.0’s new interaction overview diagram.

Here’s an example. Imagine you’re at a library.

1. You find a book in the library’s database.

2. You bring the book to the circulation desk to borrow the book.

3. A guard at the exit verifies that you checked out the book before you can
leave the library with it.

Figure 1.14 shows a simple activity diagram that captures these three steps.

By the
Way

Find book

Borrow book

Leave library

FIGURE 1.14
Three activities in
visiting a library.

Now let’s analyze each activity. In the first one, you ask the library database to
locate the book, and the database responds by telling you to go to the book’s
location. In the second, you ask the librarian to check the book out to you, and

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 23

24 Hour 1

after the checkout, the librarian tells you to take the book. In the third, you can
leave the library only if a guard verifies that you have checked out the book.

Figure 1.15 shows how to organize all this in sequence diagrams taken in . . .
well . . . sequence.

:User :LibraryDatabase

find

goToLocation

:User :Librarian

processCheckOutRequest()

takeBook()

:User :Guard

verifyCheckOut()

exitLibrary()

()

FIGURE 1.15
An interaction
overview diagram
that expands the
activity diagram in
Figure 1.14.

Timing Diagram
Think back to the examples involving the washing machine. I used this venerable
appliance to discuss diagrams for classes, states, sequences, and communications.

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 24

Introducing the UML 25

In the part about sequence diagrams, I mentioned the duration of each state—5
minutes for soaking, 15 minutes for washing, 15 minutes for rinsing, and 5 min-
utes for spinning.

If you carefully examine the sequence diagram in Figure 1.5, you’ll see that it
never explicitly shows these durations. UML 2.0’s timing diagram handles this.
It’s designed to show how long an object is in a state. Figure 1.16 shows one form
of this new diagram.

Spinning

Rinsing

Washing

Soaking

:WashingMachine

0 5 10 15 20 25 30 35

FIGURE 1.16
The UML timing
diagram.

Something Old, Something New—The Package
Diagram
Version 1.x includes a capability for organizing the elements of a diagram.
Dubbed a package, its icon is a tabbed folder, as in Figure 1.17. The idea is to put
elements that go together inside one of these tabbed folder icons. For example, if
a number of classes or components constitute a particular subsystem, they would
go into a package.

Class1 Class2 Class3

PackageName FIGURE 1.17
The UML package
icon.

By specifying a package diagram, Version 2.0 gives a sort of promotion to the
package. No longer considered just a way of organizing a diagram’s elements, the
package has attained diagram status of its own.

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 25

26 Hour 1

Why So Many Diagrams?
As you can see, the UML’s diagrams make it possible to examine a system from a
number of viewpoints. It’s important to note that not all the diagrams must
appear in every UML model. Most UML models, in fact, contain a subset of the
diagrams I listed.

Why is it necessary to have numerous views of a system? Typically, a system has a
number of different stakeholders—people who have interests in different aspects of
the system. Let’s return to the washing machine example. If you’re designing a wash-
ing machine’s motor, you have one view of the system. If you’re writing the operating
instructions, you have another. If you’re designing the machine’s overall shape, you
see the system in a totally different way than if you just want to wash your clothes.

Conscientious system design involves all the possible viewpoints, and each UML
diagram gives you a way of incorporating a particular view. The objective is to
communicate clearly with every type of stakeholder.

But Isn’t It Just a Bunch of Pictures?
Some might argue that UML modeling isn’t very important. After all, isn’t pro-
gramming the most important part of the project? Don’t developers do the “real”
work while modelers just draw pictures?

To understand the importance of accurate visual modeling, consider a well-
known, long-term construction project in Boston, Massachusetts. Formally known
as the Central Artery/Tunnel, but more popularly known as “The Big Dig,” the
goal of this project is to alleviate Boston’s massive traffic crush: A system of tun-
nels and bridges through the center of the city will ultimately eliminate an aging,
undersized, elevated highway. In addition to solving the traffic problem, the Big
Dig will have major economic and environmental benefits.

Those benefits better be huge, because the project has generated cost overruns in
excess of a billion dollars. According to a report in the Boston Globe, one reason is
that the drawings (that is, the visual models) that guide excavation and construc-
tion were incomplete and inaccurate.

For example, the FleetCenter (Boston’s sports and entertainment facility) was
missing from one drawing. That glaring omission misled contractors into think-
ing they had an unobstructed path for laying utility lines in a particular area of
the city. Another drawing showed a manhole (intended as a connection for elec-

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 26

Introducing the UML 27

trical lines) that didn’t exist. Still another drawing of one of the tunnels left a 4-
foot gap between tunnel sections. Workers detected this gap only after the sections
were in position.

The result was a lot of costly unforeseen work to correct the mistakes, along with
numerous missed deadlines.

Sound familiar?

Modeling, Learning, and Knowledge
The way I look at it, learning proceeds in three phases:

1. You don’t know what you don’t know. Perhaps a better way to say this is that you
have no familiarity with a particular field.

2. You do know what you don’t know. In other words, you get some idea of what the
field is all about, and you start to see gaps in your knowledge.

3. You fill in the gaps.

UML (and modeling in general) is a great way to quickly get you to the second
phase—realizing what you don’t know and getting a start on finding out the relevant
information.

Summary
System development is a human activity. Without an easy-to-understand notation
system, the development process has great potential for error.

The UML is a notation system that has become a standard in the system develop-
ment world. It’s the result of work done by Grady Booch, James Rumbaugh, and
Ivar Jacobson. Consisting of a set of diagrams, the UML provides a standard that
enables the system analyst to build a multifaceted blueprint that’s comprehensi-
ble to clients, programmers, and everyone involved in the development process.
It’s necessary to have all these diagrams because each one speaks to a different
stakeholder in the system.

A UML model tells what a system is supposed to do. It doesn’t tell how the system
is supposed to do it.

By the
Way

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 27

28 Hour 1

Q&A
Q. I’ve seen the Unified Modeling Language referred to as “UML” and also as

“the UML.” Which is correct?

A. The creators of the language prefer “the UML.”

Q. You mentioned that object-oriented concepts play a major role in this
book. Do I have to be a Java coder or a C++ developer in order to under-
stand these concepts and to use them?

A. Absolutely not. Object-oriented concepts aren’t just for programmers.
They’re extremely useful for system analysts who want to understand and
model the area of knowledge their system works in.

Q. You’ve made the point that the UML is a great tool for analysts. The
deployment diagram, however, doesn’t seem like something that would be
all that useful in the analysis stage of system development. Isn’t it more
appropriate for a later stage?

A. It’s really never too early to start thinking about deployment (or other issues
traditionally left for later in development, like system security). Although it’s
true that the analyst is concerned with talking to clients and users, early in
the process an analyst might think about the computers and components
that will make up the system hardware. Sometimes the client dictates this.
Sometimes the client wants a recommendation from the development team.
Certainly a system architect will find the deployment diagram useful.

Q. You mentioned that hybrid diagrams are possible. Does UML, excuse me,
the UML impose limitations on which elements you can combine with
which on a diagram?

A. No. The UML sets no limits. It’s usually the case, however, that a diagram
contains one kind of element. You could put class icons on a deployment
diagram, but that might not be very useful.

Q. Figure 1.3 shows a use case diagram for “wash clothes.” All this says is
that a washing machine user wants to wash clothes. Do we really need a
set of symbols to say that? Can’t we just say that in a simple sentence?

A. If that’s all you had to say, then you’re right: You could probably get away
with just a sentence. In a typical development project, however, use cases
are like “Tribbles” in the original Star Trek series (Episode 42). You start with
a few, and before you know it. . . .

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 28

Introducing the UML 29

Workshop
You’ve jumped into the UML. Now it’s time to firm up your knowledge of this
great tool by answering some questions and going through some exercises. The
answers appear in Appendix A, “Quiz Answers.”

Quiz
1. Why is it necessary to have a variety of diagrams in a model of a system?

2. Which diagrams give a static view of a system?

3. Which diagrams provide a dynamic view of a system (that is, show change
over time)?

4. What kinds of objects are in Figure 1.5?

Exercises
1. Suppose you’re building a computer-based system that plays chess with a

user. Which UML diagrams would be useful in designing the system? Why?

2. For the system in the exercise you just completed, list the questions you
would ask a potential user and why you would ask them.

3. Take a look at the communication diagram in Figure 1.7. How would you
complete it so that it’s equivalent to the sequence diagram in Figure 1.5?
What problems do you run into?

4. Go back to the bulleted lists of operations for the objects in Figure 1.5.
Consider each object to be an instance of a class. Draw a class diagram that
includes these classes and these operations. Can you think of some addi-
tional operations for each class?

5. Take things a step further. Try to organize your classes in Exercise 4 into a
composite structure diagram of a washing machine. Can you think of some
additional component classes?

6. In the subsection on state diagrams, I said an elevator can be either moving
or stationary. Although you don’t know much about state diagrams yet, see
if you can figure out how to represent the states of an elevator. In addition
to the names of the states, what other information should the state diagram
somehow show? (Hint: Account for the elevator door. When is it open?
When is it closed?)

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 29

30 Hour 1

7. Look at the sequence diagram in Figure 1.5 and the sequence diagrams that
make up the interaction overview diagram in Figure 1.15. Focus on the mes-
sages that go from one object to another. Try to think of what (if anything)
might go inside the parentheses in each message.

04.067232640X.chap01.qxd 2/20/04 10:56 AM Page 30

HOUR 2

Understanding Object-
Orientation

What You’ll Learn in This Hour:
. How to understand the object-oriented mindset
. How objects communicate
. How objects associate with one another
. How objects combine

Object-orientation has taken the software world by storm, and rightfully so. As a way
of creating programs, it has a number of advantages. It fosters a component-based
approach to software development so that you first create a system by creating a set
of classes. Then you can expand the system by adding capabilities to components
you’ve already built or by adding new components. Finally, you can reuse the classes
you created when you build a new system, cutting down substantially on system
development time.

The UML plays into all this by allowing you to build easy-to-use and easy-to-understand
models of objects. Programmers can create these objects in software.

Object-orientation is a mindset—a mindset that depends on a few fundamental
principles. In this hour you’ll learn those principles. You’ll find out what makes
objects tick and how to use them in analysis and design. In the next hour you’ll
begin to apply UML to these principles.

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 31

32 Hour 2

Objects, Objects Everywhere
Objects, concrete and otherwise, are all around us. They make up our world. As I
pointed out in the previous hour, modern software typically simulates the world—
or a small slice of it—so programs usually mimic the objects in the world. If you
understand some essentials of objects, you’ll comprehend what has to go into the
software representations of them, whether the software is object-oriented or not.
Object-oriented concepts can benefit legacy programmers by providing insights
for modeling the domain they work in.

First and foremost, an object is an instance of a class (a category). You and I, for
example, are instances of the Person class. An object has structure. That is, it has
attributes (properties) and behavior. An object’s behavior consists of the opera-
tions it carries out. Attributes and operations taken together are called features.

Notation Conventions
To get you accustomed to UML notation, I’ll use some of the object-oriented conven-
tions I mentioned in Hour 1, “Introducing the UML,” such as

. The name of a class begins with an uppercase letter.

. A multiword classname runs all the words together, and each word begins with an
uppercase letter for the first one.

. The name of a feature (attribute or operation) begins with a lowercase letter.

. A multiword feature name runs all the words together, and each word begins with
an uppercase letter except for the first one.

. A pair of parentheses follows the name of an operation.

As objects in the Person class, you and I each have these attributes: height,
weight, and age. (You can imagine a number of others.) Each of us is unique
because of the specific values that each of us has for those attributes. We also per-
form these operations: eat, sleep, read, write, talk, go to work, and more. (Or in
objectspeak, eat(), sleep(), read(), write(), talk(), and goToWork().) If we
were to create a system that deals with information on people—say, a payroll sys-
tem or a system for a human resources department—we would likely incorporate
some of these attributes and some of these operations in our software.

In the world of object-orientation, a class serves another purpose in addition to
categorization. A class is a template for making objects—sort of like a cookie cut-
ter that you use to stamp out cookies. (Some might argue that this is the same as
categorization, but let’s avoid that debate.)

By the
Way

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 32

Understanding Object-Orientation 33

Let’s go back to the washing machine example. If we specify that the
WashingMachine class has the attributes brandName, modelName, serialNumber, and
capacity—along with the operations acceptClothes(), acceptDetergent(),
turnOn(), and turnOff()—you have a mechanism for turning out new instances
of the WashingMachine class. That is, you can create new objects based on this
class (see Figure 2.1).

This is particularly important in the world of object-oriented software develop-
ment. Although this book won’t focus on programming, it helps your understand-
ing of object-orientation if you know that classes in object-oriented programs can
create new instances.

Operations
acceptClothes()
acceptDetergent()
turnOn()
turnOff()

Attributes
brandName
modelName
serialNumber
capacity

FIGURE 2.1
The
WashingMachine
class is a template
for creating new
instances of
washing machines.

Here’s something else to be aware of. Remember that the purpose of object-orientation
is to develop software that reflects (that is, models) a particular slice of the world.
The more attributes and behaviors you take into account, the more your model
will be in tune with reality. In the washing machine example, you’ll have a poten-
tially more accurate model if you include the attributes drumVolume, trap, motor,
and motorSpeed. You might also increase the accuracy of the model if you include
operations like acceptBleach() and controlWaterLevel() (see Figure 2.2).

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 33

34 Hour 2

Some Object-Oriented Concepts
Object-orientation goes beyond just modeling attributes and behavior. It considers
other aspects of objects as well. These aspects are called abstraction, inheritance,
polymorphism, and encapsulation. Three other important parts of object-orientation
are message sending, associations, and aggregation. Let’s examine each of these
concepts.

Abstraction
Abstraction means, simply, to filter out an object’s properties and operations
until just the ones you need are left. What does “just the ones you need” mean?

Different types of problems require different amounts of information, even if
those problems are in the same general area. In the second pass at building a
washing machine class, more attributes and operations emerged than in the first
pass. Was it worth it?

If you’re part of a development team that’s ultimately going to create a computer
program that simulates exactly how a washing machine does what it does, it’s
definitely worth it. A computer program like that (which might be useful to
design engineers who are actually building a washing machine) has to have
enough in it to make accurate predictions about what will happen when the

Operations
acceptClothes()
acceptDetergent()
turnOn()
turnOff()
acceptBleach()
controlWaterLevel()

Attributes
brandName
modelName
serialNumber
capacity
drumVolume
trap
motor
motorSpeed

FIGURE 2.2
Adding attributes
and operations
brings the model
closer to reality.

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 34

Understanding Object-Orientation 35

washing machine is built, fully functioning, and washing clothes. For this kind of
program, in fact, you can filter out the serialNumber attribute because it’s proba-
bly not going to be very helpful.

What if, on the other hand, you’re going to create software to track the transac-
tions in a laundry that has a number of washing machines? In this program you
probably won’t need all the detailed attributes and operations mentioned in the
preceding section. You might, however, want to include the serialNumber of each
washing machine object.

In any case, what you’re left with, after you’ve made your decisions about what
to include and what to exclude, is an abstraction of a washing machine.

A Critical Skill
Some authorities argue that abstraction—that is, knowing what to include in a
model and what to leave out—is the most critical skill for a modeler.

Inheritance
Washing machines, refrigerators, microwave ovens, toasters, dishwashers, radios,
waffle makers, blenders, and irons are all appliances. In the world of object orien-
tation, we would say that each one is a subclass of the Appliance class. Another
way to say this is that Appliance is a superclass of all those others.

Appliance is a class that has the attributes onOffSwitch and electricWire, and
the operations turnOn() and turnOff(). Thus, if you know something is an appli-
ance, you know immediately that it has the Appliance class’s attributes and oper-
ations.

Object-orientation refers to this relationship as inheritance. Each subclass of
Appliance (WashingMachine, Refrigerator, Blender, and so on) inherits the fea-
tures of Appliance. It’s important to note that each subclass adds its own attrib-
utes and operations. Figure 2.3 shows the superclass-subclass relationship.

By the
Way

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 35

36 Hour 2

Appliance

FIGURE 2.3
Appliances inherit
the attributes and
operations of the
Appliance class.
Each one is a
subclass of the
Appliance class.
The Appliance
class is a
superclass of
each subclass.

HouseholdItem

Appliance Furniture

FIGURE 2.4
Superclasses can
also be subclasses
and inherit from
other superclasses.

Polymorphism
Sometimes an operation has the same name in different classes. For example,
you can open a door, you can open a window, and you can open a newspaper, a
present, a bank account, or a conversation. In each case you’re performing a dif-
ferent operation. In object-orientation each class “knows” how that operation is
supposed to take place. This is called polymorphism (see Figure 2.5).

Inheritance doesn’t have to stop there. Appliance, for example, is a subclass of
the HouseholdItem class. Furniture is another subclass of HouseholdItem, as
Figure 2.4 shows. Furniture, of course, has its own subclasses.

05.067232640X.chap02.qxd 2/20/04 10:39 AM Page 36

Understanding Object-Orientation 37

At first look it would seem that this concept is more important to software develop-
ers than to modelers. After all, software developers have to create the software that
implements these methods in computer programs, and they have to be aware of
important differences among operations that might have the same name. And
they can build software classes that “know” what they’re supposed to do.

But polymorphism is important to modelers, too. It allows the modeler to speak to
the client (who’s familiar with the slice of the world to be modeled) in the client’s
own words and terminology. Sometimes that terminology naturally leads to oper-
ation words (like “open”) that can have more than one meaning. Polymorphism
enables the modeler to maintain that terminology without having to make up
artificial words to maintain an unnecessary (and unnatural) uniqueness of terms.

Encapsulation
In a TV commercial that aired a few years ago, two people discuss all the money
they’ll save if they dial a particular seven-digit prefix before dialing a long-
distance phone call.

One of them asks, incredulously, “How does that work?”

The other replies: “How does popcorn pop? Who cares?”

That’s the essence of encapsulation: When an object carries out its operations,
those operations are hidden (see Figure 2.6). When most people watch a televi-
sion show, they usually don’t know or care about the complex electronics compo-
nents that sit in back of the TV screen and all the many operations that have to
occur in order to paint the image on the screen. The TV does what it does and
hides the process from us. Most other appliances work that way, too. (Thankfully!)

FIGURE 2.5
In polymorphism an
operation can have
the same name in
different classes,
and proceed
differently in each
class.

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 37

38 Hour 2

Why is this important? In the software world, encapsulation helps cut down on
the potential for bad things to happen. In a system that consists of objects, the
objects depend on each other in various ways. If one of them happens to mal-
function and software engineers have to change it in some way, hiding its opera-
tions from other objects means that it probably won’t be necessary to change
those other objects.

Turning from software to reality, you see the importance of encapsulation in the
objects you work with, too. Your computer monitor, in a sense, hides its opera-
tions from your computer’s CPU. When something goes wrong with your monitor,
you either fix the monitor or replace it. You probably won’t have to fix or replace
the CPU along with it.

While we’re on the subject, here’s a related concept. Because encapsulation means
that an object hides what it does from other objects and from the outside world,
encapsulation is also called information hiding. But an object does have to pre-
sent a “face” to the outside world so you can initiate those operations. The TV, for
example, has a set of buttons either on the TV itself or on a remote. A washing
machine has a set of dials that enable you to set temperature and water level.
The TV’s buttons and the washing machine’s dials are called interfaces.

Message Sending
I’ve mentioned that in a system, objects work together. They do this by sending
messages to one another. One object sends another a message—a request to per-
form an operation, and the receiving object performs that operation.

The TV hides
its operations
from the person
watching it.

FIGURE 2.6
Objects encapsu-
late what they do.
That is, they hide
the inner workings
of their operations
from the outside
world and from
other objects.

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 38

Understanding Object-Orientation 39

A TV and a remote present a nice intuitive example. When you want to watch a
TV show, you hunt around for the remote, settle into your favorite chair, and
push the On button. What happens? The remote-object sends a message (liter-
ally!) to the TV-object to turn itself on. The TV-object receives this message, knows
how to perform the turn-on operation, and turns itself on. When you want to
watch a different channel, you click the appropriate button on the remote, and
the remote-object sends a different message—“change the channel”—to the TV-
object. The remote can also communicate with the TV via other messages for
changing the volume, muting the volume, and setting up closed captioning.

Message to
 tu

rn on

FIGURE 2.7
An example of
message sending
from one object to
another. The
remote-object
sends a message
to the TV-object to
turn itself on. The
TV-object receives
the message
through its
interface, an
infrared receiver.

Let’s go back to interfaces for a moment. Most of the things you do from the
remote you can also do by getting out of the chair, going to the TV, and clicking
buttons on the TV. (You might actually try that sometime!) The interface the TV
presents to you (the set of buttons) is obviously not the same interface it presents
to the remote (an infrared receiver). Figure 2.7 illustrates this.

Back in Hour 1 . . .
You’ve already seen message-sending in action. In the sequence diagram in Hour 1
(Figure 1.5), the arrows represent messages that go from one object to another.

By the
Way

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 39

40 Hour 2

Associations
Another common occurrence is that objects are typically related to one another in
some fashion. For example, when you turn on your TV, in object-oriented terms,
you’re in an association with your TV.

The “turn-on” association is unidirectional (one-way), as in Figure 2.8. That is,
you turn your TV on. Unless you watch way too much television, however, it
doesn’t return the favor. Other associations, like “is married to,” are bidirectional.

turn on

FIGURE 2.8
Objects are often
associated with
each other in some
way. When you turn
on your TV, you’re
in a unidirectional
association with it.

Sometimes an object might be associated with another in more than one way. If
you and your coworker are friends, that’s an example. You’re in an “is the friend
of” association, as well as an “is the coworker of” association, as Figure 2.9
shows.

is a co-worker of

is a friend of

FIGURE 2.9
Objects are
sometimes
associated with
each other in more
than one way.

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 40

Understanding Object-Orientation 41

rides in

rides in

FIGURE 2.10
A class can
associate with
more than one
other class.

Multiplicity is an important aspect of associations among objects. It tells the
number of objects in one class that relate to a single object of the associated class.
For example, in a typical college course, the course is taught by a single instruc-
tor. The course and the instructor are in a one-to-one association. In a prosemi-
nar, however, several instructors might teach the course throughout the semester.
In that case, the course and the instructor are in a one-to-many association.

You can find all kinds of multiplicities if you look hard enough. A bicycle rides on
two tires (a one-to-two multiplicity), a tricycle rides on three, and an 18-wheeler
on 18.

Aggregation
Think about your computer system. It consists of a CPU box, a keyboard, a
mouse, a monitor, a CD-ROM drive, one or more hard drives, a modem, a disk
drive, a printer, and possibly some speakers. Inside the CPU box, along with the
aforementioned drives, you have a CPU, a graphics card, a sound card, and some
other elements you would undoubtedly find it hard to live without.

Your computer is an aggregation, another kind of association among objects.
Like many other things worth having, the computer is made from a number of
different types of components (see Figure 2.11). You can probably come up with
numerous examples of aggregations.

A class can associate with more than one other class. A person can ride in a car,
and a person can also ride in a bus (see Figure 2.10).

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 41

42 Hour 2

One form of aggregation involves a strong relationship between an aggregate
object and its component objects. This is called composition. The key to composi-
tion is that the component exists as a component only within the composite
object. For example, a shirt is a composite of a body, a collar, sleeves, buttons,
buttonholes, and cuffs. Do away with the shirt and the collar becomes useless.

Sometimes a component in a composite doesn’t last as long as the composite
itself. The leaves on a tree can die out before the tree does. If you destroy the tree,
the leaves also die (see Figure 2.12).

Aggregation and composition are important because they reflect extremely com-
mon occurrences, and thus help you create models that closely resemble reality.

The Payoff
Objects and their associations form the backbone of functioning systems. In order
to model those systems, you have to understand what those associations are. If
you’re aware of the possible types of associations, you’ll have a well-stocked bag
of tricks when you talk to clients about their needs, gather their requirements,
and create models of the systems that help them meet their business challenges.

FIGURE 2.11
A typical computer
system is an
example of an
aggregation—an
object that’s made
up of a
combination of a
number of different
types of objects.

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 42

Understanding Object-Orientation 43

FIGURE 2.12
In a composition, a
component can
sometimes die out
before the
composite does. If
you destroy the
composite, you
destroy the
component as well.

The important thing is to use the concepts of object-orientation to help you
understand the client’s area of knowledge (his or her domain), and to illustrate
your understanding to the client in terms that he or she understands.

That’s where the UML comes in. In the next three hours, you’ll learn how to
apply the UML to visualize the concepts you learned in this hour.

If You’re Interested in This Sort of Thing . . .
One of object-orientation’s appeals is that it seems to be right in line with human
nature. Perhaps we categorize the objects around us because it’s easier for our
brains to deal with a few categories rather than with many instances.

Recent research points to brain areas involved in object categorization.
Psychologists Isabel Gauthier and Michael Tarr used novel objects expressly
designed for this research in conjunction with imaging techniques that show the
brain in action. They found that as people learned to categorize these objects
(according to rules defined by the experimenters), a specific area in the cerebral cor-
tex became increasingly active. (It’s called the fusiform gyrus, if you must know.)

Summary
Object-orientation is a mindset that depends on a few fundamental principles.
An object is an instance of a class. A class is a general category of objects that
have the same attributes and operations. When you create an object, the

By the
Way

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 43

44 Hour 2

problem area you’re working in determines how many of the attributes and
operations to consider.

Inheritance is an important aspect of object-orientation: An object inherits the
attributes and operations of its class. A class can also inherit attributes and oper-
ations from another class.

Polymorphism is another important aspect. It specifies that an operation can
have the same name in different classes, and each class will perform the opera-
tion in a different way.

Objects hide the performance of their operations from other objects and from the
outside world. Each object presents an interface so that other objects (and people)
can get it to perform its operations.

Objects work together by sending messages to one another. The messages are
requests to perform operations.

Objects are typically associated with one another. The association can take a vari-
ety of forms. An object in one class may associate with any number of objects in
another.

Aggregation is a type of association. An aggregate object consists of a set of com-
ponent objects. A composition is a special kind of aggregation. In a composite
object the components exist only as part of the composite.

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 44

Understanding Object-Orientation 45

Q&A
Q. You said that object-orientation has taken the software world by storm.

Aren’t there some important applications that are not object-oriented?

A. Yes. The ones that aren’t object-oriented are often called “legacy” systems—
programs written long ago that in many cases are starting to show their
age. Object-orientation offers numerous advantages, such as reusability and
fast development time. For these reasons, you’re likely to see new applica-
tions (and rewritten versions of many legacy applications) written the
object-oriented way.

Q. How and when did this whole object-oriented thing get started?

A. Object-orientation emerged in Norway in the mid-1960s when Ole-Johan
Dahl and Kristen Nygaard developed the SIMULA 1 programming language
as a way of simulating complex systems. Although SIMULA 1 never came
into wide use, it introduced classes, objects, and inheritance, among other
important object-oriented concepts.

For more on the object-oriented paradigm, read Matt Weisfeld’s The Object-
Oriented Thought Process, Second Edition, ISBN: 0-672-32611-6 (SAMS
Publishing, 2003).

Workshop
To review what you’ve learned about object-orientation, try your hand at these
quiz questions. You’ll find the quiz answers in Appendix A, “Quiz Answers.” This
is a theoretical hour, so I haven’t included any exercises. You’ll see quite a few in
the hours to come, however!

Quiz
1. What is an object?

2. How do objects work together?

3. What does multiplicity indicate?

4. Can two objects associate with one another in more than one way?

5. What is inheritance?

6. What is encapsulation?

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 45

05.067232640X.chap02.qxd 2/20/04 10:40 AM Page 46

HOUR 3

Working with Object-
Orientation

What You’ll Learn in This Hour:
. How to model a class
. How to show a class’s features, responsibilities, and constraints
. How to discover classes

Now it’s time to put the UML together with the object-oriented concepts you learned
in the last hour. In this hour, you’ll firm up your knowledge of object-orientation as
you learn more about the UML.

Visualizing a Class
As I pointed out in the first hour, a rectangle is the icon that represents a class in the
UML. From Hours 1, “Introducing the UML,” and 2, “Understanding Object-
Orientation,” recall that the name of the class is, by convention, a word with an ini-
tial uppercase letter. It appears near the top of the rectangle. If your class has a two-
word name, join the two words together and capitalize the first letter of the second
word (as in WashingMachine in Figure 3.1).

Another UML construct, the package, can play a role in the name of a class. As I
pointed out in Hour 1, a package is the UML’s way of organizing a diagram’s ele-
ments. As you might recall, the UML represents a package as a tabbed folder. The
package’s name is a text string (see Figure 3.2).

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 47

48 Hour 3

WashingMachine

FIGURE 3.1
The UML class
icon.

Household

FIGURE 3.2
A UML package.

If the WashingMachine class is part of a package called Household, you can give it
the name Household::WashingMachine. The double colons separate the package
name on the left from the classname on the right. This type of classname is called
a pathname (see Figure 3.3).

Household::WashingMachine
FIGURE 3.3
A class with a
pathname.

Attributes
An attribute is a property of a class. It describes a range of values that the prop-
erty may hold in objects (that is, in instances) of that class. A class may have zero
or more attributes. By convention, a one-word attribute name is written in lower-
case letters. If the name consists of more than one word, the words are joined and
each word other than the first word begins with an uppercase letter. The list of
attribute names begins below a line separating them from the classname, as
Figure 3.4 shows.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 48

Working with Object-Orientation 49

Every object of the class has a specific value for every attribute. Figure 3.5 pre-
sents an example. Note that an object’s name begins with a lowercase letter, pre-
cedes a colon that precedes the classname, and the whole name is underlined.

Naming Objects . . . or Not
The name myWasher:WashingMachine is a named instance. It’s also possible to
have an anonymous instance like :WashingMachine.

FIGURE 3.4
A class and its
attributes.

WashingMachine

brandName
modelName
serialNumber
capacity

By the
Way

myWasher: WashingMachine

brandName = "Laundatorium"
modelName = "Washmeister"
serialNumber = "GL57774"
capacity = 16

FIGURE 3.5
An object has a
specific value for
every one of its
class’s attributes.

The UML gives you the option of indicating additional information for attributes.
In the icon for the class, you can specify a type for each attribute’s value. Possible
types include string, floating-point number, integer, and Boolean (and other enu-
merated types). To indicate a type, use a colon to separate the attribute name
from the type. You can also indicate a default value for an attribute. Figure 3.6
shows these ways of specifying attributes.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 49

50 Hour 3

Naming Values
An enumerated type is a data type defined by a list of named values. Boolean, for
instance, is an enumerated type because it consists of the values “true” and
“false.” You can define your own enumerated types like State, which consists of the
values “solid,” “liquid,” and “gas.”

Operations
An operation is something a class can do, and hence it is something that you (or
another class) can ask the class to do. Like an attribute name, an operation’s
name is all in lowercase if it’s one word. If the name consists of more than one
word, join the words and begin all words after the first with an uppercase letter.
The list of operations begins below a line that separates the operations from the
attributes, as in Figure 3.7.

WashingMachine

brandName: String = "Laundatorium"
modelName: String
serialNumber: String
capacity: Integer

FIGURE 3.6
An attribute can
show its type as
well as a default
value.

By the
Way

brandName
modelName
serialNumber
capacity

acceptClothes()
acceptDetergent()
turnOn()
turnOff()

WashingMachineFIGURE 3.7
The list of a class’s
operations appears
below a line that
separates them
from the class’s
attributes.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 50

Working with Object-Orientation 51

Just as you can indicate additional information for attributes, you can indicate
additional information for operations. In the parentheses that follow an opera-
tion name, you can show the parameter that the operation works on, along with
that parameter’s type. One kind of operation, the function, returns a value after
it finishes doing its work. For a function, you can show the value it returns and
that value’s type.

These pieces of information about an operation are called the operation’s signa-
ture. Figure 3.8 shows a couple of ways to represent the signature. The first two
operations show the type of the parameter. The third and fourth show the type of
the return value.

brandName
modelName
serialNumber
capacity

acceptClothes(c:String)
acceptDetergent(d:Integer)
turnOn():Boolean
turnOff():Boolean

WashingMachine FIGURE 3.8
Signatures for
operations.

Attributes, Operations, and Visualization
We’ve been dealing with classes in isolation thus far and showing all the attrib-
utes and operations of a class. In practice, however, you’ll show more than one
class at a time. When you do that, it’s typically not useful to always display all
the attributes and operations. To do so might make the diagram way too busy.
Instead, you can just show the classname and leave either the attribute area or
the operation area empty (or leave them both empty), as Figure 3.9 shows.

WashingMachine
FIGURE 3.9
In practice, you
don’t always show
all of a class’s
attributes and
operations.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 51

52 Hour 3

Sometimes it might be helpful to show some (but not all) of the attributes or oper-
ations. To indicate that you’ve only shown some of them, you follow the list of the
ones you’ve shown with three dots “. . . ”. This is called an ellipsis, and omitting
some or all of the attributes or operations is called eliding a class. Figure 3.10
shows the use of an ellipsis.

brandName

…

acceptClothes()

…

WashingMachineFIGURE 3.10
An ellipsis
indicates that the
displayed attributes
or operations aren’t
the whole set.

If you have a long list of attributes or operations, you can use a keyword to
organize in ways that will make the list comprehensible. As I mentioned in Hour 1,
a keyword is enclosed inside two pairs of small angle brackets called guillemets.
For an attribute list, you can use a keyword as a heading for a subset of the
attributes, as in Figure 3.11.

FIGURE 3.11
You can use a
keyword to organize
a list of attributes
or operations.

 «id info»
brandName
modelName
serialNumber
 «machine info»
capacity

 «clothes-related»

acceptClothes()

acceptDetergent()

 «machine-related»

turnOn()
turnOff()

WashingMachine

Responsibilities and Constraints
The class icon enables you to specify still another type of information about a
class. In an area below the operations list, you can show the class’s responsibility.
The responsibility is a description of what the class has to do—that is, what its
attributes and operations are trying to accomplish. A washing machine, for
example, has the responsibility of taking dirty clothes as input and producing
clean clothes as output.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 52

Working with Object-Orientation 53

In the icon, you indicate responsibilities in an area below the area that contains
the operations (see Figure 3.12).

brandName
modelName
serialNumber
capacity

acceptClothes()
acceptDetergent()
turnOn()
turnOff()

Take dirty clothes
as input and produce
clean clothes as
output.

WashingMachine FIGURE 3.12
In a class icon,
you can write
the class’s
responsibilities in
an area below the
operations list
area.

The idea here is to include enough information to describe a class in an unam-
biguous way. Indicating the class’s responsibilities is an informal way to eliminate
ambiguity.

A slightly more formal way is to add a constraint, a free-form text enclosed in
curly brackets. The bracketed text specifies one or more rules the class follows. For
example, suppose in the WashingMachine class you wanted to specify that the
capacity of a washer can be only 16, 18, or 20 pounds (and thus “constrain” the
WashingMachine class’s capacity attribute). You would write {capacity = 16 or 18
or 20 lbs} near the WashingMachine class icon. Figure 3.13 shows how to do it.

brandName
modelName
serialNumber
capacity

acceptClothes()
acceptDetergent()
turnOn()
turnOff()

WashingMachine

{capacity = 16 or 18 or 20 lb}

FIGURE 3.13
The rule in curly
brackets constrains
the capacity
attribute to be one
of three possible
values.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 53

54 Hour 3

More on Constraints
The UML works with still another—and much more formal—way of adding con-
straints that make definitions more explicit. It’s an entire language called Object
Constraint Language (OCL). An advanced and sometimes useful tool, OCL has its
own set of rules, terms, and operators. The Web site of the Object Management
Group (www.omg.org) provides documentation on OCL.

Attached Notes
Above and beyond attributes, operations, responsibilities, and constraints, you can
add still more information to a class in the form of notes attached to the class.

You’ll usually add a note to an attribute or operation. Figure 3.14 shows a note
referring to a government standard that tells where to find out how serial num-
bers are generated for objects in the WashingMachine class.

By the
Way

brandName
modelName
serialNumber
capacity

acceptClothes()
acceptDetergent()
turnOn()
turnOff()

WashingMachine

Refer to Government
Standard EV5-2241
on generating
serial numbers

FIGURE 3.14
An attached note
provides further
information about
the class.

Bear in mind that a note can contain a graphic as well as text.

Classes—What They Do and
How to Find Them
Classes are the vocabulary and terminology of an area of knowledge. As you talk
with clients, analyze their area of knowledge, and design computer systems that
solve problems in that area, you learn the terminology and model the terms as
classes in the UML.

In your conversations with clients, be alert to the nouns they use to describe the
entities in their business. Those nouns will become the classes in your model. Be
alert also to the verbs that you hear because these will constitute the operations in
those classes. The attributes will emerge as nouns related to the class nouns. After

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 54

Working with Object-Orientation 55

you have a core list of classes, question the clients as to what each class is supposed
to do within the business. Their answers will tell you the class responsibilities.

Suppose you’re an analyst building a model of the game of basketball, and
you’re interviewing a coach in order to understand the game. The conversation
might go something like this:

Analyst: “Coach, what’s basketball all about?”

Coach: “The goal of the game is to shoot the ball through the basket and score
more points than your opponent. Each team consists of five players: two guards,
two forwards, and a center. Each team advances the ball toward the basket with
the objective of ultimately shooting the ball through the basket.”

Analyst: “How does it advance the ball?”

Coach: “By dribbling and passing. But the team has to take a shot at the basket
before the shot clock expires.”

Analyst: “Shot clock?”

Coach: “Yes. That’s 24 seconds in the pros, 30 seconds in international play, and
35 seconds in college to take a shot after a team gets possession of the ball.”

Analyst: “How does the scoring work?”

Coach: “Each basket counts two points, unless the shot is from behind the three-
point line. In that case, it’s three points. A free throw counts one point. A free throw,
by the way, is the penalty a team pays for committing a foul. If a player fouls an
opponent, play stops and the opponent gets to shoot at the basket from the free-throw
line.”

Analyst: “Tell me a little more about what each player does.”

Coach: “The guards generally do most of the dribbling and passing. They’re typi-
cally shorter than the forwards, and the forwards are usually shorter than the
center. All the players are supposed to be able to dribble, pass, shoot, and
rebound. The forwards do most of the rebounding and intermediate-range shoot-
ing, while the center stays near the basket and shoots from close range.”

Analyst: “How about the dimensions of the court? And by the way, how long
does a game last?”

Coach: “In international play, the court is 28 meters long by 15 meters wide. The
basket is 10 feet off the ground. In the pros, a game lasts 48 minutes, divided into
four 12-minute quarters. In college and international play, it’s 40 minutes divided
into two 20-minute halves. A game clock keeps track of the time remaining.”

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 55

56 Hour 3

This could go on and on, but let’s stop and take stock of where we are. Here are
the nouns you’ve uncovered: ball, basket, team, players, guards, forwards, center,
shot, shot clock, three-point line, free throw, foul, free-throw line, court, and game
clock.

Here are the verbs: shoot, advance, dribble, pass, foul, and rebound. You also
have some additional information about some of the nouns—like the relative
heights of the players at each position, the dimensions of the court, the total
amount of time on a shot clock, and the duration of a game.

Finally, your own commonsense knowledge could come into play as you generate
a few attributes on your own. You know, for example, that the ball has attributes
like volume and diameter.

Using this information, you can create a diagram like the one in Figure 3.15. It
shows the classes, and provides some attributes, operations, and constraints. The
diagram also shows responsibilities. You could use this diagram as a foundation
for further conversations with the coach, to uncover more information.

Player
name
height
weight

dribbleBall()
passBall()
shootBall()
rebound()
foulOpponent()

Guard

does most
of the
dribbling
and
passing

Forward

does most
of the
intermediate
range shooting
and rebounding

Center

stays near
basket, shoots
from close
range

Ball

diameter
volume

ShotClock {pro = 24 sec
 college = 35 sec
 Int'l = 30 sec}

GameClock {pro = 4 12-minute quarters
 college and Int'l = 2
 20-minute halves}

Duration {pro = 48 minutes
 college and Int'l =
 40 minutes}

Team

Basket

Shot Foul

ThreePointLine

FreeThrow

FreeThrowLine

Court

FIGURE 3.15
An initial class
diagram for
modeling the game
of basketball.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 56

Working with Object-Orientation 57

Summary
The rectangle is the UML icon for representing a class. The name, attributes, oper-
ations, and responsibilities of the class fit into areas within the rectangle. You can
use a stereotype to organize lists of attributes and operations. You elide a class by
showing just a subset of its attributes and operations. This makes a class diagram
less busy.

You can show an attribute’s type and an initial value, and you can show the val-
ues an operation works on and their types as well. For an operation, this addi-
tional information is called the signature.

To reduce the ambiguity in a class description, you can add constraints. The UML
also allows you to say more about a class by attaching notes to the rectangle that
represents it.

Classes represent the vocabulary of an area of knowledge. Conversations with a
client or an expert in that area reveal nouns that can become classes in a model
and verbs that can become operations. You can use a class diagram as a way of
stimulating the client to talk more about his or her area and reveal additional
knowledge.

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 57

58 Hour 3

Q&A
Q. You mention using “commonsense” knowledge to round out the class dia-

gram for basketball. That’s all well and good, but what happens when I
have to analyze an area that’s new to me—where common sense won’t
necessarily help?

A. Typically, you’ll be thrust into an area that’s new for you. Before you meet
with a client or with an expert in the field, try to become a “subexpert.”
Prepare for the meeting by reading as much related documentation as pos-
sible. Ask your interviewee for some papers or manuals they might have
written. When you’ve finished reading, you’ll know some of the fundamen-
tals and you’ll be able to ask pointed questions.

Q. At what point will I want to show an operation’s signature?

A. Probably after the analysis phase of a development effort, as you get into
design. The signature is a piece of information that programmers will find
helpful.

Q. I’ve been working for my company for a long time and have in-depth
knowledge of its business. Do I still have to create a class model of the
business area the company works in?

A. It’s a good idea to do that. When you have to model your knowledge, you
may be surprised at what you don’t know.

Workshop
To review what you’ve learned about object-orientation, try your hand at these
quiz questions. The answers appear in Appendix A, “Quiz Answers.”

Quiz
1. How do you represent a class in the UML?

2. What information can you show on a class icon?

3. What is a constraint?

4. Why would you attach a note to a class icon?

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 58

Working with Object-Orientation 59

Exercises
1. Here’s a brief (and incomplete) description of hockey:

A hockey team consists of a center, a goalie, two wings, and two defense-
men. Each player has a stick, which he uses to advance a puck on the ice.
The objective is to use the stick to shoot the puck into a goal. Hockey is
played on a rink with maximum dimensions of 100 feet wide by 200 feet
long. The center’s job is to pass the puck to the wings, who are typically the
better shooters on the team. The defensemen try to stop the opposing play-
ers from getting into position to shoot the puck into the goal. The goalie is
the last line of defense, blocking opposition shots. Each time he stops the
puck from getting into the goal, he’s credited with a “save.” Each goal is
worth one point. A game lasts 60 minutes, divided into three periods of 20
minutes each.

Use this information to come up with a diagram like the one in Figure 3.15.
If you know more about hockey than I’ve put in the description, add that
information to your diagram.

2. If you know more about basketball than I’ve put in Figure 3.15, add infor-
mation to that diagram.

3. Go back to the conversation between the analyst and the basketball coach.
Take a look at the coach’s responses and find at least three areas where you
could pursue additional lines of questioning. For example, at one point the
coach mentions a “three-point line.” Further questioning would reveal the
specifics of that term.

4. Here’s a preview of what’s next: If you had to draw some connections
among the classes in Figure 3.15, what might they look like?

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 59

06.067232640X.chap03.qxd 2/20/04 10:23 AM Page 60

HOUR 4

Working with Relationships

What You’ll Learn in This Hour:
. How to model the connections among classes
. How to visualize class-subclass relationships
. How to show dependencies among classes

In the model that finished up the last hour, you were left with a set of classes that
represent the vocabulary of basketball. Although this provides the basis for further
exploration of what basketball is all about, it might be apparent to you that some-
thing’s missing.

That “something” is a sense of the way the classes relate to one another. If you look
at that model (refer to Figure 3.15), you’ll see that it doesn’t show how a player
relates to the ball, how players make up a team, or how a game proceeds. It’s as
though you’ve constructed a laundry list of terms, rather than a picture of an area
of knowledge.

In this hour, you’ll draw the connections among the classes and fill out the picture.

Associations
When classes are connected together conceptually, that connection is called an asso-
ciation. The initial basketball model provides some examples. Let’s examine one—
the association between a player and a team. You can characterize this association
with the phrase “a player plays on a team.” You visualize the association as a line
connecting the two classes, with the name of the association (“Plays on”) just above
the line. You show how to read the relationship with a filled triangle pointing in the
appropriate direction. Figure 4.1 shows how to visualize the Plays on association
between the player and the team.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 61

62 Hour 4

When one class associates with another, each one usually plays a role within that
association. You can show each class’s role by writing it near the line next to the
class. In the association between a player and a team, if the team is professional,
it’s an employer and the player is an employee. Figure 4.2 shows how to represent
these roles.

Player TeamPlays on
FIGURE 4.1
An association
between a player
and a team.

Player TeamPlays on

Employee Employer

FIGURE 4.2
In an association,
each class typically
plays a role. You
can represent
those roles on the
diagram.

You can imagine an association that you could read in the other direction: A
team employs players. You can show both associations in the same diagram, with
a filled triangle indicating how to read each association, as in Figure 4.3.

Player TeamPlays on

Employs

FIGURE 4.3
Two associations
between classes
can appear on the
same diagram.

Associations may be more complex than just one class connected to another. Several
classes can connect to one class. If you consider guards, forwards, and centers, and
their associations with the Team class, you’ll have the diagram in Figure 4.4.

Guard

TeamPlays on

Center

Forward

Plays on

Plays on

FIGURE 4.4
Several classes
can associate with
a particular class.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 62

Working with Relationships 63

Constraints on Associations
Sometimes an association between two classes has to follow a rule. You indicate
that rule by putting a constraint near the association line. For example, a Bank
Teller serves a Customer, but each Customer is served in the order in which he or
she appears in line. You capture this in the model by putting the word ordered
inside curly brackets (to indicate the constraint) near the Customer class, as in
Figure 4.5.

BankTeller Customer
Serves

{ordered} FIGURE 4.5
You can place a
constraint on an
association. In this
example, the
Serves association
is constrained to
have the Bank
Teller serve the
Customer in order.

Another type of constraint is the Or relationship, signified by {or} on a dashed
line that connects two association lines. Figure 4.6 models a high school student
choosing either an academic course of study or a commercial one.

Commercial

AcademicChooses

Chooses

HighSchoolStudent

{or}

FIGURE 4.6
The Or relationship
between two asso-
ciations is a
constraint.

Association Classes
An association can have attributes and operations, just like a class. In fact, when
this is the case, you have an association class. You visualize an association class
the same way you show a regular class, and you use a dashed line to connect it
to the association line. An association class can have associations to other classes.
Figure 4.7 shows an association class for the Plays on association between a play-
er and a team. The association class, Contract, is associated with the
GeneralManager class.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 63

64 Hour 4

Links
Just as an object is an instance of a class, an association has instances as well. If
you imagine a specific player who plays for a specific team, the Plays on relation-
ship is called a link, and you represent it as a line connecting two objects. Just as
you would underline the name of an object, you underline the name of a link, as
in Figure 4.8.

Player

Contract GeneralManger

Team

Employee Employer

Negotiates

FIGURE 4.7
An association
class models an
association’s
attributes and
operations. It’s
connected to an
association via a
dashed line and
can associate with
another class.

Plays on
johnDoe : Player tyrannosaurs : Team

FIGURE 4.8
A link is an
instance of an
association. It
connects objects
rather than
classes. In a link,
you underline the
name of the link,
just as you
underline the name
of an object.

Multiplicity
The association drawn so far between Player and Team suggests that the two
classes are in a one-to-one relationship. Common sense tells you that this isn’t
the case, however. A basketball team has five players (not counting substitutes).
The Has association must take this into account. In the other direction, a player
can play for just one team, and the Plays on association must account for that.

These specifications are examples of multiplicity—the number of objects from
one class that relate with a single object in an associated class. To represent these
numbers in the diagram, you place them near the appropriate class, as in Figure
4.9. (The numbers can go either above or below the association line.)

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 64

Working with Relationships 65

The multiplicity in this example is not the only type. A variety of multiplicities
are possible (a multiplicity of multiplicities, so to speak). One class can relate to
another in a 1-to-1, 1-to-many, 1-to-1 or more, 1-to-0 or one, 1-to-a bounded
interval (for example, 1-to-5 through 10), 1-to-exactly n (as in this example), or
1-to-a set of choices (for example, one-to-nine or ten).

A Helpful Hint
The first time you see some of these multiplicities, the phrasing might be a little
confusing. Here’s a trick to help you through the confusion: Imagine double-quotes
around the right-side phrase, so that one-to-one or more becomes one-to-“one or
more” and one-to-a bounded interval becomes one-to-“a bounded interval.” The
double-quotes show the boundaries of that right-side phrase and might make the
whole thing easier to understand.

The UML uses an asterisk (*) to represent more and to represent many. In one context
Or is represented by two dots, as in 1..* (“one or more”). In another context, Or is
represented by a comma, as in 5,10 (“5 or 10”). Figure 4.10 shows how to visualize
possible multiplicities. (Note that the phrase at the right of each multiplicity in
Figure 4.10 isn’t part of the UML. It’s just a label I added to help clarify things.)

One-to-Zero or One
When class A is in a one-to-zero or one multiplicity with class B, class B is said to
be optional for class A.

Qualified Associations
When an association’s multiplicity is one-to-many, a particular challenge often aris-
es: lookup. When an object from one class has to choose a particular object from
another in order to fulfill a role in an association, the first class has to rely on a spe-
cific attribute to select the correct object. That attribute is typically an identifier, such
as an ID number. For example, a hotel’s reservation list has many reservations, as
Figure 4.11 shows.

StartingPlayer Team

5 1

FIGURE 4.9
Multiplicity denotes
the number of
objects of one class
that can relate to
one object of an
associated class.

By the
Way

By the
Way

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 65

66 Hour 4

When you make a reservation at a hotel, the hotel assigns you a confirmation
number. If you call with questions about the reservation, you have to supply the
confirmation number, so that someone looking through the reservation list can
select your reservation.

In the UML, the ID information is called a qualifier. Its symbol is a small rectan-
gle adjoining the class that has the “one” part in the one-to-many multiplicity.
Figure 4.12 shows the representation. Although the multiplicity between
ReservationList and Reservation is one-to-many, the multiplicity between
confirmationNumber and Reservation is one-to-one.

FIGURE 4.10
Possible
multiplicities and
how to represent
them in the UML.

Husband Wife1 1
one-to-one

Teacher Student1 *
one-to-many

BankTeller Customer1 1..*
one-to-one or more

House Chimney1 0,1
one-to-zero or one

FullTimeStudent CreditHour1 12..18
one-to-12 through 18

Tricycle Wheel1 3
one-to-three

EggBox 1 12,24
one-to-12 or 24

Eggholds

has

takes

has

serves

teaches

is married to

ReservationList Reservation

1 *

FIGURE 4.11
A reservation list
and its
reservations are in
a one-to-many
multiplicity.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 66

Working with Relationships 67

Reflexive Associations
Sometimes, a class is in an association with itself. Referred to as a reflexive asso-
ciation, this can happen when a class has objects that play a variety of roles. For
example, a CarOccupant can be either a driver or a passenger. In the role of the
driver, one CarOccupant drives zero or more additional CarOccupants who play
the role of passenger. You represent this by drawing an association line from the
class rectangle back to the same class rectangle, and on the association line you
indicate the roles, name of the association, direction of the association, and mul-
tiplicity as before. Figure 4.13 presents this example.

ReservationList Reservation

1 1confirmationNumber

FIGURE 4.12
The UML notation
for a qualifier. The
idea is that when
you add that little
rectangle, you
qualify the
association.

CarOccupant

driver

passengerDrives

1

0..4

FIGURE 4.13
In a reflexive
association, you
draw the line from
the class to itself,
and you can
include the roles,
association name,
direction of the
association, and
multiplicity.

Inheritance and Generalization
One of the hallmarks of object-orientation is that it captures one of the great com-
monsense aspects of day-to-day life: If you know something about a category of
things, you automatically know some information you can transfer to other cate-
gories. If you know something is an appliance, you already know it has an on-off
switch, a brand name, and a serial number. If you know something is an animal,
you take for granted that it eats, sleeps, has a way of being born, has a way of get-
ting from one place to another, and probably has a number of other attributes
(and operations) you could list if you thought about it for a few minutes.

Object-orientation refers to this as inheritance. The UML also refers to this as
generalization. One class (the child class or subclass) can inherit attributes and

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 67

68 Hour 4

operations from another (the parent class or superclass). The parent class is more
general than the child class.

The inheritance hierarchy doesn’t have to end at two levels: A child class can be a
parent class for still another child class. Mammal is a child class of Animal, and
Horse is a child class of Mammal.

In the UML, you represent inheritance with a line that connects the parent class
to the child class. On the part of the line that connects to the parent class, you
put an open triangle that points to the parent class. This type of connection
stands for the phrase is a kind of. A Mammal is a kind of Animal, and a Horse is a
kind of Mammal. Figure 4.14 shows this particular inheritance hierarchy, along
with some additional classes.

Amphibian ReptileMammal

Horse

AnimalFIGURE 4.14
An inheritance
hierarchy in the
animal kingdom.

In the figure, note the appearance of the triangle and the lines when more than
one child class inherits from a parent class. Setting the diagram up this way
results in a less busy diagram than showing all the lines and triangles, but the
UML doesn’t prohibit putting all of them in the picture. Note also that you don’t
put the inherited attributes and operations in the subclass rectangles, as you’ve
already represented them in the superclass.

Child = “Is a Kind Of”
When modeling inheritance, be sure the child class satisfies the is a kind of relation-
ship with the parent class. If the two don’t have that kind of relationship, an associ-
ation of some other kind might be more appropriate.

By the
Way

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 68

Working with Relationships 69

Child classes add to the attributes and operations they inherit. For example, a
Mammal has hair and gives milk, two attributes not found in the Animal class.

A class might have no parents, in which case it’s a base class or root class. A
class might have no children, in which case it’s a leaf class. If a class has exactly
one parent, it has single inheritance. If a class has more than one parent, it has
multiple inheritance.

Class Names Are Singular
Have you noticed that the name of a class is always singular (for example, Mammal
rather than Mammals)? The is a kind of relationship is a good reason for this. It
makes sense to say “a horse is a kind of mammal” rather than “a horse is a kind of
mammals” (which makes no sense at all).

Discovering Inheritance
In the course of talking to a client, an analyst discovers inheritance in several
ways. It’s possible that the candidate classes that emerge include both parent
classes and child classes. The analyst has to realize that the attributes and opera-
tions of one class are general and perhaps apply to several other classes, which
may add attributes and operations of their own.

The basketball example from Hour 3, “Working with Object-Orientation,” has
Player, Guard, Forward, and Center classes. The Player has attributes such as
name, height, weight, runningSpeed, and verticalLeap. This class has operations
such as dribble(), pass(), rebound(), and shoot(). The Guard, Forward, and
Center inherit these attributes and operations, and add some of their own. The
Guard might have the operations runOffense() and bringBallUpcourt(). The
Center might have the operation slamDunk(). Based on the coach’s comments
about relative heights of the players, the analyst might want to place constraints
on the heights of the individuals who play each position.

Another possibility is that the analyst notes that two or more classes have a num-
ber of attributes and operations in common. The basketball model has a
GameClock, which keeps track of how much time remains in a game period, and a
ShotClock, which tracks the time remaining from the instant one team takes pos-
session of the ball until it’s supposed to shoot the ball. Realizing that both track
time, the analyst could formulate a Clock class with a trackTime() operation
that both the GameClock and the ShotClock inherit.

By the
Way

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 69

70 Hour 4

An Example of Polymorphism
Because the ShotClock tracks 24 seconds (professional) or 35 seconds (college)
and the GameClock tracks 12 minutes (professional) or 20 minutes (college),
trackTime() is polymorphic.

Abstract Classes
In the basketball model, the two classes I just mentioned—Player and Clock—are
useful because they serve as parent classes for important child classes. The child
classes are important in the model because you’ll ultimately want to have
instances of these classes. To develop the model you’ll need instances of Guard,
Forward, Center, GameClock, and ShotClock.

Player and Clock, however, will not provide any instances for the model. An
object from the Player class would serve no purpose, nor would an object from
the Clock class.

Classes like Player and Clock, which provide no objects, are said to be abstract.
You indicate an abstract class by writing its name in italics. Figure 4.15 shows the
two abstract classes and their children.

Dependencies
In a different kind of relationship, one class uses another. This is called a depend-
ency. The most common usage of a dependency is to show that the signature of
one class’s operation uses another class.

Suppose you’re designing a system that displays corporate forms on-screen so
employees can fill them out. The employee uses a menu to select the form to fill
out. In your design, you have a System class and a Form class. Among its many
operations, the System class has displayForm(f:Form). The form the system dis-
plays obviously depends on which form the user selects. The UML notation for
this is a dashed line with an arrowhead pointing at the class depended on, as in
Figure 4.16.

By the
Way

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 70

Working with Relationships 71

Class Diagrams and Object Diagrams
So far I’ve talked at length about class diagrams, but I haven’t said nearly as
much about object diagrams. As we end this hour on relationships, we’ve reached
a good point to discuss how and why you visualize objects.

A class diagram gives general, definitional information—the properties of a class
and its attributes, as well as other classes it associates with. An object diagram, on

System

displayForm() Form

Guard CenterForward

Clock

Player

runOffense()
bringBallUpcourt() slamDunk()

 name
height
weight
runningSpeed
verticalLeap

dribbleBall()
passBall()
rebound()
shoot()

trackTime()

GameClock ShotClock

FIGURE 4.16
A dashed line with
an arrowhead
represents a
dependency.

FIGURE 4.15
Two inheritance
hierarchies with
abstract classes in
the basketball
model.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 71

72 Hour 4

the other hand, gives information about specific instances of a class and how
they link up at specific instants in time. (“Instants” and “instances”—that’s a good
way to conceptualize the purpose of an object diagram.)

Here’s an example: Suppose you’re looking at part of a chess game, like the chess
pieces in Figure 4.17.

FIGURE 4.17
A portion of a
chess game.

If you don’t know anything about chess, it will be difficult for you to understand
what’s happening in this particular configuration of chess pieces. If you had a
class diagram of chess pieces, like Figure 4.18, that diagram could help you figure
out some of the general rules of chess. (The upperShape attribute is just a way of
describing the physical appearance of a chess piece.)

Although this might aid your overall understanding (particularly if the diagram
somehow explained knightMoveTo(), queenMoveTo(), pawnMoveTo(), and
pawnCapture()), you’d still need some help comprehending the specific chess posi-
tion in Figure 4.17. An object diagram provides the help. Figure 4.19 models the
chess position in Figure 4.17, naming the links among those specific pieces.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 72

Working with Relationships 73

height
upperShape
color
startingLocation
currentLocation

getCaptured()

ChessPiece

height = “tall”
upperShape = “tiara”

queenMoveTo()

Queen

height = “short”
upperShape = “sphere”

pawnMoveTo()
pawnCapture()

Pawn

height = “medium”
upperShape = “horsehead”

knightMoveTo()

Knight

FIGURE 4.18
A class diagram of
some chess
pieces.

FIGURE 4.19
An object diagram
that models the
chess position
shown in
Figure 4.17.

thisWhiteQueen:Queen

thisWhitePawn:Pawn

thisBlackKnight:Knight
Is being attacked by

Is defending Is strategically positioned against

Summary
Without relationships, a class model would be little more than a laundry list of
rectangles that represent a vocabulary. Relationships show how the terms in the
vocabulary connect with one another to provide a picture of the slice of the world
you’re modeling. The association is the fundamental conceptual connection
between classes. Each class in an association plays a role, and multiplicity speci-
fies how many objects in one class relate to one object in the associated class.
Many types of multiplicities are possible. An association is represented as a line
between the class rectangles with the roles and multiplicities at either end. Like a
class, an association can have attributes and operations.

A class can inherit attributes and operations from another class. The inheriting
class is the child of the parent class it inherits from. You discover inheritance

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 73

74 Hour 4

when you find classes in your initial model that have common attributes and
operations. Abstract classes are intended only as bases for inheritance and pro-
vide no objects of their own. Inheritance is represented as a line between the par-
ent and the child with an open triangle adjoining (and pointing to) the parent.

In a dependency, one class uses another. The most common usage of a dependen-
cy is to show that a signature in the operation of one class uses another class. A
dependency is depicted as a dashed line joining the two classes in the depen-
dency, with an arrowhead adjoining (and pointing to) the depended-on class.

Class diagrams show general definitional information about classes. To model
specific instances of classes at specific instants in time, use an object diagram.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 74

Working with Relationships 75

Q&A
Q. Do you ever provide a name for an inheritance relationship, as you do for

an association?

A. The UML doesn’t stop you from naming an inheritance relationship, but
usually it’s not necessary.

Q. When I’m modeling inheritance, can I also show other kinds of relation-
ships in the same model?

A. Absolutely. A model isn’t constrained to showing just one kind of relation-
ship.

Q. In Figure 4.18, in the ChessPiece class, you show the properties color,
startingLocation, and currentLocation along with the
getCaptured() operation. You don’t show those attributes and that opera-
tion in the Knight, Queen, or Pawn subclasses. Those classes have those
features. Why don’t you show them?

A. The inheritance symbol—the open triangle with the solid line connector—
implies that the subclasses have those attributes. That’s what inheritance is
all about. A child class has all the attributes and operations of the parent
class.

Q. While we’re on the subject of Figure 4.18, let me ask you this: The sub-
classes show values for their two attributes. I thought that was something
you show in object diagrams. What’s the story?

A. Values for attributes certainly do appear in object diagrams. Recall from
Hour 3 that you have the option of showing a default value for a class’s
attribute.

Workshop
The quiz and the exercises are designed to firm up your knowledge of the UML in
the area of relationships. Each question and exercise requires you to think about
the modeling symbology you just learned and apply it to a situation. The answers
to the Quiz are in Appendix A, “Quiz Answers.”

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 75

76 Hour 4

It’s in the Cards
Here’s a hint for doing exercises that involve classes: Get a set of 3×5 index cards
and let one card represent one class. That is, write the name of the class at the top
of the card and write attributes and operations on the lines below. This will help you
conceive of a class as a tangible thing you can manipulate. Arrange the cards in the
way you’ll ultimately draw them in your model. It’s the next best thing to having a
modeling tool.

Quiz
1. How do you represent multiplicity?

2. How do you discover inheritance?

3. What is an abstract class?

4. What’s the effect of a qualifier?

Exercises
1. Take the initial basketball model from Hour 3 and add links that express

the relationships you covered in this hour. If you know the game of basket-
ball, feel free to add links that represent your knowledge.

2. According to an old adage, “An attorney who defends himself has a fool for
a client.” Create a model that reflects this piece of wisdom.

3. Draw an inheritance hierarchy of the objects in your residence. Be sure to
include any abstract classes as well as all instances.

4. Think back to the subjects you’ve taken in school. Model this set of subjects
as an inheritance hierarchy, again with all abstract classes and instances.
Include dependencies in this model. (Weren’t some courses prerequisites for
others?)

5. Imagine an association between the classes Dog and Person. Now imagine
the same association between Cat and Person. Draw each association and
attach an association class to each one. Use the association classes to show
how these associations differ from one another.

6. Augment the ChessPiece class in Figure 4.18 to show the constraints on the
height, upperShape, and color attributes. For upperShape, you’ll have to
think up some clever names for the shape at the top of Bishop, Rook, and
King.

By the
Way

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 76

Working with Relationships 77

7. If you play chess and if you feel ambitious, complete Figure 4.18 to model
all the chess pieces. Then create an object diagram that models the start of
a chess game. Include values for all the attributes. For the location attrib-
utes, you’ll have to look up the naming system for the locations on a chess-
board. If you’re a chess aficionado, you know that chess pieces have point
values: Add that attribute to ChessPiece and the default values to the sub-
classes.

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 77

07.067232640X.chap04.qxd 2/20/04 10:49 AM Page 78

HOUR 5

Understanding Aggregations,
Composites, Interfaces, and
Realizations

What You’ll Learn in This Hour:
. How to model classes that consist of other classes
. How to model interfaces and their connections with classes
. The concept of visibility

You’ve learned about associations, multiplicities, and inheritance. You’re almost
ready to create meaningful class diagrams. In this hour, you’ll learn the final pieces
of the puzzle, as you delve into additional types of relationships and other issues
connected with classes. The ultimate goal is to be able to create a static view of a
system, complete with all the interconnections among the system’s classes.

Aggregations
Sometimes a class consists of a number of component classes. This is a special type
of relationship called an aggregation. The components and the class they constitute
are in a part-whole association. In Hour 2, “Understanding Object-Orientation,” I
mentioned that your home computer system is an aggregation that consists of a
CPU box, a keyboard, a mouse, a monitor, a CD-ROM drive, one or more hard
drives, a modem, a disk drive, a printer, and possibly some speakers. Along with the
drives, the CPU box holds RAM, a graphics card, and a sound card (and probably
some other items).

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 79

80 Hour 5

You represent an aggregation as a hierarchy with the “whole” class (for instance,
the computer system) at the top and the components below. A line joins a whole
to a component, with an open diamond on the line near the whole. Figure 5.1
shows the computer system as an aggregation.

RAM GraphicsCard

Speaker CPUBox Keyboard Monitor Mouse

HomeComputer

CD-ROM SoundCardHardDriveDisketteDrive Button MouseBall

is connected to

1

2 1 1 1 1

2

1 1..* * 1 1 1 1..3

1 1

1

1

FIGURE 5.1
An aggregation
(part-whole)
association is
represented by a
line between the
component and the
whole with an open
diamond adjoining
the whole.

Although this example shows each component belonging to one whole, in an
aggregation this isn’t necessarily the case. For example, in a home entertainment
system, a single remote control might be a component both of a television and of
a VCR.

Constraints on Aggregations
Sometimes the set of possible components in an aggregation falls into an Or rela-
tionship. In some restaurants, a meal consists of soup or salad, a main course, and
a dessert. To model this, you would use a constraint—the word or within curly brack-
ets on a dotted line that connects the two part-whole lines, as Figure 5.2 shows.

Soup Salad MainCourse Dessert

Meal

1

1 1 1 1
{or}

FIGURE 5.2
You can place a
constraint on an
aggregation to
show that one
component or
another is part of
the whole.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 80

Understanding Aggregations, Composites, Interfaces, and Realizations 81

Consistency in Constraints
Note the consistency between the use of {or} in Figure 5.2 (which shows a con-
straint on an aggregation) and the previous use of {or} in Figure 4.6 (which shows
a constraint in an association).

Composites
A composite is a strong type of aggregation. Each component in a composite can
belong to just one whole. The components of a coffee table—the tabletop and the
legs—make up a composite. The symbol for a composite is the same as the sym-
bol for an aggregation except the diamond is filled, as shown in Figure 5.3.

By the
Way

TableTop Leg

CoffeeTable

1

1 4

FIGURE 5.3
In a composite,
each component
belongs to exactly
one whole. A
closed diamond
represents this
relationship.

Composite Structure Diagram
The composite is one way to show the components of a class. If you want to give
the sense of showing the class’s internal structure, you can go a step further with
the UML 2.0 composite structure diagram.

Here’s an example. Suppose you’re creating a model of a shirt. Figure 5.4 shows
the shirt as a large class rectangle with its components nested inside. The nested
diagram shows how the components of the shirt relate to one another.

The composite structure diagram focuses attention on the shirt and its internal
components.

This type of diagramming isn’t totally new in UML 2.0. In version 1.x this was a
technique called context diagramming.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 81

82 Hour 5

Interfaces and Realizations
In Hour 2, I mentioned encapsulation—the idea that an object hides its operations
from other objects. When you lock your car, for example, the car doesn’t show
you how it performs the lockup operation. When you change channels on your
TV, your TV doesn’t let you see how it’s done. If these operations are hidden, how
do you get the car or the TV to perform them?

The car and the TV both receive a message (a request to perform an operation)
through an interface. An interface is a set of operations that specifies some
aspect of a class’s behavior, and it’s a set of operations a class presents to other
classes.

An example will help clarify the interface concept. Every time you use a washing
machine, you don’t rip it apart to get to the underlying circuitry so that you can
turn it on and set the time parameters. You don’t get into the plumbing to start
and stop the water flow. Instead, you get the washing machine to perform those
operations by turning a control knob, shown in Figure 5.5. As a result of manipu-
lating the knob, you can turn the machine on or off or set some parameter
related to washing your clothes.

Button ButtonHole

ButtonSystem

1

1 1

1 buttons into 1

Sleeve Body Collar2 is sewn on 1 1 is sewn on 1

1 1
1

1 5,6
is sewn on

is sewn on

0,2,3

Shirt

is sewn on

FIGURE 5.4
A composite
structure diagram
shows the compo-
nents of a class
as a diagram
nested inside a
large class
rectangle.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 82

Understanding Aggregations, Composites, Interfaces, and Realizations 83

The control knob is the washing machine’s interface. What operations does the
control knob have? They’re pretty simple. The control knob can close a connec-
tion or break a connection, and it can turn clockwise or counterclockwise by some
number of degrees.

The control knob’s operations are, in a sense, abstract. Closing or breaking a con-
nection, turning clockwise or counterclockwise—these don’t accomplish anything
of value unless the control knob is attached to something. In this case it’s
attached to a washing machine. It’s almost as if the washing machine makes the
control knob’s operations “real” by translating them into washing-related opera-
tions—like turning the machine on or off, or setting a parameter (the duration of
the wash cycle, for example).

In UMLspeak, we’d say that the washing machine guarantees that part of its
behavior will “realize” the control knob’s behavior. For this reason, the relation-
ship between a class and its interface is called realization.

Why “part of its behavior”? Because it’s not the case that all of the washing
machine’s operations have to do with control knobs. Some operations, like
acceptClothes() and acceptDetergent(), are accessible via the washing
machine’s drum.

FIGURE 5.5
The control knob,
an interface to a
washing machine,
allows you to get
the washing
machine to carry
out some of the
washing machine’s
operations.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 83

84 Hour 5

Throughout all this, you might have noticed numerous references to an inter-
face’s operations, but nothing about its attributes. That’s because as far as we’re
concerned, it doesn’t have any. Yes, a control knob has a radius and thickness,
and perhaps attributes like make and model. The point is that we don’t care about
them. When it comes to interfaces, all we’re concerned with are their operations.

You model an interface the same way you model a class, with a rectangle icon.
The difference is that this icon has no attributes. You’ll recall that you can elide
the attributes out of the representation of a class. How then do you distinguish
between an interface and a class that just doesn’t show its attributes? One way is
to add the keyword «interface» above the name of the interface in the rectangle.
Another is to put the letter I at the beginning of the name of any interface.

The symbol for the realization relationship between a class and its interface looks
like the symbol for inheritance, except the line to the open triangle is dashed
instead of solid. Figure 5.6 shows the realization between WashingMachine and
ControlKnob.

WashingMachine ControlKnob

«interface»
FIGURE 5.6
An interface is a
collection of
operations that a
class carries out. A
class is related to
an interface via real-
ization, indicated
by a dashed line
with an open
triangle that points
to the interface.

Another (elided) way to represent a class and an interface is with a small circle
connected by a line to the class, as in Figure 5.7. (This is sometimes called a
lollipop diagram.)

WashingMachine
ControlKnob

FIGURE 5.7
The elided way of
representing a
class realizing an
interface.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 84

Understanding Aggregations, Composites, Interfaces, and Realizations 85

Inheritance Versus Realization
Because of the similarity in the notation for inheritance and the notation for realiza-
tion, you might take a moment to consider these two. Think of inheritance as the
relationship between a parent and a child: The parent passes on physical attributes
(eye color, hair color, and so on) to the child, and the child also takes on behaviors
from the parent. Think of realization as something like the relationship between a
teacher and a student: The teacher doesn’t pass on any physical attributes to the
student, but the student learns behaviors and procedures from the teacher. The stu-
dent might reuse those behaviors to accomplish his or her own goals.

A class can realize more than one interface, and an interface can be realized by
more than one class.

Interfaces Everywhere
Interfaces are all around us. In fact, we’re so accustomed to seeing them that we
typically think of them as integral parts of whatever they happen to be attached to.

Control knobs, in particular, are part of all kinds of appliances. In addition to helping
us manipulate washing machines, for example, they enable us to turn radios on and
off and to adjust the volume and the reception. You can undoubtedly think of all
kinds of other places where you see control knobs.

Leveraging our intuitive use of this little interface, one enterprising company markets
a control knob as an input device for computers: Nashville, Tennessee-based Griffin
Technology sells PowerMate, a USB-connected control knob you can program to per-
form just about any function you can do with a keyboard. Proud owners typically say,
“It’s incredibly useless—and I use it every day!”

Because we depend on the interface to get us to the washing machine’s opera-
tions, we model the interaction through the interface as a dependency. In Hour 4,
“Working with Relationships,” you saw that the dependency symbol is a dashed
line with an arrowhead. Figure 5.8 shows what I mean.

By the
Way

By the
Way

WashingMachine PersonControlKnob

«interface»
FIGURE 5.8
To model
interaction with a
class through its
interface, use a
dependency
symbol.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 85

86 Hour 5

In UML 1.x, the dependency arrow worked with both the full and elided notations
for the interface. UML 2.0 introduces the “ball-and-socket” symbol for the elided
version (see Figure 5.9).

WashingMachine Person
ControlKnob

FIGURE 5.9
UML 2.0’s
“ball-and-socket”
notation for
modeling
interaction through
an elided interface
symbol.

Interfaces and Ports
UML 2.0 takes the interface concept a step further by allowing you to model the
connection between an interface and a class.

Think of your mouse as an interface to your computer. You can do a couple of
things with it—point and click (and roll that little wheel in the middle, if you
have that kind of mouse). By themselves these operations are worthless until your
computer “realizes” them. That is, you can use these operations to locate the cur-
sor and to select items.

How does the mouse connect to your computer? Follow the cable from the mouse
to the back of your computer and you’ll see a port—an access point that the
mouse plugs into. Of course, your computer also has a serial port, a parallel port,
and one or more USB ports. These ports are the points through which the comput-
er interacts with its environment.

UML 2.0 provides a symbol that models these interaction points. As Figure 5.10
shows, the port symbol is a small square on the border of the class icon, and the
square is connected to the interface.

Computer
Mouse Mouseport

FIGURE 5.10
UML 2.0’s symbol
for the port shows
the point through
which a class
interacts with its
environment.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 86

Understanding Aggregations, Composites, Interfaces, and Realizations 87

Visibility
Closely related to interfaces and realizations is the concept of visibility. Visibility
applies to attributes or operations and specifies the extent to which other classes
can use a given class’s attributes or operations (or an interface’s operations).
Three levels of visibility are possible. At the public level, usability extends to
other classes. At the protected level, usability is open only to classes that inherit
from the original class. At the private level, only the original class can use the
attribute or operation. In a television set, changeVolume() and changeChannel()
are public operations, paintImageOnScreen() is a private one. In an automobile,
accelerate() and brake() are public operations, updateMileageCount() is pro-
tected.

Realization, as you might imagine, implies that the public level applies to every
operation in an interface. Shielding the operations via either of the other levels
would make no sense, as an interface is intended for realization by a multitude of
classes.

To denote the public level, precede the attribute or operation with a “+”; to denote
the protected level, precede it with a “#”; and to denote private, precede it with a
“–”. Figure 5.11 shows the aforementioned public, protected, and private opera-
tions in a television and in an automobile.

Television

 + brandName
+ modelName

+ changeVolume()
+ changeChannel()
- paintImageOnScreen()

…

…

Automobile

+ make
+ modelName

…

+ accelerate()
+ brake()
updateMileageCount()

…

FIGURE 5.11
Public and private
operations in a
television, and
public and protect-
ed operations in an
automobile.

Scope
Scope is another concept relevant to attributes and operations and how they
relate across a system. Two kinds of scope are possible. In instance scope, each
instance of a class has its own value for the attribute or operation. In classifier
scope, only one value of the attribute or operation exists across all instances of
the class. A classifier-scoped attribute or operation appears with its name under-
lined. This type of scoping is usually used when a specified group of instances
(and no others) has to share the exact values of a private attribute. Instance scop-
ing is by far the more common type of scope.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 87

88 Hour 5

Summary
To complete your knowledge about classes and how they connect, it’s necessary to
understand some additional relationships. An aggregation specifies a part-whole
association: A “whole” class is made up of component classes. A component in
an aggregation may be part of more than one whole. A composite is a strong
form of aggregation, in that a component in a composite can be part of only one
whole. The UML representation of aggregations is similar to the representation of
composites. The association line joining a part to a whole has a diamond adjoin-
ing the whole. In an aggregation, the diamond is open; in a composite it’s closed.

A composite structure diagram visualizes the internal structure of a class by show-
ing classes nested inside that class.

A realization is an association between a class and an interface, a collection of
operations that a number of classes can use. An interface is represented as a class
with no attributes. To distinguish it from a class whose attributes have been elided
from the diagram, the keyword «interface» appears above the interface’s name
or an uppercase “I” precedes the interface’s name. Realization is represented in
the UML as a dashed line that connects the class to the interface, with an open
triangle adjoining the interface and pointing to it. Another way to represent a
realization is with a solid line connecting a class to a small circle, with the circle
standing for the interface.

UML 2.0 adds a symbol for the port, a point through which a class interacts with
its environment. The symbol is a small square on the border of the class. The
square connects to the interface.

In terms of visibility, all the operations in an interface are public, so that any
class can use them. Two other levels of visibility are protected (usability extends to
children of the class that owns the attributes and operations) and private (attrib-
utes and operations are usable only by the owning class). A “+” denotes public
visibility, “#” denotes protected, and “–” denotes private.

Scope is another aspect of attributes and operations. In instance scoping, each
object in a class has its own value of an attribute or operation. In classification
scoping, one value exists for a particular attribute or operation throughout a set
of objects in a class. Objects not in that set have no access to the classification-
scoped value.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 88

Understanding Aggregations, Composites, Interfaces, and Realizations 89

Q&A
Q. Is aggregation considered transitive? In other words, if class 3 is a compo-

nent of class 2 and class 2 is a component of class 1, is class 3 a compo-
nent of class 1?

A. Yes, aggregation is transitive. In the earlier example, the mouse buttons and
mouse ball are part of the mouse and also part of the computer system.

Q. Does “interface” imply “user interface” or GUI?

A. No. It’s more generic than that. An interface is just a set of operations that
one class presents to other classes, one of which may (but not necessarily)
be the user.

Workshop
The quiz and exercises will test and strengthen your knowledge about aggrega-
tions, composites, contexts, and interfaces. The answers appear in Appendix A,
“Quiz Answers.”

Quiz
1. What is the difference between an aggregation and a composite?

2. What is realization? How is realization similar to inheritance? How does
realization differ from inheritance?

3. How do you model interaction through an interface?

4. Name the three levels of visibility and describe what each one means.

Exercises
1. Create a composite structure diagram of a magazine. Consider the table of

contents, editorial, articles, and columns.

2. Today’s most popular type of GUI is the WIMP (Windows, Icons, Menus,
Pointer) interface. Using all the appropriate UML knowledge you’ve
acquired thus far, draw a class diagram of the WIMP interface. In addition
to the classes named in the acronym, include related items such as the
scrollbar and cursor and any other necessary classes.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 89

90 Hour 5

3. Construct a model of an electric pencil sharpener showing all relevant
attributes and operations. What is its interface?

4. Model a computer as a class and a touchpad as its interface. List the opera-
tions of the touchpad. Also, show some of the operations in the computer
that you access via the touchpad. In your model, include a class that repre-
sents the user. Use both the full representation and the elided representation
from UML 2.0.

08.067232640X.chap05.qxd 2/20/04 10:34 AM Page 90

HOUR 6

Introducing Use Cases

What You’ll Learn in This Hour:
. What use cases are
. The ideas behind creating, including, and extending use cases
. How to start a use case analysis

In the past three hours, you’ve dealt with diagrams that provide a static view of the
classes in a system. You’re going to ultimately move into diagrams that provide a
dynamic view and show how the system and its classes change over time. The static
view helps an analyst communicate with a client. The dynamic view, as you’ll see,
helps an analyst communicate with a team of developers, and helps the developers
create programs.

The client and the development team make up an important set of stakeholders in a
system. One equally important part of the picture is missing, however—the user.
Neither the static view nor the dynamic view shows the system’s behavior from the
user’s point of view. Understanding that point of view is key to building systems that
are both useful and usable—that is, that meet requirements and are easy (and even
fun) to work with.

Modeling a system from a user’s point of view is the job of the use case. In this hour
you’ll learn all about what use cases are and what they do. In the next hour you’ll
learn how to use the UML’s use case diagram to visualize a use case.

Use Cases: What They Are
I recently bought a digital camera. When I was shopping for it, I encountered a wide
variety of possibilities. How did I decide which one to buy? I asked myself exactly
what I wanted to do with a camera. Did I want extreme portability or did I want a
larger camera with a bigger lens? Would I be taking distance shots? Did I want to

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 91

92 Hour 6

take pictures and post them on the Web? Did I primarily want to make prints? If
so, how large? Did I want to make short movies? With sound?

We all go through a process like this when we make a non-impulse purchase.
What we’re doing is a form of use case analysis: We’re asking ourselves how
we’re going to use the product or system we’re about to shell out good money for,
so we can settle on something that meets our requirements. The important thing
is to know what those requirements are.

This kind of process is particularly crucial for the analysis phase of system devel-
opment. How users will use a system drives the way you design and build it.

The use case is a construct that helps analysts work with users to determine sys-
tem usage. A collection of use cases depicts a system in terms of what users intend
to do with it.

Think of a use case as a collection of scenarios about system use. Each scenario
describes a sequence of events. Each sequence is initiated by a person, another
system, a piece of hardware, or by the passage of time. Entities that initiate
sequences are called actors. The result of the sequence has to be something of use
either to the actor who initiated it or to another actor.

Use Cases: Why They’re Important
Just as the class diagram is a great way to stimulate a client to talk about a sys-
tem from his or her viewpoint, the use case is an excellent tool for stimulating
potential users to talk about a system from their own viewpoints. It’s not always
easy for users to articulate how they intend to use a system. Because traditional
system development was often a haphazard process that was short on up-front
analysis, users are sometimes stunned when anyone asks for their input.

The idea is to get system users involved in the early stages of system analysis and
design. This increases the likelihood that the system ultimately becomes a boon to the
people it’s supposed to help—instead of a monument to clever cutting-edge comput-
ing concepts that business users find incomprehensible and impossible to work with.

An Example: The Soda Machine
Suppose you’re starting out to design a soda machine. In order to get the user’s
point of view, you interview a number of potential users as to how they’ll interact
with the machine.

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 92

Introducing Use Cases 93

Because the main function of a soda machine is to allow a customer to buy a
can of soda, it’s likely the users will quickly tell you that you’re concerned with
a set of scenarios—a use case, in other words—that you could label “Buy
soda.” Let’s examine each possible scenario in this use case. In normal system
development, remember, these scenarios would emerge through conversations
with users.

FIGURE 6.1
A use case
specifies a set of
scenarios for
accomplishing
something useful
for an actor. In this
example, one use
case is “Buy soda.”

The “Buy Soda” Use Case
The actor in this use case is a customer who wants to purchase a can of soda. The
customer initiates the scenario by inserting money into the machine. He or she
then makes a selection. If everything goes smoothly, the machine has at least one
can of the selected soda in stock, and presents a cold can of the soda to the cus-
tomer.

In addition to the sequence of steps, other aspects of the scenario deserve consid-
eration. What preconditions motivate the customer to initiate this scenario in the
“Buy soda” use case? Thirst is the most obvious one. What postconditions result
as a consequence of the scenario’s steps? Again, the obvious one is that the cus-
tomer has a soda.

Is the scenario I described the only possible one for “Buy soda”? Others immediate-
ly come to mind. It’s possible that the machine is out of the soda the customer
wants. It’s possible that the customer doesn’t have the exact amount of money the
soda costs. How should you design the soda machine to handle these scenarios?

Let’s turn to the out-of-soda scenario, another sequence of steps in the “Buy soda”
use case. Think of it as an alternative path through the use case. The customer
initiates the use case by inserting money into the machine. He or she then makes

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 93

94 Hour 6

a selection. The machine does not have at least one can of the selected soda, so it
presents a message to the customer, saying it’s out of that brand. Ideally, the mes-
sage should prompt the customer to make another selection. The machine should
also offer the customer the option of getting his or her money back. At this point
the customer selects another brand and the machine delivers (if it’s not sold out of
the new selection), or takes the option of receiving the money. The precondition is
a thirsty customer. The postcondition is either a can of soda or the returned
money.

Another Out-of-Soda Scenario
Of course, another out-of-soda scenario is possible: The “out of brand” message
could display as soon as the machine’s stock disappears and remain on until the
machine is resupplied. In that case, the user might not insert money in the first
place. The client for whom you’re designing the machine might prefer the first sce-
nario: If the customer has already inserted money, the tendency might be to make
another selection rather than to ask the machine to return the money.

Now let’s look at the incorrect-amount-of-money scenario. Once again, the cus-
tomer initiates the use case in the usual way, and then makes a selection. Let’s
assume the machine has the selection in stock. If the machine has a reserve of
appropriate change on hand, it returns the difference and delivers the soda. If the
machine doesn’t have a reserve of change, it returns the money and presents a
message that prompts the user for correct change. The precondition is the usual
one. The postcondition is either a can of soda along with change, or the returned
money that was originally deposited.

Another possibility is that as soon as the machine’s change reserve is depleted, a
message appears informing potential customers that correct change is required.
The message would remain visible until the machine’s reserve is resupplied.

Additional Use Cases
You’ve examined the soda machine from the viewpoint of one user: the customer.
Other users enter the picture as well. A supplier has to restock the machine,
(Figure 6.2) and a collector (possibly the same person as the supplier) has to col-
lect the accumulated money from the machine (Figure 6.3). This tells us we
should create at least two more use cases, “Restock” and “Collect money,” whose
details emerge through interviews with suppliers and collectors.

By the
Way

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 94

Introducing Use Cases 95

Consider the “Restock” use case. The supplier initiates this use case because some
interval (say, two weeks) has passed. The supplier’s representative unsecures the
machine (probably by unlocking a lock, but that gets into implementation), pulls
open the front of the machine, and fills each brand’s compartment to capacity.

FIGURE 6.2
Restocking a soda
machine is an
important use
case.

FIGURE 6.3
Collecting the
money from a soda
machine is another
important use
case.

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 95

96 Hour 6

The representative also refills the change reserve. The representative then closes
the front of the machine and secures it. The precondition is the passage of the
interval, the postcondition is that the supplier has a new set of potential sales.

For the “Collect money” use case, the collector also initiates because an interval
has passed. He or she would follow the same sequence of steps as in “Restock” to
unsecure the machine and pull open the front. The collector then removes the
money from the machine, and follows the “Restock” steps of closing and securing
the machine. The precondition is the passage of the interval, and the postcondi-
tion is the money in the hands of the collector.

Notice that when we derive a use case, we don’t worry about how to implement
it. In our example we’re not concerned with the insides of the soda machine. We
don’t care about how the refrigeration mechanism works, or how the machine
keeps track of its money. We’re just trying to see how the soda machine will look
to someone who has to use it.

The objective is to derive a collection of use cases that we will ultimately show to
the people who will design the soda machine and the people who will build it. To
the extent our use cases reflect what customers, collectors, and suppliers want, the
result will be a machine that all these groups can easily use.

Including a Use Case
In the “Restock” use case and the “Collect” use case, you’ll note some common
steps. Both begin with unsecuring the machine and pulling it open, both end
with closing the machine and securing it. Can we eliminate the duplication of
steps from use case to use case?

We can. The way to do it is to take each sequence of common steps and form an
additional use case from each one. Let’s combine the “unsecure” and “pull open”
steps into a use case called “Expose the inside” and the “close machine” and
“secure” steps into a use case called “Unexpose the inside.” (OK. I’ve invented a
word here—unexpose. Hide or conceal just didn’t seem appropriate!) Figure 6.4
illustrates these combinations of steps.

With these new use cases in hand, the “Restock” use case starts off with the
“Expose the inside” use case. The supplier’s representative then goes through the
steps as before and concludes with the “Unexpose the inside” use case. Similarly,
the “Collect” use case starts off with the “Expose the inside” use case, proceeds as
before, and finishes with the “Unexpose the inside” use case.

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 96

Introducing Use Cases 97

As you can see, “Restock” and “Collect” include the new use cases. Accordingly,
this technique of reusing a use case is referred to as including a use case.

More on Including
Early versions of the UML referred to including a use case as using a use case. You
might still see the old way in print. The term including has two advantages. First, it’s
clearer: The steps in one use case include the steps of another. Second, it avoids
the potential confusion of putting using near the use in use case. That way, we won’t
have to say we “promote reuse by using a use case.”

Extending a Use Case
It’s possible to reuse a use case in a way other than inclusion. Sometimes we cre-
ate a new use case by adding some steps to an existing use case.

Let’s go back to the “Restock” use case. Before putting new cans of soda into the
machine, suppose the supplier’s representative notes the brands that sold well
and the brands that did not. Instead of simply restocking all the brands, the rep
might pull out the brands that haven’t sold well and replace them with cans of
the brands that have proven to be more popular. He or she would then also have
to indicate on the front of the machine the new assortment of available brands.

Expose the inside

Unexpose the inside

FIGURE 6.4
You can combine
some of the steps
that make up a use
case. The
combination of
steps constitutes
an additional use
case.

By the
Way

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 97

98 Hour 6

If we add these steps to “Restock” we’ll have a new use case that we can call
“Restock according to sales.” This new use case is an extension of the original,
and this technique is called extending a use case.

Starting a Use Case Analysis
In our example we jumped right into use cases and focused on a few of them. In
the real world, you usually follow a set of procedures when you start a use case
analysis.

You begin with the client interviews (and interviews with experts) that lead to the
initial class diagrams we discussed in Hour 3, “Working with Object-Orientation.”
This gives you some idea of the area you’re working in and a familiarity with the
terms you’ll be using. You then have a basis for talking with users.

You interview users (preferably in a group) and ask them to tell you everything
they would do with the system you’re getting ready to design. Their answers form
a set of candidate use cases. Next, it’s important to briefly describe each use case.
You also have to derive a list of all the actors who will initiate and benefit from
the use cases. As you get more into this phase, you’ll increase your ability to
speak to the users in their language.

Use cases crop up in several phases of the development process. They help with
the design of a system’s user interface, they help developers make programming
choices, and they provide the basis for testing the newly constructed system.

To go any further with use case analysis you’re going to have to apply the UML,
and that’s the subject for the next hour.

Summary
The use case is a construct for describing how a system will look to potential users.
It’s a collection of scenarios initiated by an entity called an actor (a person, a piece
of hardware, a passage of time, or another system). A use case should result in
something of value for either the actor who initiated it or for another actor.

It’s possible to reuse use cases. One way (“inclusion”) is to use the steps from one
use case as part of the sequence of steps in another use case. Another way
(“extension”) is to create a new use case by adding steps to an existing use case.

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 98

Introducing Use Cases 99

Interviewing users is the best technique for deriving use cases. When deriving a
use case, it’s important to note the preconditions for initiating the use case, and
the postconditions that result as a consequence of the use case.

You should interview users after you interview clients and generate a list of candi-
date classes. This will give you a foundation in the terminology that you’ll use to
talk with the users. It’s a good idea to interview a group of users. The objective is
to derive a list of candidate use cases and all possible actors.

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 99

100 Hour 6

Q&A
Q. Why do we really need the use case concept? Can’t we just ask users

what they want to see in a system and leave it at that?

A. Not really. We have to add structure to what the users tell us, and use cases
provide the structure. The structure comes in handy when you have to take
the results of your interviews with users and communicate those results to
clients and developers.

Q. When we talk to users, are we constrained to just listing the use cases
they tell us about?

A. Definitely not. In fact, an important part of the process is to build on what
users tell you and try to discover use cases they might not have thought
about.

Q. How difficult is it to derive use cases?

A. In my experience, listing the use cases—at least the high-level ones—isn’t
all that difficult. Some difficulty arises when you’re delving into each one
and trying to get the users to list the steps in each scenario. When you’re
building a system that replaces an existing way of doing things, users typi-
cally know these steps so well and have used them so often they find it diffi-
cult to articulate them. It’s a good idea to have a panel of users, because the
discussion in the group typically brings out ideas that an individual user
might have trouble expressing.

Workshop
This hour was theory rather than UML. For this workshop, the objective is to
understand the theoretical concepts and apply them in several contexts. The
practice will firm up the concepts for you in advance of the next hour when you’ll
learn how to visualize them in the UML. The answers appear in Appendix A,
“Quiz Answers.”

Quiz
1. What do you call the entity that initiates a use case?

2. What is meant by including a use case?

3. What is meant by extending a use case?

4. Is a use case the same as a scenario?

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 100

Introducing Use Cases 101

Exercises
1. Think of something you just purchased where you faced an array of choices.

What use cases were you thinking of when you made your decision?

2. List the use cases associated with a home entertainment center.

3. For our soda machine example, create another use case that includes the
“Expose the inside” and the “Unexpose the inside” use cases.

4. Use cases can help you analyze a business as well as a system. Consider a
computer superstore that sells hardware, peripherals, and software. Who are
the actors? What are some of the major use cases? What are some scenarios
within each use case?

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 101

09.067232640X.chap06.qxd 2/20/04 10:18 AM Page 102

HOUR 7

Working with Use Case
Diagrams

What You’ll Learn in This Hour:
. How to represent a use case model
. How to visualize relationships among use cases
. How to create and apply use case models

The use case is a powerful concept for helping an analyst understand how a system
should behave. It helps you gather requirements from the users’ point of view. In
this hour, you’ll learn how to visualize the use case concepts you learned in the last
hour.

As powerful as the use case concept is, use cases become even more powerful when
you use the UML to visualize them. Visualization allows you to show use cases to
users so they can give you additional information. It’s a fact of life that users often
know more than they can articulate: The use case helps break the ice. Also, a visual
representation allows you to combine use case diagrams with other kinds of dia-
grams.

One of the objectives of the system analysis process is to generate a collection of use
cases. The idea is to be able to catalog and reference this collection, which serves as
the users’ view of the system. When it’s time to upgrade the system, the use case cat-
alog serves as a basis for gathering the requirements of the upgrade.

Representing a Use Case Model
An actor initiates a use case, and an actor (possibly the initiator, but not necessarily)
receives something of value from the use case. The graphic representation is

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 103

104 Hour 7

straightforward: An ellipse represents a use case, and a stick figure represents an
actor. The initiating actor is on the left of the use case, and the receiving actor is
on the right. (Many modelers omit the receiving actor, and the UML 2.0 specifica-
tion doesn’t mention it.) The actor’s name appears just below the actor. The name
of the use case appears either inside the ellipse or just below it. An association
line connects an actor to the use case, and represents communication between the
actor and the use case. The association line is solid, like the line that connects
associated classes.

One of the benefits of use case analysis is that it shows the boundary between the
system and the outside world. Actors are typically outside the system, whereas use
cases are inside. You use a rectangle (with the name of the system somewhere
inside) to represent the system boundary. The rectangle encloses the system’s use
cases.

The actors, use cases, and interconnecting lines make up a use case model.
Figure 7.1 shows the symbols.

System

Use case

Actor Actor

FIGURE 7.1
In a use case
model, a stick
figure represents
an actor, an ellipse
represents a use
case, and an
association line
represents
communication
between the actor
and the use case.

The Soda Machine Revisited
Let’s apply the symbols to the example from the previous hour. As you’ll recall,
you developed use cases for a soda machine. The “Buy soda” use case sits inside
the system along with “Restock” and “Collect.” The actors are Customer,
Supplier’s Representative, and Collector. Figure 7.2 shows a UML use case model
for the soda machine.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 104

Working with Use Case Diagrams 105

Tracking the Steps in the Scenarios
Each use case is a collection of scenarios, and each scenario is a sequence of steps.
As you can see, those steps do not appear on the diagram. They’re not in notes
attached to the use cases. Although the UML doesn’t prohibit this, clarity is key in
creating any diagram and attaching notes to every use case would make the dia-
gram too busy. How and where do you keep track of the steps?

Your use case diagrams will usually be part of a design document that the client
and the development team refer to. Each diagram will have its own page. Each
scenario of each use case will also have its own page, listing in text form

. The actor who initiates the use case

. Assumptions for the use case

. Preconditions for the use case

. Steps in the scenario

. Postconditions when the scenario is complete

. The actor who benefits from the use case

You can also include a brief, one-sentence description of the scenario. Note that
this text page is outside the boundaries of the UML. Thus, the UML doesn’t specify
any particular format for this.

Buy soda

Customer Customer

Restock

Supplier's
Representative

Supplier's
Representative

Collect

Collector Collector

Soda Machine
FIGURE 7.2
A use case model
of the soda
machine from
Hour 6.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 105

106 Hour 7

Hour 6, “Introducing Use Cases,” presented some alternative scenarios for the
“Buy soda” use case. In your description, you can either list these scenarios sepa-
rately (“Out-of-brand” and “Incorrect change”), or you can consider them excep-
tions to the first scenario in the use case. Exactly how you do all this is up to you,
your client, and the users.

Another Possibility
To show the steps in a scenario, another possibility is to use a UML activity diagram
(discussed in Hour 11, “Working with Activity Diagrams”).

Visualizing Relationships Among Use
Cases
The example in Hour 6 also showed two ways that use cases can relate to one
another. One way, inclusion, enables you to reuse one use case’s steps inside
another use case. The other way, extension, allows you to create a new use case
by adding steps to an existing use case.

Two other kinds of relationships are generalization and grouping. As is the case
for classes, generalization has one use case inheriting from another. Grouping is
a simple way of organizing a set of use cases.

Inclusion
Let’s examine the “Restock” and “Collect” use cases from the Hour 6 example.
Both begin with unsecuring the machine and pulling it open, and both end with
closing the machine and securing it. The “Expose the inside” use case was created
to capture the first pair of steps, and the “Unexpose the inside” use case to cap-
ture the second. Both “Restock” and “Collect” include these two use cases.

To represent inclusion, you use the symbol you used for dependency between
classes—a dashed line connecting the classes with an arrowhead pointing to the
depended-on class. Near the line, you add the keyword «include». Figure 7.3
shows the inclusion relationship in the use case model of the soda machine.

In the text notation that tracks the steps in the sequence, you indicate the included
use cases. The first step in the “Restock” use case would be «include» (expose the
inside).

By the
Way

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 106

Working with Use Case Diagrams 107

Extension
Hour 6 showed that the “Restock” use case could be the basis of another use case:
“Restock according to sales.” Instead of just restocking the soda machine so that
all brands end up with the same number of cans, the supplier’s representative
could take note of the brands that sold well and the brands that did not, and
restock accordingly. The new use case is said to extend the original one because it
adds new steps to the sequence in the original use case, also called the base use
case.

Extension can only take place at specific designated points within the base use
case’s sequence. These points are called, appropriately, extension points. In the
“Restock” use case, the new steps (noting the sales and designating the appropri-
ate refills) would occur before the supplier’s representative opened the machine
and was ready to fill the compartments of the soda brands. For this example, the
extension point is “before filling the compartments.”

Like inclusion, you visualize extension with a dependency line (dashed line and
arrowhead) along with a keyword. In this case the keyword is «extend». Within
the base use case, the extension point appears in a compartment named

Buy soda

Customer Customer

Restock

Supplier's
Representative

Supplier's
Representative

Collect

Collector Collector

Soda Machine

Expose the
inside

Unexpose the
inside

Expose the
inside

Unexpose the
inside

«include»

«include»

«include»

«include»

FIGURE 7.3
The soda machine
use case model
with inclusion.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 107

108 Hour 7

“extension point” (or “extension points” if you have more than one) below the
name of the use case. Figure 7.4 shows the extension relationship for “Restock”
and “Restock according to sales” along with the inclusion relationships for
“Restock” and “Collect.”

Expose the inside

Unexpose the inside

Restock

Extension Point
Before filling the
compartments

«extend»

«include»

«include»

Restock according
to sales

FIGURE 7.4
A use case dia-
gram showing
extension and
inclusion.

It’s important to be aware that the locations of the use cases in the use case dia-
gram don’t signify anything. In Figure 7.4, for example, “Expose the inside” is
above “Unexpose the inside.” This does not mean that “Expose the inside” pre-
cedes “Unexpose the inside.” Common sense tells you that it does, but the use
case diagram doesn’t take that into account.

Some have tried to number the use cases in order to show their order. This is way
more trouble than it’s worth, particularly when a use case is included in several
others. If it’s included in Use Case 3 and Use Case 4, is it Use Case 3.1? Or is it
4.1? Suppose it’s the first included use case in Use Case 3, but the second in Use
Case 4. Then what?

It’s best to understand that the intent of the use case diagram is to show what the
use cases are without specifying their order of occurrence. (In that spirit, see the
accompanying sidebar “Extension, Inclusion, and Confusion.”)

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 108

Working with Use Case Diagrams 109

Extension, Inclusion, and Confusion
In my experience, people who are used to modeling process flows (from pre-UML
times) are sometimes confused by the direction of dependency arrows. The confu-
sion often emerges when it comes to modeling extension and inclusion of use
cases. This happens because process-flow veterans are used to seeing arrows that
denote sequences of operations or activities: The first one in a sequence connects
with the second one via an arrow that points from the first to the second.

Thus in a use case diagram that shows Use Case A including Use Case B, their ten-
dency is to think that Use Case A takes place first, followed immediately by Use
Case B. Many times—by the nature of inclusion—the opposite turns out to be true.

The key is to bear in mind that a dependency arrow doesn’t specify the direction of
a process. Instead, it specifies the direction of a relationship. A dependency arrow
that starts at Use Case A and ends at Use Case B means that A depends on B, not
that A precedes B.

Generalization
Classes can inherit from one another, and so can use cases. In use case inheri-
tance, the child use case inherits behavior and meaning from the parent and
adds its own behavior. You can apply the child wherever you apply the parent.

Suppose you’re modeling a soda machine that allows a customer to buy either a
can of soda or a cup of soda. In that case, “Buy soda” would be a parent use case,
and “Buy a can of soda” and “Buy a cup of soda” would be child use cases. You
model generalization of use cases the same way you model generalization of
classes—with a solid line that has an open triangle pointing at the parent, as in
Figure 7.5.

By the
Way

Buy soda

Buy a can of soda Buy a cup of soda

FIGURE 7.5
The generalization
relationship works
for use cases as
well as for classes.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 109

110 Hour 7

The generalization relationship can exist between actors, too. You might have
represented both the supplier’s representative and the collector as agents of the
supplier. If you rename the representative as the Restocker, the Restocker and
Collector are both children of the Supplier Agent, as Figure 7.6 shows.

Supplier's Agent

Restocker Collector

FIGURE 7.6
Like classes and
use cases, actors
can be in a general-
ization relationship.

Grouping
In some use case diagrams, you might have a multitude of use cases and you’ll
want to organize them. This could happen when a system consists of a number of
subsystems. Another possibility is when you’re interviewing users in order to gather
requirements for a system. Each requirement would be represented as a separate
use case. You’ll need some way of categorizing the requirements.

The most straightforward way to organize is to group related use cases into a
package. A package, remember, appears as a tabbed folder. The grouped use
cases appear inside the folder.

Use Case Diagrams in the Analysis
Process
Given the example you worked with, you dived right in and applied the use case
symbols. Now it’s time to step back and put use cases in the context of an analy-
sis effort.

Client interviews should start the process. These interviews will yield class dia-
grams that serve as the foundation for your knowledge of the system’s domain
(the area in which it will solve problems). After you know the general terminology
of the client’s area, you’re ready to start talking to users.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 110

Working with Use Case Diagrams 111

Interviews with users begin in the terminology of the domain but should then
shift into the terminology of the users. The initial results of the interviews should
reveal actors and high-level use cases that describe functional requirements in
general terms. This information provides the boundaries and scope of the system.

Later interviews with users delve into these requirements more closely, resulting in
use case models that show the scenarios and sequences in detail. This might
result in additional use cases that satisfy inclusion and extension relationships. In
this phase it’s important to rely on your understanding of the domain (from the
class diagrams derived from client interviews). If you don’t understand the
domain well, you might create too many use cases and too much detail—a situa-
tion that could greatly impede design and development.

Applying Use Case Models: An Example
To further your understanding of use case models and how to apply them, let’s
take a look at a more complex example than a soda machine. Suppose you have
to design a local area network (LAN) for a consulting firm, and you have to fig-
ure out the functionality to build into the LAN. How do you start?

Exactly What Is a LAN?
A LAN is a communication network that an organization uses over a limited dis-
tance. It allows users to share resources and information.

Understanding the Domain
Begin with client interviews to create a class diagram that reflects what life is like
in the world of consulting. The class diagram might include these classes:
Consultant, Client, Project, Proposal, Data, and Report. Figure 7.7 shows what
the diagram might look like.

Understanding the Users
Now that the domain is in hand, turn your attention to the users, because the
objective is to figure out the kinds of functionality to build into the system.

In the real world, you would interview users. For this example you’ll base your
ideas on some general knowledge about LANs and about the domain. Bear in

By the
Way

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 111

112 Hour 7

mind, however, that in real-world systems analysis, nothing can substitute for
interviews with real people.

One group of users will be consultants. Another will be clerical staff. Other poten-
tial users include corporate officers, marketers, network administrators, office
managers, and project managers. (Can you think of any others?)

At this point, it’s helpful to show the users in a generalization hierarchy, as in
Figure 7.8.

Consultant

Client

Report

Project

Proposal

Data

works on1 1..*
1

writes
1..*

1..* leads to1

serves

1..*
1

1

reads1 1..*

1

is presented to appear in

appear in1 1..*
1..* 1..*

FIGURE 7.7
A class diagram for
the consulting
world.

Employee

Corporate
Officer

Manager Consultant Clerical
Staff

Office
Manager

Project
Manager

Network
Administrator

FIGURE 7.8
The hierarchy of
users who will
interact with the
LAN.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 112

Working with Use Case Diagrams 113

Understanding the Use Cases
What about the use cases? Here are some possibilities: “Provide security levels,”
“Create a proposal,” “Store a proposal,” “Use e-mail,” “Share database informa-
tion,” “Perform accounting,” “Connect to the LAN from outside the LAN,”
“Connect to the Internet,” “Share database information,” “Catalog proposals,”
“Use prior proposals,” and “Share printers.” Based on this information, Figure 7.9
shows the high-level use case diagram that we build.

This set of use cases constitutes the functional requirements for the LAN.

Drilling Down
Let’s elaborate on one of the high-level use cases and build a use case model. One
extremely important activity in a consulting firm is writing proposals, so let’s
examine the “Create a proposal” use case.

Interviews with consultants would probably tell you that a number of steps are
involved in this use case. First of all, the initiating actor is a consultant. The con-
sultant has to log on to the LAN and be verified as a valid user. Then he or she
has to use office suite software (word processing, spreadsheet, and graphics) to
write the proposal. In the process, the consultant might reuse portions of prior
proposals. The consulting firm might have a policy that one corporate officer and
two other consultants review a proposal before it goes to a client. To satisfy this
policy, the consultant stores the proposal in a central repository accessible to the
LAN and e-mails the three reviewers with a message telling them that the propos-
al is ready and informing them of its location. After receiving feedback and mak-
ing necessary modifications (again, using the office suite software), the consultant
prints out the proposal and mails it to the client. When everything’s finished, the
consultant logs off the network. The consultant has completed a proposal, and is
the actor who benefits from the use case.

Business Logic
When an interview reveals something like that “three reviewers” policy I just men-
tioned, take careful note. It means that you’re starting to hear about a company’s
business logic—its set of rules for how it conducts itself. The more business logic
you can find out, the better off you’ll be as an analyst. You’ll understand your client’s
corporate culture, and you’ll be better able to understand organizational needs.

By the
Way

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 113

114 Hour 7

From the preceding sequence, it’s clear some of the steps will be repeated from
one use case to another, and thus lead to other (possibly included) use cases you
might not have thought of before. Logging on and getting verified are two steps
that numerous use cases can include. For this reason, you’d create a “Verify user”

Corporate
Officer

Office
Manager

Project
Manager

Consultant

Network
Administrator

Clerical
Staff

Connect
from

outside
Provide
security levels

Create
proposals

Store
proposals Use

e-mail

Share
database
info Catalog

proposals

Use prior
proposals

Connect
to
Internet Share

printers

LANFIGURE 7.9
A high-level use
case diagram of a
LAN for a
consulting firm.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 114

Working with Use Case Diagrams 115

use case that “Create a proposal” includes. Two other included use cases are “Use
office suite software” and “Log off the network.”

Additional thought about the proposal process might make you realize that the
proposals written for new clients differ from the proposals written for existing
clients. In fact, new-client proposals probably provide promotional information
about the firm. This information usually precedes the statement of the problem.
With existing clients, it’s not necessary to send that kind of information. Thus,
another new use case, “Create a proposal for a new client” extends “Create a pro-
posal.”

Figure 7.10 shows the use case diagram that results from this analysis of the
“Create a proposal” use case.

Verify user

Log off the network

Use office suite
software

Create a proposal

Extension Point
Prior to problem

statement

«extend»

«include»

«include»

«include»

Create a proposal for
a new client

FIGURE 7.10
The “Create a pro-
posal” use case in
the LAN for a con-
sulting firm.

This example brings home an important point—a point that was stressed before:
The use case analysis describes the behavior of a system. It doesn’t touch the
implementation. This is particularly important here because the design of a LAN
is far beyond the scope of this book!

Taking Stock of Where We Are
This is a good time to look at the overall structure of the UML because you’ve
gone through two of its major aspects—object orientation and use case analysis.
You’ve seen their foundations and symbols, and you’ve explored some applica-
tions.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 115

116 Hour 7

In Hours 2–7, you worked with

Classes

Objects

Interfaces

Use cases

Actors

Associations

Generalizations

Dependencies

Realizations

Aggregations

Composites

Stereotypes

Constraints

Notes

Packages

Extensions

Inclusions

Let’s try to partition this set of items into categories.

Structural Elements
Classes, objects, actors, interfaces, and use cases are five of the structural elements
in the UML. Although they have a number of differences (which, as an exercise,
you ought to enumerate), they are similar in that they represent either physical
or conceptual parts of a model. As you proceed through Part I, you’ll encounter
additional structural elements.

Relationships
Associations, generalizations, dependencies, aggregations, composites, and real-
izations are the relationships in the UML. (Inclusion and extension are two kinds
of dependencies.) Without relationships, UML models would just be lists of struc-
tural elements. The relationships connect those elements and thereby connect the
models to reality.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 116

Working with Use Case Diagrams 117

Grouping
The package is the only grouping element in the UML. It allows you to organize
the structural elements in a model. A package can hold any kind of structural ele-
ment and can hold many different kinds at once.

Annotation
The note is the UML’s annotation element. Notes enable you to attach constraints,
comments, requirements, and explanatory graphics to your models.

Extension
Stereotypes and constraints are two constructs the UML provides for extending the
language. They allow you to create new elements out of existing ones, so that you
can adequately model the slice of reality your system will play in.

. . . And More
In addition to structural elements, relationships, grouping, annotation, and
extension, the UML has another category—behavioral elements. These elements
show how parts of a model (such as objects) change over time. You haven’t dealt
with these yet, but you will learn about one in the next hour.

The Big Picture
Now you have an idea of how the UML is organized. Figure 7.11 visualizes this
organization for you. As you go through the remaining hours in Part I, keep this
organization in mind. You’ll keep adding to it as you go along, and this “big pic-
ture” will show you where to add the new knowledge you acquire.

Summary
The use case is a powerful tool for gathering functional requirements. Use case
diagrams add still more power: Because they visualize use cases, they facilitate
communication between analysts and users as well as between analysts and
clients. In a use case diagram, the symbol for a use case is an ellipse. The symbol
for an actor is a stick figure. An association line joins an actor to a use case. The
use cases are usually inside a rectangle that represents the system boundary.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 117

118 Hour 7

Inclusion is represented by a dependency line with the keyword «includes».
Extension is represented by a dependency line with the keyword «extends». Two
other relationships between use cases are generalization, in which one use case
inherits the meaning and behaviors of another, and grouping, which organizes a
set of use cases. Generalization is represented by the same generalization line that
shows inheritance among classes. Grouping is represented by the package icon.

Use case diagrams figure heavily into the analysis process. Begin with client inter-
views that yield class diagrams. The class diagrams provide a foundation for
interviewing users. User interviews result in a high-level use case diagram that
shows the functional requirements of the system. To create use case models, drill
down into each high-level use case. The resulting use case diagrams provide the
foundation for design and development.

Object orientation and use cases are the two heavyweight concepts behind the
UML. Now that you’ve seen them, you’re ready for the big picture of the UML.
The elements you’ve learned about in Hours 2–7 fall into these categories: struc-

Use case

Class

Structural Elements

Relationships

Grouping Extension

«Stereotype»

{Constraint}

Annotation

Interface

Association

Generalization

Dependency

Realization

Package

Note

Actor

FIGURE 7.11
The organization of
the UML, in terms
of the elements
you’ve dealt with
thus far.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 118

Working with Use Case Diagrams 119

tural elements, relationships, organization, annotation, and extension. In the
next hour, you’ll learn about an element in the remaining category: behavioral
elements. Keeping this big picture in mind will help you as you learn more about
the UML.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 119

120 Hour 7

Q&A
Q. I noticed that in the high-level use case diagram, you don’t show associa-

tions between the actors and the use cases. Why is that?

A. The high-level use case diagram emerges at the early stages of interviews
with users. It’s still more or less a brainstorming exercise at that point, and
the objective is to find the overall requirements, scope, and boundaries of the
system. The associations make more sense when subsequent client interviews
get you deeper into each requirement and use case models take shape.

Q. You mentioned “business logic” in connection with the use case analysis.
Is this the only part of the analysis process that yields business logic?

A. Not necessarily. You have to be alert to business logic–related information
throughout the process.

Q. Why is it important to have that “big picture” of the UML? Can’t I just
know when to use each type of diagram?

A. If you understand the organization of the UML, you’ll be able to handle sit-
uations you haven’t encountered before. You’ll be able to recognize when
an existing UML element won’t do the job, and you’ll know how to con-
struct a new one. You’ll also know how to create a hybrid diagram (a dia-
gram that encompasses a diverse set of UML elements) if it turns out to be
the only way to clearly present a model.

Workshop
In this workshop, you’ll continue with the knowledge you gained in Hour 6, using
it as a foundation for the knowledge from this hour. The objective is to use your
new knowledge to visualize use cases and their relationships. The answers appear
in Appendix A, “Quiz Answers.”

Quiz
1. Name two advantages to visualizing a use case.

2. Describe generalization and grouping, the relationships among use cases
that you learned about in this hour. Name two situations in which you
would group use cases.

3. What are the similarities between classes and use cases? What are the differences?

4. How do you model inclusion and extension?

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 120

Working with Use Case Diagrams 121

Exercises
1. Sketch the diagram of a use case model for a TV remote control. Be sure to

include all the functions of the remote as use cases for your model.

2. In the fourth exercise in Hour 6, you listed the actors and use cases for a
computer superstore. This time, draw a high-level use case diagram based
on the work you did for that exercise. Then create a use case model for at
least one of the high-level use cases. In your work, try to incorporate the
includes or extends relationships.

3. Consider what happens when you go shopping for groceries and other
necessities in a supermarket. Create the concept for a device that eliminates
some of the annoyances associated with this experience and model the use
cases for that device. In your set of use cases, use inclusion, extension, and
generalization wherever they’re appropriate.

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 121

10.067232640X.chap07.qxd 2/20/04 10:46 AM Page 122

HOUR 8

Working with State Diagrams

What You’ll Learn in This Hour:
. What a state diagram is and how to work with it
. How to work with events, actions, and guard conditions
. How to model substates, history states, and connection points

At the end of the last hour, I said this hour would cover a category you haven’t
worked with before. This new category, the behavioral element, shows how parts of
a UML model change over time. You’ll learn about a particular member of this cate-
gory, the state diagram.

Each year brings new styles in clothes and cars, seasons change the color of leaves
on trees, and passing years see children grow and mature. Without becoming any
more like a greeting card, the point is that as time passes and events occur, changes
take place in the objects around us.

This also holds true in any system. As the system interacts with users and (possibly)
with other systems, the objects that make up the system go through necessary
changes to accommodate the interactions. If you’re going to model systems, you
must have a mechanism to model change.

What Is a State Diagram?
One way to characterize change in a system is to say that its objects change their
state in response to events and to time. Here are some quick examples:

When you throw a switch, a light changes its state from Off to On.

When you click a remote control, a television changes its state from showing
you one channel to showing you another.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 123

124 Hour 8

After an appropriate amount of time, a washing machine changes its state
from Washing to Rinsing.

The UML state diagram captures these kinds of changes. It presents the states an
object can be in along with the transitions between the states and shows the start-
ing point and endpoint of a sequence of state changes.

State Diagrams Versus Blueprints
With the state diagram, the analogy between UML and a blueprint begins to break
down. A blueprint shows you what a house will look like when it’s finished. It doesn’t
show where holes will appear in the roof, where cracks will emerge in the walls, and
how corrosion will become part of the plumbing. The intent of the state diagram,
also referred to as a state machine or a statechart, is to show those kinds of
changes.

Bear in mind that a state diagram is intrinsically different from a class diagram,
an object diagram, or a use case diagram in a very important way. The diagrams
you’ve already studied model a group of classes, objects, or use cases. A state dia-
gram shows the states of a single object.

Some Conventions
It’s customary to capitalize the initial letter of a state’s name. It’s also a good idea
to give a state a name that ends in ing whenever possible (for example, Dialing or
Faxing). Sometimes it’s not possible (Idle is an example, as you’ll see in a moment).

The Fundamental Symbol Set
Figure 8.1 shows the rounded rectangle that represents a state, along with the
solid line and arrowhead that represent a transition. The arrowhead points to the
state being transitioned into. The figure also shows the solid circle that symbolizes
a starting point and the bull’s-eye that symbolizes an endpoint.

Adding Details to the State Icon
The UML gives you the option of adding detail to these symbols. You can divide
the state icon into two areas. The top area holds the name of the state (which you
have to supply whether you subdivide the icon or not) and the bottom area holds
activities that take place in that state. Figure 8.2 shows these details.

By the
Way

By the
Way

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 124

Working with State Diagrams 125

Three frequently used categories of activities are entry (what happens when the sys-
tem enters the state), exit (what happens when the system leaves the state), and do
(what happens while the system is in the state). You can add others as necessary.

A fax machine is an object whose states have activities. When it’s sending a fax—
that is, when it’s in the Faxing state—the fax machine engages in the activities of
adding a date stamp and timestamp to the fax and adding its phone number
and the name of its owner. In other activities in this state, the machine pulls the
pages through, paginates the fax, and completes the transmission.

While it’s in the Idle state, the fax machine presents the date and time on a dis-
play. Figure 8.3 shows a state diagram.

Adding Details to the Transitions: Events and
Actions
You can also add some details to the transition lines. You can indicate an event that
causes a transition to occur (a trigger event) and the computation (the action) that
executes and makes the state change happen. To add events and actions you write
them near the transition line, using a slash to separate a triggering event from an
action. Sometimes an event causes a transition without an associated action, and
sometimes a transition occurs because a state completes an activity (rather than
because of an event). This type of transition is called a triggerless transition.

FIGURE 8.1
The fundamental
UML symbols in a
state diagram. The
icon for a state is a
rounded rectangle,
and the symbol for
a transition is a
solid line with an
arrowhead. A solid
circle stands for
the starting point
of a sequence of
states, and a bull’s-
eye represents the
endpoint.

Name

Activities

FIGURE 8.2
You can subdivide
a state icon into
areas that show
the state’s name
and activities.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 125

126 Hour 8

The graphical user interface (GUI) you interact with gives examples of transition
details. For the moment, assume the GUI can be in one of three states:

Initializing

Working

Shutting Down

When you turn your PC on, bootup takes place. Turning the PC on, then, is a trig-
gering event that causes the GUI to transition to the Initializing state, and boot-
ing up is an activity that takes place during the transition.

As a result of activities in the Initializing state, the GUI transitions into the Working
state. When you choose to shut down the PC, you generate a trigger event that causes
the transition to the Shutting Down state, and eventually the PC turns off. Figure 8.4
shows the state diagram that captures these states and transitions in the GUI.

Faxing

entry/key in remote fax number
exit/complete transmission
do/add datestamp
do/timestamp
do/add phone number
do/add owner
do/pull pages through
do/paginate

Idle

entry/fax complete
exit/begin fax
do/show Date
do/show Time

FIGURE 8.3
The fax machine
provides an exam-
ple of an object
whose states have
activities.

Turn PC on Shut Down

do/Bootup

Initializing Working Shutting Down

FIGURE 8.4
The states and
transitions of a
graphical user
interface include
trigger events, an
activity, and a
triggerless
transition.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 126

Working with State Diagrams 127

Adding Details to the Transitions: Guard Conditions
The preceding account of GUIs leaves a lot to be desired. First of all, if you leave
your computer unattended or if you just sit idly by and don’t type or use the
mouse, a screensaver appears and rescues your pixels from potential burnout. To
say this in state-change terms, if enough time passes without any user input, the
GUI transitions from the Working state into a state I didn’t show in Figure 8.4—
the Screensaving state.

The time interval is specified in your Windows Control Panel. It’s usually 15 min-
utes. Any keystroke or mouse movement transitions the monitor from the
Screensaving state back to the Working state.

That 15-minute interval is a guard condition—when it’s met, the transition takes
place. Figure 8.5 shows the state diagram for the GUI with the Screensaving state
and the guard condition added.

FIGURE 8.5
The state diagram
for the GUI, with
the Screensaving
state and a guard
condition.

Turn PC on Shut Down

do/Bootup

Initializing Working

Screensaving

Shutting Down

Keystroke
or

mouse movement
[Timeout]

Substates
This model of the GUI is still somewhat empty. The Working state, in particular, is
a lot richer than Figures 8.4 and 8.5 indicate.

When the GUI is in the Working state, a lot is happening behind the scenes,
although it might not be particularly evident onscreen. The GUI is constantly
waiting for you to do something—type a keystroke, move the mouse, or press a
mouse button. It then must register those inputs and change the display to visual-
ize those actions for you onscreen—for example, by moving the cursor when you
move the mouse, or by displaying an a when you press the a key.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 127

128 Hour 8

Thus the GUI goes through changes while it’s within the Working state. Those
changes are changes of state. Because these states reside within a state, they’re
called substates. Substates come in two varieties: sequential and concurrent.

Sequential Substates
As the name implies, sequential substates occur one after the other. Recapping
the aforementioned substates within the GUI’s Working state, you have this
sequence:

Awaiting User Input

Registering User Input

Visualizing User Input

User input triggers the transition from Awaiting to Registering. Activities within
Registering transition the GUI into Visualizing. After the third state, the GUI goes
back to the Awaiting User Input state. Figure 8.6 shows how to represent these
sequential substates within the Working state.

Input
Registering
User Input

[Interval Over]

[TimeOut]

Watching
System
Clock

Updating
Display

Working

Visualizing
User Input

H

Keystroke
or

mouse
movement

Awaiting
User Input

FIGURE 8.6
Sequential
substates within
the GUI’s Working
state.

Concurrent Substates
Within the Working state, the GUI isn’t just waiting for you. It’s also watching the
system clock and (possibly) updating an application’s display after a specific
interval. For example, an application might include an onscreen clock that the
GUI has to update.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 128

Working with State Diagrams 129

All this is going on at the same time as the sequence I just discussed. Although
each sequence is, of course, a set of sequential substates, the two sequences are
concurrent with one another. You represent concurrency with a dotted line
between the concurrent states, as in Figure 8.7.

Input
Awaiting

User Input
Registering
User Input

[Interval Over]
Updating
Display

Working

Visualizing
User Input

Watching
System
Clock

FIGURE 8.7
Concurrent sub-
states proceed at
the same time. A
dotted line sepa-
rates concurrent
substates.

Separating the Working state into two components might remind you of some-
thing. Remember when I discussed aggregations and composites? When each
component is part of just one whole, you are dealing with a composite. The con-
current parts of the Working state have that same kind of relationship to the
Working state. For this reason, the Working state is a composite state. A state
that consists of nothing but sequential substates is also a composite state.

History States
When your screensaver is on and you move your mouse to get back to the
Working state, what happens? Does your display go back to looking as it did right
after the GUI was initialized? Or does it look exactly the way you left it before the
screensaver came on?

Obviously, if the screensaver caused the display to revert back to the beginning of
the Working state, the whole screensaver idea would be counterproductive. Users
would lose work and have to restart a session from square one.

The state diagram captures this idea. The UML supplies a symbol that shows that
a composite state remembers its active substate when the object transitions out of
the composite state. The symbol is the letter H enclosed in a small circle connected
by a solid line to the remembered substate, with an arrowhead pointing to that
substate. Figure 8.8 shows this symbol in the Working state.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 129

130 Hour 8

In the state diagram, I haven’t dealt with windows that are opened by other windows—
in other words, with substates nested within other substates. When a history state
remembers substates at all levels of nesting (as the Windows Working state does),
the history state is said to be deep. If it remembers only the highest nested substate, the
history state is shallow. You represent a deep history by putting H* in the circle.

New in UML 2.0
UML 2.0 has added some new state-relevant symbols called connection points.
They represent points of entry into a state or exits out of a state.

Here’s an example: Imagine a couple of the states of a book in a library. At first,
it’s residing on a shelf. If a borrower has called in to reserve the book, a librarian
retrieves the book and brings it into the state of “Being checked out.” If a borrower
comes to the library, browses through the shelves, selects the book, and then
decides to borrow it, it enters the Being-checked-out state, but in a different way.
You can think of each way of getting to the Being-checked-out state as going
through a separate entry point.

One more thing to be aware of: Suppose the borrower has borrowed more than
some allotted limit or has a number of unpaid fines. If that’s the case, the book
abruptly exits—via an exit point—from the Being-checked-out state.

Figure 8.9 shows how to model all this in UML. Each entry point is modeled as an
empty circle. The exit point is an encircled X. The circles are on the border of the state
icon.

Input
Registering
User Input

[Interval Over]

[TimeOut]

Watching
System
Clock

Updating
Display

Working

Visualizing
User Input

H

Keystroke
or

mouse
movement

Awaiting
User Input

FIGURE 8.8
The history state,
symbolized by the
H in the small
circle, shows that a
composite state
remembers its
active substate
when the object
transitions out of
that composite
state.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 130

Working with State Diagrams 131

Why Are State Diagrams Important?
The UML state diagram provides a variety of symbols and encompasses a number
of ideas, all to model the changes that just one object goes through. This type of
diagram has the potential to get very complex very quickly. Is it really necessary?

In fact, it is. It’s important to have state diagrams because they help analysts,
designers, and developers understand the behavior of the objects in a system. A
class diagram and the corresponding object diagram show only the static aspects
of a system. They show hierarchies and associations, and they tell you what the
behaviors are. They don’t show you the dynamic details of the behaviors.

Developers, in particular, have to know how objects are supposed to behave
because they have to implement these behaviors in software. It’s not enough to
implement an object: Developers have to make that object do something. State
diagrams ensure that they won’t have to guess about what the object is supposed
to do. With a clear picture of object behavior, the likelihood increases that the
development team will produce a system that meets requirements.

Building the Big Picture
Now you can add behavioral elements to your big picture of the UML. Figure 8.10
presents the picture with the state diagram included.

Summary
Objects in a system change their states in response to events and totime. The UML
state diagram captures these state changes. A state diagram focuses on the state
changes in just one object. A rounded rectangle represents a state, and a line with
an arrowhead represents a transition from one state to another.

The state icon shows the name of the state and can hold activities as well. A tran-
sition can occur in response to a trigger event and can entail an action. A transi-
tion can also occur because of an activity in a state: A transition that takes place

Residing
on Shelf

ended

[reserved]

Being
Checked

Out x

FIGURE 8.9
Entry points and an
exit point in a UML
state diagram.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 131

132 Hour 8

in this fashion is termed a triggerless transition. Finally, a transition can occur
because a particular condition—a guard condition—holds true.

Sometimes, a state consists of substates. Substates may either be sequential
(occurring one after the other) or concurrent (occurring at the same time). A state
that consists of substates is called a composite state. A history state indicates that
a composite state remembers its substate when the object transitions out of that
composite state. A history state may be either shallow or deep. These terms per-
tain to nested substates. A shallow history remembers only the top-level substate.
A deep history remembers all levels of substates.

UML 2.0 provides symbols for modeling connection points—entry points into a
state and exit points out of a state.

State diagrams help analysts, designers, and developers understand the behavior of
the objects in a system. Developers, in particular, have to know how objects are sup-
posed to behave because they have to implement these behaviors in software. It’s not
enough to implement an object: Developers have to make that object do something.

Relationships

Grouping Extension

«Stereotype»

{Constraint}

Annotation

Association

Generalization

Dependency

Realization

Package

Note

Behavioral Element

State

Use case

Class

Structural Elements

Interface

Actor

FIGURE 8.10
The big picture of
the UML now
includes a
behavioral element,
the state diagram.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 132

Working with State Diagrams 133

Q&A
Q. What’s the best way to start creating a state diagram?

A. It’s much like creating a class diagram or a use case model. In the class dia-
gram, you list all the classes and then wrestle with the interclass associa-
tions. In the state diagram, you first list the states of the object and then
focus on the transitions. As you work through each transition, figure out
whether a trigger event sets it off and whether any action takes place.

Q. Must every state diagram have a final state (the one represented by the
bull’s-eye)?

A. No. An object that never turns off won’t have this state.

Q. Any hints on laying out a state diagram?

A. Try to arrange the states and transitions so that you minimize crossing
lines. One objective of this diagram (and any other) is clarity. If people can’t
understand the models you build, no one will use them, and your efforts—
no matter how thorough and insightful—will be wasted.

Workshop
The quiz and exercises will transition you into the Learned State Diagrams state.
As always, you’ll find the quiz answers in Appendix A, “Quiz Answers.”

Quiz
1. In what important way does a state diagram differ from a class diagram, an

object diagram, or a use case diagram?

2. Define these terms: transition, event, and action.

3. What is a triggerless transition?

4. What is the difference between sequential substates and concurrent sub-
states?

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 133

134 Hour 8

Exercises
1. Suppose you’re designing a toaster. Create a state diagram that tracks the

states of bread in the toaster. Include necessary triggering events, actions,
and guard conditions.

2. Figure 8.7 shows the concurrent substates within the GUI’s Working state.
Draw a diagram of the Screensaving state that includes concurrent sub-
states.

3. Figure 8.9 shows two of the states of a library book. Using your general
knowledge of libraries, expand the diagram to include the remaining states.
Add appropriate substates and guard conditions.

11.067232640X.chap08.qxd 2/20/04 10:31 AM Page 134

HOUR 9

Working with Sequence
Diagrams

What You’ll Learn in This Hour:
. What a sequence diagram is
. How to apply a sequence diagram
. How to model the creation of an object
. How to work with some UML 2.0 additions to sequence diagrams
. Where sequence diagrams fit in the big picture of the UML

The state diagrams you learned about in the last hour zoom in on a single object.
They show the changes an object goes through.

The UML enables you to expand your field of view and show how an object interacts
with other objects. In this expanded field of view, you’ll include an important
dimension—time. The key idea here is that interactions among objects take place in
a specified sequence, and the sequence takes time to go from beginning to end.
When you create a system, you specify the sequence, and you use the UML sequence
diagram to do it.

What Is a Sequence Diagram?
The sequence diagram consists of objects represented in the usual way (as named
rectangles with the name underlined), messages represented as solid-line arrows,
and time represented as a vertical progression.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 135

136 Hour 9

Objects
The objects are laid out near the top of the diagram from left to right. They’re
arranged in any order that simplifies the diagram.

Extending downward from each object is a dashed line called the object’s lifeline.
Along the lifeline is a narrow rectangle called an activation. The activation
represents an execution of an operation the object carries out. The length of the
rectangle signifies the activation’s duration. Duration, and time in general, are
represented in a rough, ordinal way. This means that each dash in a lifeline usu-
ally doesn’t stand for a specific unit of time but is intended to give a general sense
of duration. Figure 9.1 shows an object, lifeline, and activation.

:NameFIGURE 9.1
Representing an
object in a
sequence diagram.

Messages
A message that goes from one object to another goes from one object’s lifeline to
the other object’s lifeline. An object can also send a message to itself—that is,
from its lifeline back to its own lifeline.

UML represents a message as an arrow that starts at one lifeline and ends at
another. The shape of the arrowhead shows what type of message it is. In
UML 1.x, three arrowhead shapes were available. UML 2.0 has eliminated one
of those shapes and, to my way of thinking, cut down on confusion. I’ll
explain the messages, and then show you what UML 2.0 has eliminated.

One type of message is a call. This is a request from the object sending the mes-
sage to the object receiving the message. The request is for the receiver to carry
out one of its (the receiver’s) operations. Usually, this entails the sender waiting
for the receiver to carry out that operation. Because the sender waits for the
receiver (that is, “synchs up” with the receiver), this message is also referred to as
synchronous.

UML signifies this message type with a filled arrowhead at the end of a solid line.
It’s typically the case that a call involves a return message from the receiver,
although modelers often omit the symbol for the return message. The symbol for
the return message is an open-stick arrowhead with a dashed line. Figure 9.2
shows these symbols.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 136

Working with Sequence Diagrams 137

Many Happy Returns
A few words about that return message symbol. First, it might be a little confusing
because it closely resembles a dependency arrow. Second, as you read more about
UML, you might find differing representations for a return message. Documentation
from the UML 1.x era sometimes shows this symbol with the open-stick arrowhead
and sometimes with the same arrowhead as the call. UML 2.0 specifies the symbol
shown in Figure 9.2, and that’s the one I’ll use.

Another kind of message is asynchronous. With this one, the sender transfers
control to the receiver and doesn’t wait for the operation to complete. The symbol
for this message is an open-stick arrowhead, as Figure 9.3 shows.

FIGURE 9.2
The UML symbol
for a call and for a
return.

By the
Way

FIGURE 9.3
The UML symbol
for an
asynchronous
message.

The Missing Arrowhead
What about that extra UML 1.x arrowhead? That was an open-stick half-arrowhead.
(Imagine the arrowhead in Figure 9.3 with half the arrowhead missing.) UML 1.x
used it to stand for asynchronous messages. The idea was to have one kind of sym-
bol for an asynchronous message and another for a transfer-of-control message, but
the boundaries among message categories sometimes became fuzzy. I’ll adopt the
UML 2.0 categories and work only with the symbols in Figures 9.2 and 9.3.

Time
The diagram represents time in the vertical direction: Time starts at the top and
progresses toward the bottom. A message that’s closer to the top occurs earlier in
time than a message that’s closer to the bottom.

By the
Way

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 137

138 Hour 9

Thus, the sequence diagram is two-dimensional. The left-to-right dimension is the
layout of the objects, and the top-to-bottom dimension shows the passage of time.

Figure 9.4 shows the essential symbol set of the sequence diagram, with the sym-
bols working together. The objects are laid out across the top. Each object’s lifeline
is a dashed line extending downward from the object. A solid line with an arrow-
head connects one lifeline to another and represents a message from one object to
another.

:Name1 :Name2FIGURE 9.4
The symbols in a
sequence diagram.

In order to bring this important UML tool to life, we’ll apply it to some examples.
As we do so, you’ll have the opportunity to work with some object-oriented con-
cepts that form the basis for sequence diagrams. I’ll also be going back into classes,
so it might seem that I’m digressing. I’m not. Trust me.

Cars and Car Keys
You might be familiar with the kind of car key that allows you to remotely lock
and unlock a car. It also lets you open the car’s trunk. If you have one of these
keys, you know what happens when you push the “lock” button. The car locks
itself, and then it blinks its lights and beeps to let you know it’s finished locking
its doors.

A Class Diagram
Let’s capture all this in a class diagram. Figure 9.5 shows the relationships among
the CarOwner, Car, and CarKey classes, as well as some other concepts.

The Car processes a message from the key and causes the appropriate behavior to
take place.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 138

Working with Sequence Diagrams 139

Notice a couple of things about this diagram. In the CarKey class, I’ve shown the
signature of getButtonPress(). This operation works with a button name (“lock,”
“unlock,” or “openTrunk”). The idea is that the Car receives a message from the
CarKey, processes that message, and implements the operation corresponding to
the name of the pressed button.

The diagram also shows the two signals BlinkLights and Beep. You model a
signal as a class with the keyword «signal» added. The dependency arrows
between Car and each signal show that the Car sends these signals. Once
again, the UML has no symbol for send, so you add the keyword «send» to the
dependency arrow.

Note that the CarOwner class shows something you haven’t seen before in a class
icon—the two occurrences of the «signal» keyword. These show you that
CarOwner is capable of receiving these signals. The signals don’t request the
CarOwner to do anything. Because the Car (the sender) isn’t making a request
when it sends those signals, it certainly isn’t waiting for the CarOwner to do any-
thing. Hence, the sequence diagram uses the asynchronous message symbol to
model signals.

A Sequence Diagram
The class diagram in Figure 9.5 is a static view of the little world of the CarOwner,
CarKey, Car, and the two signals. A sequence diagram provides a dynamic view.
How? By showing the messages that pass from one of these entities to another.

Start by drawing three objects. One object is an instance of CarOwner, another is
an instance of CarKey, and the third is an instance of Car. Lay them out across
the top of the diagram and drop a lifeline from each one, as in Figure 9.6.

«signal»
BlinkLights

«signal»
Beep

CarOwner

name
dateOfBirth
address
licenseNumber

drive()
park()
«signal» BlinkLights
«signal» Beep

Car

make
model
year
tagNumber

processKeyMessage(b:ButtonName)
lock()
unlock()
openTrunk()

CarKey

getButtonPress(b:ButtonName)

keyIDNumber

«send» «send»

ButtonPad WirelessConnection

FIGURE 9.5
The relationships
among CarOwner,
CarKey, and Car.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 139

140 Hour 9

:CarOwner :CarKey :Car

Anonymous Objects
As you can see, none of these objects has a specific name (myCar:Car, for exam-
ple). You might remember that I mentioned this possibility in a note in Hour 3,
“Working with Object Orientation.” These three are anonymous objects.

Next, add the arrows to model messages that go from lifeline to lifeline, as in
Figure 9.7. The first message (the one highest in the vertical dimension) is a
request from CarOwner to CarKey. The request is for CarKey to implement its
getKeyPress() operation, registering the button the CarOwner has pressed (generi-
cally referred to as b). The stick arrowhead indicates that CarOwner is transferring
control to CarKey.

By the
Way

FIGURE 9.6
The beginning of a
sequence diagram.

:CarOwner :CarKey :Car

getButtonPress(b)

processKeyMessage(b)

[b = “lock”] BlinkLights

[b = “lock”] Beep

[b = “lock”]
lock()

FIGURE 9.7
Messages
complete the
sequence diagram.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 140

Working with Sequence Diagrams 141

CarKey then sends a message to Car, calling on Car to implement its
processKeyMessage() operation, depending on the specified button. After it
processes the message from CarKey, Car sends itself a message to implement the
operation that corresponds to the pressed button. Note the expression in brackets.
That’s a guard condition, which you just saw in Hour 8, “Working with State
Diagrams.” It’s the UML’s way of saying “if.” So if the pressed button was “lock,”
the Car sends itself a request to carry out the lock() operation. Then Car sends its
two signals to CarOwner. The first message and the signals are examples of the
two usages of the stick arrowhead.

This example shows one use of a sequence diagram—modeling the interactions in
a domain defined by a class diagram. The next example shows another context
for applying sequence diagrams.

The Soda Machine
Let’s move on to an example with a little more complexity. You’ll recall that in
Hour 6, “Introducing Use Cases” and Hour 7, “Working with Use Case Diagrams,”
you read about the use cases of a soda machine. Remember also that a use case
is a name for a collection of scenarios.

The sequence diagram is useful for modeling the scenarios of a use case. In this
example, you’ll model scenarios of the “Buy soda” use case.

You’ll begin with a class diagram, as you did in the preceding example. The class
diagram will model the entities that make up a soda machine. To keep it simple,
assume three components—a front, a register, and a dispenser. Engineers who
make a living designing and building soda machines, of course, have a different
idea of the number of components, but these components will do for this example.

In your model of the soda machine, the front

. Accepts selections and cash

. Displays prompts like “Out of selection” and “Use correct change”

. Receives change from the register and makes it available to the customer

. Returns cash

. Receives a can of soda from the dispenser and makes it available to the cus-
tomer

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 141

142 Hour 9

The register

. Gets the customer’s input (that is, the selection and the cash) from the front

. Updates its cash reserve

. Checks for change

The dispenser

. Checks the availability of a selection

. Releases a can of soda

Assume the soda machine is an aggregation of these three components. Figure 9.8
shows the class diagram.

SodaMachine

Front

accept()
receiveSoda()
receiveChange()
returnCash()
displayPrompt()

Register

getCustomerInput()
updateReserve()
checkForChange()

Dispenser

checkAvailability()
releaseSoda()

FIGURE 9.8
Your model of a
soda machine.

Let’s model the best-case scenario of the “Buy soda” use case: The customer inserts
the correct change, and the customer’s selection is available. The sequence goes
like this:

1. The customer inserts the money into the money slot in the front of the
machine and makes a selection.

2. The money travels to the register, which updates itself.

3. Because this is the best-case scenario, an availability check reveals the soda
is in stock, and the register has the dispenser release the soda to the front of
the machine.

Figure 9.9 shows the sequence diagram that models these steps.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 142

Working with Sequence Diagrams 143

This is just one scenario in this use case. In another scenario, the customer’s selec-
tion might be sold out. Figure 9.10 shows a sequence diagram that models the
sold-out scenario.

:Register:Customer :Front :Dispenser

accept(cash, selection)

updateReserve(cash,price)

getCustomerInput(cash, selection)

checkAvailability(selection)

Available

receiveSoda(selection)

FIGURE 9.9
A sequence dia-
gram that models
the best-case sce-
nario of the “Buy
soda” use case.

:Register:Customer :Front :Dispenser

accept(cash, selection)

checkAvailability(selection)

Sold Out

getCustomerInput(cash, selection)

returnCash(cash)

displayPrompt(“Sold Out”)

FIGURE 9.10
A sequence
diagram that
models the sold-
out scenario of the
“Buy soda” use
case.

Here’s another scenario. Suppose the customer does not insert the correct amount
of change? Figure 9.11 shows the sequence diagram for that one.

Finally, suppose the customer does not insert the correct change, and the soda
machine is out of change? The sequence diagram for that scenario is in Figure 9.12.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 143

144 Hour 9

Sequence Diagrams: The Generic
Sequence Diagram
So far, you’ve put just one scenario into a sequence diagram. When you do this,
you create an instance sequence diagram.

If you include all of a use case’s scenarios when you draw a sequence diagram, you
create a generic sequence diagram. Let’s put all our scenarios into one diagram.

:Register:Customer :Front :Dispenser

accept(cash, selection)

checkForChange(cash, price)

updateReserve(cash,price)

getCustomerInput(cash, selection)

receive(change)

checkAvailability(selection)

releaseSoda(selection)

Available

receiveSoda(selection)

:Register:Customer :Front :Dispenser

accept(cash, selection)

checkForChange(cash,price)

getCustomerInput(cash, selection)

returnCash(cash)

displayPrompt(“Use Correct Change”)

FIGURE 9.12
A sequence
diagram for the
incorrect-change-
and-machine-is-out-
of-change scenario.

FIGURE 9.11
A sequence
diagram for the
incorrect-change
scenario.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 144

Working with Sequence Diagrams 145

We need some way of indicating conditions; one condition necessitates the mes-
sages in one scenario, another condition necessitates others. Recall from the
example with cars and car keys that UML provides the guard condition to indi-
cate if. This is just a bracketed statement for a condition that has to be in place to
follow one path rather than another. For example, to show that an object sends a
message only if the selected soda is sold out, preface that message with [sold
out].

The guard conditions provide essentially the same information as the return mes-
sages. For example, [sold out] lets you know that a selection is unavailable, just
as the “Sold Out” return message does. For this reason, you can remove the
return messages. Keeping them around would make the diagram cumbersome.

One more idea and you’ll be ready to take the plunge into a generic sequence
diagram. You want to be able to show that if you fully follow one scenario’s
sequence of messages to its conclusion, the transaction is over, and that the
remaining messages are related to other scenarios. To do this, you preface the
final message in each scenario with «transaction over».

Figure 9.13 incorporates these ideas.

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

[sold out] displayPrompt(“Sold Out”)

 «transaction over» [sold out]

 returnCash(cash)

 «transaction over»

 [selection avaliable] receiveSoda (selection)

 [cash > price]

 receiveChange(cash, price)

 «transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

FIGURE 9.13
A generic sequence
diagram for the
soda machine.

Follow the diagram from top to bottom. It starts with the customer requesting the
Front to accept his or her cash and selection. Next, the Front asks the Register
to get the customer’s input. If the cash is greater than the price of the soda, the

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 145

146 Hour 9

Register checks its cash reserve for change. If no change is available, the
Register has the Front return the customer’s cash and then has the Front dis-
play a prompt that says “Use Correct Change.” The transaction is over.

Next on the Register’s lifeline, you’re in effect looking at a different scenario. The
Register has the Dispenser check for the availability of the customer’s selection.

If it’s sold out, the Register asks the Front to display a prompt that says “Sold
Out” and then has the Front return the customer’s cash. Once again, the transac-
tion is over.

Moving down the Register’s lifeline, you see that if the transaction continues,
the Register updates its cash reserve according to the cash and the price. If
the cash is greater than the price, the Register has the Front receive the
change. Then the Register asks the Dispenser to release the selected soda, the
Dispenser requests the Front to receive the soda, and the transaction (happily)
is over.

Are you getting the idea that behind every use case lurks one or more sequence
diagrams? If so, you probably understand why a sequence diagram is a valuable
thing.

As you’ll see in Hour 11, “Working with Activity Diagrams,” UML 2.0 offers an
alternative way to combine sequence diagrams. It’s called an Interaction
Overview Diagram. Stay tuned.

Creating an Object in the Sequence
A few years ago, telecommunications giant Ericsson demonstrated a technology
that enables customers to use their cell phones to buy from soda machines. A
commercial during a recent Super Bowl telecast portrayed this technology in
action. How would you model this interaction in a sequence diagram? What
would you have to add?

Let’s begin once again with a class diagram. Figure 9.14 is an expansion of Figure
9.8. Through a wireless connection, the CellPhone interfaces to the Front. The
Front is smarter than before and now has the ability to process information from
the Customer. In this version it acquires an additional capability—the real focus
here: It creates a transaction record of the interaction between the customer and
the soda machine. The machine uses this record to charge the customer’s credit
card for the soda. Your sequence diagram has to visualize the creation of the
transaction record.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 146

Working with Sequence Diagrams 147

On to the sequence diagram. We’ll work with the best-case scenario: The customer
keys his or her credit card information into the cell phone and sends it to the
Front. The Front processes the information and displays an “Approved” prompt
to the Customer. The Customer keys a selection into the cell phone, which sends it
to the Front. In this version of the soda machine, the Front processes the infor-
mation and communicates directly with the Dispenser to check availability and
to instruct the Dispenser to release the soda. The rest of the scenario is just like
the original best-case scenario in the twentieth-century soda machine, except for
the creation of the TransactionRecord.

Figure 9.15 presents the sequence diagram. All the objects are across the top,
except the TransactionRecord object. Why? Because it’s not one of the objects
that exists at the beginning of the sequence. You show its creation by positioning
it in the vertical dimension according to when it’s created. Another aspect of mod-
eling object–creation is the «create» keyword you put on the message sent from
the creator object to the created object. (Because the Register isn’t involved in this
sequence, it doesn’t appear in the diagram.)

SodaMachine

Front

accept()
processCustomerInfo()
receiveSoda()
receiveChange()
returnCash()
displayPrompt()

TransactionRecord

creditCardNumber
date
selection
price

CellPhone

getButtonPress()

phoneNumber

Register

getCustomerInput()
updateReserve()
checkForChange()

Dispenser

checkAvailability()
releaseSoda()

creates

WirelessConnection

FIGURE 9.14
Expanding the
class diagram from
Figure 9.8 to show
a cell phone as an
interface to a soda
machine.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 147

148 Hour 9

The Cell Phone: A Universal Communicator?
Several organizations around the world are working on ways to turn that little phone
you’re holding into a true Renaissance device. In Estonia, some people already use
cell phones to interact with parking meters. Ericsson employees can use their cell
phones to advance slides in PowerPoint presentations. A British company called
Shazam Entertainment has developed technology that enables you to use your cell
phone to automatically retrieve information about a song you’re listening to. How?
Just hold up your phone to the radio or stereo speaker! To read more about these
projects and others, see “If Walls Could Talk, Streets Might Join In” in the
September 18, 2003 New York Times.

While we’re on the subject of object creation, we should also talk about object
destruction. To show an object being destroyed, you place a large, bold X at the
bottom of its lifeline, as in Figure 9.16. The left-hand part of the figure shows an
object destroying itself (perhaps because a certain amount of time has passed).
The right-hand part of the figure shows that an object can instruct another object
to destroy itself. It does this by sending a message whose label is a «destroy» key-
word.

:Customer :CellPhone :Front

:TransactionRecord

:Dispenser

getButtonPress(creditCardNumber)

getButtonPress(selection)

processCustomerInfo(selection)

checkAvailability(selection)

displayPrompt(“Approved”)

processCustomerInfo(creditCardNumber)

Available

releaseSoda(selection)

receiveSoda(selection)

«create»

FIGURE 9.15
A sequence
diagram that mod-
els the best-case
scenario of using a
cell phone as an
interface to a soda
machine.

By the
Way

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 148

Working with Sequence Diagrams 149

Framing a Sequence: Sequence
Diagramming in UML 2.0
UML 2.0 adds a useful touch to sequence diagrams. You can now frame a
sequence diagram by surrounding it with a border and adding a compartment in
the upper left corner. The compartment contains information that identifies the
diagram.

One of the pieces of information is an operator, an expression that describes the
type of diagram inside the frame. For a sequence diagram, the operator is sd.
Figure 9.17 shows our generic sequence diagram framed in the UML 2.0 style.
Along with the operator, the compartment contains the name of the interaction
(BuySoda) the diagram depicts.

Interaction Occurrences
The framing concept is helpful because you can apply it in a number of ways.
Here’s an example:

If you’re creating instance sequence diagrams for the scenarios in a use case,
you’ll notice a fair amount of duplication from diagram to diagram. Framing
gives you a quick and easy way to reuse part of one sequence diagram in
another. You draw a frame around part of the diagram, label the frame’s com-
partment, and just insert the frame with a label (but without the messages and
lifelines) into the new diagram. This particular framed part is called an interac-
tion occurrence. Its operator is ref.

Figure 9.18 shows the frame around part of the best-case scenario. The framed part
is the interaction occurrence that handles the delivery of the soda. Figure 9.19
shows how to reuse that interaction occurrence in the incorrect change scenario.

FIGURE 9.16
An object can
destroy itself (left),
or it can receive an
instruction to be
destroyed (right).

:TransactionRecord

X

:TransactionRecord

X

:Front

«destroy»

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 149

150 Hour 9

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

[sold out] displayPrompt(“Sold Out”)

«transaction over» [sold out]

returnCash(cash)

«transaction over»

[selection avaliable] receiveSoda (selection)

[cash > price]

receiveChange(cash, price)

«transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

sd BuySoda FIGURE 9.17
Framing a
sequence diagram
in UML 2.0.

:Register:Customer :Front :Dispenser

accept(cash, selection)

updateReserve(cash,price)

getCustomerInput(cash, selection)

checkAvailability(selection)

releaseSoda(selection)

Available

receiveSoda(selection)

sd BuySoda Best Case

ref

FIGURE 9.18
Framing an
interaction
occurrence in a
sequence diagram.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 150

Working with Sequence Diagrams 151

Combined Interaction Fragments
An interaction occurrence is a special case of an interaction fragment—
UML 2.0’s generic name for a piece of a sequence diagram. You can combine
these interaction fragments in various ways. The operator indicates the type of
combination. To show a combination, frame the entire set of fragments, and use
a dotted line as a border between adjoining interaction fragments.

The two types of combinations I think will be the most widely used are denoted
by the alt operator and by the par operator.

In the alt combination, each fragment is an alternative and can proceed only
under certain conditions. Guard conditions indicate which fragment can take place.
Figure 9.20 shows this type of combination in the generic sequence diagram.

In contrast with the ref operator, the idea here is clarity rather than reuse. If you
compare Figure 9.20 with Figure 9.17, you’ll see that the guard conditions in the
fragments eliminate the need for some of the guard conditions on the messages.
In my view, this clarifies the generic diagram and makes it easier to follow.

In the par combination, the combined fragments work in parallel and don’t interfere
with one another. For example, suppose your soda machine works extremely effi-
ciently: It returns the customer’s change and delivers the selection at the same time.
This necessitates that several events happen together. Figure 9.21 shows what I mean.

:Register:Customer :Front :Dispenser

accept(cash, selection)

checkForChange(cash,price)

getCustomerInput(cash, selection)

receive(change)

checkAvailability(selection)

Available

updateReserve(cash,price)

sd BuySoda Incorrect Change

ref
DeliverSoda(selection)

FIGURE 9.19
Reusing an
interaction
occurrence.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 151

152 Hour 9

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

displayPrompt(“Sold Out”)

«transaction over»

returnCash(cash)

«transaction over»

[selection avaliable] receiveSoda (selection)

[cash > price]

receiveChange(cash, price)

[sold out]

[else]

«transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

sd BuySoda

alt

FIGURE 9.20
In the alt type of
combined
interaction
fragments, each
fragment is an
alternative and
proceeds only
under certain
conditions.

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

[sold out] displayPrompt(“Sold Out”)

«transaction over» [sold out]

returnCash(cash)

«transaction over»

[selection avaliable] receiveSoda (selection)

[cash > price]

receiveChange(cash, price)

«transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

sd BuySoda

par

FIGURE 9.21
In the par type of
interaction
fragment
combination, the
fragments work in
parallel and don’t
interfere with one
another.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 152

Working with Sequence Diagrams 153

Before UML 2.0 introduced the par operator, it was difficult to show parallel
events on a sequence diagram.

Building the Big Picture
You can now add one more diagram to your big picture of the UML. Because it
deals with the behaviors of objects, the sequence diagram goes under the
Behavioral Elements category. Figure 9.22 updates your growing picture.

Relationships

Grouping Extension

«Stereotype»

{Constraint}

Annotation

Association

Generalization

Dependency

Realization

Package

Note

Behavioral Elements

State

:Name1 :Name2

Sequence

Use case

Class

Structural Elements

Interface

Actor

FIGURE 9.22
The big picture of
the UML with the
addition of the
sequence diagram.

Summary
The UML sequence diagram adds the dimension of time to object interactions. In
the diagram, objects are laid out across the top, and time proceeds from top to
bottom. An object lifeline descends from each object.

An arrow that connects one lifeline to another represents a message that one
object sends another. A message’s location in the vertical dimension represents

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 153

154 Hour 9

the time of its occurrence within the sequence. Messages that occur early are close
to the top of the diagram, and messages that occur late are close to the bottom. A
narrow rectangle on an object’s lifeline represents an activation——an execution
of one of that object’s operations. An object executes an operation in response to
a message it receives.

A use case diagram can show either an instance (one scenario) of a use case, or it
can be generic and incorporate all of a use case’s scenarios. Generic sequence dia-
grams often provide opportunities to represent if statements. Enclose each condi-
tion for an if statement in square brackets.

When a sequence includes the creation of an object, you represent the newly cre-
ated object in the usual way. Its position in the vertical dimension represents the
time it’s created.

UML 2.0 adds some useful techniques for sequence diagrams. They involve fram-
ing the entire diagram and framing fragments of the diagram. Framing the frag-
ments is helpful for reuse and for clarifying certain aspects of the diagram.

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 154

Working with Sequence Diagrams 155

Q&A
Q. The sequence diagram looks like it might be useful for more than just sys-

tem analysis. Can I use it to show interactions in an organization?

A. Yes, you can. The objects can be principal players, and the messages can be
simple transfers of control.

Q. Sometimes a sequence involves recursion. How can I represent recursion
in a sequence diagram?

A. To represent recursion, show an object sending a message to itself. On the
activation, superimpose a smaller activation. Show the arrowhead pointing
to that smaller activation.

Q. You mentioned that the brackets in a guard condition are UML’s way of
saying if. Can I also show while in some way?

A. Yes you can. Another way of thinking about while is that it’s if repeated
many times. From Hour 4, “Working with Relationships,” remember that
UML uses the asterisk to represent many. So in UML, “*[]” means while.

Q. Before each sequence diagram, you started with a class diagram. Do I
always have to do this?

A. It’s a good idea. If you model the classes first, you’ll know which messages
an object can receive.

Workshop
Now that you’ve stepped back and taken a long view of object interactions, step
up to the plate, answer a few questions, and do a couple of exercises to firm up
your knowledge of sequence diagrams. You’ll find the answers in Appendix A,
“Quiz Answers.”

Quiz
1. Define synchronous message and asynchronous message.

2. In UML 2.0, what is an interaction fragment?

3. In UML 2.0, what does par mean?

4. In a sequence diagram, how do you represent a newly created object?

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 155

156 Hour 9

Exercises
General Hint: Start these exercises by creating a class diagram for each one.

1. Create an instance sequence diagram that shows what happens when you
successfully send a fax. That is, model the object interactions in the best-
case scenario of the “Send fax” use case of a fax machine. Include objects
for the sending machine, the receiving machine, the fax, and a central
exchange that routes faxes and phone calls.

2. Create a generic sequence diagram that includes unsuccessful scenarios
(line busy, error on sending machine, and so on) as well as the best-case sce-
nario from Exercise 1. Use as many UML 2.0 concepts as you can.

3. Create a sequence diagram for an electric pencil sharpener. Include as
objects the user, the pencil, the insertion point (that is, the place where you
put the pencil into the sharpener), the motor, and the sharpening element.
What messages should you include? What are the activations? Should your
diagram incorporate recursion?

12.067232640X.chap09.qxd 2/20/04 10:15 AM Page 156

HOUR 10

Working with Communication
Diagrams

What You’ll Learn in This Hour:
. What a communication diagram is
. How to apply a communication diagram
. How to model active objects, concurrency, and synchronization
. Where communication diagrams fit into the UML

In this hour you’ll learn about a diagram that’s similar to the one you covered in
the last hour. This one also shows the interaction among objects, but it does so in a
way that’s slightly different from the sequence diagram.

Like the sequence diagram, the communication diagram shows how objects interact.
It shows the objects along with the messages that travel from one object to another.
So now you may be asking yourself, “If the sequence diagram does that, why does
the UML need another diagram? Don’t they do the same thing? Is this just overkill?”

The two types of diagrams are similar. In fact, they’re semantically equivalent.
That is, they present the same information, and you can turn a sequence diagram
into an equivalent communication diagram and vice versa.

As it turns out, it’s helpful to have both forms. The sequence diagram emphasizes
the time ordering of interactions. The communication diagram emphasizes the con-
text and overall organization of the objects that interact. Here’s another way to look
at the distinction: The sequence diagram is arranged according to time, the commu-
nication diagram according to space. Both deal with interactions among objects,
and for that reason, each one is a type of interaction diagram.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 157

158 Hour 10

What Is a Communication Diagram?
An object diagram shows objects and their relationships with one another. A
communication diagram is an extension of the object diagram. In addition to the
links among objects, the communication diagram shows the messages the objects
send each other. You usually omit the names of the links because they would add
clutter.

One way to think of the relationship between the object diagram and the com-
munication diagram is to imagine the difference between a snapshot and a
movie. The object diagram is the snapshot: It shows how instances of classes are
linked together in an instant of time (“Instants and instances”. . . Remember?).
The communication diagram is the movie: It shows interactions among those
instances over time.

To represent a message, you draw an arrow near the link between two objects.
The arrow points to the receiving object. A label near the arrow shows what the
message is. The message typically tells the receiving object to execute one of its
(the receiver’s) operations. Arrowheads have the same meaning as in sequence
diagrams.

I mentioned that you can turn any sequence diagram into a communication dia-
gram, and vice versa. Thus, you have to be able to represent sequential informa-
tion in a communication diagram. To do this, you add a number to the label of a
message, with the number corresponding to the message’s order in the sequence.
A colon separates the number from the message.

Figure 10.1 shows the symbol set for the communication diagram.

:Class1

:Class2

:Class3

1:add()

2:modify()
3:update()

FIGURE 10.1
The symbol set for
the communication
diagram.

A Change from UML 1.x to UML 2.0
If you’ve had some exposure to earlier versions of UML or earlier editions of this
book, you’ll recall the term collaboration diagram. UML 2.0 uses communication dia-
gram instead, and that’s the terminology I’ll use from now on. If you use documenta-
tion or modeling tools based on UML 1.x, of course, you’ll still see the older term.

By the
Way

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 158

Working with Communication Diagrams 159

Let’s take advantage of the equivalence of the two types of diagrams. In order to
develop the communication diagram’s concepts, you’ll revisit examples you
worked with in the previous hour. As you do this, additional concepts will emerge.

Cars and Car Keys
We start again with the domain of cars and car keys. The class diagram in
Figure 10.2 is just a refresher for you (Note it’s the same as Figure 9.5 in Hour 9,
“Working with Sequence Diagrams”). The idea is to remind you about the opera-
tions and signals, so you know the messages each object can receive.

«signal»
BlinkLights

«signal»
Beep

CarOwner

name
dateOfBirth
address
licenseNumber

drive()
park()
«signal» BlinkLights
«signal» Beep

Car

make
model
year
tagNumber

processKeyMessage(b:ButtonName)
lock()
unlock()
openTrunk()

CarKey

getButtonPress(b:ButtonName)

keyIDNumber

«send» «send»

ButtonPad WirelessConnection

Next, we create an object diagram that models instances of the classes in Figure 10.2.
This diagram appears in Figure 10.3 and is the foundation for a communication
diagram.

:CarKey

:CarOwner :Car

FIGURE 10.3
An object diagram
that models
instances of the
classes in
Figure 10.2.

FIGURE 10.2
The domain of cars
and car keys.

Now you can add the messages. The messages that appeared in Figure 9.7 appear
here in Figure 10.4. This figure shows one way of dealing with multiple messages
that pass between two objects. As you can see, messages 4 and 5 are signals that go
from the Car to the CarOwner. They have separate labels but not separate arrows.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 159

160 Hour 10

The intent is to keep the diagram from becoming too busy. Some modeling tools,
however, provide a separate arrow for each message. Bear in mind that if different
kinds of messages pass between the same two objects, you have to show both arrows.

:CarKey

:CarOwner :Car

2: processKeyMessage(b)

[b = “lock”] 4: BlinkLights
[b = “lock”] 5: Beep

[b = “lock”]
3: lock()

1: getButtonPress(b)

:CarKey

:CarOwner :Car

2: processKeyMessage(b)

[b = “lock”] 4: BlinkLights
[b = “lock”] 5: Beep

[b = “lock”]
3: lock()

1: getButtonPress(b)

FIGURE 10.4
A communication
diagram that
models the
messages that
pass between the
objects in
Figure 10.3

To show you the equivalence of the communication diagram and the sequence
diagram, Figure 10.5 shows Figure 10.4 side by side with Figure 9.7.

:CarOwner :CarKey :Car

getButtonPress(b)

processKeyMessage(b)

[b = “lock”] BlinkLights

[b = “lock”] Beep

[b = “lock”]
lock()

FIGURE 10.5
The communication
diagram and the
equivalent
sequence diagram
for the car and car
key example.

Changing States and Nesting Messages
Suppose Car has an attribute, locked, whose values are either True or False.
Thinking back to Hour 8, “Working with State Diagrams,” you can imagine two
states, Locked and Unlocked for Car, as shown in Figure 10.6.

You can show a change of state in a communication diagram. To do that in this
example, you show the value of locked in the Car object. Then, you duplicate the
Car object with the new value of locked. Connect the two, and then show a mes-
sage going from the first to the second. Label the message with the keyword
«become».

This example gives you the chance to examine an additional concept related to
communication diagrams—using the numbering system to show something

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 160

Working with Communication Diagrams 161

about the relationships among messages. So far, you’ve only seen messages in
sequence. It’s also possible to show one message nested in another. You number
the nested message by starting it with the number of the message it’s nested in,
then a decimal point, and then a number for the nested message. Figure 10.7
shows the state change and the nesting.

FIGURE 10.6
Modeling the
Unlocked and
Locked states of a
car.

Unlocked

Locked

Unlock Message Lock Message

:CarKey

:CarOwner
:Car

:Car

locked = True

locked = False

2: processKeyMessage(b)

[b = “lock”] 4: BlinkLights
[b = “lock”] 5: Beep

[b = “lock”]
3: lock()

3.1: «become»

1: getButtonPress(b)

FIGURE 10.7
Modeling state
changes in a
communication
diagram. Note the
nested message
(3.1: «become»)

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 161

162 Hour 10

Figure 10.8 shows an alternative technique for modeling state changes. I prefer
the first way as the dotted-line arrow in the second brings to mind a dependency.
People who are new to UML often find dependencies difficult to follow.

FIGURE 10.8
Another way to
model state
changes in a
communication
diagram.

:CarKey

:CarOwner :Car[unlocked]

:Car[locked]

2: processKeyMessage(b)

[b = “lock”] 4: BlinkLights
[b = “lock”] 5: Beep

[b = “lock”]
3: lock()

3.1: «become»

1: getButtonPress(b)

The nested message in this example might lead you to believe that messages are
nested only in connection with state changes. This is not the case, as the next sec-
tion shows.

The Soda Machine
Now you will move on to the soda machine example and see the communication
diagrams that match up with the sequence diagrams from Hour 9.

You begin with the best-case scenario of the “Buy soda” use case. The communi-
cation diagram is straightforward, as Figure 10.9 shows.

The diagram provides another example of a nested message. The return message
Available is nested in the call checkAvailability(). Thus, its number is 3.1.

I’ll leave it as an exercise for you to create the communication diagrams that cor-
respond to the remaining instance sequence diagrams for scenarios in the soda
machine (Figures 9.10, 9.11, and 9.12). Instead, I’ll turn my attention to the
generic sequence diagram (Figure 9.13) and show you the corresponding commu-
nication diagram (Figure 10.10)

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 162

Working with Communication Diagrams 163

As you can see, the diagram is somewhat cluttered, particularly where messages
pass between the Register and the Front. Several message labels are close to
each other, two different kinds of messages transmit down that link, and stereo-
types and guard conditions appear.

Creating an Object
To understand object creation, recall the cell-phone–enabled soda machine. The
created object is the transaction record that enables the machine to charge the
customer’s account. Again, to model object creation, put «create» on the message
label. Figure 10.11 shows the communication diagram.

FIGURE 10.9
The communication
diagram for the
best-case scenario
of the “Buy soda”
use case.

:Customer

:Register

:Front

1: accept(cash, selection)

3: checkAvailability(selection)
5: releaseSoda(selection)

2: getCustomerInput(cash, selection)

3.1 : Available

6: receiveSoda(selection)

4: update(cash, price)

:Dispenser

FIGURE 10.10
The communication
diagram for the
generic sequence
diagram of the
soda machine.

:Customer

:Register

:Front

1: accept(cash,selection)

 4: checkAvailability(selection)
7: releaseSoda(selection)

2: getCustomerInput(cash, selection)

[no change] 3.1:returnCash(cash)
«transaction over» [no change]

3.2: displayPrompt(“Use Correct Change”)

«transaction over» [selection avaliable]
7: receiveSoda(selection)

[cash > price]
6: receiveChange(cash, price)

[cash > price] 3: checkForChange(cash, price)
 5: update(cash,price)

[sold out] 4.1: displayPrompt(“Sold Out”)
 «transaction over» [sold out]

 4.2: returnCash(cash)
:Dispenser

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 163

164 Hour 10

One More Point About Numbering
Sometimes, two messages come out of a decision process, and their guard condi-
tions are mutually exclusive. How do you number them? Go back to the cell-
phone–enabled soda machine. Figure 10.11 models just the best-case scenario.
Suppose you add the possibility that the customer is not approved. This necessi-
tates the guard condition [approved] on message 2.1 in Figure 10.11, and an
additional message with a guard condition [not approved]. In the latter case, the
transaction is over, and the Front displays a prompt to that effect.

What’s the number for the additional message? It’s also 2.1. Because the guard
conditions are mutually exclusive, only one path is possible. Figure 10.12 focuses
in on the relevant part of Figure 10.11 and shows the two messages.

:Customer :CellPhone

:Front

:Dispenser:TransactionRecord

1: getButtonPress(creditCardNumber)
3: getButtonPress(selection)

6: <<create>>

5.1 Available

8: receiveSoda(selection)

5: checkAvailability(selection)
7: releaseSoda(selection)

2.1: displayPrompt(“Approved”)

2: processCustomerInfo(creditCardNumber)
4: processCustomerInfo(selection)

FIGURE 10.11
Modeling object
creation in the
best-case
scenario in the
cell-phone–enabled
soda machine.

:Front

[approved] 2.1: displayPrompt(“Approved”)

«transaction over» [not approved]
2.1: displayPrompt(“Card Not Approved”)

FIGURE 10.12
Numbering the
messages for
mutually exclusive
guard conditions.

A Few More Concepts
Although you’ve covered a lot of ground, you haven’t exhausted all the concepts
related to communication diagrams. The concepts that follow are a little esoteric,
but they might come in handy in your modeling efforts.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 164

Working with Communication Diagrams 165

Multiple Receiving Objects in a Class
Sometimes an object sends a message to multiple objects in the same class. A professor,
for example, asks a group of students to hand in an assignment. In the communica-
tion diagram, the representation of the multiple objects is a stack of rectangles
extending backward. You add a bracketed condition preceded by an asterisk to
indicate that the message goes to all objects. Figure 10.13 shows the details.

:Professor

:Student

*[all] 1: handIn(assignment)

FIGURE 10.13
An object sending a
message to multi-
ple objects in a
class.

In some cases, the order of message-sending is important. For example, a bank
clerk serves each customer in the order that he or she appears in line. You repre-
sent this with a while whose condition implies order (such as line position =
1. . .n) along with the message and the stacked rectangles (see Figure 10.14).

:BankClerk

:Customer

*[line position = 1…n] 1: doBankingBusiness()

FIGURE 10.14
An object sending a
message in a spec-
ified order to multi-
ple objects in a
class.

Representing Returned Results
A message can be a request for an object to perform a calculation and return a
value. A customer object might request a calculator object to compute a total
price that’s the sum of an item’s price and sales tax.

The UML provides a syntax for representing this situation. You write an expres-
sion that has the name of the returned value on the left, followed by :=, followed

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 165

166 Hour 10

by the name of the operation and the quantities it operates on to produce the
result. For this example, that expression would be totalPrice:= compute
(itemPrice,salesTax). Figure 10.15 shows the syntax on a communication
diagram.

1: totalPrice: = compute(itemPrice, salesTax)

:Customer

:Calculator

FIGURE 10.15
A communication
diagram that
includes the syntax
for a returned
result.

Incidentally, the right side of the expression is called a message-signature.

Active Objects
In some interactions, a specific object controls the flow of messages. This active
object can send messages to passive objects and interact with other active objects.
In a library, for instance, a librarian takes reference requests from patrons, looks
up reference information in a database, gives information back to the patrons,
assigns workers to restock books, and more. A librarian also interacts with other
librarians who are carrying out the same operations. When two or more active
objects do their work at the same time, it’s called concurrency.

The communication diagram represents an active object the same as any other,
except that it’s border is thick and bold. (See Figure 10.16.)

4: get(title)

3: returnInfo(title)

2: lookUp(title)

1: processReferenceRequest(title)

:Librarian :Worker

:Worker

:Patron

FIGURE 10.16
An active object
controls the flow in
a sequence. It’s
represented as a
rectangle with a
thick, bold border.

Synchronization
Another circumstance you might run into is an object sending a message only
after several other (possibly nonconsecutive) messages have been sent. That is,
the object must synchronize its message with a set of other messages.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 166

Working with Communication Diagrams 167

An example will clarify this for you. Suppose your objects are people in a corpo-
ration, and they’re concerned with a new product campaign. Here is a sequence
of possible interactions:

1. The Senior VP of Marketing asks the VP of Sales to create a campaign for a
particular product.

2. The VP of Sales creates the campaign and tells the Sales Manager to assign
the campaign to a Salesperson.

3. The Sales Manager directs a Salesperson to sell the product according to the
campaign.

4. The Salesperson makes sales calls to potential customers in order of their
priority.

5. After the Sales Manager has issued the directive (that is, when steps 3 is
complete), a corporate Public Relations Specialist has the local newspaper
place an ad about the campaign.

How do you represent step 5’s position in the sequence? Again, the UML provides
a syntax. Instead of preceding this message with a numerical label, you precede it
with the number of the message that has to be completed prior to step 5 taking
place and then add a slash. If more than one message is required, use a comma
to separate one list-item from another, and end the list with a slash. Figure 10.17
shows the communication diagram for this example.

:SeniorVPOfMktg

:VPOfSales

:SalesMgr

:SalesPerson

Newspaper

:PRSpecialist

1: create(campaign, product)

3: sell(campaign, product)

2: assign(campaign, product)

:Customer

*[priority = 1…n] 4: takeSalesCall(campaign)

3 / placeAd(campaign, product)

FIGURE 10.17
Message
synchronization in
a communication
diagram.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 167

168 Hour 10

Building the Big Picture
Now you can add the communication diagram to your picture of the UML. It’s
another behavioral element, as Figure 10.18 shows.

:Name1

:Name2

Communication

1: Message()

Relationships

Grouping Extension

«Stereotype»

{Constraint}

Annotation

Association

Generalization

Dependency

Realization

Package

Note

Behavioral Elements

State

:Name1 :Name2

Sequence

Use case

Class

Structural Elements

Interface

Actor

FIGURE 10.18
The big picture of
the UML, including
the communication
diagram.

Summary
A communication diagram is another way of presenting the information in a
sequence diagram. The two types of diagrams are semantically equivalent, but it’s
a good idea to use both when you construct a model of a system. The sequence
diagram is organized according to time, and the communication diagram is
organized according to the links among objects.

The communication diagram shows the associations among objects as well as the
messages that pass from one object to another. An arrow near an association line
represents a message, and a numbered label shows the content of the message.
The number represents the message’s place in the sequence of messages.

Conditionals are represented as before—by putting the conditional statement in
square brackets.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 168

Working with Communication Diagrams 169

Some messages are subsidiaries of others. The label-numbering scheme represents
this in much the same way that some technical manuals show headings and sub-
headings—with a numbering system that uses decimal points to show levels of
nesting.

Communication diagrams allow you to model multiple receiving objects in a
class whether the objects receive the message in a specified order or not. You can
also represent active objects that control the flow of messages, as well as messages
that synchronize with other messages.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 169

170 Hour 10

Q&A
Q. Will I really have to include both a communication diagram and a

sequence diagram in most UML models I build?

A. It’s a good idea to include both. The two types of diagrams are likely to
stimulate different thought processes during the analysis segment of the
development effort. The communication diagram clarifies the relationships
among the objects because it includes interobject links. The sequence dia-
gram focuses attention on the sequence of interactions. Also, your client
organization might include people whose thought processes differ from one
another. When you have to present your model, one type of diagram might
be better suited than the other for a particular individual.

Q. In Hour 9, you showed how UML 2.0 puts frames around parts of the
sequence diagram. Does UML 2.0 do anything similar for the communica-
tion diagram?

A. You can draw a frame around a communication diagram in the same way
that you draw a frame around a sequence diagram. UML 2.0 doesn’t set up
frames around parts of a communication diagram, however.

Q. In this hour you showed how to model an object changing its state. Can I
model this in a sequence diagram?

A. Yes you can. You indicate an object’s state by putting a state icon on its
lifeline. The state icon’s location on the lifeline indicates the time during
which the object is in that state. To show the object changing its state, add
a new state icon farther down the lifeline. Although UML allows you to
take symbols from one kind of diagram and add them to another, some
modeling tools do not.

Workshop
Now that you’ve learned about sequence diagrams and their siblings, communi-
cation diagrams, test and strengthen your knowledge with the quiz and the exer-
cises. As always, you’ll find the answers in Appendix A, “Quiz Answers.”

Quiz
1. How do you represent a message in a communication diagram?

2. How do you show sequential information in a communication diagram?

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 170

Working with Communication Diagrams 171

3. How do you show an object changing its state?

4. What is meant by the semantic equivalence of two diagram types?

Exercises
1. In the soda machine example, I included a communication diagram equiva-

lent to an instance sequence diagram only for the incorrect-amount-of-
money scenario. Create a communication diagram that corresponds to
Hour 9’s generic sequence diagram for the “Buy soda” use case. That is,
add the out-of-selected-soda scenario to the communication diagram in
Figure 10.5.

2. Go back to Hour 4, “Working with Relationships,” and examine
Figures 4.17–4.19. With the knight about to move, create a communica-
tion diagram that shows the likely moves. Assume that each move is a
message from one chess piece to another.

3. Create a communication diagram that’s equivalent to the sequence dia-
gram you created to model the electric pencil sharpener in Hour 9.

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 171

13.067232640X.chap10.qxd 2/20/04 10:57 AM Page 172

HOUR 11

Working with Activity
Diagrams

What You’ll Learn in This Hour:
. What an activity diagram is
. How to apply an activity diagram
. How to work with swimlanes
. Important concepts from UML 2.0
. Where activity diagrams fit into the big picture of the UML

You’re about to work with a type of diagram that might seem familiar to you. This
diagram shows the steps in an operation or process.

If you’ve ever taken an introductory course in programming, you’ve probably
encountered the flowchart. One of the first visual models ever applied to computing,
the flowchart shows a sequence of steps, processes, decision points, and branches.
Novice programmers are encouraged to use flowcharts to conceptualize problems
and derive solutions. The idea is to make the flowchart the foundation of the code.
With its multiple features and diagram types, the UML is in some ways a flowchart
on steroids.

The UML activity diagram, the subject of this hour, is much like the flowcharts of
old. It shows steps (called, appropriately enough, activities) as well as decision
points and branches. It’s useful for showing what happens in a business process or
an operation. You’ll find it an integral part of system analysis.

The first four sections of this hour introduce you to the basics—the concepts from
UML 1.x. Because UML 2.0 provides a fairly extensive set of activity-related model-
ing techniques, I’ve added a section at the end that presents these newer ideas.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 173

174 Hour 11

The Basics: What Is an Activity
Diagram?
First and foremost, an activity diagram is designed to be a simplified look at what
happens during an operation or a process.

Each activity is represented by a rounded rectangle—narrower and more oval-
shaped than the state icon you saw in Hour 8, “Working with State Diagrams.”
The processing within an activity goes to completion and then an automatic
transmission to the next activity occurs. An arrow represents the transition from
one activity to the next. Like the state diagram, the activity diagram has a start-
ing point represented by a filled-in circle and an endpoint represented by a
bull’s-eye.

Figure 11.1 shows the starting point, endpoint, two activities, and a transition.

Activity 1

Activity 2

FIGURE 11.1
Transitioning from
one activity to
another.

Decisions, Decisions, Decisions
A sequence of activities almost always comes to a point where a decision has to
take place. One set of conditions leads to one path, another set of conditions to
another path, and the two paths are mutually exclusive.

You can represent a decision point in either of two ways. (Hmmm . . . sounds like
a decision.) One way is to show the possible paths coming directly out of an activ-
ity. The other is to have the activity transition to a small diamond—reminiscent
of the decision symbol in a flowchart—and have the possible paths flow out of
the diamond. (As an old flowcharter, I prefer the second way.) Either way, you

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 174

Working with Activity Diagrams 175

indicate the condition with a bracketed condition statement near the appropriate
path. Figure 11.2 shows you the possibilities.

Go Back to Sleep

Wake Up

Eat Breakfast

[hungry] [not hungry]

Go Back to Sleep

Wake Up

Eat Breakfast

[hungry] [not hungry]

FIGURE 11.2
The two ways of
showing a decision.

Concurrent Paths
As you model activities, you’ll occasionally have to separate a transition into two
separate paths that run at the same time (that is, concurrently) and then come
together. To represent the split, you use a solid bold line perpendicular to the
transition and show the paths coming out of the line. To represent the merge,
show the paths pointing at another solid bold line (see Figure 11.3).

Signals
During a sequence of activities, it’s possible to send a signal. When received, the
signal causes an activity to take place. The symbol for sending a signal is a
convex polygon, and the symbol for receiving a signal is a concave polygon.
Figure 11.4 will clarify this.

In UML terms, the convex polygon symbolizes an output event; the concave
polygon symbolizes an input event.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 175

176 Hour 11

Work Out

Shower Relax

FIGURE 11.3
Representing a
transition split into
two paths that run
concurrently and
then come
together.

Press Channel Number

Watch

Remote.keyln(channel)

change(channel)

Show New Channel

change(channel)

:Television
FIGURE 11.4
Sending and
receiving a signal.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 176

Working with Activity Diagrams 177

Applying Activity Diagrams
Let’s look at an example that uses an activity diagram to model a process.

A Process: Creating a Document
Think of the activities that go into using an office software suite to create a docu-
ment. One possible sequence of activities is

1. Open the word processing package.

2. Create a file.

3. Save the file under a unique name within its directory.

4. Type the document.

5. If graphics are necessary, open the graphics package, create the graphics,
and paste the graphics into the document.

6. If a spreadsheet is necessary, open the spreadsheet package, create the
spreadsheet, and paste the spreadsheet into the document.

7. Save the file.

8. Print a hard copy of the document.

9. Exit the office suite.

The activity diagram for this sequence is in Figure 11.5.

Swimlanes
One of the handier aspects of the activity diagram is its ability to expand and
show who has the responsibility for each activity in a process.

Consider a consulting firm and the business process involved in meeting a new
client. The activities would occur like this:

1. A salesperson calls the client and sets up an appointment.

2. If the appointment is onsite (in the consulting firm’s office), corporate tech-
nicians prepare a conference room for a presentation.

3. If the appointment is offsite (at the client’s office), a consultant prepares a
presentation on a laptop.

4. The consultant and the salesperson meet with the client at the agreed-upon
location and time.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 177

178 Hour 11

A standard activity diagram would look like Figure 11.6.

[graphics needed]

[graphics not needed]

Type the Document

Save File

Save the File

Print Hard Copy

Exit Office Suite

Create File

Open Word Processing Package

Open and Use Graphics Package

[tables needed]

[tables not needed]

Open and Use Spreadsheet

FIGURE 11.5
An activity diagram
for the process of
creating a
document.

5. The salesperson follows up with a letter.

6. If the meeting has resulted in a statement of a problem, the consultant cre-
ates a proposal and sends it to the client.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 178

Working with Activity Diagrams 179

The activity diagram adds the dimension of visualizing roles. To do that, you sep-
arate the diagram into parallel segments called swimlanes. Each swimlane shows
the name of a role at the top and presents the activities of each role. Transitions
can take place from one swimlane to another. Figure 11.7 shows the swimlane
version of the activity diagram in Figure 11.6.

[appointment onsite] [appointment offsite]

[statement of problem]

[no statement of problem]

Send follow-up
letter

Meet with the client

Create proposal

Send proposal to client

Call client and
set up appointment

Prepare a conference
room

Prepare a
laptop

See the
Activity Diagram
for Creating a
Document

FIGURE 11.6
An activity diagram
for the business
process of meeting
a new client.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 179

180 Hour 11

Using the Note Symbol
Both activity diagrams for “Meeting a new client” show creating a proposal as an
activity. In each case, that activity could attach to a note that cites the activity dia-
gram for creating a document.

Hybrid Diagrams
Let’s revisit the activity diagram for creating a document. You can refine the
activity for printing a hard copy of the document. Instead of just showing a “Print
Hard Copy” activity, you can be a little more specific. Printing takes place

[no statement of problem]

[statement of problem]

Sales Person Consultant Corporate Technician

[appointment onsite]

[appointment offsite]

Send follow-up
letter

Meet with the client

Create proposal

Send proposal to client

Call client and
set up appointment

Prepare a conference
room

Prepare a
laptop

See the
Activity Diagram
for Creating a
Document

FIGURE 11.7
The swimlane
version of the
activity diagram in
Figure 11.6 shows
the activities that
each role performs.

By the
Way

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 180

Working with Activity Diagrams 181

because a signal containing the document’s file transmits from the word process-
ing package to the printer, which receives the signal and prints the copy.

Figure 11.8 shows that you can represent this with the symbols for signal trans-
mission and signal reception, along with a printer object that receives the symbol
and performs its print operation. This is an example of a hybrid diagram
because it has symbols you normally associate with different types of diagrams.

New Concepts from UML 2.0
UML 2.0 has turned the magnifying glass on the activity diagram and added a
number of modeling techniques. These techniques are intended to help you clarify
the details of an operation or a process.

The Objects of an Activity
Newer UML concepts allow you to specify an activity’s inputs and outputs. You do
this with object nodes. I’ll use an example from mathematics to illustrate this
type of symbol, and carry through this example to help explain some additional
UML concepts.

Have you ever seen this series of numbers? 1,1,2,3,5,8,13, . . . It’s called the
Fibonacci series, after the medieval mathematician who wrote about it 800 years
ago. Each number is a “fib,” so the first fib—fib(1)—is 1, fib(2) is also 1, fib(3) is
2, and so on. The rule is that each fib, except for the first two, is the sum of the
preceding two fibs. (fib(8), then, is 21.)

To model the calculation of a fib as an activity, write Calculate fib(n) inside an
activity icon. You can then connect this icon with another that represents the
activity of printing the fib. Figure 11.9 shows the diagram, which includes a nota-
tion symbol containing the format for the printed message.

In order to proceed, the first activity has to have an input value for n. After it
finishes its work, it outputs an answer, which the next activity prints. It also
passes along the value of n so that the print activity can include that value in
the printed statement.

To show an input, add a little box on the left border of the first activity and label
it with the input. To show an output, add a little labeled box on the right border.
These little boxes are the object nodes. An object node is also appropriate to illus-
trate the input to the second activity. Figure 11.10 shows object nodes added to
the activity icons of Figure 11.9.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 181

182 Hour 11

[graphics needed]

[graphics not needed]

Type the Document

Save File

Save the File

Print

Print Hard Copy

Exit Office Suite

Create File

Open Word Processing Package

Open and Use Graphics Package

[tables needed]

[tables not needed]

Open and Use Spreadsheet

print(file) print(file)

:Printer

FIGURE 11.8
Refining the “Print
Hard Copy” activity
results in a hybrid
diagram.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 182

Working with Activity Diagrams 183

If all the object nodes make that diagram look too busy, you can use either of the
elided styles in Figure 11.11.

Calculate fib(n) Print fib(n)

Format
“The “n”th fib is:” Answer

FIGURE 11.9
An activity diagram
that models the
calculation and
printing of a
Fibonacci number.

Calculate fib(n) Print fib(n)

Format
“The “n”th fib is:” Answer

n
n n

AnswerAnswer

FIGURE 11.10
Adding object
nodes allows you
to specify an
activity’s inputs and
outputs.

Calculate fib(n) Print fib(n)n

n, Answer

Calculate fib(n) Print fib(n)n n, Answer

FIGURE 11.11
Two elided
equivalents for the
flow between two
of the activities in
Figure 11.10

Taking Exception
Sometimes an activity encounters an exception—a circumstance that’s out of the
ordinary or beyond its capabilities in some way. For example, suppose your
Fibonacci calculator cannot compute beyond the one millionth Fibonacci num-
ber. If you give it a value of n that’s higher than one million, it prints n along
with the message “exceeds the limit on n.”

To represent this in an activity diagram, you use an arrow that resembles a light-
ning bolt. It begins at the activity that encounters the exception and ends at the

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 183

184 Hour 11

activity that describes what happens because of the exception. That activity is
called an exception handler. Figure 11.12 shows how to do this.

Calculate fib(n) Print fib(n)

Print n “exceeds the limit on n”

Format
“The “n”th fib is:” Answer

n
n

n

n

Answer

n > 1,000,000

Answer

Deconstructing an Activity
UML 2.0 emphasizes the decomposability of activities. An activity can consist of a
number of actions. The icon for an action is the same as the icon for an activity.
Let’s keep working with the Fibonacci series and show the actions that constitute
the “Calculate fib(n)” activity.

In order to model everything that goes into calculating a fib, you’ll require a few
variables. You’ll need a counter to keep track of whether or not the operation has
reached the nth fib, a variable (let’s call it Answer) to keep track of your computa-
tions, and two more to store the two fibs that you’ll have to add together. (Let’s
call them Answer1 and Answer2.) Figure 11.13 shows the sequence of actions and
decisions that make it all happen. Following UML 2.0 format, the flow of the
actions is framed inside a large icon that represents the “Calculate fib(n)” activity.

It’s also possible to have object nodes on actions. An object node on an action is
called a pin. Figure 11.14 shows a fragment of the actions of the “Calculate
fib(n)” activity, along with the appropriate input pins and output pins. As you
can see, the symbol for a pin is smaller than the symbol for an object node on an
activity, and the name is outside the pin. I’ll leave it to you as an exercise to fill
in the pins for the remaining actions in “Calculate fib(n).”

FIGURE 11.12
Modeling an
exception and an
exception handler.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 184

Working with Activity Diagrams 185

Answer1 := 1

Counter := 1

Answer := Answer1

Answer := Answer2

Calculate fib(n)

Answer2 := 1

Counter := 2

Answer := Answer1 + Answer2

Counter := Counter + 1

Answer1 := Answer2

Answer2 := Answer

[n = counter]

[n > counter]

[n = 1]

[n = 2]

[n > 1]

[n > 2]

nn

Answer

FIGURE 11.13
Modeling the
actions that
constitute the
“Calculate fib(n)”
activity.

FIGURE 11.14
Part of Figure
11.13 with pins
added to two of the
actions.

Answer2 := 1

Answer1

Counter := 2

Answer2

Answer2

Answer2

Answer1

Answer1

Counter

Answer1

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 185

186 Hour 11

Marking Time and Finishing a Flow
A couple of new UML symbols, shown in Figure 11.15, make activity diagrams
smoother. The one on the left is intended to resemble an hourglass and shows the
passage of time. The one on the right, called a flow final node, shows the finish
of a specific sequence of activities without terminating other sequences of activi-
ties. It’s the same as the exit point symbol for state diagrams you saw in Hour 8.

A good example of these symbols at work is an activity diagram that models the
operation of one of my favorite possessions—a digital wristwatch that automati-
cally resets itself early each morning. In its normal mode of operation, the watch
updates its display every second.

Between 2 a.m. and 5 a.m. U.S. Eastern Time, the wristwatch goes into a different
mode. Each hour on the hour (that is, at 2 a.m., 3 a.m., 4 a.m., and 5 a.m.), the
watch stops displaying the time and changes its face to show it’s receiving a
calibration signal from the U.S. atomic clock in Ft. Collins, Colorado. When recep-
tion—which takes 3 to 6 minutes—is complete, the clock displays the recalibrated
time and resumes its normal operation. If the signal is interrupted (perhaps
because of atmospheric conditions), reception ends, and the watch goes back to
displaying the time. Figure 11.16 models all this.

To avoid clutter, I used an elided format to show the time as an object node. This
format concisely shows that an output object from one activity is an input object
to the next. I’ve modeled signal reception time as an exception. This is reasonable
when you consider that the clock keeps track of seconds. With 86,400 seconds in a
day, changing the operations when only four specific seconds occur seems “excep-
tional.” It’s also an exception when the signal is interrupted, as the expectation is
that the signal transmits clearly. An interrupted signal ends reception/recalibra-
tion, and it doesn’t affect the rest of what the wristwatch does.

FIGURE 11.15
Two UML 2.0
symbols for activity
diagrams. The one
on the left models
the passage of
time. The one on
the right shows the
end of a specific
sequence of
activities.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 186

Working with Activity Diagrams 187

Special Effects
The use of objects in activity diagrams opens up still another dimension in modeling:
You can use constraint notation to show the effect an activity (or an action) has on
an object.

Here’s an example of one kind of effect, although many are possible. If you’re
anything like me, you probably enjoy watching streaming video over the
Internet. (I’m particularly fond of baseball games, but perhaps you have other
priorities.) Let’s model the transmission and reception of this type of video.

Figure 11.17 shows the model set up as a swimlane diagram. One swimlane rep-
resents the server, and the other represents the client. The server sends the video,
modeled as an output object, to the client. For the client, the video is an input
object. Each appearance of the word stream in curly brackets indicates that the
attached activity is a continuous operation: “Display video” doesn’t wait for
“Send video” to complete before springing into action. This, of course, is why
streaming media was invented. You don’t wait hours for a huge multimedia file
to download before you start watching and listening.

Manually set time Display time

Receive time calibration signal

Time :=
Time +1 sec

time time

time
3–6 min

Signal Reception Time

time

1 sec

Signal interrupted

2 a.m.–5a.m.
(ET) on the hour

FIGURE 11.16
Modeling a
wristwatch that
automatically
resets the time
each morning by
receiving a signal
from the U.S.
atomic clock in
Colorado. If the
recalibration signal
is interrupted, the
watch resumes
displaying the time.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 187

188 Hour 11

An Overview of an Interaction
In Hour 9, “Working with Sequence Diagrams,” I showed you one way to com-
bine sequence diagrams and mentioned that in Hour 11 I’d show you another.
Here it is.

UML 2.0 offers the interaction overview diagram, a combination of modeling
techniques from activity diagrams and interaction diagrams. The interaction
overview diagram is an activity diagram in which each activity is. . . a separate
interaction diagram!

To show you what I mean, let’s return to the soda machine. Just for convenience,
I’ve copied Figure 9.13 here as Figure 11.18. It’s the generic sequence diagram for
the “Buy soda” use case.

How do you represent this sequence of object interactions in activity diagram
framework? In effect, you take the guard conditions out of the messages and put
them on arrows that connect sequence diagrams. You also remove «transaction
over» because it’s no longer necessary: In this type of diagram you show that a
transaction is over in the usual activity-diagram way—by pointing an arrow to
the endpoint.

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

[sold out] displayPrompt(“Sold Out”)

 «transaction over» [sold out]

 returnCash(cash)

 «transaction over»

 [selection avaliable] receiveSoda (selection)

 [cash > price]

 receiveChange(cash, price)

 «transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

FIGURE 11.17
Modeling the effect
of an activity on an
object. In this
case, streaming
indicates a
continuous
operation: Send
video doesn’t finish
before Display
video begins.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 188

Working with Activity Diagrams 189

The time-intensive part of creating this diagram is the individual sequence dia-
grams that connect to one another. In this case, I dissected Figure 11.18 to come
up with them. Figure 11.19 shows the result. By the way, I simplified things a lit-
tle by assuming that change can be $0.00.

Note the frame around the whole diagram and the frame around each sequence
diagram. In UML 2.0 fashion, each frame’s upper left corner shows the little pen-
tagonal compartment that holds identifying information. The sd in each one
stands for sequence diagram. The large frame’s pentagon shows the name of the
use case and the name of the objects in the interaction. (In sequence diagrams,
UML 2.0 refers to the participating lifelines, and that’s the style I use here.)

The frames in this diagram might remind you that in Hour 9, I told you about
interaction occurrences—pieces of a sequence diagram you can name and reuse.
You can reuse these occurrences in interaction overview diagrams.

Go back and look at Figure 9.18, and you’ll see what I mean. In the best-case sce-
nario of “Buy soda,” I compartmentalized the messages for releaseSoda(selection)
and receiveSoda(selection) into an interaction occurrence, referenced it as
DeliverSoda(selection), and reused it in Figure 9.19.

In our overview diagram, the referenced DeliverSoda(selection) is appropriate
for the lowermost sequence diagram. Figure 11.20 zooms in on that diagram and
shows the reuse of DeliverSoda(selection).

:Register:Customer :Front :Dispenser

accept(cash, selection)

getCustomerInput(cash, selection)

[no change] returnCash(cash)

[sold out] displayPrompt(“Sold Out”)

 «transaction over» [sold out]

 returnCash(cash)

 «transaction over»

 [selection avaliable] receiveSoda (selection)

 [cash > price]

 receiveChange(cash, price)

 «transaction over» [no change]

displayPrompt(“Use Correct Change”)

update(cash,price)

checkAvailability(selection)

[cash > price]
checkForChange(cash,price)

releaseSoda(selection)

FIGURE 11.18
The generic
sequence diagram
for the “Buy soda”
use case.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 189

190 Hour 11

:Front:Customer :Register

accept(cash, selection)
getCustomerInput(cash, selection)

checkAvailability(selection)

sd

:Register:Front :Dispenser

receiveChange(cash, price)

receiveSoda(selection)

update(cash, price)

releaseSoda(selection)

sd

:Register :Dispenser

sd

returnCash(cash)

displayPrompt(“Use CorrectChange”)

:Front :Register

sd

returnCash(cash)

displayPrompt(“Sold Out”)

:Front :Register

sd

checkForChange(cash, price)

:Register

sd

sd Buy Soda lifelines :Customer, :Front, :Register, :Dispenser

[cash = price][cash > price]

[no change]

[in stock]

[sold out]

[change
available]

FIGURE 11.19
An interaction
overview diagram
of the “Buy soda”
use case.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 190

Working with Activity Diagrams 191

Building the Big Picture
Figure 11.21 shows the growing big picture of the UML, including the activity dia-
gram. This diagram is a behavioral element.

Summary
The UML activity diagram is much like a flowchart. It shows steps, decision
points, and branches.

Each activity is represented as a rounded rectangle, more oval in appearance
than the state icon. The activity diagram uses the same symbols as the state dia-
gram for the starting point and the endpoint.

When a path diverges into two or more paths, you represent the divergence with
a solid bold line perpendicular to the paths, and you represent the paths coming
together with the same type of line. Within a sequence diagram you can show a
signal: Represent a signal transmission with a convex pentagon and a signal
reception with a concave pentagon.

In an activity diagram, you can represent the activities each role performs. You
do this by dividing the diagram into swimlanes—parallel segments that corre-
spond to the roles.

It’s possible to combine the activity diagram with symbols from other diagrams
and produce a hybrid diagram.

:Register:Front :Dispenser

receiveChange(cash, price)
update(cash, price)

sd

ref

DeliverSoda(selection)

FIGURE 11.20
Reusing an interac-
tion occurrence in
one of the
sequence diagrams
of Figure 11.19.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 191

192 Hour 11

UML 2.0 adds a number of modeling techniques to the activity diagram. The lat-
est version of UML emphasizes the component actions of an activity and the
objects that activities work with and pass along to other activities.

An interaction overview diagram has the overall framework of an activity dia-
gram and interaction diagrams as the activities.

Behavioral Elements

State

:Name1

:Name2

Communication

Activity

1: Message()

Relationships

Grouping Extension

«Stereotype»

{Constraint}

Annotation

Association

Generalization

Dependency

Realization

Package

Note

Sequence

Use case

Class

Structural Elements

Interface

Actor
:Name1 :Name2

FIGURE 11.21
Your big picture of
the UML now
includes the activity
diagram.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 192

Working with Activity Diagrams 193

Q&A
Q. This is another one of those “Do I really need it?” questions. With every-

thing that a state diagram shows, do I really need activity diagrams?

A. My recommendation is that you include activity diagrams in your analyses.
They’ll clarify some processes and operations, both in your mind and in
your clients’. They’re also very useful for developers. It’s likely that a good
activity diagram will go a long way toward helping a developer code an
operation.

Q. Does the UML limit the kinds of hybrid diagrams I can create?

A. It does not limit you. The UML is not meant to be restrictive. Although it
does have syntactical rules, the idea is for analysts to build a model that
conveys a consistent vision to clients, designers, and developers, not to
satisfy narrow linguistic rules. If you can build a hybrid diagram that helps
all stakeholders understand a system, by all means do it. Bear in mind that
not all modeling tools allow you the flexibility to create hybrid diagrams.

Q. When I look at Figure 11.12, the object nodes make it seem to me that
values are moving from one activity to the next. Is that the impression
these diagrams are supposed to convey?

A. Absolutely. The idea behind activity diagrams, particularly in UML 2.0, is to
show the flow of a token—a piece of information or a locus of control—
through the sequence of activities. The idea for this came from a modeling
technique called Petri Nets, which emerged in the 1960s. Adding the object
nodes and pins is one way that UML 2.0 has made the activity diagram
more object-oriented.

Q. That interaction overview diagram leads me to believe that I can create an
activity diagram as an intermediate step toward creating a generic
sequence diagram. I’d start with activities and then substitute an interac-
tion diagram for each one. I’d ultimately combine them into a generic
sequence diagram. How does that sound?

A. It sounds like a nice idea. It’s the reverse of what I did to develop Figure 11.19,
but I don’t see why you couldn’t work in that direction. In general, many
people find it easy to use activity diagrams to start their modeling efforts,
possibly because they’re used to flowcharting.

Q. I noticed that you used sequence diagrams as the parts of the interaction
overview diagram. Can I use collaboration . . . excuse me . . . communica-
tion diagrams instead?

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 193

194 Hour 11

A. Yes, you can. Either type of interaction diagram can appear in an interac-
tion overview diagram. In fact, nothing prevents you from using both types
in one overview diagram, but that would most likely confuse your audience.

Q. The swimlane examples showed swimlanes as vertically oriented compo-
nents. Can I lay them out horizontally?

A. Yes, you can represent them either way. I like the vertical layout, but that’s
just my preference.

Workshop
The quiz questions and exercises will get you thinking about activity diagrams
and how to use them. Answers are in Appendix A, “Quiz Answers.”

Quiz
1. What are the two ways of representing a decision point?

2. What is a swimlane?

3. How do you represent signal transmission and reception?

4. What is an action?

5. What is an object node?

6. What is a pin?

Exercises
1. Create an activity diagram that shows the process you go through when

you start your car. Begin with putting the key in the ignition, end with the
engine running, and consider the activities you perform if the engine
doesn’t start immediately.

2. What can you add to the activity diagram for the business process of meet-
ing a new client?

3. If you lay out three stones so that one stone is in one row and two are in the
next row, they form a triangle. If you lay out six stones so that one is in one
row, two are in the next, and three are in the next, they form a triangle,
too. For this reason, 3 and 6 are called triangle numbers. The next triangle
number is 10, the one after that 15, and so on. The first triangle number is
1. Create two different activity diagrams for a process that computes the nth

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 194

Working with Activity Diagrams 195

triangle number. For one, start with n and work backward. For the other,
start with 1 and move forward. In your activity icon, show all the actions
and pins. (You may have noticed that the nth triangle number is equal to
[(n)(n + 1)]/2. In order to get the full benefit of this exercise, however, avoid
this solution.)

4. Here’s an exercise for the mathematically inclined. If you were comfortable
with Exercise 3, you might like this one. If not, just move on to the next
hour. (You might try diagramming what I said in these last two sentences!)
In coordinate geometry, you represent a point in space by showing its x-
position and its y-position. Thus, you can say that point 1’s location is
X1,Y1. Point 2’s location is X2,Y2. To find the distance between these two
points, you square X2–X1 and then you square Y2–Y1. Add these two
squared quantities together, and take the square root of the sum. Create an
activity diagram for an operation distance(X1,Y1,X2,Y2) that finds the dis-
tance between two points. Include all the actions.

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 195

14.067232640X.chap11.qxd 2/20/04 10:41 AM Page 196

HOUR 12

Working with Component
Diagrams

What You’ll Learn in This Hour:
. What a component is
. Components and interfaces
. What a component diagram is
. Applying component diagrams
. Component diagrams in the big picture of the UML

In previous hours, you learned about diagrams that deal with conceptual entities.
For example, a class diagram represents a concept—an abstraction of items that fit
into a category. A state diagram also represents a concept—changes in the state of
an object.

In this hour, you’re going to learn about a UML diagram that represents a different
kind of entity: a software component.

What Is (and What Isn’t) a Component?
A software component is a modular part of a system. Because it’s the software imple-
mentation of one or more classes, a component resides in a computer, not in the
mind of an analyst. A component provides interfaces to other components.

In UML 1.x, data files, tables, executables, documents, and dynamic link libraries were
defined as components. In fact, modelers used to classify these kinds of items as deploy-
ment components, work product components, and execution components. UML 2.0 refers to
them instead as artifacts—pieces of information that a system uses or produces.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 197

198 Hour 12

A component, by contrast, defines a system’s functionality. Just as a component is
the implementation of one or more classes, an artifact (if it’s executable) is the
implementation of a component.

You model components and their relationships so that

1. Clients can envision the structure and the functionality in the finished system.

2. Developers have a structure to work toward.

3. Technical writers who have to provide documentation and help files can
understand what they’re writing about.

4. You’re ready for reuse.

Let’s explore that last one. One of the most important aspects of components is
the potential they provide for reusability. In today’s rapid-fire business arena, the
quicker you bring a system to fruition, the greater your competitive edge. If you
can build a component for one system and reuse it in another, you contribute to
that edge. Taking the time and the effort to model a component helps reuse occur.

You revisit reuse at the end of the next section.

Components and Interfaces
When you deal with components, you have to deal with their interfaces. Early in
my discussion of classes and objects, I talked about interfaces. As you might recall
from Hour 2, “Understanding Object-Orientation,” an object hides what it does
from other objects and from the outside world. (I referred to that as encapsulation
or information-hiding.) The object has to present a “face” to the outside world so
that other objects (including, potentially, humans) can ask the object to execute
its operations. This face is the object’s interface.

Reviewing Interfaces
I elaborated on this idea in Hour 5, “Understanding Aggregations, Composites,
Interfaces, and Realizations.” As I mentioned then, an interface is a set of opera-
tions that allows you to access a class’s behavior—like the control knob that
enables you to get a washing machine to perform washing machine–related oper-
ations. Think of an interface as a class that only has operations—no attributes.
Bottom line: The interface is a set of operations that a class presents to other
classes.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 198

Working with Component Diagrams 199

In my discussion of interfaces in Hour 5, I also mentioned that the relationship
between a class and its interface is called realization.

Wait a second. It sounds like modeling an interface is an exercise in modeling a
concept. At the top of this hour, I said that when you model a component, you
model something that’s not conceptual but lives in a computer. What’s the con-
nection?

In fact, an interface can be either conceptual or physical. The interface a class
uses is the same as the interface its software implementation (a component) uses.
For you as a modeler, this means that the way you represent an interface for a
class is the same as the way you represent an interface for a component. Although
the UML symbology distinguishes between a class and a component, it makes no
distinction between a conceptual interface and a physical one.

Here’s an important point to remember about components and interfaces: You
can reach a component’s operations only through its interfaces. As is the case
with a class and its interface, the relation between a component and its interface
is called realization.

Here’s another important point: A component can make its interface available so
that other components can utilize the interface’s operations. In other words, a
component can access the services of another component. The component that
offers the services is said to present a provided interface. The component that
accesses the services is said to use a required interface.

Replacement and Reuse
Interfaces figure heavily into the important concepts of component replacement
and component reuse. You can replace one component with another if the new
component conforms to the same interfaces as the old one.

To illustrate replacement and interfaces, here’s an example from the world of
automobiles. A few years ago, a friend of mine owned a certain classic sports car
from the 1960s. (I won’t name the manufacturer.) He quickly discovered that one
additional piece of equipment was absolutely essential—another car so he could
visit the sports car in the shop! Why? The engine was, to put it mildly, “high-spirited”
and constantly required repair. My friend’s solution was to get a standard engine
from another make of car—less powerful but more reliable—and replace the original
engine. He was able to do this because the new engine, though designed and
built for an entirely different automobile, just happened to interface properly with
the other components of the sports car.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 199

200 Hour 12

This is also a good illustration of reuse. You can reuse a component in another
system (like the replacement engine for the sports car) if the new system can
access the reused component through that component’s interfaces. If you can
refine a component’s interfaces so that a wide array of other components can
access them, you can engineer that component for reuse in development projects
across your whole enterprise.

This is where modeling interfaces comes in handy. Life is easier for a developer
trying to replace or reuse a component if the component’s interface information is
readily available in the form of a model. If not, the developer has to go through
the time-consuming process of stepping through code.

What Is a Component Diagram?
A component diagram contains—appropriately enough—components, along with
interfaces and relationships. Other types of symbols that you’ve already seen can
also appear in a component diagram.

Representing a Component in UML 1.x and UML 2.0
In UML 1.x, the component diagram’s main icon is a rectangle that has two rec-
tangles overlaid on its left side. Many modelers found the 1.x symbol too cumber-
some, particularly when they had to show a connection to the left side. For this
reason, UML 2.0 provides a new component icon. In UML 2.0, the icon is a rec-
tangle with the keyword «component» near the top. For continuity over the near-
term, you can include the 1.x icon inside the 2.0 icon. Figure 12.1 shows these
icons.

FIGURE 12.1
The component
icon in UML 1.x
and the two ver-
sions of the com-
ponent icon in
UML 2.0.

Figure 12.2 shows that if the component is a member of a package, you can pre-
fix the component’s name with the name of the package. You can also show the
component’s operations in a separate panel.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 200

Working with Component Diagrams 201

Speaking of artifacts, Figure 12.3 shows a couple of ways to represent them, and it
also shows how to model the relationship between a particular kind of artifact
(an executable) and the component it implements. As you can see, you can place
a notation symbol in the artifact icon, analogous to the UML 1.x component
symbol in the component icon.

FIGURE 12.2
Adding information
to the component
icon.

«Artifact»

WordProcessor.exe

«Executable»

WordProcessor

«Component»

WordProcessor

«Component»

WordProcessor

«Implement» «Implement»

FIGURE 12.3
Modeling the rela-
tionship between
an artifact and a
component.

Representing Interfaces
A component and the interfaces it realizes can be represented in two ways. The
first shows the interface as a rectangle that contains interface-related informa-
tion. It’s connected to the component by the dashed line and large open triangle
that indicate realization. (See Figure 12.4.)

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 201

202 Hour 12

Figure 12.5 shows the second way. It’s iconic: You represent the interface as a
small circle connected to the component by a solid line. (Compare Figures 12.4
and 12.5 with Figures 5.6 and 5.7.)

«Component»

Calculator

«Interface»
Key

stateChanged()

FIGURE 12.4
You can represent
an interface as a
rectangle that
contains
information,
connected to the
component by a
realization arrow.

«Component»

Calculator
Key

FIGURE 12.5
You can represent
an interface as a
small circle
connected to the
component by a
solid line

In addition to realization, you can represent dependency—the relationship between
a component and an interface through which it accesses another component. As
you’ll recall, dependency is visualized as a dashed line with an arrowhead. You can
show realization and dependency on the same diagram, as in the upper diagram of
Figure 12.6. The lower diagram of Figure 12.6 shows the equivalent ball-and-socket
notation that you saw in Hour 5. In the terminology I mentioned earlier, the “ball”
represents a provided interface and the “socket” represents a required interface.

Boxes—Black and White
When you model a component’s interfaces as in Figure 12.6, you show what UML
calls an external, or “black box,” view. You also have the option of showing an
internal, or “white box,” view. This view shows interfaces listed inside the compo-
nent icon and organized by keywords. Figure 12.7 shows a white box view of the
components in Figure 12.6.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 202

Working with Component Diagrams 203

Applying Component Diagrams
An example will get you started with component diagrams. This example models
a program from Rogers Cadenhead’s Teach Yourself Java 2 in 24 Hours, Third Edition
(Sams Publishing, 2003). Entertaining and well-written, I highly recommend this
book if you want to (a) quickly become proficient in Java, (b) learn how to say
“Hello World” in Esperanto, and (c) find out how Rogers became the only com-
puter author ever to be named a co-MVP in an NBA playoff game. (That last
one’s a stretch, but you’ll enjoy it.)

The example comes from Rogers’s Hour 16 (“Building a Complex User Interface”).
The Java code creates an application called ColorSlide. This is a set of three slid-
ers that enable you to mix amounts of red, green, and blue to create a color. One
slider corresponds to each of those colors. The location of each slider determines
the amount of its color that goes into the mix. The created color appears in a
panel below the sliders.

«Component»

Calculator

«Component»

Calculator

«Component»

Robot

«Component»

Robot

«Interface»
Key

stateChanged()

Key

FIGURE 12.6
Two ways of show-
ing realization and
dependency in the
same diagram.

«Component»
Calculator

«provided interface»
Key

«Component»
Robot

«required interface»
Key

FIGURE 12.7
A white box view of
the components in
Figure 12.6.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 203

204 Hour 12

Figure 12.8, taken from Rogers’s book, shows the finished product. Of course, the
figure is in shades of gray, so you can’t actually see the created color. The posi-
tioning of the sliders in the figure creates North Texas Mean Green, a color that
apparently holds great significance to students and alumni of the University of
North Texas.

FIGURE 12.8
Rogers
Cadenhead’s
ColorSlide
application (from
Teach Yourself Java
2 in 24 Hours, Third
Edition).

To help you understand the thought process behind this program, I’ll take you
through a sequence of component diagrams. The objective is for you to see
how the program takes shape and at the same time learn some modeling
techniques.

Figure 12.9 sets the stage by showing the packages that supply the Java ele-
ments used in the program. The acronym awt stands for “abstract windowing
toolkit,” a group of components that display and control a graphic user inter-
face (GUI). The specific components for this program are Color (which displays
a color), GridLayout and FlowLayout (which arrange the elements in the GUI),
and Graphics and Graphics2D (which paint the GUI—that is, they render it
onscreen).

The name on the tab of the other major package, swing, is a group of compo-
nents that you can add to a graphic user interface. The names of the compo-
nents in the package in this figure are pretty self-explanatory: JSlider is a slid-
er, JFrame is a frame, JPanel is a panel (an area within the frame), and JLabel
is a label.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 204

Working with Component Diagrams 205

The package labeled swing.event supplies the ChangeListener interface. This
interface waits for state changes to occur in the GUI.

awt

«Component»
Color

«Component»
Graphics

«Component»
GridLayout

«Component»
Graphics2D

«Component»
FlowLayout

swing

«Component»
JFrame

«Interface»
ChangeListener

«Component»
JPanel

«Component»
JSlider

«Component»
JLabel swing.event

FIGURE 12.9
The packages that
supply the Java ele-
ments for the
ColorSlide
application.

Figure 12.10 shows the highest level of analysis for our components. It presents, in a
general way, the idea that ColorSlide inherits from JFrame and provides
ChangeListener, a required interface for a Person who interacts with ColorSlide.
Interaction between ChangeListener and ColorSlide takes place through a port. The
results of that interaction are sent to Color, as indicated by the arrow from the port to
Color. UML 2.0 refers to the ball-and-socket connection as an assembly connector and
to the arrow as a delegation connector. (The concept of connectors is new in UML 2.0.)

FIGURE 12.10
The initial
component diagram
for the ColorSlide
application.

«Component»
awt::JFrame

«Component»
ColorSlide

swing.event::ChangeListener
«Component»

awt::Color

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 205

206 Hour 12

Note that the package names appear as prefixes for the component names. (Strictly
speaking, awt is really java.awt and swing.event is really javax.swing.event, but I
decided to cut down on the clutter.) In Java, a program imports packages at the
beginning of the code, meaning that the programmer doesn’t have to specify the
package for each component throughout the program. The remaining figures
reflect the import of the packages and don’t include the package names.

Figure 12.11 moves to another level of analysis and shows that ColorSlide is an
aggregation whose components are JSlider, JPanel, and JLabel, with the indi-
cated multiplicities. Because the program deals with red, blue, and green, you can
see why the model specifies three sliders and three labels (one label per slider). It
specifies four panels because each slider has to have its own area, and the part
that displays the color has to have a designated area, too.

«Component»
JFrame

«Component»
ColorSlide

ChangeListener
«Component»

Color

«Component»
JSlider

«Component»
JPanel

«Component»
JLabel

1

3 34

Next, Figure 12.12 takes into account the laying out of the components and the
rendering of the GUI. The keyword «Arrange» shows that GridLayout and
FlowLayout arrange the panels, sliders, and labels. (I won’t go into the details of

FIGURE 12.11
The ColorSlide
application
modeled as an
aggregation of
components.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 206

Working with Component Diagrams 207

how they do the arranging.) The keyword «Paint» indicates that Graphics and
Graphics2D handle the rendering. (Again, I’ll skip the details.) These keywords
aren’t built into UML. I added them for clarity.

«Component»
JFrame

«Component»
ColorSlide

ChangeListener

«Component»
GridLayout

«Component»
FlowLayout

«Component»
Graphics

«Component»
Graphics2D

«Component»
Color

«Component»
JSlider

«Component»
JPanel

«Component»
JLabel

1

3 34

«Arrange»
«Arrange»

«Paint»

«Paint»

FIGURE 12.12
Adding the Java
components that
arrange the GUI
components and
render the GUI.

If you’ve been following along closely, you might have become aware of a slight
disconnect. Figures 12.11 and 12.12 show JSlider as a component and
ChangeListener as the interface. A user can create colors only by manipulating
the sliders. Each time a slider moves, the movement causes the displayed color to
change. How do you show the relationships between the sliders and the interface?

The next level of analysis provides the answer and shows that the program cre-
ates instances of the components in the GUI. To model those instances, you can
use the icons for objects that you learned in Hour 3. What about those sliders? In
Java, when you create an object (like an instance of a slider) you can register it as
a change listener. In this case, registering a slider-object as a change listener

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 207

208 Hour 12

means that when the slider moves, the movement is noted and the displayed
color changes as a result.

Figure 12.13 shows this level of analysis and presents the objects that make up
ColorSlide. The ChangeListener is a required interface for the three instances of
JSlider. A delegation connector connects the port to current, an instance of
Color. The canvas object is an instance of a class called ColorPanel, a child class
of JPanel. For completeness, the figure shows the inheritance relationship
between ColorPanel and JPanel.

«Component»
JFrame

«Component»
ColorSlide

«Component»
GridLayout

«Component»
FlowLayout

«Component»
Graphics

«Component»
Graphics2D

redPanel:JPanelredLabel:JLabel

greenPanel:JPanelgreenLabel:JLabel

bluePanel:JPanelblueLabel:JLabel

current:Color canvas:ColorPanel

«Component»
ColorPanel

«Component»
JPanel

«Arrange» «Arrange»

«Paint»

«Paint»

red:JSlider

blue:JSlider

green:JSlider
ChangeListener

Why bother creating the ColorPanel class? How, exactly, do you register an object
as an interface? How do those awt components work? You’ll just have to read
Rogers’s book to find out.

FIGURE 12.13
Modeling the
component-objects
in the ColorSlide
application.

15.067232640X.chap12.qxd 2/20/04 10:24 AM Page 208

Working with Component Diagrams 209

Component Diagrams in the Big Picture
You’re almost done with the big picture. Figure 12.14 includes the component dia-
gram, which focuses on a system’s software architecture. In the next hour, you’ll
learn how to model the hardware architecture.

Extension

«Stereotype»

{Constraint}

Annotation

Note

Behavioral Elements

State

Sequence

Communication

Activity

:Name1 :Name2

:Name1

:Name2

1: Message()

Relationships

Grouping

Association

Generalization

Dependency

Realization

Package

Use case

Class

Structural Elements

Interface

Actor

Component
(1.x)

«component»
Component (2.0)

FIGURE 12.14
Your big picture of
the UML now
includes the com-
ponent diagram.

Summary
A component is a modular part of a computer system, distinguishable from an
artifact, which is a piece of information that system uses or creates. Components
define a software system’s functionality.

A component provides interfaces that allow other components to access it. For an
accessing component, the interface is said to be required.

15.067232640X.chap12.qxd 2/20/04 10:25 AM Page 209

210 Hour 12

In UML 1.x, the component icon is a rectangle with two small rectangles overlaid
on its left side. In UML 2.0, the component icon is a rectangle with the keyword
«Component» near the top. For continuity in the near term, UML 2.0 recommends
using a tiny 1.x component icon in the upper right corner of the new icon. The
artifact icon is a rectangle with the keyword «Artifact» near the top. You can put
a note symbol in its upper right corner.

You can represent an interface in either of two ways. One representation is a rectan-
gle containing information about the interface and connected to the component
with a dashed line and an empty triangle. The other is a small circle connected to
the component with a solid line. In UML 2.0, you can use a ball-and-socket notation
to show that an interface is provided by one component and required by another.
The ball is the small circle I just mentioned. The socket is an open semi-circle con-
nected with a solid line to another component. The ball represents a provided inter-
face, whereas the socket represents a required interface.

15.067232640X.chap12.qxd 2/20/04 10:25 AM Page 210

Working with Component Diagrams 211

Q&A
Q. In the examples of the ball-and-socket notation, you show a provided inter-

face on one component and a required interface on another. Can a com-
ponent have one of each kind?

A. Yes. In fact, a component can have more than one of each kind of interface.

Workshop
In this workshop, you get to solidify your knowledge about components and how
to model them. You can find answers to the Quiz questions in Appendix A, “Quiz
Answers.”

Quiz
1. What is the difference between components and artifacts?

2. What are the two ways of representing the relationship between a compo-
nent and its interface?

3. What is a provided interface? What is a required interface?

Exercises
1. Although UML 1.x is gradually giving way to UML 2.0, most existing mod-

els and many modeling tools still conform to the old standard. To give you
some practice with this standard, convert Figures 12.8–12.13 to UML 1.x.
This isn’t just a trivial change from one icon to another: Remember that
ports and connectors do not exist in UML 1.x.

2. Create a white box view of ColorSlide.

15.067232640X.chap12.qxd 2/20/04 10:25 AM Page 211

15.067232640X.chap12.qxd 2/20/04 10:25 AM Page 212

HOUR 13

Working with Deployment
Diagrams

What You’ll Learn in This Hour:
. What a deployment diagram is
. Applying deployment diagrams
. Deployment diagrams in the big picture of the UML

So far, you’ve stayed mainly in the conceptual realm, turning in the last hour to
models of software components. Now you will look at the hardware. As you can see,
the focus has moved from items (like classes) that live in analyses, to software com-
ponents, to hardware that lives in the real world.

Hardware, of course, is a prime topic in a multicomponent system. In today’s world
of computing, a system is likely to encompass numerous types of platforms in far-
flung locations. A solid blueprint for setting up the hardware is essential to system
design. The UML provides you with symbols for creating a clear picture of how the
final hardware setup should look, along with the items that reside on the hardware.

What Is a Deployment Diagram?
A deployment diagram shows how artifacts (which you met in Hour 12, “Working
with Component Diagrams”) are deployed on system hardware, and how the pieces
of hardware connect to one another. The main hardware item is a node, a generic
name for a computing resource.

In UML 1.x, many modelers (including me) distinguished between two types of nodes—a
processor (a node that can execute a component) and a device (a peripheral piece of
hardware that doesn’t execute components but typically interfaces in some way with the
outside world). Although that distinction wasn’t formalized in UML 1.x, it was useful.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 213

214 Hour 13

UML 2.0 now formally defines a device as a node that executes artifacts.
(Remember from Hour 12 that an executable is now classified as an artifact).

In UML 2.0 a cube represents a node (as was the case in UML 1.x). You supply a
name for the node, and you can add the keyword «Device», although it’s usually
not necessary. I still think it’s a good idea to distinguish between devices and
peripherals, as you’ll see. Figure 13.1 shows a node.

«Device»

DBServer

Figure 13.2 shows three ways to model the artifacts deployed on a node.

FIGURE 13.1
Representing a
node in the UML.

DBServerDBServer

Corporate Phone Directory

Search Program

Search Results

DBServer

«artifact»
Corporate Phone

Directory

«artifact»
Search Program

«artifact»
Search Results

«artifact»
Corporate Phone

Directory

«artifact»
Search Program

«artifact»
Search Results

«Deploy» «Deploy» «Deploy»

FIGURE 13.2
Three ways to
model the
deployment of
artifacts on a
node.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 214

Working with Deployment Diagrams 215

DBServer

Client

«artifact»
Corporate Phone

Directory

«artifact»
Search Program

«artifact»
Presentation

Program

«artifact»
Search Results

FIGURE 13.3
Representing the
connection
between nodes.

A line joining two cubes represents a connection between two nodes. Bear in
mind that a connection isn’t necessarily a piece of wire or cable. You can also rep-
resent wireless connections, such as infrared and satellite. Figure 13.3 shows an
example of an internode connection.

FIGURE 13.4
Representing a
deployment
specification and
its relationship
with an artifact it
parameterizes.

«artifact»
Modem Connection

«deployment spec»
Initialization
Command

UML 2.0’s emphasis on artifacts brings a set of new artifact-related concepts. One
of these concepts is the deployment specification, an artifact that provides
parameters for another artifact. A good example of this is the initialization com-
mand that some modem connections require. This is a string of characters that
sets values for certain characteristics of the modem. Figure 13.4 shows how to
model a deployment specification.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 215

216 Hour 13

For clarity, one could add the keyword «parameterize» to the arrow, although
this keyword doesn’t come with UML 2.0—that is, it’s not part of the UML
specification.

Applying Deployment Diagrams
A good place to start is with a home computer system, so the first example is a
deployment diagram of the system I used to write this book.

As I said earlier, however, today’s multiprocessor systems might connect nodes
that live far away from each other. To round out the picture, then, you’ll also look
at examples of deployment diagrams applied to networks. I’ll include examples
you might find useful and adaptable to your own work. Each example includes
constraints that reflect the rules of the particular network.

A Home System
In modeling my home system, I’ve included the devices, and I’ve used the node
symbol to also represent peripherals. As I said earlier, the device-peripheral dis-
tinction is a useful one, and this is an example.

The way I used the node in this context is what UML 2.0 refers to as a nonnorma-
tive usage of the node. In UML 2.0, a node, strictly speaking, represents a piece of
hardware that can compute. Because systems involve peripherals, it seems rea-
sonable to include those peripherals in models. In order to distinguish peripherals
from devices, one could add «peripheral» to each nonnormative node, but once
again this is not a keyword built into UML. The nonnormative node’s name (I
love the alliteration) would most likely supply enough information to make that
keyword unnecessary.

Figure 13.5 presents the deployment diagram. I modeled the broadband connec-
tion with my Internet service provider and their connection to the Internet. The
cloud that represents the Internet and the lightning bolt that represents a wireless
connection are not in the UML symbol set, but they’re useful for clarifying the
model. (I’ll discuss this kind of symbol usage in Hour 14, “Understanding
Packages and Foundations.”)

A Token-Ring Network
In a token-ring network, computers equipped with network interface cards
(NICs) connect to a central multistation access unit (MSAU). Multiple MSAUs

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 216

Working with Deployment Diagrams 217

When a computer gets the token, only that computer’s information can go to the
network. After it is sent, the information travels to its destination. When the infor-
mation reaches its destination, an acknowledgement can go back to the computer
that sent it.

In this example, shown in Figure 13.6, I’ve modeled a network that consists of
three MSAUs and their respective computers.

Netgear MA401
Wireless PC

card

ISP Server
comcast.net

Computer Renaissance
Athlon 1600 XP + PC

RCA DCM315R
Cable Modem

«artifact»
MS Word

«artifact»
IE 6.0

Netgear MR814
WirelessRouter

Internet

Cable Connection

802.11b
Wireless

Connection

Compaq Presario 1510
Laptop PC

FIGURE 13.5
Deployment
diagram of my
home system.

are connected together in a series that looks like a ring (hence the ring part of the
name). The ring of MSAUs combines to act as a traffic cop, using a signal called a
token to let each computer know when it can transmit information (hence, the
token part of the name).

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 217

218 Hour 13

ARCnet
Like a token-ring network, an ARCnet (Attached Resources Computing
network) involves passing a token from computer to computer. The difference is
that in an ARCnet, each computer has an assigned number. This number deter-
mines the order in which the computers get the token. Each computer connects to
a hub, which is either active (amplifies incoming information before passing it
on) or passive (passes information without amplifying it).

Unlike the MSAUs in a token-ring network, ARCnet hubs don’t move the token
around in a ring. The computers really do pass the token to one another.

Figure 13.7 models an ARCnet with a passive hub, an active hub, and several
computers.

Thin Ethernet
The thin ethernet is a popular type of network. Computers connect to a network
cable via connection devices called T-connectors. One network segment may join
another via a repeater, a device that amplifies a signal before passing it on.

PC

PCPC

PC

PCMSAU

MSAU

MSAU

{Maximum Distance = 85 ft}

{Maximum Distance = 150 ft}

Each MSAU has a Ring In (RI)
port and a Ring Out (RO) port.
MSAU-to-MSAU connection is
RI to RO.

FIGURE 13.6
Deployment
diagram for a
token-ring network
that consists of
three MSAUs.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 218

Working with Deployment Diagrams 219

Figure 13.8 models a thin ethernet network.

The Ricochet Wireless Network
Ricochet Networks, Inc. provides a wireless modem solution for mobile Internet
access. Its wireless modem plugs into a computer’s serial port and broadcasts to
Ricochet’s proprietary network.

The Ricochet network consists of radio transmitter-receivers, each about the size of
a shoebox. These microcell radios are mounted on top of streetlights a quarter- to
a half-mile apart, arranged in a checkerboard pattern. Equipped with a special
adapter, each microcell radio draws a small amount of power from its streetlight.

The microcell radios broadcast signals to Wired Access Points that move the informa-
tion to a Network Interconnection Facility (NIF). The NIF consists of a name server
(a database that validates connections), a router (a device for linking networks
together), and a gateway (a device for translating information from one communica-
tions protocol to another). Information then moves from the NIF to the Internet.

PC
#1

PC
#3

PC
#5

PC
#4

PC
#2

Passive Hub

Active Hub

{Maximum Distance = 100 ft}

{Maximum Distance = 100 ft}

{Maximum Distance = 2000 ft}

RG-62U

FIGURE 13.7
Deployment
diagram of an
ARCnet.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 219

220 Hour 13

Available only in Denver and San Diego at this writing, Ricochet technology pro-
vides a nice modeling opportunity. Figure 13.9 shows the deployment diagram for
this network.

PC

PC

PC

PC

Repeater

Terminator

T-Connector

T-Connector

T-Connector

Terminator

Terminator

T-Connector

T-Connector

T-Connector

Terminator

{Maximum Length = 1.6 ft}

RG-58/AU

FIGURE 13.8
Deployment
diagram of a thin
ethernet network.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 220

Working with Deployment Diagrams 221

Deployment Diagrams in the Big Picture
You’ve come to the end of the UML diagram set. The big picture (Figure 13.10)
includes the node and the artifact and is now complete.

Summary
The UML deployment diagram provides a picture of how the physical system will
look when it’s all put together. A system consists of nodes, with each node repre-
sented by a cube. A line joining two cubes symbolizes a connection between two
nodes. You can show the artifacts that reside on each node.

As you might imagine, deployment diagrams are useful for modeling networks.
Models presented in this hour include token-ring networks, ARCnet, thin ethernet,
and the Ricochet Wireless Network.

Receives signals
from about 100
transceivers

Microcell Transceivers
are mounted on
streetlights

Wired
Access
Point

Router GatewayName Server

Broadcast

Microcell Transceiver

Broadcast

Wireless Modem

Direct Plug-In to
Serial Port

Laptop PC

Internet

Network Interconnection Facility

T1 Frame-Relay

FIGURE 13.9
The Ricochet
Wireless Network.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 221

222 Hour 13

Behavioral Elements

State

Sequence

Communication

Activity

Component
(1.x)

«component»
Component (2.0) «artifact»

:Name1 :Name2

:Name1

:Name2

1: Message()

Extension

«Stereotype»
{Constraint}

Annotation

Note

Relationships

Grouping

Association

Generalization

Dependency

Realization

Package

Node

Use case

Class

Structural Elements

Interface

Actor

FIGURE 13.10
Your big picture of
the UML includes
the deployment
diagram symbols
and is complete.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 222

Working with Deployment Diagrams 223

Q&A
Q. You used a cloud to represent the Internet and said it wasn’t part of the

UML symbol set. Can a modeler use other symbols that aren’t in the sym-
bol set?

A. Yes. If you do, the UML Police will not hunt you down. The idea is to use the
UML to express a vision. Nowhere is this more useful than with deployment
diagrams. If you have clip art that clearly shows desktops, laptops, servers,
and other devices, you can use them in your diagrams. In effect, you’re cre-
ating a graphic stereotype. I’ll show an example of this in the next hour.
(The cloud symbol, by the way, is an interesting footnote in UML lore. One of
the UML creators, Grady Booch, used to represent objects as clouds in the
symbol set of his modeling scheme before he became part of the UML team.)

Q. Suppose I have clip art available for some objects but not others. Can I
mix them in with the UML symbols?

A. Yes, you can. The object is to draw diagrams that clarify a vision, not (par-
don the pun) cloud it.

Workshop
Now that you’ve finished the set of UML diagrams, test your knowledge about how
to represent hardware. The answers are deployed in Appendix A, “Quiz Answers.”

Quiz
1. How do you represent a node in a deployment diagram?

2. What kinds of information can appear on a node?

3. How does a token-ring network work?

Exercises
1. Consider your home computer system to be a set of nodes. Draw a deploy-

ment diagram that includes your CPU box and peripherals. Include arti-
facts.

2. It’s possible to connect one network to another. One way to do this is to con-
nect each network to a router and each router to a (possibly very long) LAN-
to-LAN circuit. Draw a deployment diagram of a small token-ring network
connected to a small thin ethernet network.

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 223

16.067232640X.chap13.qxd 2/20/04 10:51 AM Page 224

HOUR 14

Understanding Packages and
Foundations

What You’ll Learn in This Hour:
. Package diagrams
. The structure of the UML
. Extending the UML

If this were an academically oriented text instead of a Teach Yourself book, much of
this hour would have appeared at the beginning of Part I rather than toward the
end. I’ve done it this way to give you a chance to get into the trenches with the
UML—to understand what the UML is and what it does. That way, you’ll be ready to
understand the foundations and work with them.

It’s much the same as learning a foreign language. The best way to do it is to
immerse yourself, as you’ve done in Hours 1–13 (and will do in Part II, “A Case
Study”). Then you can start to pick up the rules of grammar and syntax because
you’ll be prepared to understand them. (Unfortunately, many academic-world for-
eign language courses proceed in the opposite order!)

Now that you’ve seen the diagrams and know how to use them, why bother with
this type of hour at all? If you understand what the UML is based on, you’ll be able
to adapt it and extend it when you start using it in the real world. As any systems
analyst can tell you, every project is different. No reference book, text, or tutorial
can prepare you for every situation you’ll encounter. A good grounding in the foun-
dational concepts, however, will get you ready for most of the systems you’ll have
to model.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 225

226 Hour 14

Package Diagrams
Before you begin your foray into the foundations of the UML, you’ll examine one
more type of diagram—the package diagram. This is a diagram that supports
most of the others. A mainstay of every version of UML, the package achieves
“diagram status” in version 2.0.

The Purpose of a Package
As its name implies, a package is designed to group the elements (like classes or
use cases) of a diagram. Surround the grouped elements with a tabbed-folder icon
and you have packaged them. If you name the package, you have named the
group. In UMLspeak, the package provides a namespace for the grouped ele-
ments, which the package owns.

UML has two ways of denoting a package’s contents, as Figure 14.1 shows.

Tools

Tools

WrenchesHammer Screwdriver

Hammer Screwdriver

Wrenches

FIGURE 14.1
Two ways of
showing a
package’s
contents.

To reference an element in a package, the notation is PackageName::PackageElement
(for example, Tools::Hammer). This notation is called a fully qualified name.

Interpackage Relationships
Packages can relate to one another in either of three ways: One package can gen-
eralize another, depend on another, or refine another. Figure 14.2 shows exam-
ples of generalization and dependency.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 226

Understanding Packages and Foundations 227

You’ve already encountered generalization and dependency in relation to other
UML elements. Refinement is all about levels of detail. One package refines
another if it contains the same elements but with more detail. When you write a
book, for example, you start with a proposal that briefly summarizes each chap-
ter. Let’s suppose each chapter summary is an owned element in a package called
Proposal. Let’s also suppose that Completed Book is a package whose owned ele-
ments are the finished chapters. In this context, the Completed Book package is a
refinement of the Proposal package. Figure 14.3 shows two ways to visualize this
relationship.

Power Tools

Tools Electrical Power

FIGURE 14.2
Generalization and
dependency
between packages.

Completed Book

Proposal

«refine»

Completed Book

Proposal

FIGURE 14.3
Two ways to
visualize the
refinement
relationship.

The diagram on the left of Figure 14.3 shows refinement as a kind of dependency—
hence the dashed-line arrow along with «refine».

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 227

228 Hour 14

The diagram on the right of Figure 14.3 includes the symbol you’ve used for real-
ization—the relationship between a class and an interface. Does this mean that a
class “refines” its interface? Well . . . sort of. In a sense, the operations in an inter-
face (like turning a control knob) result in more detailed operations (like tuning a
radio station) when the interface is connected with a class (in this case a radio).
Incidentally, in Hour 22, “Understanding Design Patterns,” you’ll see this realiza-
tion/refinement symbol once more.

Merging Packages
A package can merge with another. The merge relationship is a kind of dependency
between the package that does the merging (the source) and the package that gets
merged (the target). The result of a merge is that the source package is transformed.

Here’s an example: Suppose you have one package of classes called Computers and
another called Telephones. A third package, Computer Telephony, merges with each of
them. Figure 14.4 shows these packages and their contents. Note that Computer
Telephony is empty.

Telephones

MobileDevice SurfaceLine

Computers

MobileDevice

PocketPC PalmOS

Laptop

Computer Telephony

«merge» «merge»

FIGURE 14.4
Modeling the
merge of a
package with two
other packages.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 228

Understanding Packages and Foundations 229

The merges transform the Computer Telephony package as in Figure 14.5. All the
classes from the two target packages have been imported. Along with the fully
qualified names, the inheritance relations for Laptop and SurfaceLine show the
target packages in which they originated.

Computer Telephony

Computers::MobileDevice Telephones::MobileDevice Telephones::SurfaceLine

PocketPC PalmOS

Computers::LaptopMobileDevice

SurfaceLine

Laptop

FIGURE 14.5
The transformations
that result from
the merges in
Figure 14.4.

The inheritance relations for MobileDevice show an important point about merg-
ing: When packages merge and they contain classes with the same name, the
class in the transformed package has the attributes and operations of all the
same-named classes. MobileDevice in the Computer Telephony package inherits
from the MobileDevice class in each target package. In effect, Computer
Telephony::MobileDevice is a SmartPhone—a cell phone with computing capa-
bilities. The inheritance relations with PocketPC and PalmOS show that a
SmartPhone is available with either operating system.

Our look at the package diagram provides a nice segue into the foundations of the
UML. This is because the UML is defined in terms of packages of concepts. We’ll
examine those packages, but first we have to turn our attention to the concepts.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 229

230 Hour 14

A Hierarchy
Your big picture of the UML shows the categories of the diagrams and the dia-
grams in each category. As I mentioned in Hour 1, “Introducing the UML,” you
need all these diagrams because they enable you to look at a system from a num-
ber of different viewpoints. Because different stakeholders care about a system for
different reasons, you have to be able to communicate a consistent vision of the
system in many different ways.

Although your big picture is helpful as a way of keeping the UML’s elements in
mind, it won’t do as a definition of the UML. The Three Amigos originally struc-
tured the UML in a formal way to ensure that the elements they created would
show a clear vision of a proposed system, or a reengineered one. The foundation
of UML 2.0 builds on their vision.

Let’s start by examining the UML’s architecture. Think of an architecture as a
kind of summary shorthand for a set of decisions about the way a system is
organized. Those decisions focus strongly on the system’s elements—what they
are, what they do, how they behave, how they interface, and how they combine.

The UML’s architecture has four layers. The layers are distinguished by the gener-
ality in the elements that inhabit them. Figure 14.6 lays all this out. I’ve included
a notation that some use to abbreviate these layers—M0 to M3.

Metametamodel M3

Metamodel M2

Model M1

Run-Time Instances M0

FIGURE 14.6
A four-layer
hierarchy for
understanding
the UML.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 230

Understanding Packages and Foundations 231

The most specific layer, M0, is called the run-time instances layer. This layer
comes into play when a model results in the creation of code.

The next layer, M1, is called the model layer. The UML models you create are in
this layer.

At the beginning of each hour when you learned a concept such as a class or a
node, you worked in M2, the third of the four layers. This layer defines the lan-
guage for specifying a model. After a little experience, you’ll be familiar enough
with the UML that this third layer will be second nature to you. Because this layer
defines what goes into a model, it’s called the metamodel layer. Because your big
picture shows the symbols for classes, nodes, components, use cases, and so on, it
pertains to the metamodel layer.

And the fourth layer (M3)? Think of it as a way of defining a language that speci-
fies classes, use cases, components, and all the other UML elements you’ll work
with. Because this layer defines what goes into a metamodel, it’s called the
metametamodel layer.

An Analogy
Here’s an analogy to help you understand the layers. Let’s leave the world of sys-
tems modeling and talk about something a little more prosaic.

When you write a business letter, you start with your name and address. Then
you include the date, the recipient’s address, a salutation, the body of the letter, a
closing (such as “Sincerely,”), your signature, and your typed name. In effect,
you’re conforming to guidelines for how to write a business letter. When you write
a letter to a friend, you conform to a different set of guidelines. When you send a
business memo, you use still another set.

To stay consistent with the four layers in Figure 14.6, the letter you create (say, in
a word processor) is a model. The set of business letter guidelines is a metamodel.
When you print the letter and send it, you have a run-time instance.

Let’s move up a level. “Business letter guidelines” depend on general guidelines
for correspondence. So do “friendly letter guidelines” and “business memo guide-
lines.” Because the guidelines for correspondence (“start with a greeting,” “make
your ideas and feelings known to the recipient”) form the basis for those meta-
models, “correspondence guidelines” constitute a metametamodel.

If we think of the guidelines as packages of ideas and concepts, we can depict all
this as in Figure 14.7.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 231

232 Hour 14

Moving On
In earlier editions of this book, I said very little about M3, the metametamodel
layer. With the changes that UML 2.0 has brought and the proliferation of UML
modeling tools, however, I felt it wise to explore the metametamodel layer.
Although it’s not a layer you’ll encounter in your day-to-day modeling activities, I
think you’ll understand UML a little better if you’re at least familiar with the
foundational concepts in this layer. Knowing these concepts might also help you
get conversant with a UML modeling tool, once you start using one.

So take a deep breath, and let’s journey to M3.

To Boldly Go . . .
Are you a science fiction fan? A devotee of Star Trek, perhaps? Have you ever won-
dered how the bizarre inhabitants and exotic life forms from far-off planets all

«metametamodel»

Correspondence Guidelines

«metamodel»

Business Letter Guidelines

«run-time instance»

printedLetter:BusinessLetter

«model»

createdLetter:BusinessLetter

FIGURE 14.7
Modeling,
metamodeling, and
metametamodeling
in the world of
letter-writing.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 232

Understanding Packages and Foundations 233

manage to speak perfect English to the crew of the Enterprise? (And, weirdly, to
each other?)

Sometimes, sci-fi writers just ignore the language problem and have all their
characters speak English regardless of their worlds of origin. The creators of Star
Trek, however, confronted this problem and came up with the Universal
Translator, a device that somehow matches up the brain waves of the speaker
with the brain waves of the listener to create a matrix of information. The matrix
enables the device to quickly turn words, phrases, and idioms from one language
into words, phrases, and idioms from the other. In that way, everybody in the
galaxy can talk to everyone else.

Why this brief excursion into the linguistics of the final frontier? If you substitute
“applications on widely varying information processing systems” for “bizarre
inhabitants from far-off planets,” and “seamless communication” for “perfect
English,” you’ll pretty much understand one of the early challenges that confronted
the Object Management Group (Starfleet Command?): Back in the early 1990s,
OMG’s Prime Directive was to come up with something like a Universal
Translator. The goal was to have objects based on different systems (which were
potentially from different vendors) communicate smoothly and seamlessly with
one another.

Bear with the Star Trek analogy for a moment. If you can imagine the Universal
Translator as a real-life device, its architecture and infrastructure are analogous
to CORBA—OMG’s platform for enabling applications to work together over net-
works. Think back to that matrix of information that the Translator creates. The
specification for what’s supposed to be in that information matrix is analogous to
another OMG solution—the Meta-Object Facility (MOF). MOF is OMG’s way of
specifying and managing information that resides on CORBA.

So . . . I’ve taken you from Star Trek to CORBA to MOF. What does this conglomer-
ation of sci-fi and acronyms have to do with the UML? Just this: The MOF is the
foundation of UML 2.0’s underlying structure.

What does that mean, exactly?

Well, OMG uses the Meta-Object Facility for purposes other than specifying the
nature of CORBA-related information. MOF is also OMG’s template for creating
modeling languages like UML.

Modeling languages like UML? Yes, just as humans have numerous languages for
communicating ideas, UML is not the only possible language for creating models.
It’s become our standard, but other modeling languages are possible. In theory,

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 233

234 Hour 14

you could learn what MOF is all about and use its concepts as the basis for creat-
ing a different modeling language.

This would be something like taking the specifications of the information matrix
from the Universal Translator and using them as the basis for creating new lan-
guages for humans and other life forms to use.

Packaging the Infrastructure of UML
Let’s talk about M3 more formally. In the same way we used packages in
Figure 14.7 to show the layers of modeling in the world of letter writing, we
can use packages to model the foundations of the UML—what the OMG refers
to as the UML’s infrastructure.

What’s in those packages? Class diagrams written in MOF. These diagrams consti-
tute specifications. (And this is why the MOF is at the foundation of the UML.) At
some point, you might be wondering about MOF, so let me explain.

It all begins (in M3) with a package called the Infrastructure Library. As
Figure 14.8 shows, the Infrastructure Library owns two packages, Core and
Profiles. Think of the Core package as a repository of concepts for creating
metamodels like UML. The Profiles package is a repository of concepts for cus-
tomizing metamodels. Core holds the concepts that define UML, and Profiles
holds the concepts that allow you to create variations of UML (and other meta-
models) for particular domains.

Infrastructure Library

Profiles Core

FIGURE 14.8
The
Infrastructure
Library owns the
Core and Profiles
packages.

How about one more analogy? Suppose the Infrastructure Library is really a
library, and suppose these “concepts” I keep talking about are books. In the
“Core” section of the library, you’d find books with titles like “How to Use Oil

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 234

Understanding Packages and Foundations 235

Paint and Canvas.” You might then read this book, create your own unique style
of painting, and publish your techniques for painting in that style. People could
then apply these techniques to create paintings in your particular style.

In the “Profiles” section of the library, one title might be “The Human Anatomy
for Painters.” After reading this book, you would be able to add particular tech-
niques to your style that would specialize it for creating paintings of people.

The Core
What’s in the Core package? The Core owns four packages: Primitive Types,
Abstractions, Basic, and Constructs, as Figure 14.9 shows. I’ll summarize each
one for you.

Core

Constructs

Abstractions

Basic

Primitive Types

FIGURE 14.9
The contents of the
Core package.

Primitive Types

Primitive Types are data types that you would use if you were creating a model-
ing language. The types in this package are Integer, Boolean, String, and
UnlimitedNatural. That last one means any number in the infinite set of natural
numbers, and it specifies that an asterisk (“*”) represents infinity. In UML models,
these are the numbers you see in the multiplicities at the ends of associations
between classes. (And this is the origin of that asterisk that denotes many.)
Figure 14.10 models these types.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 235

236 Hour 14

A Foundational Question
In looking at Figure 14.10, you might be wondering about MOF. That is, if the
Infrastructure Library diagrams (which define the foundation concepts) are writ-
ten in MOF, where’s the definition for MOF? And then the definition of that definition
and . . .

Well, it all has to stop somewhere, and MOF is where it stops. MOF is said to be
reflective, meaning that MOF is defined in MOF.

In the oil-painting analogy, these primitive types would correspond to properties
of oil paint. You’d have to consider these properties in any rules that specify a
painting style.

Abstractions

The Abstractions package owns 20 packages. Each package specifies how to set
up representations of the concepts you learned about in Hours 1–13. The
Elements package is the most fundamental of these packages and owns just one
abstract class called, unsurprisingly, Element. We’re at the metametamodel level,
so it’s more appropriate to refer to Element as an abstract metametaclass.

Because it generically represents any item in a model, Element is the superclass
for all the other classes . . . uhmm . . . metametaclasses in the Infrastructure
Library.

Other packages include Relationships, Comments, Multiplicities, and
Classifiers. (A classifier is any element that describes structure and behav-
ior. Classes, use cases, nodes, and actors are all examples of classifiers in the
UML.)

Primitive Types

«primitive»
Integer

«primitive»
Boolean

«primitive»
String

«primitive»
UnlimitedNatural

FIGURE 14.10
The Primitive
Types package of
the Core in the
Infrastructure
Library.

By the
Way

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 236

Understanding Packages and Foundations 237

Basic

The Basic package is a kind of baby-step into modeling. Based on classes, it’s a
foundation for developing complex modeling languages. If you can imagine the
UML with just classes (along with their attributes and an ability to inherit from
other classes), parameters (for a class’s operations), packages, and the ability to
specify data-types, you’ll get the idea.

Constructs

The Constructs package depends on many of the Abstractions packages and on
the Basic package. It combines items from those packages to add detail to ele-
ments like classes, relationships, and data types. For example, this package fleshes
out the specifications for how to visualize the attributes and operations in a class.
In this package, you’ll also find the kinds of information you can add to an asso-
ciation between classes (like role-names and multiplicities).

Profiles
Let’s double back and examine the Profiles package. This is the one that gives
you the mechanisms for adapting a metamodel for a specific area of knowledge.
Each adaptation is a separate profile.

Does a profile constitute a new metamodel? No. If you were creating a new meta-
model—that is, a new modeling language—you’d begin with the Core package
and work from there.

Think of a profile as a tweak of an existing metamodel—like adapting the UML
to model the fields of law or education. You start with the UML and make some
additions. The Profiles package gives you specifications for what you can add.

So what can you add? You’re already familiar with the stereotype as a way of
extending the UML. This package specifies the formal mechanisms for creating
stereotypes. That is, it owns metametaclasses (classes at the metametamodel
level) called Extension and Stereotype.

To give you an idea of how Extension and Stereotype work, let’s say you’re cre-
ating a UML profile for modeling the world of electricity. You’ll want to have ways
of modeling capacitors, transistors, resistors, power supplies, and other important
electrical components. Because these items are hardware, you could create stereo-
types of the node, the UML’s symbol for a piece of hardware.

At this level, however, you don’t have that block icon. Instead, you have a
metametaclass called Node. If you wanted to indicate that you were creating a

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 237

238 Hour 14

stereotype called Capacitor (something that stores electricity), your diagram
would look like Figure 14.11.

Node «stereotype»
Capacitor

The arrow with the filled triangle represents the “extension” relationship—the
association between a metaclass and a stereotype.

Capacitors (and other electronic components) often provide an interface so that
you can modify their operation. For a capacitor, that interface is a control knob.
(Sound familiar?) You manipulate the control knob in order to change the
amount of electricity the capacitor stores. The next time you tune a radio, you
might bear in mind that the knob you’re turning is the interface to a capacitor.
So, you might want to also create a ControlKnob stereotype of an interface.

When all the stereotypes are complete, they go inside a package icon that repre-
sents the profile. Figure 14.12 shows your evolving Electricity profile.

FIGURE 14.11
Creating a
Capacitor
stereotype.

«Profile» Electricity

Node «stereotype»
Capacitor

Interface «stereotype»
ControlKnob

FIGURE 14.12
The beginning of a
profile that adapts
the UML for
modeling the world
of electricity.

In practical terms, once these stereotypes are created you now have symbols
available in your UML Electricity profile (that is, in your extended metamodel),
which appear in Figure 14.13. (Within the UML, you can use that block icon.)

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 238

Understanding Packages and Foundations 239

In even more practical terms, when you use the symbols in a model, their appear-
ance would resemble Figure 14.14.

«Capacitor» «ControlKnob»

FIGURE 14.13
Symbols available
in the UML as a
result of creating
the Electricity
profile.

«Capacitor»

My Variable Capacitor

Capacitance Range: 50pf–500pf

«ControlKnob»

FIGURE 14.14
Using the
symbols from the
Electricity
profile.

And Now At Last . . . the UML!
Let’s leave M3 and explore M2. Figure 14.15 shows the UML in the context of the
ideas in previous sections—that is, it shows that the Infrastructure Library is
the foundation for the UML.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 239

240 Hour 14

The Four Layers Again
It’s also the case, of course, that the UML is the foundation for the models you
create. We can restate this “foundation” business in terms of classes, metaclasses,
and metametaclasses. When you create a class in your model, you have created
an instance of a UML class. A UML class, in turn, is an instance of a metameta-
class in the metametamodel. Going in the other direction, a runtime instance
results from code based on your model. Figure 14.16 summarizes all this in terms
of the four layers you’ve seen several times, and shows you some of the sources in
the metametamodel.

UML

Infrastructure Library

FIGURE 14.15
The UML is based
on the
Infrastructure
Library.

Metametamodel

Metamodel

Model

Run-time Instance

Infrastructure Library::Core::Constructs::Class

Infrastructure Library::Core::Abstractions::Relationships

«instance of»

«instance of» «instance of»

«instance of»

«instance of»

«instance of»

Class Association

myLock:Lock

Lock Key

FIGURE 14.16
Instances within
the four layers of
modeling.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 240

Understanding Packages and Foundations 241

Packaging the Superstructure of the UML
Just as package diagrams model the foundation of the UML, package diagrams
also model the elements within the UML—what OMG refers to as the UML’s
superstructure.

Figure 14.17 turns a magnifying glass on the UML package in Figure 14.15. It
shows that the UML superstructure comprises twelve packages.

«metamodel»UML

CommonBehaviors Classes

AuxiliaryConstructs

Profiles

UseCases

StateMachines Interactions

CompositeStructures

Components

Deployments

Activities

Actions

FIGURE 14.17
The superstructure
of the UML.

As the names of the packages indicate, this is where you find the formal specifica-
tions for everything you learned in Hours 1–13. As you look at Figure 14.17,
you’ll see a couple of strange-looking arrangements of dependency arrows—
two-headed dependencies and what appears to be cyclic dependency
(CommonBehaviors depends on Actions, Actions depends on Activities, and
Activities depends on CommonBehaviors). This diagram is set up so that a

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 241

242 Hour 14

dependency arrow between two packages means that at least one element of one
package depends on at least one element of the other.

Because the package names are obvious indicators of what the packages pertain
to, I’ll just summarize some features of the important ones. (Profiles, by the
way, is a reuse of the Profiles package in the Infrastructure Library.)

Classes

Just as you’d expect, Classes contains specifications for classes and their relation-
ships. You might recall that I mentioned these elements in connection with the
Abstractions and Constructs packages of Infrastructure Library::Core. In
fact, Classes reuses the specifications in those packages by merging them into
Kernel, a package that represents the fundamental modeling concepts of the
UML.

CommonBehaviors

In this package you’ll find the specifications for how objects behave, how commu-
nication proceeds among objects, and how to model the passage of time.

UseCases

This package uses information from the Kernel and from CommonBehaviors. It
specifies the diagrams for capturing a system’s functional requirements. Here’s
where you find the formal specifications for actors, use cases, inclusion, and
extension.

CompositeStructures

In addition to the specifications for composite structure diagrams (mentioned in
Hour 1), this package specifies ports and interfaces. It also shows how collabora-
tions among classes take place. You’ll read more about collaborations in Hour 22.

AuxiliaryConstructs

I’ll tell you about this package because the name has probably aroused your
curiosity. This one is a grab bag. It deals with templates (another Hour 22 topic),
techniques for visualizing the flow of information in a system, and symbols for
representing models. Figure 14.18 shows the icon for a model—a package symbol
with a small triangle. For good measure, AuxiliaryConstructs includes primitive
types, reusing the information you saw earlier in the Infrastructure Library.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 242

Understanding Packages and Foundations 243

Extending the UML
As you can see from the preceding sections, the UML has quite an extensive struc-
ture. This structure is the basis of the wide array of modeling techniques you
learned in Hours 1–13.

In addition to these techniques, three mechanisms enable you to extend the UML:
stereotypes, constraints, and tagged values.

Stereotypes
Appearing inside guillemets, a stereotype is intended to extend a UML element
and thus create something new. Back in the section on Profiles, I showed how
stereotyping works within the foundation of the UML. Keep in mind that you
don’t have to create a whole new profile in order to use stereotypes.

Stereotyping adds great flexibility. It enables you to use an existing UML element
as the basis for an element you create—an element that captures some aspect of
your own system or domain in ways that standard UML elements can’t.

In addition to stereotypes that you create, the UML comes with an extensive set of
ready-made stereotypes. I describe some of them in the subsections that follow.

Dependency

A dependency-based stereotype extends a dependency relationship between a
client (the element the dashed arrow starts from) and a supplier (the element the
arrow points to). Let’s look quickly at some stereotyped dependencies.

An «import» dependency sits between two packages. This stereotype adds the con-
tents of the supplier to the client’s namespace (the aspect of the package that
groups its constituents’ names). In this hour, you’ve already seen «refine»,
another stereotyped dependency between packages.

In a «send» dependency, the client sends a signal to the supplier.

In an «instantiate» dependency, the client and the supplier are both classes.
This stereotype indicates that the client creates instances of the supplier.

Design Model

FIGURE 14.18
A package icon for
representing a
model.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 243

244 Hour 14

Class

The «metaclass» is a stereotype you encountered in the section on metamodeling.
It’s a class whose instances are also classes (rather than objects). Remember, a
class you create in a UML model is an instance of a metaclass—a class within the
UML.

A «type» is a class that specifies a domain of objects along with attributes, opera-
tions, and associations. The «type» contains no methods (executable algorithms
for its operations). An object can conform to more than one type.

An «implementationClass» is the opposite of a «type». It represents the imple-
mentation of a class in a programming language. An object may not have more
than one «implementationClass».

A «utility» is a named collection of attributes and operations that aren’t mem-
bers of that class. It’s a class that has no instances.

Within a class, an operation or a method can create an instance or destroy an
instance. (Perhaps you’ve seen constructor and destructor methods in Java.) You
indicate these features by «create» and «destroy», respectively.

Package

UML has a couple of built-in stereotypes for packages. One specifies that a pack-
age holds model elements other packages can reuse. It’s called «modelLibrary».

A «framework» is a stereotyped package that contains patterns and templates—
UML elements geared toward reusability. I’d explain what these constructs are,
but Hour 22 deals with them in detail.

Graphic Stereotypes
Sometimes you might have to bring a new symbol or two into a UML model in
order to help convey a meaning. As long as everyone in your community under-
stands and agrees on the meaning of the new symbol, it’s acceptable to use it.

Deployment diagrams typically provide the greatest potential for this. Clip art of
hardware is usually available and can replace the plain-vanilla cubes you
learned about in Hour 13, “Working with Deployment Diagrams.” When you use
a picture to represent a UML icon, you create a graphic stereotype.

Figure 14.19 shows an example. It’s a stylized version of Figure 13.7, a model of
an ARCnet.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 244

Understanding Packages and Foundations 245

Constraints
As you’ve seen, constraints supply conditions and restrictions for UML model ele-
ments. You can specify a constraint in any format as long as you write it inside
braces. If, for example, a class has velocity as one of its attributes, you could
apply the constraint {velocity cannot exceed the speed of light}.

Tagged Values
A tagged value is designed to explicitly define a property. It’s also written inside
braces. It consists of a tag, which represents the property to be defined, and a
value. For example, you might attach {location = nodeName} to a component,
where nodeName represents the node where the component resides.

PC #2

PC #1

PC #3

PC #4 PC #5

(Maximum Distance = 100 ft)

(Maximum Distance = 2000 ft)

(Maximum Distance = 100 ft)

RG-62U

Passive Hub

Active Hub

FIGURE 14.19
A graphic
stereotype-based
model of an
ARCnet.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 245

246 Hour 14

Summary
This hour dealt with packages and with the concepts at the base of the UML. The
objective was to give you an in-depth understanding that will enable you to
apply the UML in real-world situations that don’t always mirror textbook exercises.
We covered these concepts after all the diagrams so that you would understand
the elements of the language before delving into the foundations.

One way of understanding the UML is in terms of its four layers: run-time
instances, model, metamodel, and metametamodel (abbreviated as M0, M1, M2,
and M3). The UML models you create reside in the second layer. Code resulting
from a UML model resides in the first. When you learn UML concepts, you’re usu-
ally operating in the third layer. The fourth layer is one that you won’t come into
contact with on a daily basis, but some familiarity with its concepts can help you
understand the UML and gain facility with modeling tools. In fact, vendors who
create UML modeling tools have to start from this layer.

The UML provides three extension mechanisms: stereotypes, constraints, and
tagged values. Stereotypes create new elements by extending existing ones. Some
stereotypes are predefined in the UML. You can also create your own. Another
kind of stereotype, graphic stereotyping, substitutes pictures for UML icons.
Constraints indicate restrictions on model elements. A tagged value explicitly
states the value of a property.

Now if I had told you all these foundational concepts at the beginning of Hour 1,
would they have been comprehensible?

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 246

Understanding Packages and Foundations 247

Q&A
Q. I noticed that sometimes you put the name of a package on the tab of the

package icon, and sometimes on the body. What’s the general rule?

A. If you’re showing the elements in the package, put the name on the tab. If
not, put the name on the body.

Q. I’m a little confused about objects in the run-time instances layer. Are
those the same as objects in a UML model?

A. No, they’re not. An object in your model is different from a run-time object.
The object in your model is in layer M1. The run-time object is in M0.

Q. You mentioned the four layers several times. Is that some sort of limit?
Can a metamodel layering ever have more than four layers?

A. Yes. Theoretically, there’s no limit on the number of possible layers. For
example, if you think of our business letter analogy, our metametamodel
was “correspondence.” A higher-level layer would be “written communica-
tion” which would result in metametamodels like “fiction” and “nonfiction”
in addition to “correspondence.” Practically speaking, however, you’ll prob-
ably find few areas in life where that level of layering is appropriate.

Q. A couple of times you mentioned “other metamodels.” Is the
Infrastructure Library the foundation of metamodels other than the
UML?

A. Yes. The Infrastructure Library is also the foundation of CWM, a lan-
guage for modeling data warehouses.

Q. That brings up another question. When do you create a profile and when
do you create a new metamodel?

A. Good question. Unfortunately, there aren’t any set rules for deciding.

Q. I understand that MOF is the foundation of UML 2.0. Has the MOF been
the basis for every version of the UML?

A. No it hasn’t. UML 1.x was defined in UML.

Q. Why the change?

A. OMG wanted to align the UML with other OMG efforts, including future
efforts (like upcoming metamodels). Giving them all a common foundation
was a great way to do this.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 247

248 Hour 14

Q. I can see that the UML has a number of rules. Who enforces these rules?

A. As I mentioned before, the UML Police don’t come around and check your
model for correctness. A modeling tool, however, gently helps you stick to
the rules.

Workshop
This workshop firms up your knowledge of the UML’s foundations. Use your
thought processes on the quiz questions and find the answers in Appendix A,
“Quiz Answers.”

Quiz
1. What is a metamodel?

2. What is a classifier?

3. Why is it important to be able to extend the UML?

4. What are the UML’s extension mechanisms?

Exercise
Find online pictures or clip art of devices and use them to refine the deployment
diagrams you saw in Hour 13.

17.067232640X.chap14.qxd 2/20/04 10:36 AM Page 248

HOUR 15

Fitting the UML into a
Development Process

What You’ll Learn in This Hour:
. Why a development process is important
. Why older development methodologies are inappropriate for today’s systems
. The GRAPPLE development process
. How to incorporate the UML into the process

Now that you’ve learned about the UML’s diagrams and structure, it’s almost time
for the rubber to meet the road. The UML is a wonderful tool, but you don’t use it in
isolation. It’s intended to fuel software development. In this hour, you’re going to
learn about development processes and methodologies as a vehicle for understand-
ing the use of the UML in a context.

Imagine this situation: Your organization needs a new computer-based system. New
hardware and software will result in a competitive advantage, and you want that
advantage. Development has to start, and soon.

You’re the one who made the decision to build the new system. You’ve put a develop-
ment team in place, complete with a project manager, modelers, analysts, program-
mers, and system engineers. They’re champing at the bit, anxious to get started.

You are, in other words, a client. What work-products will you expect to see from the
team? How do you want the project manager to report to you? At the end, of course,
you’ll want the system up and running. Before that, you’ll want indications that the
team understands the problem you’re trying to solve and clearly comprehends your
vision of how to solve it. You’ll want a look at their solution-in-progress, and you’ll
want an idea of how far along the team is at any point.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 249

250 Hour 15

These are common concerns for any client and for any system development proj-
ect that involves an appreciable amount of time, money, and personpower.

Methodologies: Old and New
You won’t want the development team to rush off and start coding. After all,
what will they code? The development team has to proceed in a structured,
methodical way. The structure and nature of steps in a development effort are
what I mean by a methodology.

Before they begin programming, the developers have to fully understand the
problem. This requires that someone analyze your needs and requirements. After
that analysis is done, can coding start? No. Someone has to turn the analysis into
a design. Coders then work from the design to produce code, which, after testing
and deployment, becomes a system.

The Old Way
This oversimplified look at a sequence of segments of effort might give you the
idea that the segments should neatly occur in clearly defined chunks of time, one
right after the other. In fact, early development methodologies were structured in
that way. Figure 15.1 shows one way of thinking that was highly influential for a
number of years. Dubbed the waterfall method, it specifies that analysis, design,
coding, and deployment follow one another like activities in an activity diagram:
Only when one is complete can the next one begin.

Analysis

Design

Deployment

Coding

FIGURE 15.1
The waterfall
method of software
development.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 250

Fitting the UML into a Development Process 251

This way of doing things has some ominous overtones. For one thing, it encour-
ages compartmentalization of effort. If an analyst hands off an analysis to a
designer, who hands off a design to a developer, chances are that the three team-
members will rarely work together and share important insights.

Another problem with this method is that it minimizes the impact of understand-
ing gained over the course of a project. (Make no mistake: Understanding evolves
during the life of a project—even after an analysis has turned into a design.) If
the process can’t go back and revisit earlier stages, it’s possible that evolving ideas
will not be utilized. Trying to shoehorn new insights into a project during devel-
opment is difficult at best. Revisiting an analysis and a design—and then incor-
porating an evolved understanding—provides a much better chance of success.

A New Way
In contrast to the waterfall method, contemporary software engineering stresses
continuing interplay among the stages of development. Analysts and designers,
for example, go back and forth to evolve a solid foundation for the programmers.
Programmers, in turn, interact with analysts and designers to share their insights,
modify designs, and strengthen their code.

The advantage is that as understanding grows, the team incorporates new ideas
and builds a stronger system. The downside (if there is one) is that some people
like closure and want to see intermediate stages come to a discrete end.
Sometimes, project managers like to be able to say something to clients like,
“Analysis is complete, and we’re going into design. Two or three days of design,
and we’ll begin coding.”

That mentality is fraught with danger. Setting up artificial barriers between stages
will ultimately result in a system that doesn’t do exactly what a client wants.

The old way fosters another problem: It’s usually the case that adherents of the
waterfall method allot the lion’s share of project time to coding. The net effect of
this is to take valuable time away from analysis and design.

What a Development Process Must Do
In the early years of computer programming, one person could analyze a prob-
lem, come up with a solution, and write a program. In the early years of building
homes (back when the world was flat), one person could build a pretty serviceable
home, too.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 251

252 Hour 15

Today it’s a different story. In order to develop the kinds of complex systems
today’s business world demands, a team approach is necessary. Why? Knowledge
has become so specialized that one person can’t know all the facets of a business,
understand a problem, design a solution, translate that solution into a program,
deploy the executable version onto hardware, and make sure the hardware com-
ponents all work together correctly.

The team has to consist of analysts to communicate with the client and under-
stand his or her problem, designers who construct a solution, programmers who
code the solution, and system engineers who deploy the solution. A development
process has to take all these roles into account, utilize them properly, and allot the
proper amount of time to each stage of the effort. The process must also result in a
number of work-products that indicate progress and form a trail of responsibility.

Finally, the process must ensure that the stages of the effort aren’t discrete.
Instead, feedback must take place among the stages to foster creativity and
increase the ease of building new ideas into the effort. Bottom line: It’s easier to
make a change to the blueprint and then make the change to the house, rather
than change the house while you build the physical structure.

In arriving at a process, the temptation is to construct a set of stages that result in
massive amounts of paperwork. Some commercially available methodologies do
this, leaving project managers to fill out endless forms. The paperwork becomes
an end unto itself.

One reason for this is the erroneous idea that a one-size-fits-all methodology is
possible. Every organization is unique. An organization has its own culture, stan-
dards, history, and people. The development methodology that’s right for a multi-
national conglomerate will probably fail in a small business, and vice versa. In
trying to shoehorn a methodology to fit an organization, the misconception is
that massive paper trails will somehow help.

So here’s the challenge. A development process must

. Ensure that the development team has a firm understanding of the problem
it’s trying to solve

. Allow for a team that consists of an array of roles

. Foster communication among the team members who occupy those roles

. Allow for feedback across stages of the development effort

. Develop work-products that communicate progress to the client, but elimi-
nate superfluous paperwork

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 252

Fitting the UML into a Development Process 253

Oh, by the way, it would be a good idea if the process produces a finished product
within a short timeframe.

Process and Methodology
You’ll notice that I use the words process and methodology interchangeably. Although
it’s possible to find some differences between the two, I’d rather not split hairs. It’s
been my experience that the word methodology has acquired a bad odor in some
organizations. Mixing process into the discussion, I feel, somewhat alleviates the
discomfort.

GRAPPLE
To meet the multifaceted challenge of creating a development process, I present
the Guidelines for Rapid APPLication Engineering (GRAPPLE). The ideas within
GRAPPLE aren’t original. They’re a distillation of the ideas of a number of others.
The Three Amigos created the Rational Unified Process, and prior to that, each
Amigo had his own process. The ideas in those processes are similar to GRAPPLE.
Steve McConnell’s book, Rapid Development (Microsoft Press, 1996), contains a
number of best practices that pertain to . . . well . . . rapid development.

The first word in GRAPPLE’s name, Guidelines, is important: This isn’t a methodol-
ogy written in stone. Instead, it’s a set of adaptable, flexible ideas. Think of it as a
simplified skeleton of a development process. I present it as a vehicle for showing
the UML within a context. With a little tweaking here and there, GRAPPLE can
work in a variety of organizations (but maybe not all). It leaves room for a cre-
ative project manager to add his or her own ideas about what will work in a par-
ticular organization and to subtract the built-in steps that won’t.

A Little Context
Before I discuss GRAPPLE, here’s a question you might be asking: “Why are you
telling me about this in a book about the UML?”

Here’s the answer: If I don’t tell you about a development process and provide a
context for using the UML, all I’ve done is show you how to draw diagrams. The
important thing is to show why and when you’d use each one.

In Part II, “A Case Study,” you’ll go through a test case that applies GRAPPLE and
the UML.

By the
Way

By the
Way

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 253

254 Hour 15

RAD3: The Structure of GRAPPLE
GRAPPLE consists of five segments. I use segments rather than stages to get away
from the idea that one “stage” has to be complete before the next one starts. (I
resisted the temptation to call them pieces. “Five easy pieces” was just too cute.)
Each segment, in turn, consists of a number of actions. Each action produces a
work-product, and each action is the responsibility of a particular player.

In many cases, the project manager can combine the work-products into a report
that he or she presents to the client. The work-products, in effect, serve the same
purpose as a paper trail without bogging down the project in paperwork.

To adapt GRAPPLE, a project manager could add actions to each segment.
Another possibility is to drill down a level deeper and subdivide each action into
subactions. Still another possibility is to reorder the actions within each segment.
The needs of an organization will dictate the course to follow.

GRAPPLE is intended for object-oriented systems. Thus the actions within each
segment are geared toward producing work-products of an object-oriented nature.

The segments are

1. Requirements gathering

2. Analysis

3. Design

4. Development

5. Deployment

This acronymizes nicely to RADDD, or RAD3. After the third segment, the project
manager combines the work-products into a design document to give to the client
and the developers. When all the RAD3 segments are complete, all the work-products
combine to form a document that defines the system.

Before all these segments start, you assume the client has made a business case
for the new system. You also assume the members of the development team, par-
ticularly analysts, have read as much relevant documentation as possible.

Let’s examine each segment more closely, with an eye toward showing the parts
of the UML that fit into each one.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 254

Fitting the UML into a Development Process 255

Requirements Gathering
If you were to try and assign a relative importance to each segment, this one is a
good candidate for numero uno. If you don’t understand what the client wants,
you’ll never build the right system. All the use case analysis in the world won’t
help if you don’t understand the essentials of the client’s domain and the problem
he or she wants you to solve.

Discover Business Processes
It’s a good idea to begin the development effort by gaining an understanding of
the client’s business processes, specifically the one(s) you’re trying to enhance
with the proposed system. To gain this understanding, an analyst typically inter-
views the client or a knowledgeable client-designated person and asks the inter-
viewee to go through the relevant process(es) step-by-step.

An important outcome is that the analyst gains a working vocabulary in a subset
of the client’s terminology. The analyst uses this vocabulary when interviewing
the client in the next action.

The work-product for this action is an activity diagram or a set of activity dia-
grams that captures the steps and decision points in the business process(es).

Perform Domain Analysis
This action is like the example of the conversation with the basketball coach from
Hour 3, “Working with Object-Orientation.” It can take place during the same
session as the preceding action. The objective is to gain as solid an understanding
as possible of the client’s domain. Note that this action and the preceding one are
about concepts; they’re not about the system you’re going to build. The analyst
has to get comfortable in the client’s world, as he or she will ultimately be the
client’s emissary to the development team.

The analyst interviews the client with the goal of understanding the major enti-
ties in the client’s domain. During the conversation between the client and the
analyst, another team member takes notes (optimally, on a laptop computer
equipped with a word processing package), and an object modeler constructs a
high-level class diagram. If you can have more than one team member take
notes, by all means do so.

The object modeler listens for nouns and starts by making each noun a class.
Ultimately, some nouns will become attributes. The object modeler also listens for
verbs, which will become operations of the classes. At this point, a computer-
based modeling tool becomes extremely valuable.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 255

256 Hour 15

The work-product is a high-level class diagram and a set of meeting notes.

To Tape or Not to Tape?
Should you tape these interviews or should you just rely on your meeting notes?
This is a question that crops up frequently. When you tape an interview, the tempta-
tion is to not listen as closely or not take notes as rigorously. (After all, you can
always listen to the tape later.) If you do decide to tape, my advice is to forget the
tape recorder, and take notes as though the recorder weren’t there.

Tape recording can be a useful tool when you’re training a new object modeler. An
experienced modeler can compare the new modeler’s diagrams with the taped dis-
cussion and check for completeness.

Identify Cooperating Systems
Seventeenth-century poet John Donne wrote, “No man is an island, entire of
itself.” If he were writing today, it would have been “No person is a land-mass
surrounded entirely by water, entire of him- or herself.” He might also have writ-
ten “No system is an island . . . ,” and so on.

Donne would have been right on all counts. Today’s business systems don’t typi-
cally emerge in vacuums. They have to work with others. Early in the process, the
development team finds out exactly which systems the new system will depend
on and which systems will depend on it. A system engineer takes care of this
action, and produces a deployment diagram as the work-product. The diagram
shows the systems as nodes, with lines of internode communication, resident com-
ponents, and intercomponent dependencies.

Discover System Requirements
This one is extremely important. You might have guessed that because it has
requirements in its name. In this action, the team goes through its first Joint
Application Development (JAD) session. Several more occur throughout the
course of GRAPPLE.

A JAD session brings together decision-makers from the client’s organization, poten-
tial users, and the members of the development team. A facilitator moderates the
session. The facilitator’s job is to elicit from the decision-makers and the users what
they want the system to do. At least two team members should be taking notes, and
the object modeler should be refining the class diagram derived earlier.

The work-product is a package diagram. Each package represents a high-level
area of system functionality (for example, “Assist with customer service”). Each

By the
Way

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 256

Fitting the UML into a Development Process 257

package groups a set of use cases (for example, “Retrieve customer history” and
“Interact with customer”).

The complexity of the system determines the length of the session. It’s almost
never less than half a working day, and it can last as long as a full workweek.
The client’s organization has to make a commitment to invest the necessary time.

Why use a JAD session to develop the system requirements? Why not interview
each individual? As you’ll recall, I said the last part of the challenge for a devel-
opment process is to turn out a system in a short timeframe. Individual inter-
views can take weeks or even longer, if people’s schedules conflict. Waiting for
individual interview results eats up time and, with it, the potential competitive
advantage of quickly completing the system. Individual interviews will probably
contain conflicting views, and more time gets wasted as the team tries to resolve
the conflicts. Grouping everyone together creates a whole that exceeds the sum
of the parts, and the interplay among JAD participants results in a symbiosis
that’s beneficial for everybody.

Present Results to Client
When the team finishes all the Requirements actions, the project manager pres-
ents the results to the client. Some organizations might require the client’s
approval at this point in order for development to proceed. Other organizations
might require a cost estimate based on the results. The work-product, then, will
vary according to the organization.

Analysis
In this segment, the team drills down into the results of the Requirements seg-
ment and increases its understanding of the problem. In fact, parts of this
segment begin during the Requirements segment, as the object modeler begins
refining the class diagram during the Requirements JAD session.

Understand System Usage
This action is a high-level use case analysis. In a JAD session with potential users,
the development team works with the users to discover the actors who initiate each
use case from the Requirements JAD session, and the actors who benefit from those
use cases. (An actor, remember, can be a system as well as a person.) A facilitator
moderates the session, and two team members take notes. After a few projects, the
facilitator for this session will likely evolve into a use case analyst.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 257

258 Hour 15

The team also tries to develop new use cases. The work-product is a set of use case
diagrams that shows actors and any stereotyped dependencies («extends» and
«includes») between use cases.

Flesh Out Use Cases
In this action, the development team continues its work with the users. The objec-
tive is to analyze the sequence of steps in each use case. This JAD session can be a
continuation of the previous JAD session. Beware: This is usually the most diffi-
cult JAD session for the users. They’re probably not accustomed to breaking down
an operation into constituent steps and exhaustively enumerating all those steps.
The work-product is a text description of the steps in each use case.

Refine Class Diagrams
During the JAD sessions, the object modeler listens to all the discussions and con-
tinues to refine the class diagram. At this point, the object modeler should be fill-
ing in the names of associations, abstract classes, multiplicities, generalizations,
and aggregations. The work-product is a refined class diagram.

Analyze Changes of State in Objects
The object modeler further refines the model by showing changes of state wherev-
er necessary. The work-product is a state diagram.

Define Interactions Among Objects
Now that the team has a set of use case diagrams and a refined class diagram, it’s
time to define how the objects interact. The object modeler develops a set of
sequence diagrams and collaboration diagrams to depict the interaction. State
changes should be included. These diagrams form the work-product for this action.

Analyze Integration with Cooperating Systems
Proceeding in parallel with all the preceding steps, the system engineer uncovers
specific details of the integration with the cooperating systems. What type of com-
munication is involved? What is the network architecture? If the system has to
access databases, a database analyst determines the architecture (physical and
logical) of those databases. The work-products are detailed deployment diagrams
and (if necessary) data models.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 258

Fitting the UML into a Development Process 259

Design
In this segment, the team works with the results of the Analysis segment to design
the solution. Design and Analysis should go back and forth until the design is com-
plete. Some methodologies, in fact, combine Analysis and Design into one stage.

Develop and Refine Object Diagrams
Programmers take the class diagram and generate any necessary object dia-
grams. They flesh out the object diagrams by examining each operation and
developing a corresponding activity diagram. The activity diagrams will serve as
the basis for much of the coding in the Development segment. The work-products
are the object diagrams and the activity diagrams.

Develop Component Diagrams
Programmers play a major role in this action. The task here is to visualize the
components that will result from the next segment and show the dependencies
among them. The component diagrams are the work-product.

Plan for Deployment
When the component diagram is complete, the system engineer begins planning
for deployment and for integration with cooperating systems. He or she creates a
deployment diagram that shows where the components will reside. The work-
product is a diagram that’s part of the deployment diagram developed earlier.

Design and Prototype User Interface
This involves another JAD session with the users. Although this is part of Design,
this session can be a continuation of the prior JAD sessions with users—an indica-
tion of the interplay between Analysis and Design.

The user interface should allow for completion of all use cases. In order to per-
form this action, a GUI analyst works with the users to develop paper prototypes
of screens that correspond to groups of use cases. The users position post-it notes
that represent screen components (pushbuttons, check boxes, drop-down lists,
menus, and so on). When the users are satisfied with the positioning of the com-
ponents, developers build screen prototypes for the users’ approval. The work-
products are screen shots of the screen prototypes.

Design Tests
Use cases enable the design of tests for the software. The objective is to assess
whether or not the developed software performs as it’s supposed to—that is, it

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 259

260 Hour 15

does what the use cases specify. Preferably, a developer or test specialist from out-
side the development team uses the use case diagrams to develop test scripts for
automated test tools. The test scripts constitute the work-product.

Begin Documentation
It’s never too early to begin documenting the system for the end-users and for sys-
tem administrators. Documentation specialists work with the designers to begin
storyboarding the documentation and arriving at a high-level structure for each
document. The document structure is the work-product.

Development
Here’s where the programmers take over. With enough analysis and design, this
segment should go quickly and smoothly.

Construct Code
With the class diagrams, object diagrams, activity diagrams, and component dia-
grams in hand, the programmers construct the code for the system. The code is
the work-product from this action.

Test Code
Test specialists (not the developers) run the test scripts to assess whether or not the
code is doing what it should. The test results are the work-products. This action
feeds back into the preceding action and vice versa, until the code passes all lev-
els of testing.

Construct User Interfaces, Connect to Code, and Test
This action draws on the user-approved prototype user interfaces. The GUI spe-
cialist constructs them and connects them to the code. Further testing ensures that
the interfaces work properly. The functioning system, complete with user inter-
faces, is the work-product.

Complete Documentation
During the Development segment, the documentation specialist works in parallel
with the programmers to ensure timely delivery of all documentation. The docu-
mentation is the work-product for this action.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 260

Fitting the UML into a Development Process 261

Deployment
When development is complete, the system is deployed on the appropriate hard-
ware and integrated with the cooperating systems. The first action in this seg-
ment, however, can start long before the Development segment begins.

Plan for Backup and Recovery
The system engineer creates a plan for steps to follow in case the system crashes.
The plan, the work-product for this action, specifies what to do to back up the sys-
tem and to recover from the crash.

Install Finished System on Appropriate Hardware
The system engineer, with any necessary help from the programmers, deploys the
finished system on the appropriate computer(s). The work-product is the fully
deployed system.

Test Installed System
Finally, the development team tests the installed system. Does it perform as it’s
supposed to? Does the backup and recovery plan work? Results of these tests
determine whether further refinement is necessary, and the test results make up
the work-product.

Celebrate
Self-explanatory. The team invents ad hoc work-products for this action.

The GRAPPLE Wrap-up
If you step back and look at the segments and actions in GRAPPLE, you’ll see that
the movement is from general to specific—from the unrefined to the refined. It
begins with a conceptual understanding of the domain, moves to high-level func-
tionality, drills down into use cases, refines models, and designs, develops, and
deploys the system.

You’ll also notice that more actions were in the Analysis and Design segments
than in the Development segment. This is, pardon the pun, by design. The idea is
to spend as much time as you can in up-front analysis and design so that coding
proceeds smoothly. It might seem like heresy, but in the ideal world, coding is just
one small part of system development. The more you analyze, the closer you
come to the ideal.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 261

262 Hour 15

GRAPPLE, as I said, is a simplified skeleton of a development process. I didn’t
touch on the details of important issues like levels of testing. I also left out some
important nuts and bolts: Where and how does the team maintain the work-
products-in-progress? How does the team handle the all-important issue of config-
uration management?

I didn’t address these topics because they’re tangential to our discussion of the
UML. The short answer for these nuts-and-bolts issues is to embrace the tech-
nology. Work-products (finished or in-progress) can reside in a repository that
lives on the organization’s LAN. One option is to have a hierarchy of directories
that the team members can access. A safer option is to install a centralized repos-
itory package that tracks checkout and check-in of work-products and permits
only one person at a time to check out an editable copy of an item. This is the
foundation of a solution for configuration management. Repository technology is
advancing steadily, and several choices are available.

The next hour begins Part II, a case study that applies the UML and GRAPPLE.

Summary
A development methodology structures the segments and activities in a system
development project. Without a methodology, chaos would reign, developers
wouldn’t understand the problem they were trying to solve, and systems wouldn’t
meet the needs of their users. Early methodologies forced a “waterfall” sequence
of analyze, design, code, and deploy.

This kind of sequential methodology can compartmentalize development, so that
a development team might not take advantage of the increased understanding
that results during the life of a project. It also typically allots the major share of
project time to coding and thus takes valuable time away from analysis and
design.

This hour presented GRAPPLE (Guidelines for Rapid APPLication Engineering), a
skeleton development process. GRAPPLE consists of five segments: Requirements
gathering, Analysis, Design, Development, and Deployment. Each segment con-
sists of a number of actions, and each action results in a work-product. UML dia-
grams are work-products for many of the actions.

Part II applies GRAPPLE and the UML to a case study.

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 262

Fitting the UML into a Development Process 263

Q&A
Q. Is the waterfall method ever appropriate?

A. If the scope of the proposed system is very small (admittedly, a subjective
call), you might get away with a sequential methodology. For modern
object-oriented system development, however, a methodology that encour-
ages the continuing interplay among segments of development is likely to
produce a better result.

Q. In the preceding answer, you mention object-oriented system development.
Suppose the proposed system isn’t object-oriented?

A. Even with non–object-oriented systems (as in the case of many mainframe-
based projects), the ideas you learned in this hour are appropriate. JAD sessions,
up-front analysis and design, and interplay among development segments will
still work. You would have to adapt GRAPPLE (for instance, by eliminating
classes and class modeling), but that’s the idea: It’s a set of flexible guidelines
rather than a methodology written in stone.

Workshop
Now that you know about methodologies, test your knowledge with these quiz
questions. Appendix A, “Quiz Answers,” supplies the answers.

Quiz
1. What are some typical concerns of a client?

2. What is meant by a development methodology?

3. What is the waterfall method? What are its weaknesses?

4. What are the segments of GRAPPLE?

5. What is a JAD session?

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 263

18.067232640X.chap15.qxd 2/20/04 10:19 AM Page 264

PART II

A Case Study

HOUR 16 Introducing the Case Study 267

HOUR 17 Performing a Domain Analysis 285

HOUR 18 Gathering System Requirements 307

HOUR 19 Developing the Use Cases 325

HOUR 20 Getting into Interactions and States Charges 339

HOUR 21 Desinging Look, Feel, and Deployment 351

HOUR 22 Understanding Design Patterns 367

19.067232640X.PartII.qxd 2/20/04 10:43 AM Page 265

19.067232640X.PartII.qxd 2/20/04 10:43 AM Page 266

HOUR 16

Introducing the Case Study

What You’ll Learn in This Hour:
. The scenario for the case study
. Discovering and modeling business processes
. Tips on interviewing

Now that you’ve had some UML experience and exposure to a skeleton development
methodology, you’re going to see how the UML is applied in a development effort.
This hour begins Part II, a case study that applies the UML in the context of the
GRAPPLE process.

Getting Down to Business
The noted multinational (and fictional) conglomerate LaHudra, Nar, and Goniff,
Inc. has surveyed the world of restaurants and come to some startling conclusions:
People like to eat out, but they don’t enjoy some parts of the experience.

“You know,” said LaHudra, “I could have predicted the results from our survey.
When I go out to eat, I hate it when I give the waiter my order and he disappears for
an hour. Go out to a classy place, and you expect better treatment than that.”

“That’s true,” said Nar. “Sometimes I change my mind after I order and I want to get
a hold of the waiter. Or I have a question . . . or something . . . and I can’t find the
guy.”

Goniff chimed in: “I agree. But still, the dining-out experience is a lot of fun. I like it
when someone waits on me. I like the idea of a kitchen staff preparing a meal for
me. Our survey results show that most people feel that way, too.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 267

268 Hour 16

“Isn’t there some way we can retain the essential experience but enhance it some-
how?”

“How?” asked Nar.

“I know how!” said LaHudra. “With technology.”

And that’s when they decided to have one of their corporate software develop-
ment teams build the restaurant of the future.

GRAPPLEing with the Problem
The development team members are all strong proponents of GRAPPLE. They
understand that most of the project time will be devoted to analysis and design.
That way, coding will take place quickly and efficiently, and the likelihood of a
smooth installation and deployment will increase.

The effort has to start with requirements gathering and with an understanding of
the restaurant domain. As you’ll recall from the last hour, the requirements-gathering
segment consists of these actions:

. Discovering business processes

. Performing domain analysis

. Identifying cooperating systems

. Discovering system requirements

. Presenting results to client

In this hour, you’ll cover the first action.

Discovering Business Processes
LaHudra, Nar, and Goniff don’t do anything in a small way. They’re ready to
take on the world of restaurants, and they’ve put together a new LNG Restaurants
Division. They’ve hired a number of experienced restaurateurs, waiters, chefs, and
maintenance people.

All they’re waiting for is the technological backbone for the restaurant of the
future. Then they’ll launch their first restaurant, complete with the technology to
increase the pleasure of dining out.

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 268

Introducing the Case Study 269

The development team members are lucky. They’re starting with a blank piece of
paper. All they have to do is understand the business processes and the domain,
and then they’re on their way.

The business process analysis starts with an analyst interviewing a restaurateur.
During the interview, a note-taker is sitting by, typing away at a laptop. At the
same time, a modeler is working at a whiteboard, drawing and modifying an
activity diagram that the analyst, the note-taker, and the restaurateur can all see.

In the subsections that follow, we’ll go through an interview for each business
process in a restaurant. The goal is to produce activity diagrams that model the
processes.

Serving a Customer
“Thanks for taking the time to do this,” said the analyst.

“My pleasure,” said the restaurateur. “What exactly do you want to know?”

“Let’s start with a single business transaction. What happens when a customer
walks into a restaurant?”

“It works like this: If the customer has a coat on, we help him or her take it off
and store it in our cloakroom, and then we give the customer a coat-check ticket.
We can do that for a hat, too. Then we . . .”

“Just a second. Let’s backtrack. Suppose there’s a waiting line. Do they get in line
first, or leave their name up front, or . . .”

“No. We try to make them feel as comfortable as possible right off the bat. Then
we worry about lines, if there are any. If, in fact, there’s a waiting list, we ask the
customer whether or not they made a reservation. We always try to honor those
in a timely way and seat people with reservations as quickly as possible. If there’s
no reservation, they leave their name and then they have the option of going to
our cocktail lounge and having a drink before dinner. They don’t have to do that,
of course. They can sit and wait in a well-appointed waiting area.”

“Interesting. They haven’t even sat down yet to order a meal, and several decision
points have already been reached.”

Let’s stop for a moment and take stock of where we are. The activity diagram of
the business process now looks something like Figure 16.1.

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 269

270 Hour 16

Back to the interview.

The analyst’s job is to proceed with the business process.

“Okay. After the waiting-list customer’s turn comes up, or the reservation cus-
tomer has arrived, it’s time to seat that customer, right?”

“Right. But, now that I think of it, it’s not quite that simple. The table has to be
ready. It has to be clean, of course, so a busser gets rid of the tablecloth from the
previous customer and sets the table. When it’s ready, the maitre d’ walks the cus-
tomer to the table and calls for a waiter.”

“‘Calls for’?”

Tip 1: Pursue Definitions
Notice what the analyst does here. The restaurateur has used a new term (“new”
within the context of the interview), and the analyst pursues the definition.

Knowing when and how to do this is part of the art of interviewing, and experience
is the best teacher.

“Yes. That’s not too involved because waiters have their designated serving areas,
and they generally know when a table is ready. They sort of hover in the area, and
they usually see the maitre d’ gesturing for them.”

“What happens next?”

“Well, the waiter takes over from here. He shows each diner a menu, and he asks
them whether they want to order drinks while they decide. Then he calls over an

Customer walks in

Wait in Lounge

Leave name

Help off with coat
[Has coat and/or hat]

[Waiting List]

[No Reservation]

[Prefers Lounge]

[Prefers Waiting Area]

Check coat and/or hat

Wait in Waiting Area

FIGURE 16.1
The beginning
stages of the
activity diagram for
the restaurant
business process
“Serving a
customer.”

By the
Way

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 270

Introducing the Case Study 271

assistant who brings a tray of bread and butter and pours a glass of water for
each person in the party. If someone orders a drink, the waiter goes and gets it.”

“Just a second. You said ‘he.’ Is the person who waits on tables always a man?”

“No. I just say that out of force of habit. Sorry.”

“Okay. How about if we use the neutral term ‘server’? I also notice that the cus-
tomer has a couple of opportunities to order a drink.”

“That’s true. If a customer is waiting for a table and they’re in the lounge with a
drink, they can bring the drink to the table if they haven’t finished it by the time
the table is ready. By the way, we always reserve the right to refuse service to
someone who’s obviously had one too many.”

Tip 2: Detect Business Logic
The interviewer isn’t just a passive listener after asking a question. Here, the analyst
has put together a common theme from some earlier answers and asked a question
based on something cropping up a few times (the opportunity to order a drink).

The answer contains a piece of business logic, a rule that the business follows in a
particular situation. In this case, the business logic pertains to refusing service to
an inebriated customer.

“Glad to hear it. We’re back at the table with the diners deciding on a menu choice.”

“Yes. We always have some daily specials that aren’t on the menu, and the waiter . . .
uh, server . . . recites those to the customers.”

“You know what I’ve noticed happens a lot? People ask the server what they rec-
ommend, and the servers usually seem pretty honest—they’ll tell you if one dish
is better than another. Is that something you encourage?”

“Yes, I do. Certainly our servers eat at our restaurant, and they have their opinions
on what they like and don’t like. If they really, really don’t like a particular dish,
we want them to tell the chef before they tell the customer, but I don’t mind if they
express a preference. Of course, we don’t want our servers telling the customers the
food stinks, but expressing a preference for one dish over another is okay.”

“Understood. All right, let’s summarize. The customer and . . . Well, it’s actually a
party isn’t it? . . . The party leaves their coats, possibly sits in the lounge if they’re
waiting for a table, gets seated, possibly orders drinks, gets served bread and
water, and looks at the menu.”

By the
Way

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 271

272 Hour 16

Tip 3: Stop and Summarize
It’s a good idea to stop and summarize from time to time. It helps you check your
understanding, gives you the opportunity to use the domain’s terminology, and usually
gives the interviewee a comfort level that you’ve been listening intently to him or her.

“Right. The server comes back with any drinks, and the customers drink while they
read the menu. The server allows them five to ten minutes to make a selection and
then comes back. The server comes back sooner, of course, if they’ve made up their
minds sooner.”

“How does the server know to come back sooner?”

“Well, they have to somehow get his attention. The server’s usually in the area of
the table, unless he’s back in the kitchen getting an order or talking with the
chefs for some reason.”

“Area?”

“Yes. Each server is assigned an area that consists of a number of tables. One
area is designated as the smoking area, the rest are for non-smokers.”

“How do you determine who serves in what area?”

“We rotate the servers through all the different areas.”

“Let’s get back to the serving process. The diners make their selections, the server
writes them down, and then . . .”

“And then notifies the chef. The server does that by writing the selection on a
form he gives the chef.”

“What’s on the form?”

“The table, the selection, and—this is extremely important—the time.”

“Why is that so important?”

“Because the kitchen is usually (we hope) a very busy place, and the chef often
has to prioritize his efforts in terms of the time an order arrives.”

“Can that get complicated?”

“Actually, it gets a little more complicated down the line.”

“How so?”

“Most meals consist of an appetizer before the main course. Most people like to
have the main course hot. So the chef prepares the appetizers—many are already

By the
Way

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 272

Introducing the Case Study 273

made, like some of the salads—and the server brings them out to the party. The
challenge is to bring out the main course for everyone in the party at the same
time and have it hot. I say ‘challenge’ because people at the table typically finish
their appetizers at different times. The whole thing has to be coordinated.”

“Hmmm . . . This sounds like a separate process. Let’s have it be a whole different
discussion—from the chef’s point of view.”

“Okay. That sounds like a good idea.”

“We’re at the point where the chef is cooking the main course. By the way, how
does our diagram look to you?” (See Figure 16.2.)

Customer walks in

Seat Customer

Call for Server

Call for assistant

Take drink order

Get drink

Recite Specials Read Menu Make selection Notify chef

Prepare mealBring appetizer

Bring drink

Show Menu

Serve bread and water

Get Table Ready

Wait in Lounge

Leave name

Help off with coat
[Has coat and/or hat]

[Waiting List]
[No Reservation]

[Prefers Lounge]

[Wants Drink]

[Prefers Waiting Area]

Check coat and/or hat

Wait in Waiting Area

Modeled in a
separate diagram
(Figure 16.5)

FIGURE 16.2
The intermediate
stages of the
activity diagram
for the restaurant
business process
“Serving a
customer.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 273

274 Hour 16

“I think you’ve got it. Anyway, the chef cooks the main course, and the server
picks it up when the people in the party are finished with their appetizers. The
server brings it to the table. The people eat their meals, and the server comes over
at least once to check on things.”

Tip 4: Discuss Complex Processes Separately
The analyst has made an important decision—to put off the discussion of a
sequence that will probably turn out to be a separate process. Recognizing when to
do this comes with experience.

A good rule of thumb is, if the interviewee uses words such as complex and complicated,
or answers “yes” when you ask whether something’s about to get complicated, you’re
probably facing a set of steps that will require its own model. Let the interviewee talk a
bit before you make the decision on this.

“Suppose a customer isn’t satisfied with something about the meal?”

“Then we do our best to make sure they are, even if it costs us some money. It’s
better to lose a little money than to lose a customer.”

“Nice concept.”

“Thanks. When the diners finish their meals, the server comes by and asks whether
they want dessert. If they do, the server provides a dessert menu and takes their
orders. If not, he asks if they want coffee. If they do, the server brings coffee and cups,
and pours it for them. If they don’t want anything, the server brings the check. After a
few minutes, he comes by and collects cash and/or credit cards. He brings change
and/or credit card receipts, the customers leave a tip, pick up their coats, and leave.”

“Is that it?”

“Not quite. The server calls a busser over to clean the table, set it, and get it ready
for the next party.”

“Since that doesn’t involve the customer, I’m going to consider that a separate
process, albeit a brief one. I wanted to ask you a couple of questions. First, how
does the server know when the people are finished?”

“He stays in his area and glances over at each table. With experience, he knows
about how long it takes to eat a meal, so he can anticipate when to be near the
table. You have another question?”

“Yes. Earlier you said the server might be back in the kitchen talking to the chef
for some reason. Why does that happen?”

By the
Way

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 274

Introducing the Case Study 275

“Sometimes a customer wants to know how long it will be before the meal comes
out. In cases like that, the customer summons the server, who goes back and asks
the chef. When he finds out, he comes back and tells the customer.”

“You know, I never realized all the things that go into serving a customer in a restaurant.”

“Funny you should say that. Until you asked me to spell out all the steps, I never
thought that much about it. I think your diagram captures everything I said, and
it’s a useful picture for clarifying my own thinking.” (See Figure 16.3.)

Customer walks in

Seat Customer

Call for Server

Call for assistant

Take drink order

Get drink

Recite Specials

Eat appetizer

Eat main course

Read Menu

Bring check

Make selection Notify chef

Prepare main courseBring appetizer

Bring dessert

Eat dessert

Leave

Bring main course

Bring dessert menu
Take selection

Retrieve coat
and/or hat

Settle check
Leave tip

Pour coffee

Drink coffee

Pour coffee

Bring drink

Show Menu

Serve bread and water

Get Table Ready

Wait in Lounge

Leave name

Help off with coat
[Has coat and/or hat]

[Waiting List]
[No Reservation]

[Prefers Lounge]

[Wants Drink]

[Prefers Waiting Area]

Check coat and/or hat

Wait in Waiting Area

[Wants dessert]

[Coat/Hat Checked]

[Wants coffee]
[Wants coffee]

Modeled in a
separate diagram
(Figure 16.5)

FIGURE 16.3
The full activity
diagram for the
restaurant
business process
“Serving a
customer.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 275

276 Hour 16

As you learned in Hour 11, “Working with Activity Diagrams,” you can turn an
activity diagram into a swimlane diagram. When you model a business process,
this is a good thing to do because the swimlane diagram shows how each role fig-
ures into the process. Figure 16.4 is a swimlane diagram for the business process
“Serving a customer.”

Walk in

Call for server

Help off w/ coat

Check coat/hat

Leave name

Wait in lounge

Seat Customer

Get table ready

Show menu

Get drink

Bring drink

Take drink order

Call for assistant

Serve bread
and water

Wait in
waiting area

Maitre d' Server Chef Assistant Busser

[Wants Drink]

Continue

Customer

[Has Hat/Coat]

[No Waiting List]
[Reservation]

[Prefers Lounge]

FIGURE 16.4
A swimlane
diagram for
“Serving a
customer.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 276

Introducing the Case Study 277

Read menu

Make selection

Eat appetizer

Eat main course

Drink coffee

Leave

Retrieve coat/hat

Continue

Notify Chef

Pour coffee

Pour coffee

Bring dessert

Bring check

Bring main course

Customer Maitre d' Server Chef Assistant Busser

Modeled in a
separate diagram

(Figure 16.5)

[Wants Dessert]

[Wants Coffee]

[Wants Coffee]

[Coat/Hat Checked]

Prepare main course

Settle check, leave tip

Bring dessert menu
Take selection

Bring appetizer

Recite specials

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 277

278 Hour 16

Preparing the Meal
Remember that first separate business process the interview revealed? Let’s rejoin
the analyst and the restaurateur and explore the process of “Preparing the meal.”

“When we were talking before,” said the analyst, “you mentioned that most
meals provide an appetizer before the main course, and that most people prefer
the main course hot. You mentioned the challenge of bringing out the main
course for everyone in a party at the same time and still having it hot, and you
mentioned the importance of coordination. Could you elaborate?”

“Certainly,” said the restaurateur. “People in a party almost always finish their
appetizers or salads or soups at different times. We have to coordinate to bring
out hot main courses to everyone. The coordination takes place between the server
and the chef. The chef receives the order from the server and starts preparing the
appetizers and cooking the main course. When the appetizers are finished, the
server comes back to the kitchen, gets the main courses, and brings them out to
the table.”

“And the server knows the appetizers are done because . . . ?”

“Because he checks the kitchen from time to time. Now, here’s where the coordi-
nation comes in: The chef, after giving the appetizer to the server, relies on the
server to let him know when everyone in the party is almost finished with their
appetizers before he puts the final touches on the main course. The server stays in
his or her designated area and keeps an eye on the table. At the appropriate
time, the server goes back to the kitchen, tells the chef the party is just about
ready for the main course, and the chef finishes preparing it. A skillful chef, work-
ing with a group of assistants, balances the meal preparation for a number of
parties at once. The goal is to have the main course ready as soon as everyone in
the party is ready for it.”

“Does it always happen exactly on time?”

“No, not always. But with a little experience and common sense, you get it right
more often than not. What sometimes happens is that one slow eater in a group
isn’t quite ready when we bring out the main course, but that’s a minor glitch.”

“Got it. What do you think of our diagram for this process?” (See Figure 16.5.)

As was the case with the previous business process, a swimlane diagram is appro-
priate, as Figure 16.6 shows.

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 278

Introducing the Case Study 279

Cleaning the Table
“Let’s get back to that other separate process—the one where the busser cleans the
table,” said the analyst.

“That one involves a little coordination, too. The server first makes sure everyone
has left and then calls for the busser to come and take care of the table. On a
busy night, this has to happen quickly. We don’t have as many bussers as we
have servers, so sometimes this is a haphazard process. The bussers aren’t always
nearby, so the server might have to hunt for one.”

Receive order

Bring appetizers

Eat appetizers

Prepare appetizers Start preparing main course

Finish preparing main course

Get main course

Bring main course

Balance preparation of
other orders

Receive notification
appetizers almost finished

FIGURE 16.5
An activity diagram
for “Preparing a
meal.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 279

280 Hour 16

“I think I know what you mean by ‘take care of the table,’ but how about getting
a little more specific?”

“Sure. In the restaurants I run, we have a new tablecloth for every party. So the
busser has to remove the used tablecloth, bundle it up, and bring a fresh set of sil-
verware and cloth napkins to the table. He folds the napkins and arranges the sil-
verware and a plate for each position at the table. Then he brings the bundled-up
tablecloth to a room in back of the kitchen. We pack them up and send them to
the laundry the next day.”

Figure 16.7 shows the activity diagram for this process.

Receive order

Bring appetizers

Eat appetizers

Prepare appetizers

Get main course

Bring main course

Start preparing
main course

Finish preparing
main course

Receive notification
appetizers almost finished

Balance preparation
of other orders

Customer Server Chef Assistant

FIGURE 16.6
A swimlane
diagram for
“Preparing a meal.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 280

Introducing the Case Study 281

Lessons Learned
If you’re an aspiring analyst, remember these lessons from this “interview”:

. It’s good to stop and summarize from time to time to test your understand-
ing, practice with the terminology, and make the interviewee comfortable.

. Always get the interviewee to explain any terminology that you think is unfa-
miliar. Don’t worry about looking unknowledgeable. The reason you’re there
is to acquire knowledge and learn the terminology. After all, you’re going to
have to use the new vocabulary when you get into the domain analysis.

. Every so often, you’ll be able to ask a question based on a theme you dis-
cern in the answers to some preceding questions. Keep your mind and ears
open for opportunities to ask questions like this. Business logic often
emerges in the answers.

. Take note when rules of business logic come out. Maintain a record of these
rules. They’ll probably come in handy later. (You never know—someday you
might want to build an automated decision tool that relies on these rules.)
Of course, a running record should appear in the meeting notes.

. If you sense part of the process becoming complicated and convoluted, con-
sider setting off the complication as a separate business process. It will be

Called by server

Remove tablecloth

Put new tablecloth on table

Pack old tablecloth for laundry

Set table

FIGURE 16.7
An activity diagram
for “Servicing a
table.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 281

282 Hour 16

easier to model, and the resulting model will be clearer than if you try to
lump everything together into one process.

. Get the interviewee’s feedback on the activity diagram. Make any modifica-
tions that he or she suggests.

You’ve been through a lot in this hour, and you got a look at some valuable tech-
niques. As you gain experience, you’ll come up with some techniques of your
own.

In the next hour, you’ll learn about domain analysis.

Summary
This hour introduced the scenario for a case study that applies the UML in a
development effort. In the scenario, the fictional conglomerate LaHudra, Nar, and
Goniff decides to incorporate computer technology into the restaurant of the
future. As an analyst, your job is to understand the business processes involved,
understand the domain, and gather the requirements—actions in the first seg-
ment of GRAPPLE.

The newly created LNG Restaurants Division supplies you with the domain
experts you’ll require to understand the business processes.

The content of this hour was largely devoted to the dialog in an interview and
how that might proceed. Interspersed notes provided hints about how to conduct
the interview. The objective was to show you how to map the interview results
into a UML model.

In the next hour, you’ll learn about analyzing a domain.

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 282

Introducing the Case Study 283

Q&A
Q. Is it always the case that the actions within a segment proceed in the

order that you listed them?

A. No. Sometimes it might make sense to go in a different order. For example,
you might want to discover system requirements before you identify cooper-
ating systems. Also, bear in mind that some actions might not even be nec-
essary for some projects, and some actions can take place in conjunction
with others. The G in GRAPPLE means Guidelines. It doesn’t stand for “Gee, I
always have to do it exactly like this.”

Q. Is it necessary to have a single interviewer for finding out the business
processes from a client or an expert? Will two work better than one?

A. Usually it’s a good idea to have one person at a time talk to the expert, so
that he or she doesn’t feel confronted by an inquisition. You might consider
changing interviewers halfway through a session. The second interviewer
might have originally been one of the note-takers and can switch roles with
the first interviewer.

Q. Are there any special considerations for interview notes?

A. Make sure you have the date, time, place, and participants carefully listed
at the beginning. You never know when you’ll need that information, and
you don’t want to have to rely on memory for it. Also, try to capture as
much as you possibly can within the notes. It’s almost like being a court ste-
nographer. If you try to outline as you go along, you’re going to miss some-
thing.

Q. Won’t you miss something if you try to get everything?

A. Absolutely—which is why you’re better off with more than one note-taker.
One is sure to pick up what another one misses. Remember, the notes you
take will be part of a document you give to the client. The more complete
the notes, the easier to trace the evolution of an idea.

Workshop
To really get the hang of all this, follow along with the quiz questions and exer-
cises. The answers are in Appendix A, “Quiz Answers.”

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 283

284 Hour 16

Quiz
1. Which UML diagram is appropriate for modeling a business process?

2. How can you modify this diagram to show what the different roles do?

3. What is meant by business logic?

Exercises
1. Try applying the principles from this hour to a different domain. Suppose

LaHudra, Nar, and Goniff have engaged you to head up a development
team to build a system for their corporate library. Start the requirements-
gathering segment by understanding and modeling the business processes
involved. For this one, you’ll have to rely on your own knowledge of
libraries. Hold on to your notes for your solution because you’ll use this
library example in the exercises for the hours that follow in Part II, “A Case
Study.”

2. Go back over the interviews in this hour. What pieces of business logic
emerged?

3. Although the activity diagrams in this hour are sufficient for describing
business processes, you might want to try your hand at applying a tech-
nique from UML 2.0. Take a look at Figure 16.5. What object nodes would
you include?

20.067232640X.chap16.qxd 2/20/04 10:47 AM Page 284

HOUR 17

Performing a Domain Analysis

What You’ll Learn in This Hour:
. Analyzing the interview
. Developing the initial class diagram
. Creating and labeling associations between classes
. Finding multiplicities
. Deriving composites
. Filling out the classes

In this hour, you’ll continue with the conceptual analyses in the Requirements gath-
ering segment of GRAPPLE.

The first two actions in GRAPPLE are concerned with the domain rather than with
the system. Nothing in the preceding hour referred to the proposed system, and
nothing in this hour will either. Indeed, in the scenario thus far, no specific system
has been proposed. The development team has only a nebulous assignment from
LaHudra, Nar, and Goniff to use technology to enhance the dining-out experience.

The objective in the last hour and in this one is to achieve an understanding of the
domain. That means you have to know the specific processes you’re trying to
enhance and the nature of the world those processes operate in. In our scenario,
uncovering the business processes has jump-started the development team’s knowl-
edge. As a result, the team members have a vocabulary they can use to communi-
cate further with the LNG Restaurants Division. This is of utmost importance
because the team now has a foundation for growing and evolving its knowledge
over the course of the project.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 285

286 Hour 17

Analyzing the Business Process
Interview
The development team will have additional interviews with the restaurant experts,
but first they work within the context of the business-process interview. The objec-
tive is to produce an initial class diagram. An object modeler does this by either
working with the team during the interview or by going over the results of the inter-
view. At this point the modeler looks for nouns, verbs, and verb phrases. Some of the
nouns will become classes in the model, and some will become attributes. The verbs
and verb phrases can become either operations or the labels of associations.

Examine the results of the interview from the previous hour. What nouns and
verbs did the restaurateur use?

Here are the nouns:

customer, coat, cloakroom, coat-check ticket, hat, line, waiting list, reserva-
tion, name, cocktail lounge, drink, dinner, waiting area, table, busser, table-
cloth, maitre d’, waiter, serving area, diner, menu, assistant, tray, bread,
butter, glass, water, person, party, server, menu choice, selection, daily spe-
cial, restaurant, chef, dish, kitchen, order, smoking area, form, time, appe-
tizer, main course, dessert, dessert menu, coffee, cup, check, cash, credit
card, change, credit card receipt, tip, silverware, napkin, room, laundry

Notice that each noun is in its singular form.

The verbs and verb phrases are

has, help, store, give, get in line, honor, seat, leave, sit, wait, come up, get
rid of, set, walk, call for, hover, see, gesture, show, ask, order, decide, call
over, bring, pour, order, go, get, wait, bring, finish, reserve, refuse, recite,
recommend, encourage, like, tell, express, look, come back, drink, read,
allow, make a selection, get attention, get an order, talk, assign, designate,
determine, notify, write, prioritize, consist of, prepare, bring, finish, coordi-
nate, cook, pick up, eat, come over, check on, cost, lose money, lose a cus-
tomer, come by, want, take an order, pour, collect, leave, call, get ready,
glance, anticipate, talk, come out, summon, go back, find out, tell, prefer,
finish, coordinate, receive, check, rely, stay, keep an eye on, take care of,
hunt for, remove, bundle up, fold, arrange, pack up, send

When you first note all the nouns and verbs, keep your mind open and include
everything. Would a modeler ultimately use all these words in the model? No.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 286

Performing a Domain Analysis 287

Common sense dictates which ones to keep and which ones to eliminate. Further
interaction with the restaurateur will also help.

Developing the Initial Class Diagram
Put yourself in the role of the modeler and start developing the class diagram.
Here’s where the aforementioned common sense comes into play. Start by elimi-
nating some of the nouns.

Recall from the interview that waiter and server are synonymous. Thus, you can
eliminate one of these terms. The interviewer and the interviewee decided on
server, so you can eliminate waiter. Customer and diner are also synonymous, so
you can eliminate another noun. Try sticking with customer. Person seems a little
too generic, so you can eliminate that one, too. Menu choice and selection seem to
say the same thing, so eliminate one of them. Selection seems more descriptive
(although this is a matter of opinion), so keep that one for this example.

Can you eliminate any others? Some nouns are more appropriate as attributes
rather than classes. In your list, name, time, and reservation fit that category. Another
noun, laundry, isn’t physically part of the restaurant, so you can eliminate it.

Here’s the other side of the coin: It’s also possible to add classes. If you examine the
interview, you’ll see that the restaurateur referred to “designated areas” and “rotating
the servers.” Who does the designating and rotating? Clearly another class, manager,
belongs on your list. That class might not have emerged during the original interview
simply because the analyst was focusing on the customer, the server, the chef, and the
busser.

Adding a class (and as you’ll see later, adding abstract classes) reflects the evolu-
tion of understanding as the effort proceeds.

After filtering out the synonyms and attributes and adding the new class, here’s
the list of nouns that can become classes:

customer, coat, cloakroom, coat-check ticket, hat, line, waiting list, cocktail
lounge, drink, dinner, waiting area, table, busser, tablecloth, maitre d’, serving
area, menu, assistant, tray, bread, butter, glass, water, party, server, selection,
daily special, restaurant, chef, dish, kitchen, order, smoking area, form, appe-
tizer, main course, dessert, dessert menu, coffee, cup, check, cash, credit card,
change, credit card receipt, tip, silverware, napkin, room, manager, reservation

You can use these classes to build the class diagram in Figure 17.1, capitalizing
the first letter of each class name. If the class name has more than one word, put
all the words together and capitalize the first letter of each constituent word.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 287

288 Hour 17

Customer

Line

WaitingArea

ServingArea

Butter

Selection

Kitchen

MainCourse

Check

Tip

Reservation

Coat

WaitingList

Table

Menu

Glass

DailySpecial

Order

Dessert

Cash

Silverware

Cloakroom

CocktailLounge

Busser

Assistant

Water

Restaurant

SmokingArea

DessertMenu

CreditCard

Napkin

CoatCheckTicket

Drink

Tablecloth

Tray

Party

Chef

Form

Coffee

Change

Room

Dinner

Hat

MaitreD

Bread

Server

Dish

Appetizer

Cup

CreditCardReceipt

Manager

FIGURE 17.1
The initial class
diagram for the
restaurant domain.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 288

Performing a Domain Analysis 289

Grouping the Classes
Now you can try to form some meaningful groups. One group consists of people:
customer, party, busser, maitre d’, assistant, chef, server, and manager. This group
could stand some subdivision because all of its members, except the customer and
the party, are employees. So you’re left with customer, party, and the employee
group.

Another group consists of food items: drink, dinner, bread, butter, water, daily
special, dish, appetizer, main course, dessert, and coffee.

A third group consists of utensils: glass, silverware, tray, cup, napkin, and table-
cloth.

The fourth group holds payment items: coat-check ticket, check, cash, change,
credit card, credit card receipt, and tip.

Another group consists of areas within the restaurant: waiting area, smoking
area, cocktail lounge, cloakroom, kitchen, serving area, table, and room. Room
refers to the room that holds the tablecloths (and presumably other items) that
the restaurant sends out to the laundry. To make the last one more descriptive,
call it laundry room.

Finally, you can group restaurant forms together: menu, dessert menu, coat-check
ticket, check, and form. The last one is the form the server gives the chef when
the order goes into the kitchen. To be more descriptive, call it order form.

Notice that a couple of these last items fall into two groups (forms and payment
items). This, as you’ll see, is acceptable.

What do you do with these groups? Each group name can become an abstract
class—a class that generates no instances of its own but serves as a parent for
subclasses. Thus, the abstract class RestaurantArea has CocktailLounge,
ServingArea, Table, WaitingArea, Cloakroom, and Kitchen as its children.

You can modify the class diagram from Figure 17.1 and produce the diagram in
Figure 17.2.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 289

Order Hat

Selection Customer

Reservation

Party Line Restaurant

Coat WaitingList
Appetizer Dinner Drink DailySpecial

MainCourse DishBread

Coffee DessertWater

Butter

FoodItem

Silverware Tablecloth Glass

Cup Tray Napkin

Utensil

290 Hour 17

Forming Associations
Next, create and label associations among some of the classes. The verbs and
verb phrases can help with the labeling, but don’t limit yourself to the ones from
the interview. Labels that are somewhat more descriptive might suggest them-
selves.

One strategy is to focus on a few of the classes and see how they associate with
one another, and then move on to another group until you’ve exhausted the set

Busser Assistant Chef

MaitreD Manager Server

EmployeeFIGURE 17.2
Abstract classes
partition the class
diagram into
meaningful groups.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 290

Performing a Domain Analysis 291

of classes. After that, you’ll develop aggregations and composites. Finally, you’ll
incorporate verbs and verb phrases as class operations.

Associations with Customer
Begin with the Customer class. Which classes associate with Customer?
Reservation is an obvious one. Another one is Server. Some others are Menu,
Meal, DessertMenu, Dessert, Order, Check, Tip, Coat, and Hat. Figure 17.3 shows
the associations.

Customer

Coat

Server

Hat

Dessert Check Tip Reservation

Menu Meal DessertMenu Order CoatCheckClerk

At this point, you can make some decisions. Is it necessary to include Coat and
Hat? After all, you’re focusing on serving a meal. After some discussion, the devel-
opment team would probably conclude that these classes should stay in the
model because your field of interest includes the whole dining-out experience.
This leads you to add another class, CoatCheckClerk, because someone has to
check the coat and hat for the customer.

FIGURE 17.3
Initial associations
with the Customer
class.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 291

292 Hour 17

Try labeling the associations by generating phrases that characterize the associa-
tions. Here are some phrases that immediately come to mind:

. The Customer makes a Reservation.

. The Customer is served by a Server.

. The Customer eats a Meal.

. The Customer eats a Dessert.

. The Customer places an Order.

. The Customer selects from a Menu.

. The Customer selects from a DessertMenu.

. The Customer pays a Check.

. The Customer leaves a Tip.

. The Customer checks a Coat with a CoatCheckClerk.

. The Customer checks a Hat with a CoatCheckClerk.

Figure 17.4 shows the labeled associations.

Customer

Coat

Server

Hat

Dessert Check Tip Reservation

Menu Meal DessertMenu Order CoatCheckClerk

Eats Pays Leaves
Makes

Is served by

Checks

Checks

Checks hat with

Checks
coat
with

PlacesSelects
from

EatsSelects
from

FIGURE 17.4
Labeled associa-
tions with the
Customer class.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 292

Performing a Domain Analysis 293

Now you can turn your attention to multiplicities. A multiplicity, remember, is
part of an association: It indicates how many instances of class B associate with a
single instance of class A.

In most of the bulleted phrases, the Customer is involved with one instance of the
other class. The second phrase is different from the others. It has a passive voice
(“is served by”) rather than the active voice in the other phrases (for example,
“pays” and “leaves”). This suggests that something different might be happening
with this association. If you turn it around and examine the association from the
Server’s point of view (“The Server serves a Customer”), it’s apparent that a
Server can serve many Customers.

The final two phrases map to a kind of association you haven’t encountered
before:

. The Customer checks a Coat with a CoatCheckClerk.

. The Customer checks a Hat with a CoatCheckClerk.

How do you model this?

This kind of association is called a ternary association. Ternary indicates that
three classes are involved. You model this kind of association by connecting the
associated classes with a diamond, and you write the name of the association
near the diamond, as in Figure 17.5. In a ternary association, the multiplicities
indicate how many instances of two classes are involved when the third class is
held constant. In this example, one Customer can check zero or more Coats with
one CoatCheckClerk. (It’s possible to have more than three classes in an associa-
tion. For the sake of generality, the UML refers to n-ary associations.)

Customer

Coat

CoatCheckClerk
Checks with1

0..*

1

FIGURE 17.5
A ternary
association.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 293

294 Hour 17

In the next subsection, you’ll see another way to handle this.

Figure 17.6 shows all labeled Customer associations with the multiplicities included.

Customer

Coat

Server

Hat

Dessert Check Tip Reservation

Menu Meal DessertMenu Order CoatCheckClerk

Eats Pays Leaves
Makes

Is served by

Checks

Checks
with

Checks
with

Places

Selects
from

EatsSelects
from

1

1 1

1111

1 1 1 1

1
1

1

1

1 1

1..*

0..*

0..*

1 1 1

1

Associations with Server
That Customer-Server association is a nice segue into associations with the server.
One way to model many of the Server associations is to treat them as ternary:

. The Server takes an Order from a Customer.

. The Server takes an Order to a Chef.

. The Server serves a Customer a Meal.

. The Server serves a Customer a Dessert.

. The Server brings a Customer a Menu.

. The Server brings a Customer a DessertMenu.

. The Server brings a Customer a Check.

FIGURE 17.6
Including the
multiplicities in the
associations with
the Customer
class.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 294

Performing a Domain Analysis 295

. The Server collects Cash from a Customer.

. The Server collects a CreditCard from a Customer.

This will undoubtedly clutter up the model and make it difficult to comprehend.
A more efficient way is to examine these associations, use the minimum number
of labels, and attach appropriate association classes.

The Server’s job is apparently to take and bring requested items. You attach an
association class called RequestedItem, and in that class you specify what is
taken or brought. To do that, you give the association class an attribute called
itemType and make it an enumerated type. The possible values of the attribute
are the possible items that the Server can bring or take.

Figure 17.7 shows this in action.

Server

RequestedItem

itemType

Customer
1 1..*

FIGURE 17.7
Using an
association class
in the Server
associations.

The Server also associates with an Assistant and a Busser, as Figure 17.8 shows.

Associations with Chef
The Chef associates with Assistants, with the Server, and with the Meal, as in
Figure 17.9. The association class Order models the order the Server brings to the
Chef, and its attribute (which can be an enumerated type) shows the order’s status.

Associations with Busser
As Figure 17.10 shows, the Busser has two associations. One indicates that the
Server calls the Busser, and the multiplicities indicate that more than one

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 295

296 Hour 17

Associations with Manager
Manager is the new class you derived during the domain analysis. This class asso-
ciates with many of the others, and you would develop these phrases:

. The Manager operates the Restaurant.

. The Manager monitors the Employees.

Server Assistant
Calls for

Calls for

1..*

1..*

1

Busser1

FIGURE 17.8
Additional
associations with
the Server.

Chef

Assistant

Server

Order

status

Meal

1

1

1

1..*

1..*

1..*

Assigns
Prepares

FIGURE 17.9
Chef associations
with Assistant,
Server, and Meal.

Server can call a Busser. The other association shows that a Busser sets more
than one Table.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 296

Performing a Domain Analysis 297

Busser

Table

Server
Is Called By1

*

1

Sets

1..*

FIGURE 17.10
Busser associa-
tions with Server
and Table.

Manager

Customer

Kitchen

Restaurant

Employee

1

1

1

1

1..*

1

*

Interacts
with Monitors

Monitors

Operates

*

FIGURE 17.11
Associations with
the Manager.

A Digression
One school of thought holds that you should eliminate nouns that are roles in
associations and just have a general class such as Employee. In the association,
you would put the role name near the appropriate end of the association.

. The Manager monitors the Kitchen.

. The Manager interacts with the Customer.

Figure 17.11 models these associations.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 297

298 Hour 17

In some contexts (such as a payroll system), that works well. In this one, it proba-
bly won’t. Consider these associations:

. The Server brings to the Customer.

. The Server takes from the Customer.

. The Server brings to the Chef.

. The Server takes from the Chef.

. The Server summons the Busser.

The diagram looks like Figure 17.12.

Employee

1..*

1..*

1..*

1

1

1..*Summons

brings to

takes from

Takes
from

Brings

Server Server

Busser Chef

Server

Chef

Customer

FIGURE 17.12
Modeling with the
Employee class.

As you can see, the class icons in the diagram become dense and unclear, and
you haven’t even included the association classes.

In all things modeling-related, let comprehensibility be your guide.

Forming Aggregates and Composites
You’ve been forming and naming abstract classes and associations, and another
organizational dimension awaits. The next step is to find classes that are compo-
nents of other classes. In this domain, that shouldn’t be difficult. A Meal, for
instance, consists of an Appetizer, a MainCourse, a Drink, and a Dessert. The
Appetizer and Dessert are optional. Also, the components are in a specific order,
and you want that order preserved in your model.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 298

Performing a Domain Analysis 299

Here are some other composites:

. An Order consists of one or more MenuSelections.

. A Restaurant consists of a Kitchen, one or more ServingAreas, a
WaitingArea, a CocktailLounge, and a LaundryRoom.

. A ServingArea consists of one or more Tables.

. A Party consists of one or more Customers.

In each case, the component is a member of only one aggregate, so Figure 17.13
models all these as composites.

Meal

MainCourseAppetizerDrink Dessert

0..1 0..1 0..11

Restaurant

ServingAreaKitchen WaitingArea

1 11..*

Table

1..*

CocktailLounge

1

LaundryRoom

11

Order

MenuSelection

1..*

1

Party

Customer

1..*

{precedes} {precedes}

FIGURE 17.13
Composites in the
restaurant domain.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 299

300 Hour 17

Filling Out the Classes
Further interviews and sessions will prove helpful for fleshing out your classes.
Bear in mind that from here on in, an object modeler will sit in on all sessions,
work with a computer-based modeling tool and refine the model on the fly. You
can begin the refinement now by adding some attributes and operations.

Your most important classes appear to be Customer, Server, Chef, Manager, and
Assistant. Check is another important class.

Customer
What are the obvious attributes for Customer? Here are a few:

. name

. arrivalTime

. order

. serveTime

How about the operations? Your verb list can guide you (but shouldn’t limit you).
Some Customer operations are

. eat()

. drink()

. beMerry (just kidding!)

. order()

. pay()

Figure 17.14 shows the Customer class.

Customer

name
arrivalTime
order
serveTime

eat()
drink()
order()
pay()

FIGURE 17.14
The Customer
class.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 300

Performing a Domain Analysis 301

Employee
Server, Chef, Manager, and Assistant are all children of the abstract class
Employee. Thus, you assign attributes to Employee and the child classes inherit
them. Some of these attributes are

. name

. address

. socialSecurityNumber

. yearsExperience

. hireDate

. salary

For the Assistant, things get a little more complicated. First, you’ll need a sepa-
rate attribute called worksWith because an Assistant can help either the Server
or the Chef. This attribute will be an enumerated type.

Operations will be specific to each child class. For the Server, the following opera-
tions seem appropriate and appear in Figure 17.15:

. carry()

. pour()

. collect()

. call()

. checkOrderStatus()

For the Chef:

. prepare()

. cook()

. prioritize()

. createRecipe()

For the Assistant:

. prepare()

. cook()

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 301

302 Hour 17

. serveBread()

. serveWater()

The Manager operations include

. monitor()

. operateRestaurant()

. assign()

. rotate()

Employee

name
address
socialSecurityNumber
yearsExperience
hireDate
salary

Assistant

worksWith

prepare()
cook()
serveBread()
serveWater()

Server

carry()
pour()
collect()
call()
checkOrderStatus()

Chef

prepare()
cook()
prioritize()
createRecipe()

Manager

monitor()
operateRestaurant()
assign()
rotate()

FIGURE 17.15
The Employee
class and its
children.

Check
The Check is obviously an important class because it contains the information on
collecting money for the meal. Its attributes are

. mealTotal

. tax

. total

Because total is the sum of mealTotal and tax, it’s a derived variable. To show
this in the model, you precede total with a slash. (See Figure 17.16.). The Check’s
operations are computeTotal(mealTotal,tax) and displayTotal().

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 302

Performing a Domain Analysis 303

General Issues About Models
At this point, you’ve gathered a lot of information. Here are a few hints to help
you keep it all organized:

Model Dictionary
When you’re putting together interview results, business processes, and domain
analyses, keep a model dictionary. This is a glossary of all the terminology in
the model. It will help you maintain consistency and avoid ambiguity.

For example, in the restaurant domain, the term menu is prominent. This term
means one thing to a restaurateur, but it means something else to a GUI developer.
Server is another term fraught with danger: a restaurateur thinks waiter or waitress,
a system engineer thinks something else entirely. If you have definitions everyone
agrees on, or if you are at least aware of the potential for confusion, you’ll avoid
a lot of problems down the road. Most modeling tools allow you to build a dic-
tionary as you create your model.

Diagram Organization
Another hint pertains to diagram organization. It’s not a good idea to have every
detail of your class model in one huge diagram. You’ll need a master diagram
that shows all the connections, associations, and generalizations, but it’s best to
elide attributes and operations from this picture. You can turn the spotlight on
selected classes by putting them in separate diagrams. Modeling tools typically
enable you to organize your diagrams by linking them appropriately.

Lessons Learned
What have you learned from going through the domain analysis?

. The business process interview provides the foundation for the domain
analysis

�����

�����	
��

��

�
	
��

�	�
�
��	
����

���
����	
����

FIGURE 17.16
The Check class.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 303

304 Hour 17

. The nouns in the business process interview provide the candidate classes

. Eliminate nouns that are attributes, nouns that are synonymous with other
nouns in the list, and nouns that represent classes out of the domain’s
scope.

. Be alert for opportunities to add classes that might not have emerged dur-
ing the business process interview.

. Use some of the verbs or verb phrases from the interview as labels for associ-
ations.

. Group classes together and use the group names as abstract classes.

. Group classes into aggregates and/or composites.

. Rename the classes for clarification.

. Remember that some associations may be ternary (that is, involve three
classes).

. Use common sense to name associations and to set multiplicities.

In the next hour, you’ll move out of the conceptual realm and into system-related
issues.

Summary
This hour continued the conceptual analysis that began in the previous hour. The
business process interview results provide the foundation for the domain analysis.
The nouns, verbs, and verb phrases in the interview are the candidates for the ini-
tial class diagram that defines the restaurant domain. Common sense tells you
which ones to use and which ones to eliminate. It’s possible that you’ll add classes
as you do your analysis.

The object modeler adds substance to this diagram by deriving abstract classes,
associations, and multiplicities. Deriving aggregates and/or composites helps
organize the model. Additional interviews and sessions will be necessary to com-
pletely flesh out the model, but it’s possible to begin adding attributes and opera-
tions at this point.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 304

Performing a Domain Analysis 305

Q&A
Q. How will I know which classes to eliminate from the candidate class list?

A. By using common sense, eliminate redundant class names and be aware of
names that are attributes. Eliminate class names that are out of the scope of
the domain you’re analyzing. Remember that you can add classes, too.

Workshop
This workshop tests the all-important skill of domain analysis—as embodied in
the creation and development of a class diagram. The answers are in the domain
of Appendix A, “Quiz Answers.”

Quiz
1. How do you make use of the nouns derived from the interview with an

expert?

2. How do you use the verbs and verb phrases?

3. What is a ternary association?

4. How do you model a ternary association?

Exercises
1. Revisit the Customer’s ternary associations with the CoatCheckClerk. Use an

association class to model these associations in a more efficient way.

2. If you’ve closely followed the interview and the domain analysis, you might
come up with some classes that didn’t appear in either. One is the Cashier.
Form an association between the Server and the Cashier. Use an associa-
tion class if necessary. If you can think of some other classes, incorporate
them into the domain analysis.

3. The Restaurant composite (in Figure 17.13) includes only “physical” class-
es—areas such as the Kitchen and the CocktailLounge. You might argue
that a Restaurant also consists of people. Revisit the Restaurant composite
and include the employees in the diagram. Does including the employees
turn the composite into an aggregate?

4. In addition to attributes and operations, I pointed out in Hour 3, “Working
with Object Orientation,” that you can represent a class’s responsibility. For

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 305

306 Hour 17

the Server class, add a responsibility panel and fill it in with a description
of the Server’s responsibility.

5. Turn your attention to the association classes in Figures 17.7 and 17.9. For
each one, I said that the attribute is an enumerated type. Model these enu-
merated types.

6. Continue with the library domain from the first exercise in Hour 16,
“Introducing the Case Study,” and develop a class diagram.

21.067232640X.chap17.qxd 2/20/04 10:32 AM Page 306

HOUR 18

Gathering System
Requirements

What You’ll Learn in This Hour:
. Envisioning the system
. The Joint Application Development (JAD) session
. Organizing system requirements
. The use of use cases

Messrs. LaHudra, Nar, and Goniff are impressed. They’ve seen the output of their
development team, and they know the effort is headed in the right direction.
Everyone seems to have a good understanding of the restaurant domain—so good,
in fact, that the restaurateurs in the LNG Restaurants Division say the diagrams
have crystallized their own thinking about restaurant operations.

Now it’s time for the team to work on the technical backbone for the restaurant of
the future. They’ve got business processes and class diagrams. They can begin cod-
ing, right? Wrong. They’re not even close to writing a program. First, they have to
develop a vision of the system.

Most projects begin with statements like “Construct a database of customer informa-
tion and make it user-friendly so that clerks can use it with a minimum of training”
or “Create a computer-based helpdesk that resolves problems in under a minute.”
Here, the development team has started with the vague mission to “Use technology
to build the restaurant of the future.” They have to envision this technology-based
restaurant so they can start figuring out how restaurant personnel will work in it.
They’re working at a level that a development team usually doesn’t get to, but
LaHudra, Nar, and Goniff have faith in them.

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 307

308 Hour 18

The team will use its business process knowledge and newly acquired domain
knowledge to see where an infusion of technology enhances the dining-out experi-
ence. Let’s listen in on a team meeting. The players are an analyst, a modeler, a
restaurateur, a server, a chef, and a system engineer. A facilitator runs the meeting.

The facilitator begins by distributing copies of Figure 18.1, the business process
diagram for “Serving a customer,” and Figure 18.2, the business process diagram
for “Preparing a meal.”

Developing the Vision
Facilitator: “Looking at our business process diagrams, I think we can all see a
number of places where computer-based technology will help. I’ll keep a running
list here on the whiteboard. Who wants to start?”

Walk in

Call for server

Help off w/ coat

Check coat/hat

Leave name

Wait in lounge

Seat Customer

Get table ready

Show menu

Get drink

Bring drink

Take drink order

Call for assistant

Serve bread
and water

Wait in
waiting area

Customer Maitre d' Server Chef Assistant Busser

[Has Hat/Coat]

[Prefers Lounge]

[Reservation]

[No Waiting List]

[Wants Drink]

A

FIGURE 18.1
The business
process diagram
for “Serving a
customer.”

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 308

Gathering System Requirements 309

Read menu

Make selection

Eat appetizer

Eat main course

Drink coffee

Leave

Settle check, leave tip

Retrieve coat/hat

Recite specials

Notify Chef

Bring appetizer

Pour coffee

Pour coffee

Bring dessert

Bring check

Bring main course

Bring dessert menu
Take selection

Customer Maitre d' Server Chef Assistant Busser

Modeled in a
separate diagram

(Figure 16.5)

[Wants Dessert]

[Wants Coffee]

[Wants Coffee]

[Coat/Hat Checked]

Prepare main course

A

Analyst: “Yes. Apparently the restaurant business, like almost any other, depends
on the movement of information. If we can speed that movement along—some
thing technology is really good at—we’ll meet our goal.”

Restaurateur: “I’m not sure I understand. What do you mean by ‘the movement
of information?’ I always thought my business was about the movement of food.”

System Engineer: “I think I can help. When the customer places an order, he’s giv-
ing information to the server. (By the way, let’s all agree that a ‘server’ is some-
one who waits on tables, not a major piece of hardware in a client/server system.)
When the server relays the order to the chef, he’s moving the information along.”

Facilitator: “Where else do we see information move?”

FIGURE 18.1
Continued

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 309

310 Hour 18

Server: “I think I’m seeing the picture. When a customer asks me to track down
where his order is and I ask the chef, that’s information movement, isn’t it?”

Analyst: “Absolutely.”

Chef: “Movement, shmovement. No offense, but I’m never all that thrilled when
a server comes in and asks me how long it’s going to take until I’m finished
preparing a meal. It takes as long as it takes, and I can’t be bothered.”

Facilitator (smoothing things over with the chef, so she’ll stay involved): “Maybe
we can figure out a way to minimize that aggravation. Any other points of infor-
mation movement?”

Restaurateur: “How about when the server recites the daily specials? Or when he
answers a question about something on the menu?”

Receive order

Bring appetizers

Eat appetizers

Prepare appetizers

Get main course

Bring main course

Start preparing
main course

Finish preparing
main course

Receive notification
appetizers almost finished

Balance preparation
of other orders

Customer Server Chef Assistant

FIGURE 18.2
The business
process diagram
for “Preparing a
meal.”

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 310

Gathering System Requirements 311

Facilitator: “Definitely.”

Chef: “Sometimes I answer questions, too. People send the server back to the
kitchen to ask about a particular recipe. I either relay the info through the server,
or if it’s not too busy, I come out and talk to the customer. They love that.”

Server: “I’ll tell you about a kind of information movement I’m never happy
about: A customer places an order, I go back and pass it along, and then fifteen
minutes later when I’m back in the kitchen for something else, I hear we’re out of
the ingredients for that order. I have to go back and ask the customer to order
something else. That usually irritates the customer—and it irritates me because it
cuts into my tip.”

Analyst: “I wonder whether we should add that to the business process . . .”

Facilitator (keeping the meeting focused, and avoiding saying the maddening
“Yes, but . . .”): “Maybe. I think you’ll agree that’s a separate meeting.”

Analyst: “Yes. I didn’t mean to take us off-track.”

Facilitator (stopping and summarizing): “Let’s see where we are. According to my
list here, information transfer takes place when

. The customer places an order.

. The server relays the order to the chef.

. The customer asks the server to track the status of an order.

. The server recites the daily specials.

. The server answers a question about something on the menu.

. The chef answers questions about a recipe.”

Analyst: “I know it’s not in any of our business process diagrams, but doesn’t the
customer sometimes have a question about something on the check? When the
server answers that, we’re talking about information movement.”

Facilitator: “We sure are. Anything else from the business processes?”

System Engineer: “I think I see one. How about all that coordination that takes
place between the server and the chef? You know, when they make sure that the
main course comes out hot after everyone in the party finishes their appetizers?
That’s quite a bit of information moving around.”

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 311

312 Hour 18

Analyst: “I agree. The information is flowing a couple of different ways there.”

Restaurateur: “You’ve given us only two business process diagrams. I recall we
created one more.”

Facilitator: “You’re right. Here’s the one for ‘Servicing a table.’” (See Figure 18.3.)

Called by server

Remove tablecloth

Put new tablecloth on table

Pack old tablecloth for laundry

Set table

FIGURE 18.3
The business
process diagram
for “Servicing a
table.”

Analyst: “It looks like there’s only one instance of information transfer going on
here, but I bet it’s an important one: The server calls for the busser to let him or
her know that it’s time to clean up the table.”

Restaurateur: “Yes, that’s extremely important. You can’t seat a new party until
their table is ready. If the cleanup doesn’t start and end as soon as possible, we’ll
have a lot of hungry—and angry—customers stacking up in the lounge and the
waiting area.”

Modeler: “I’ve been working on my class diagrams while I’ve been listening to all
of you. Can I ask a question? Would it be a good idea if our system—whatever it’s
going to look like—allowed us to assess our overall efficiency in serving our cus-
tomers?”

Restaurateur: “Sure. That way we’d know where and how to improve. What did
you have in mind?”

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 312

Gathering System Requirements 313

Modeler: “In our Customer class, we have one attribute called arrivalTime and
another called serveTime. I want to add a derived attribute called waitDuration,
which would be the difference between arrivalTime and serveTime. What do you
think?”

Restaurateur: “That’s a nice idea. Then we’d know how we’re doing with our cus-
tomers.”

Analyst: “Yes, you would. You’d have a lot of data to play with—like waitingTime
as a function of the time of day, or as a function of how many servers were work-
ing at the time—things like that.”

Modeler: “Here’s another possibility. Suppose we have another attribute called
departureTime and a derived attribute called mealDuration that would be the dif-
ference between serveTime and departureTime?”

Facilitator: “With apologies to our friend the chef here, I’d say you’re really cook-
ing. Any other ideas?”

Modeler: “As long as we’re working with time-based attributes, how about some
attributes in the Server class, the Waiter class, and the Chef class that tell the
manager how long each employee is taking to get the job done?”

Restaurateur: “Uhhh . . . No. That whole idea of monitoring performance doesn’t
sit well with employees—or with me, for that matter. It’s not that they want to
slack off: They don’t. They just don’t want to feel like Big Brother’s looking over
their shoulder with a stopwatch and that their jobs are in jeopardy if they don’t
save a second here and a second there. If you keep everybody happy, you’ll run a
better restaurant, and customers will sense that, too.”

Chef: “I agree. As I said before: When you’re preparing a meal, it takes as long as
it takes. I don’t want to look at a bunch of printouts and have a manager tell me
I have to take 4.5 minutes less to prepare a Trout Almandine.”

Server: “And I don’t want to hear about taking too long to come back with dessert
menus when the customers have finished the main course. There’s just too much
going on.”

Modeler: “Okay. I’ll scrap that idea. In fact, now that you mention it, I ought to
remove monitor as an operation from the Manager class. In the meantime, here’s
what the Customer class looks like now.” (See Figure 18.4.)

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 313

314 Hour 18

A Few Good Points
The modeler’s ideas show that she is constantly updating the class diagrams.

The discussion between the modeler, the restaurateur, and the server shows a cru-
cial point: Having business people participate in system development is an absolute
must. Without input from the restaurateur, the chef, and the server, the development
effort would have spent time and money implementing some performance-monitoring
features that ultimately would be self-defeating. Employees would have reacted neg-
atively, causing repercussions for the system and eventually for the restaurant.

Facilitator: “From what I’m hearing, it sounds like we can distinguish between
two kinds of speedup. One involves speeding up information transfer, and the
other involves speeding up how each employee performs a task. The sense of the
group seems to be that the second one is an annoyance, but the first one is good.
Am I right?”

(All agree)

Analyst: “Now that we’ve settled that, can we move on to some ideas about what
the system should specifically do?”

Facilitator: “Sure. Ideas, anyone?”

Server: “When I’m moving all this information, I sure cover a lot of ground in the
course of an evening. Sometimes I have to work an area that’s far from the
kitchen. Schlepping around back and forth is what takes time, not to mention
shoe leather.”

Analyst: “Sounds like we have to come up with something that eliminates, or at
least alleviates, the schlepp factor. Then we’ll speed up information transfer.”

Facilitator: “‘Schlepp factor?’”

Customer

name
arrivalTime
order
serveTime
/waitDuration
departureTime
/mealDuration

eat()
drink()
order()
pay()

FIGURE 18.4
The updated
Customer class.

By the
Way

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 314

Gathering System Requirements 315

Analyst: “Yes. Our system has to somehow keep the servers from walking around
so much. Obviously they have to walk to the kitchen to get the order and bring it
back to the table, but suppose that’s the only time they have to go back there?
And suppose they go back to the kitchen just in time to get the order?”

System Engineer: “I think we’re onto something. How about if we had something
like a local area network that connects the servers to the kitchen? And the
bussers? Then the information would move around very quickly.”

Analyst: “I hate to be overly analytical about this, but a local area network? They’d
be tripping over wires to get to the terminals. Instead of walking constantly to the
kitchen, the servers would be constantly running around to get to a terminal.
That just sounds like technology for the sake of technology. What does that
save?”

System Engineer: “If we do it the way you just said it, I agree we’d save nothing.
We might even make matters worse. But that’s not what I had in mind.”

Analyst: “Well, then? The suspense is killing me.”

System Engineer: “Suppose each server and busser carries a terminal around—a
handheld PC. And suppose we set up a network that involves no wires. We can
have a desktop terminal in the kitchen and one in the manager’s office.

Analyst: “Hmmm . . . I like your style. The system you’re talking about would
resolve a number of issues. Like when the party decides on their orders, the server
could tap them into his handheld PC, and the order would go to a terminal in the
kitchen. That eliminates the step, and the steps, of walking from the serving area
to the kitchen.”

Server: “I love it. How about when the party is almost finished with their appetiz-
ers, I let the kitchen know by pressing something on the handheld PC? That saves
me from having to go back and tell the chef to finish preparing the main course.”

Chef: “Then I’d get the message in the kitchen. In fact, all my assistants would
get the message at the same time, and we could have the messages displayed on
a big screen or two or three. I wouldn’t have to keep track of which assistant was
cooking what meal and tell them how far along they ought to be. They could
take that responsibility for themselves.”

System Engineer: “And when the order is finished, you folks in the kitchen could
send a message to the server’s handheld PC to let him know. He doesn’t have to
keep coming back and checking. Incidentally, we can refer to a handheld PC as
just a ‘handheld.’”

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 315

316 Hour 18

Server: “That’s beautiful. I could also send a signal to a busser to come clean up a
table. I wouldn’t have to run around and hunt for one. That would speed every-
thing up.”

Restaurateur: “How are you all going to make this happen?”

System Engineer: “Let’s not worry about that right now.”

Facilitator: “So we’re all set, then? Our system will be a wireless local area net-
work with handheld computers for the servers and bussers and desktop computers
in the kitchen and the manager’s office. We’re just missing one thing.”

Analyst: “What’s that?”

Facilitator: “A cool name for the system.”

Chef: “How about ‘MASTER CHEF’?”

Facilitator: “What do the letters stand for?”

Chef: “I dunno. I just like MASTER CHEF.”

Analyst: “How about Wireless Interactive Network for Restaurants? It comes out
as WINER.”

Facilitator: “I’m not sure about the connotation.”

System Engineer: “How about keeping it short and sweet: ‘Wireless Interactive
Network’—WIN.”

Chef: “I like it.”

Analyst: “Me, too. It’s hard to argue with WIN.”

Facilitator: “Can we all agree on WIN? Okay. I think our work here is done.”

Setting Up for Requirements Gathering
The team passes the results of their meeting to the corporate bigwigs. LaHudra
can’t believe his good fortune in stumbling into a great new area. Nar is over-
whelmed by it all. Goniff sees visions of dollar signs dancing before his eyes. They
give the team the go-ahead to proceed.

Now that the team has a vision for the system, can the programmers program
and the systems engineers engineer? Absolutely not. The team must center the
WIN system around the users’ needs, not around nifty technology. Although they
have a few insights from the team meeting, they still haven’t exposed the WIN

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 316

Gathering System Requirements 317

concept to a group of employees and managers to get feedback and ideas from
the users’ point of view.

The next GRAPPLE action does just that. In a Joint Application Development
(JAD) session, the team will gather and document system requirements. With
these in hand, they will be able to make some estimates about time and money.

The JAD session takes place in a conference room. Led by a facilitator, it’s called a
“joint” session because it includes members of the development team along with
potential system users and domain experts. The development team members in
this meeting are two analysts who are doubling as note-takers, a modeler, two
programmers, and a system engineer. The potential users are three servers, two
chefs, two restaurateurs, and two bussers.

The objective of this meeting is to produce a package diagram that shows all the
major pieces of functionality for the system. Each package will represent one
piece and will contain use cases that detail what the functionality piece is all
about.

Let’s go to the session.

The Requirements JAD Session
Facilitator: “First, I want to thank you all for coming to our session. These sessions
can take a lot of time, but they can also be a lot of fun. What we’re trying to do is
gather the requirements for a system called WIN—Wireless Interactive Network.”

“The WIN concept is pretty straightforward. The way we envision it, servers carry
handheld computers and use them to communicate with the kitchen and with
bussers. Bussers also carry these computers and use them for communication. The
kitchen will have a desktop terminal and one or more screens. The manager will
also have one in her office. Here’s a picture of what I’m talking about.” (See
Figure 18.5.)

Facilitator (continuing): “We hope to install WIN in LNG Restaurants, and we
want it to help you do your jobs. In order for that to happen, we need you to tell
us what you want the system to do. In other words, if the system were in place,
what would you use it to do?

“We’ll be asking that question over and over again. At the end of the session,
we’ll have an organized set of requirements that everyone will be happy with.
Think of it as a high-level organized wish list. We’ll use those requirements as a

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 317

318 Hour 18

step toward building a blueprint that programmers will use to create the system.
One thing I’d like you to keep in mind: We need insights and ideas from every
one of you, no matter what your job title is.”

Analyst 1: “Can we start by figuring out what the major pieces of functionality
should be?”

Facilitator: “Sure can. Group, how should we proceed?”

Restaurateur 2: “Well, I wasn’t in on the preliminary discussions, but I think this
is a good idea. Can we organize it according to, say, areas in the restaurant? You
know, the serving areas need one set of requirements, the kitchen needs another,
the waiting area another, and so forth?”

Facilitator: “That’s a possibility.”

Analyst 2: “When I look at the business process diagrams, it seems to me we
already have an organization.”

Programmer 1: “What’s that?”

Analyst 2: “By job. The chef has to do one set of things, the server has to do
another, and so on.”

Facilitator: “Sounds good. Can we agree on organizing by job?”

(All agree)

Handheld

Kitchen PC

Manager’s PC

Network

Wireless

FIGURE 18.5
The WIN system.

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 318

Gathering System Requirements 319

Facilitator: “All right! From the business process diagrams and the class diagrams,
the jobs we have are server, chef, busser, assistant, and manager.”

Restaurateur 2: “Didn’t you leave out a couple? How about coat-check clerk and
bartender?”

Restaurateur 1: “Ooh. How did we skip those?”

Facilitator: “I’ll add those to our list, and I’ll use the UML package symbols to
keep track.” (See Figure 18.6.)

Coat-Check Clerk

Assistant Busser Bartender

Server Chef Manager

WIN Functionality FIGURE 18.6
The packages of
functionality for
WIN.

Modeler: “I’m on it. I just added some information to our class diagrams. The
CoatCheckClerk class was in already. I elaborated on it and added the
Bartender.”

Restaurateur 2: “I wondered what you’ve been doing there on your laptop. Could
you show us these, uh, ‘classes’?”

Modeler: “Sure. Here they are.” (See Figure 18.7.)

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 319

320 Hour 18

Restaurateur 2: “Interesting. Maybe when we take a break you can explain to me
what it all means.”

Facilitator: “Now that we have the major pieces, does anyone have a preference
as to where to start?”

Server 1: “How about with the server part?”

Facilitator: “Sounds good. All right, what kinds of functionality would you want
to see in this package? Remember, group, just because we’re doing a piece that
happens to not coincide with your particular job, you can still participate.
Everyone’s insights are welcome.”

Server 2: “I’d like to be able to take an order on my little computer and pass it to
the kitchen.”

Facilitator: “Okay. What else?”

Server 1: “Can I find out the status of an order?”

Chef 2: “Can I notify a server when the order is done?”

Facilitator: “Yes and yes. You’ll notice that I’m writing these in as labeled ellipses.
We refer to these as use cases. We’ll be asking some of you to come back and help
us analyze those use cases, but that’s another meeting.”

The Outcome
The JAD session continued on for the rest of the day. When the participants were
finished, they had a set of requirements that appear as use cases arranged in the
packages.

For the Server package, the use cases were

. Take an order

. Transmit the order to the kitchen

. Change an order

. Receive notification from kitchen

CoatCheckClerk

checkCoat()
checkHat()
printTicket()

Bartender

takeDrinkOrder()
prepareDrink()
printBarTab()

FIGURE 18.7
The
CoatCheckClerk
class and the
Bartender class.

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 320

Gathering System Requirements 321

. Track order status

. Notify chef about party status

. Total up a check

. Print a check

. Summon an assistant

. Summon a busser

. Take a drink order

. Transmit drink order to lounge

. Receive acknowledgment

. Receive notification from lounge

For the Chef package, the use cases were

. Store a recipe

. Retrieve a recipe

. Notify the server

. Receive a request from the server

. Acknowledge server request

. Enter the preparation time

. Assign an order

The use cases for the Busser were

. Receive a request from the server

. Acknowledge a request

. Signal table serviced

The use cases for the Assistant were

. Receive a request from the server

. Receive a request from the chef

. Acknowledge a request

. Notify request completed

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 321

322 Hour 18

For the Bartender,

. Enter a drink recipe

. Retrieve a drink recipe

. Receive notification from the server

. Receive a request from the server

. Acknowledge a request

. Notify request completed

And for the Coat-check clerk,

. Print a coat check

. Print a hat check

Figure 18.8 shows how all this looks in the UML.

WIN Functionality

Server

Take order

Change
an order

Print check

Total up check

Transmit order
to kitchen

Transmit drink
order to lounge

Summon assistant

Track order status

Summon busser

Take drink order

Notify chef
about party status

Receive
acknowledgment

Receive notification
from lounge

Receive notification
from kitchen

Busser

Receive request
from server

Acknowledge
request

Signal table
serviced

Coat Check Clerk

Bartender

Enter drink
recipe

Retrieve
drink recipe

Acknowledge
a request

Receive request
from server

Notify request
completed

Receive notification
from server

Chef

Store recipe Retrieve recipe

Print Coat Check Print Hat Check

Assign an orderNotify server

Receive request
from server

Enter preparation
time

Acknowledge server
request

Assistant

Acknowledge
a request

Notify request
completed

Receive a
request from

server

Receive a
request from

chef

FIGURE 18.8
The functionality
package diagram.

The modeler kept evolving the class diagrams by adding the two classes and asso-
ciations, as shown in Figure 18.9.

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 322

Gathering System Requirements 323

Now What?
The design document the team will deliver to its client is growing by leaps and
bounds. It includes business processes, class diagrams, and a set of functionality
packages.

Now does the team start coding? No way. In the next hour, they start analyzing
the contents of the packages.

Summary
In the context of a team meeting, the development team has generated a vision
for the computer-based system in the restaurant of the future. The team members
decided that speeding up information movement is the key to the success of the
system, and they’ve come up with ways for technology to do that.

In a JAD session, the development team meets with potential users and domain
experts to gather the requirements for the system. The result is a package dia-
gram in which each package represents a major piece of functionality. Use cases
inside a package elaborate on the functionality.

Employee

name
address
socialSecurityNumber
yearsExperience
hireDate
salary

AssistantServer

serveBread()
serveWater()

AssistantChef

prepare()
cook()

Server

carry()
pour()
collect()
call()
checkOrderStatus()

Chef

prepare()
cook()
prioritize()
createRecipe()

Bartender

takeDrinkOrder()
prepareDrink()
printBarTab()

CoatCheckClerk

checkCoat()
checkHat()
printTicket()

Manager

monitor()
operateRestaurant()
assign()
rotate()

Notifies

Receives request from

1..*

1..*

1

1

FIGURE 18.9
The newly added
class information.

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 323

324 Hour 18

Q&A
Q. Can some of the JAD session participants be the same people who partici-

pated in the earlier team meeting?

A. Yes. In fact, that’s advisable. They might remember crucial details that
might not come through clearly in the meeting notes.

Q. I notice that Messrs. LaHudra, Nar, and Goniff don’t participate in these
meetings. Does anyone from that level ever take part in meetings and JAD
sessions?

A. These particular individuals don’t. In some organizations, however, upper
management participates actively at least for part of a session. It’s hard to
get a high-level executive for an entire JAD session.

Q. Is it always the case that you’ll organize system functionality by roles, as
in this domain?

A. No, not always. This just turned out to be convenient for this domain. In
fact, you could probably come up with an alternative way of doing it for the
restaurant world if you really put your mind to it. Another type of system
might demand a different kind of cut. For example, a helpdesk might have
Call Receiving, Problem Resolution, and Call Return as the packages. Again,
within each package, you’d have a set of use cases.

Workshop
Test your knowledge of requirements gathering and find the answers in Appendix
A, “Quiz Answers.”

Quiz
1. How does the development team represent system requirements?

2. Does class modeling stop after the domain analysis?

3. What is the schlepp factor?

Exercise
1. Continue on with the Library domain from the exercises in Hours 16,

“Introducing the Case Study,” and 17, “Performing a Domain Analysis.” What
are the major packages of functionality? What are the constituent use cases?

22.067232640X.chap18.qxd 2/20/04 10:16 AM Page 324

HOUR 19

Developing the Use Cases

What You’ll Learn in This Hour:
. The care and feeding of use cases
. Specifying descriptions, preconditions, and postconditions
. Specifying steps
. Diagramming the use cases

The use cases from the package diagram in Hour 18, “Gathering System
Requirements,” give a good picture of what the system will have to do. The team will
have to analyze and understand each one. They’ve moved gradually from under-
standing the domain to understanding the system. The use cases have provided the
bridge.

If you’re getting the idea that the system development project is use case driven, you
have a good understanding of the whole process.

Notice that at no point in the JAD session did the development team discuss how the
system would accomplish all the activities specified in the panoply of use cases. The
idea was just to enumerate all the possible use cases. As the use cases are fleshed out
in this hour, notice how the components of the WIN system start to materialize. At
this point in the development effort, the system begins to take center stage.

Now, put yourself in the shoes of the development team, and we’ll deal with part of
this collection of use cases.

The Care and Feeding of Use Cases
To analyze the use cases, you have to run another JAD session. The discussion in this
JAD session is intended to derive an analysis for each use case.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 325

326 Hour 19

A word of caution: The use case JAD session is usually the most difficult one, as
it calls for the participants—potential users of the finished system—to become
analysts. In their own niche, each one is a domain expert, and you have to tap
into their expertise. Typically, they’re not used to either verbalizing or analyzing
what they know. They probably haven’t been part of a system design effort
before, and they may be uncomfortable trying to specify what a system should
do to help them carry out their work.

In order to alleviate the strain, it’s best to organize the JAD session so that the
team deals with one group at a time—for instance, just the servers. That way,
the others won’t sit idly by as the servers analyze their use cases. The overall
domain experts, the restaurateurs, can show up to lend a hand with all the
groups. A cross-section of the users would be appropriate when dealing with the
Customer package.

The use cases are numerous. Just to keep this hour manageable, we’ll focus on
the first eight use cases for the Server package. After you see how these analyses
are done, you’ll be able to deal with the remaining Server use cases, as well as the
use cases for the other packages, on your own. (See the exercises in the Workshop
at the end of this hour.)

The Use Case Analysis
Remember (from Hour 7, “Working with Use Case Diagrams”): Each use case is a
collection of scenarios, and each scenario is a sequence of steps. For each scenario
in each use case, you’ll want to show

. A brief description of the scenario

. Assumptions for the scenario

. The actor who initiates the use case

. Preconditions for the use case

. System-related steps in the scenario

. Postconditions when the scenario is complete

. The actor who benefits from the use case

(In your analysis, you can also include any exception conditions or alternative
flows. I’ve kept the scenarios simple for this example, however.)

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 326

Developing the Use Cases 327

No specific way of laying out a use case analysis is correct. The items listed typi-
cally provide a complete picture of a use case.

In your design document (the document you give your client and the program-
mers), each of these use case analyses will have a separate page. You’ll probably
want to include a diagram of the use case, complete with actors, on this page.

The system-related steps in the scenario are extremely important. They’ll show
how the system is supposed to work. When the JAD session participants tell you
these steps, they’re describing, in effect, what the system will ultimately look like.
After this JAD session, you should have a good idea about the components of the
system.

The assumptions are important, too. In the list of assumptions, you can list
design considerations, as you’ll see.

This is what I meant by the system development project being use case driven.
The use cases will ultimately create the path to the system.

The Server Package
The Server class seems to figure in the greatest amount of activity. This isn’t sur-
prising because the Server interacts with virtually every other class.

The Server use cases are

. Take an order

. Transmit the order to the kitchen

. Change an order

. Track order status

. Notify chef about party status

. Total up a check

. Print a check

. Summon an assistant

. Summon a busser

. Take a drink order

. Transmit a drink order to lounge

. Receive acknowledgment

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 327

328 Hour 19

. Receive notification from lounge

. Receive notification from kitchen

Take an Order
Let’s begin with “Take an order.” The team relies on experienced servers for a
description, assumptions, preconditions, steps, and postconditions. The package
and subpackage already indicate the initiating actor (Server) and the benefiting
actor (Customer).

A good one-sentence description might be, “The server enters the customer’s order
into the handheld device and transmits it to the kitchen.” The assumptions are
that a customer wants a meal, the customer has read the menu, and the cus-
tomer has made a selection. Another assumption is that the server’s handheld
has a user interface dedicated to order entry.

The preconditions are that the customer has been seated and has read the menu. The
postcondition is that the order is entered into WIN.

The steps in the use case are

1. On the handheld computer, the server activates the user interface for order
entry.

2. The order-entry user interface appears.

3. The server enters the customer’s menu selection into WIN.

4. The system transmits the order to the kitchen PC.

Although the assumption is that an order entry interface exists, you haven’t yet
specified how that interface will look or how the physical act of entering the order
will proceed. You don’t know yet what the kitchen PC’s user interface will look
like, nor have you said anything about the technical details of transmitting an
order.

The point is that as you state your design assumptions, you’re starting to get a
handle on what the system is supposed to do, and you’ll start to crystallize your
thoughts on how to do it. The steps in the use cases force you to come up with
assumptions about the components of the system. Remember that the use cases
are intended to show how the system looks to a user.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 328

Developing the Use Cases 329

Transmit the Order to the Kitchen
Ready for another? This one will be included in (that is, used by) at least two use
cases—the previous one and “Change an order.”

The description is, “Take an order entered into the handheld, put it on the wire-
less network, and send it to the kitchen PC.” The assumptions are that you’ll have
a means of communicating the order (via a wireless network), and again, that
you have an order-entry interface. Do you have to repeat this assumption? You
do. Each use case will eventually appear on a separate page in the design docu-
ment, which will serve as a reference about the system. For clarity, the assump-
tions should appear on each use case, even if you have to repeat them from use
case to use case.

The precondition is an order entered into a handheld. The postcondition is that
the order has arrived in the kitchen. The benefiting actor is the customer.

The steps are

1. A button-click in the order-user interface indicates “Send to kitchen.”

2. WIN transmits the order over the wireless LAN.

3. The order arrives in the kitchen.

4. The order-entry user interface on the handheld indicates that the order
arrived in the kitchen.

Obviously, you have to change your use case diagram for the customer subpack-
age. It has to show the «include» dependency between this use case and “Take
an order” and between this use case and “Change an order.” Figure 19.1 shows
the updated use case diagrams for the Server package.

Server

Take order

Change
an order

Print check

Total up check

Transmit order
to kitchen

Transmit drink
order to lounge

Summon assistant

Track order status

Summon busser

Take drink order

Notify chef
about party status

Receive
acknowledgment

Receive notification
from lounge

Receive notification
from kitchen

«include»

«include»

FIGURE 19.1
The updated use
case diagrams for
the Server pack-
age.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 329

330 Hour 19

Change an Order
While we’re on the subject, let’s move to “Change an order.” The description is,
“Modify an order already entered into WIN.” The assumption is that an order has
already been placed and sent to the kitchen and that, subsequently, the customer
wants to change that order. You also assume that WIN has a database of orders
showing the server who entered each order and the table the order came from,
that the server can access the database from the handheld, that WIN can make
transmissions from the handheld to the kitchen PC and back, and that the hand-
held has a user interface screen for changing an order.

The precondition is the previously placed order. The postcondition is that the
modified order has arrived in the kitchen. The benefiting actor is the customer.

The steps in this use case are

1. On the handheld computer, the server activates the user interface screen for
changing an order.

2. The user interface brings up a list of existing orders in the kitchen placed by
this server.

3. The server selects the order to be changed.

4. The server enters the modification to the order.

5. The system transmits the order to the kitchen PC.

(Step 5 includes the previous use case “Transmit the order to the kitchen.”)

Track Order Status
As you might recall, earliest discussions about the restaurant of the future in-
cluded finding out when a customer’s order will come out of the kitchen. This use
case does just that. Implementing it in the system will go a long way toward facil-
itating the server’s job.

The description is, “Track the status (time to completion) of an order already
entered into WIN.” The assumption is that an order has already been placed, has
been sent to the kitchen, and that the customer wants to know how much longer
it will take for the food to arrive. You repeat two of the previous design assump-
tions: a database of orders and the capability to transmit messages back and
forth between the handheld and the kitchen PC. You also assume a user-interface
screen on the handheld for tracking orders and a user-interface screen on the
kitchen PC for the same purpose.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 330

Developing the Use Cases 331

The precondition is the previously placed order. The postcondition is that the
order status has arrived at the server’s handheld. The benefiting actor is the cus-
tomer.

The steps are

1. On the handheld computer, the server activates the user-interface screen for
tracking an order entry.

2. The user interface brings up a list of existing orders in the kitchen that this
server has placed.

3. The server selects the order to be tracked.

4. The system transmits a tracking message to the kitchen PC.

5. The kitchen PC receives the message.

6. The chef brings up the tracking order interface on the kitchen PC.

7. The chef enters a time estimate for the order’s completion.

8. The system transmits the time estimate back to the server’s handheld.

Notify Chef About Party Status
Starting with this use case, I’ll use subheadings within these subsections to indi-
cate the aspects of the use case analysis, and I’ll use bullets to set off phrases
within those subheadings—with two exceptions: I’ll still number the steps, and I
won’t use bullets for the description.

Description
Via the network, the server tells the chef that a customer is almost finished with
the appetizer.

Assumptions
. The server is in the customer’s serving area.

. The server can gauge the customer’s progress.

. The system has a user-interface screen for customer status.

. The system transmits messages from handheld to kitchen PC and vice versa.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 331

332 Hour 19

Preconditions
. The customer is partially finished with the appetizer.

Postconditions
. The chef has initiated the final stages of completing the main course.

Steps
1. On the handheld computer, the server activates the interface screen for cus-

tomer status.

2. The user interface brings up a list of the tables in the server’s serving area.

3. The server selects the table of interest.

4. The server sends an “almost finished with appetizer” message about this
table to the kitchen PC.

5. The kitchen PC receives the message.

6. The server receives an acknowledgment from the kitchen PC.

This last step uses the “Receive acknowledgment” use case, which is in the Server
package. Figure 19.2 shows a diagram for the “Notify chef about party status” use
case. (In somewhat traditional style, Figure 19.2 shows the benefiting actor. Many
modelers now don’t bother to show this actor in a use case diagram.)

Notify chef
about party status

Receive
acknowledgment

«include»

Server

Customer

Benefiting Actor
. Customer

FIGURE 19.2
The use case dia-
gram for “Notify
chef about party
status.”

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 332

Developing the Use Cases 333

Total Up a Check
Here’s an important use case. Without it, a restaurant wouldn’t make any money!

Description
Add up the items in the order.

Assumptions
. There is a database of orders accessible to the server’s handheld.

. Each item in the order is attached to its price.

Preconditions
. The party has completed its meal.

Postconditions
. The bill is totaled.

Steps
1. The server brings up a list of active orders on the handheld.

2. The server selects the appropriate order.

3. The server clicks a button on the handheld to total the check.

4. The system calculates the total from the prices in the order.

Benefiting Actor
. Customer

Print a Check
Although this one may seem trivial, it’s an important part of the transaction.

Description
Print the totaled check.

Assumptions
. A (wireless) networked printer is located in the serving area.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 333

334 Hour 19

Preconditions
. A totaled check

Postconditions
. A printed check

Steps
1. The server clicks a button on the handheld to print the check.

2. The networked printer in the serving area prints the check.

3. The server clicks a button on the handheld to remove this order from the list
of active orders.

Benefiting Actor
. Customer

Summon an Assistant
This one is important because assistants help keep everything flowing smoothly.

Description
Request an assistant to clean the table for the next customer.

Assumptions
. The system allows wireless communication between two mobile employees.

. The system has a user interface screen for sending a message to an
assistant.

Preconditions
. An empty table that must be cleaned and reset

Postconditions
. The assistant has come to the table to clean and reset it.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 334

Developing the Use Cases 335

Steps
1. The server activates the interface for sending a message to an assistant.

2. The server receives an acknowledgment from the assistant.

As in the “Notify chef about party status” use case, the last step uses the “Receive
acknowledgment” use case.

Benefiting Actor
. Assistant

Analyzing this use case as well as the use cases in the Assistant package, might
lead you to believe that splitting the Assistant class into two classes,
AssistantServer and AssistantChef, is a good idea. (It just makes things cleaner.)
Could they be children of an abstract Assistant class? They could, but you prob-
ably wouldn’t gain much from setting up this abstract class.

Creating these two new classes necessitates revisiting the domain analysis. You
have to rework the class diagrams, particularly the diagram for Employee, as
Figure 19.3 shows.

Employee

name
address
socialSecurityNumber
yearsExperience
hireDate
salary

AssistantServer

serveBread()
serveWater()

AssistantChef

prepare()
cook()

Server

carry()
pour()
collect()
call()
checkOrderStatus()

Chef

prepare()
cook()
prioritize()
createRecipe()

Bartender

takeDrinkOrder()
prepareDrink()
printBarTab()

CoatCheckClerk

checkCoat()
checkHat()
printTicket()

Manager

monitor()
operateRestaurant()
assign()
rotate()

Notifies

Receives request from

1..*

1..*

1

1

FIGURE 19.3
The updated class
diagram for
Employee.

You would also have to update your package diagrams to include an Assistant
Server package and an Assistant Chef package.

This is an example of how the segments of GRAPPLE feed each other. The knowl-
edge gained during use case analysis has helped you evolve the domain analysis.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 335

336 Hour 19

Remaining Use Cases
The remaining use cases in the Server package are roughly analogous to the ones
you just analyzed. I leave it to you as an exercise to finish the analyses for this
package. (See Exercise 2 in the “Workshop.”)

Components of the System
One important aspect of the use case analysis is that you begin to reveal the com-
ponents of the system. Before you leave this hour, take note of the components
that have emerged through your analysis of the use cases in the Server package.
You’ll find them in the “Assumptions” section of each use case analysis.
(Additional components will become apparent when you do the exercises.)

On the software side, it’s obvious that a number of user interface screens are nec-
essary. WIN will need handheld-based user interfaces for order entry, order
change, order status tracking, customer status, and sending messages to an assis-
tant. For good measure, something like an interface “home page” will be neces-
sary to keep all these other interface screens organized. WIN will also need a user
interface on the kitchen PC to enable the chef to see and track each order. In gen-
eral, any of these user interfaces should display that home page, accept user
input, and display messages. If the restaurant wants to really delight its cus-
tomers, all the user interfaces should be capable of tracking an order and track-
ing a customer’s status. That way, anyone who has access to WIN will be able to
answer a customer’s questions and be sensitive to that customer’s status.

It also seems that you’ll need a database to contain all the orders. Each record
will contain the table number, the order, the time the order went in, the server,
whether the order is active, and more.

Of course, you’ll also need an order processor that works behind the interfaces to
create orders, send them where they’re supposed to go, and register them in the
database.

Figure 19.4 shows a class diagram that models the interfaces, the database,
and the order processor. It also shows some of their operations. This will come
in handy in the next hour when you examine the interactions among these
components.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 336

Developing the Use Cases 337

On the hardware side, you’ll need a wireless network, handheld computers for
the mobile employees (servers, assistant servers, and bussers), and a desktop PC
in the kitchen and another in the lounge. You’ll need a networked printer in
each serving area. You’ll probably need a palmtop and a printer for the coat-
check clerk, too.

The order processor and the database of orders have to reside on a computer. One
possibility is to have a central machine that holds the order processor and the
database and makes them accessible to all other machines on the network. The
wireless network, then, would allow wireless communication among the hand-
held computers and desktop PCs and this central computer.

A rather involved design document is starting to take shape. In the next hour,
you’ll delve even further into the use cases.

Summary
It’s not enough to list all the use cases. A development team has to understand
each one in great detail in order to begin to understand the system. In this hour,
accordingly, you went through the intricacies of use case analysis.

A use case analysis involves specifying a description of the use case, deriving the
preconditions and postconditions, and specifying the steps. One important aspect
of the use case analysis is that the components of the system begin to emerge.

WIN

UserInterface

acceptUserInput()
displayMessage()
displayInterfaceHomePage()
displayOrderTrackingScreen()
displayCustomerStatusScreen()

OrderProcessor

createOrder()
getOrders()
processServerInput()
processChefInput()

OrderDB

register()
retrieve()
update()

SeverUI

displayOrderEntryScreen()
displayOrderChangeScreen

ChefUI

displayOrder()
trackOrder()

FIGURE 19.4
Modeling the
components of
WIN.

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 337

338 Hour 19

Q&A
Q. In the initial segment of GRAPPLE, I notice you skipped over the action

“Identify cooperating systems.” Why is that?

A. As you’ll remember, this development team started with a blank piece of
paper. No cooperating systems existed. The next system that someone devis-
es for LNG Restaurants, however, might have to access WIN in some way.

Q. In this hour, you modified the use case diagrams and the class diagram.
Does this usually happen?

A. Yes. You can never be hesitant about making changes as your knowledge
evolves. The original list of use cases captured all the knowledge at one
point in the effort, and it represents a snapshot at that point. The modified
diagrams represent the development team’s latest thinking.

Workshop
The workshop for this hour tests your knowledge on fleshing out use cases. To see
the fleshed-out answers, turn to Appendix A, “Quiz Answers.”

Quiz
1. What are the parts of a typical use case diagram?

2. What does it mean for a use case to include (or use) another use case?

Exercises
1. Draw the use case diagram for “Summon an assistant.”

2. Analyze the remaining use cases in the Server package, and draw use case
diagrams.

3. Analyze the use cases in the Chef package, and draw use case diagrams.

4. Do the same for the Bartender, Assistant, and Busser packages.

5. Examine Figure 19.4. What additional interface classes should the model
include? What would their operations be?

23.067232640X.chap19.qxd 2/20/04 10:44 AM Page 338

HOUR 20

Getting into Interactions

What You’ll Learn in This Hour:
. Listing the working parts of the system
. Analyzing interactions among the working parts
. Modifying use cases

The use-case analysis in the last hour goes a long way toward making the WIN sys-
tem a reality. The analysis still isn’t far enough along to begin coding the system,
however.

Analyzing the use cases has helped conceptualize the working parts of the system.
Although you now know a lot about the use cases, you still have to model how those
working parts will interact with one another and how (and when) they change state.
Passing this information to the programmers will make their jobs a lot easier. They
will have a clearer vision of how to code classes and make them work together.

The Working Parts of the System
One way to start is to enumerate the system components suggested in each package
of use cases. Although you didn’t explicitly analyze all the use cases in all the pack-
ages in the last hour, you can still extract the system components those use cases
assume. In a real development effort, of course, a development team would have
analyzed all the use cases before moving on.

The Server Package
At the end of the last hour, you enumerated the software parts of the system based
on your analysis of the first nine use cases in the Server package: On the handheld

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 339

340 Hour 20

PCs, WIN will need user interface screens for order entry, order change, order-status
tracking, customer status, and message sending. A user interface main screen will
also be necessary. Your analysis revealed the need for an order-tracking user inter-
face screen on the kitchen PC. WIN will require a database to hold all the orders.

In addition, the use cases you didn’t analyze might suggest other system compo-
nents. To refresh your memory, those use cases were

. Summon a busser

. Take a drink order

. Transmit drink order to lounge

. Receive acknowledgment

. Receive notification from lounge

. Receive notification from kitchen

The use cases suggest some straightforward components. The first one tells you some-
thing in the Server’s user interface (like a dedicated screen) has to enable the server
to summon a busser. The second tells you that a screen is necessary for taking a drink
order (analogous to the screen for taking a meal order). The user interface has to be
able to receive an acknowledgment (to show, for example, that a busser has received
a request) and to receive a message from the lounge that a drink is ready.

Given the job of a server, it’s not surprising that the main components in this
package are user interface screens concerned with order taking and with message
sending and receiving.

The Chef Package
The use cases in the Chef package are

. Store a recipe

. Retrieve a recipe

. Notify the server

. Receive a request from the server

. Acknowledge server request

. Enter the preparation time

. Assign an order

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 340

Getting into Interactions 341

What components do these use cases suggest? Again, they follow in a straightfor-
ward manner.

The Busser Package
The use cases for the Busser are

. Receive a request from the server

. Acknowledge a request

. Signal table serviced

The Assistant Server Package
As you’ll recall, in the last hour you split the Assistant package into Assistant
Server and Assistant Chef. The use cases for the Assistant Server would be

. Receive a request from the server

. Acknowledge a request

. Notify request completed

The Assistant Chef Package
The use cases for the Assistant Chef would be

. Receive a request from the chef

. Acknowledge a request

. Notify request completed

One might argue that a separate computer for an assistant chef isn’t necessary
because he or she works in close proximity with a chef in the kitchen. If the
kitchen is very large, however, electronic communication might be a good idea.

The Bartender Package
The use cases for the Bartender are

. Enter a drink recipe

. Retrieve a drink recipe

. Receive notification from the server

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 341

342 Hour 20

. Receive a request from the server

. Acknowledge a request

. Notify request completed

These use cases are analogous to the Chef package’s use cases, and the software
components they suggest are analogous to the Chef’s components. The hardware
is analogous, too: Behind a bar, a desktop would make more sense than a hand-
held would.

You’ll need a database of drink recipes and user interface screens that allow easy
access to this database for entering and retrieving a recipe. The bartender’s user
interface has to show a notification from a server (that a customer’s table is
ready) and a request from a server for a drink. The bartender has to be able to
send an acknowledgment that a request was received and also to notify the server
that a drink is ready.

The Coat-Check Clerk Package
The Coat-Check Clerk’s use cases are

. Print a coat check

. Print a hat check

The software components in the coat-check clerk’s handheld should include a user
interface screen that enables him or her to print the appropriate check. The check
should include the time and a description of the article. You will probably also
want the system to have a database of checked items.

Interactions in the System
At this point in the project, the task is to show how the system components inter-
act in order to complete each use case. (Remember what I said earlier: Behind
every use case lurks a sequence diagram.) You’ll model the interactions for a
couple of the use cases in the Server package. The set of use cases is too big for
you to look at all of them. In a real-world project, however, a development team
does just that.

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 342

Getting into Interactions 343

Take an Order
Start with the “Take an order” use case. From Hour 19, “Developing the Use
Cases,” the steps are

1. On the handheld computer, the server activates the user interface for order
entry.

2. The order entry user interface appears.

3. The server enters the customer’s menu selection into WIN.

4. The system transmits the order to the kitchen PC.

In the model you developed in the last hour, this use case includes the “Transmit
the order to the kitchen” use case, whose steps are

1. A button-click in the order user interface indicates “Send to kitchen.”

2. WIN transmits the order over the wireless LAN.

3. The order arrives in the kitchen.

4. The order-entry user interface on the handheld indicates that the order
arrived in the kitchen.

A sequence diagram will show this interaction nicely. (So will a collaboration dia-
gram, which I ask you to create in Exercise 1.) Preparing the diagram forces you
to focus your thinking in several ways.

First, when the server takes the customer’s order, the server, in effect, creates some-
thing—an order! That order is an object in the WIN system. (It’s also an instance
of a class, Order, from your domain analysis in Hour 17, “Performing a Domain
Analysis.”) The chef will use it as a guideline for initiating and carrying out a set
of actions. The server will total up a check that corresponds to it. The customer
will pay the check. This created order, then, is an important item.

Also, if you examine the use cases “Change an order” and “Track order status”
(as you will in a moment), you’ll see references to a list of orders. This list has to
come out of a database of orders—a database I alluded to at the end of Hour 19.
It has to get into that database in the course of this use case. Remember also that
the order processor operates behind the scenes.

You can focus your thinking in still another way. In the included use case, the
term “kitchen” is a little vague. Because you’re modeling software components,
you have to refine what you mean here. Envisioning how this all might work

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 343

344 Hour 20

leads one in a common-sense way to conclude that the order must somehow
show up in the chef’s user interface in the kitchen PC. How it does that is not your
concern at this point, of course.

After you think these ideas through, the “Take an order” use case looks something
like this:

1. On the handheld computer, the server activates the user interface for order
entry.

2. The order entry screen appears.

3. The server enters the customer’s menu selection into the order entry screen.

4. The order processor creates an order.

5. The order processor transmits the order to the chef’s interface.

6. The order processor enters the order into the database of orders.

7. The order processor lets the server know that the order has been sent to the
kitchen and that it’s registered in the database of orders.

To create the sequence diagram that captures your thinking for this use case,
you’ll build on the class model at the end of Hour 19. The operations of the
classes in that model are the set of messages you can include in your sequence
diagram.

Figure 20.1 shows the sequence diagram. Just to recap what you learned earlier
about sequence diagrams, the objects laid across the top of the diagram represent
the components in this use case. The dashed line descending from each object is
that object’s lifeline, and time proceeds vertically downward. The little rectangles
on the lifelines are called activations. Each activation represents the period of time
during which an object is performing an action. An arrow from one lifeline to
another represents a message that goes from one object to another. The type of
arrowhead denotes the type of message. The Order object is created during this
use case. For that reason, it’s lower than the other objects, and the message point-
ing to it has a «create» stereotype.

Change an Order
Here’s another one. From the last hour, the steps in the “Change an order” use
case are

1. On the handheld computer, the server activates the user interface screen for
changing an order.

24.067232640X.chap20.qxd 2/20/04 10:42 AM Page 344

Getting into Interactions 345

2. The user interface brings up a list of existing orders in the kitchen placed by
this server.

3. The server selects the order to be changed.

4. The server enters the modification to the order.

5. The order processor transmits the updated order to the kitchen PC.

Again, preparing the diagram helps you refine your thinking and modify the use
case slightly. After step 5, the system should enter the modified order into the
database of orders.

The new use case should thus be

1. On the handheld computer, the server activates the user interface screen for
changing an order.

2. The user interface brings up a list of existing orders in the kitchen placed by
this server.

3. The server selects the order to be changed.

4. The server enters the modification to the order.

5. The order processor transmits the updated order to the kitchen PC.

6. The order processor enters the new order into the database of orders.

Figure 20.2 shows the sequence diagram that corresponds to this use case.

:Server :ServerUI :OrderProcessor :ChefUI

:Order

:OrderDB

displayOrderEntryScreen()

acceptUserInput(Selection)

«wireless»

«wireless»

processServerInput(Selection)

displayMessage(“OrderAccepted”)

«create»

displayOrder(Order)

register(Order)

Registered

FIGURE 20.1
The sequence
diagram for “Take
an order.”

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 345

346 Hour 20

Track Order Status
Try one more case before you finish. As you read in Hour 19, the “Track order sta-
tus” use case consists of these steps:

1. On the handheld computer, the server activates the user interface screen for
tracking an order entry.

2. The user interface brings up a list of existing orders in the kitchen placed by
this server.

3. The server selects the order to be tracked.

4. The system transmits a tracking message to the kitchen PC.

5. The kitchen PC receives the message.

6. The chef brings up the tracking order interface on the kitchen PC.

7. The chef enters a time estimate for the order’s completion.

8. The system transmits the time estimate back to the server’s handheld.

As you work through this, you might decide that the tracking message to the kitchen
PC (that is, to the chef’s user interface) could be to display the order-tracking screen
with the desired order highlighted. That would eliminate the need for step 6. Also, you
would replace “system” (the term in your original use case) with “order processor.”

Finally, you might want to interview a few chefs and ask how they come up with the
time estimate in step 7. Perhaps you can develop a software package that would help.

Figure 20.3 does the honors for this use case.

acceptUserInput(ChangeOrder)

:Server :ServerUI :OrderProcessor :ChefUI :OrderDB

displayOrderChangeScreen

«wireless»

«wireless»

«wireless»

«wireless»

getOrder(MyOrders)

retrieve(MyOrders)

Retrieved

update(Order)

Updated

displayMessage(MyOrders)

processServerInput(ChangeOrder)

displayOrder(ChangeOrder)

displayMessage(“Order Updated”)

FIGURE 20.2
The sequence dia-
gram for “Change
an order.”

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 346

Getting into Interactions 347

Implications
Seeing all the results so far, Messrs. LaHudra, Nar, and Goniff are ecstatic.

“This is going to change the entire nature of the restaurant business,” said Nar.

“I agree we’re onto something,” said LaHudra, “but what do you mean ‘change
the entire nature of the restaurant business’?”

“Yes, what do you mean?” asked Goniff.

“Well, if you think about it,” Nar continued, “the whole job of the server is going
to change, and so is the job of the chef. The servers won’t be running around as
much as they do now. They’ll be information resources for the customers because
they’ll always be in their designated serving areas. They’ll go to the kitchen and
the bar only when they have to. Through their handheld computers, they’ll
become monitors of the order-preparation process and managers of their areas.
They’ll be more like lifeguards than traditional waiters. In fact, they’ll be able to
actually sit down while they work in their areas because work won’t involve run-
ning around so much anymore.”

“And the chefs?”

“They’ll become more managerial, too. They’ll use their computers to assign
orders to assistant chefs and coordinate what goes on in a kitchen. This will be
great for large kitchens and large restaurants, now that we’re moving informa-
tion around instead of people.”

acceptUserInput(TrackOrder)

:Server :ServerUI :OrderProcessor :ChefUI :Chef

displayOrderTrackingScreen()

getOrders(MyOrders)

retrieve(MyOrders)

Retrieved

displayOrderTrackingScreen(TrackOrder)

processChefInput(TrackOrder,TimeEstimate)

displayMessage(MyOrders)

processServerInput(TrackOrder0)

displayMessage(TrackOrder, TimeEstimate)

acceptUserInput(TrackOrder,TimeEstimate)

:OrderDB

«wireless»

«wireless»

«wireless»

«wireless»

FIGURE 20.3
The sequence dia-
gram for “Track an
order.”

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 347

348 Hour 20

“Hmmm . . . That has a nice ring to it,” said LaHudra. “Apparently, when you
move information more, you can get away with moving people less. Not bad.”

“Not bad at all,” said Goniff, already plotting the next expansion of the business.

Summary
After the use case analysis, a development team turns its attention to the system
components the use cases suggest. What are they? How do they interact? This
hour showed how to answer these questions in the context of developing the WIN
system.

The objective of this effort is to provide information to the programmers—
information that facilitates their efforts. The results of this analysis should make
it easy for programmers to code the system objects and the ways those objects
communicate with one another.

After you model interaction among components, the system is much closer to
becoming a reality. As you model the interactions, you may find that it’s appro-
priate to modify the use cases at the base of these interactions.

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 348

Getting into Interactions 349

Q&A
Q. You’ve shown modification of use cases in several places here.

Realistically, does that ever happen in a project?

A. It absolutely does. Granted, the examples here may seem a bit contrived:
For instance, you probably would have known about the database in the
first use case before you ever got this far. The point is to show you that as
your knowledge evolves, the model evolves along with it.

Q. Why would the original use cases fail to capture all the nuances in the
first place?

A. Because they’re the results of JAD sessions with system users, not system
developers. You’ll notice all the additions and changes were system-related,
not business-related. After you finish the sessions with the potential users
and have a chance to analyze the use cases, it’s not uncommon for modifi-
cations like these to emerge.

Q. As I look at the sequence diagrams, I see that the arrowheads for the
messages aren’t alike. Why is that?

A. The filled arrowhead represents a call from one object to another, where the
sender is waiting for the receiver to do something. The open-stick arrowhead
represents a message where the sender has transferred control to the receiver
and isn’t waiting for anything.

Q. Also in the sequence diagrams, sometimes those activation rectangles are
long and sometimes they aren’t. Can you explain?

A. Those rectangles represent an object performing one of its operations—
typically as a response to a message from another object. The height of the
rectangle corresponds roughly to the length of time the operation takes. The
longest rectangles in these figures are for the Server UI. The Server has
sent a message to the Server UI to display a particular screen. The long rec-
tangle shows that the screen remains visible.

Q. One more question about the sequence diagrams. I see that in the first
two, the OrderDB is at the extreme right. In the third one it’s in a different
place. Is that OK?

A. Yes. Bear in mind that the left-right position of an object in the top row
doesn’t mean anything. In fact, all the diagrams start with a message from
the leftmost object—the Server. But, the Server doesn’t have to be in that

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 349

350 Hour 20

position to kick off the sequence of messages. It’s good form to do it that
way, but it’s not absolutely necessary.

Workshop
Here’s where you get your chance to spread your wings on modeling interactions
among system components. After you have answered the questions, interact with
Appendix A, “Quiz Answers,” to find the answers. Incidentally, you might want to
use the components listed in this hour to help you go above and beyond the listed
exercises and make additional sequence diagrams and collaboration diagrams.

Quiz
1. How do you represent an object that’s created during the course of a

sequence diagram?

2. How is time represented in a sequence diagram?

3. What is a lifeline?

4. In a sequence diagram, how do you show an activation, and what does it
represent?

Exercises
1. Develop a collaboration diagram equivalent to the sequence diagram for

the Server, use case “Take an order.”

2. Create a sequence diagram for the use case “Take a drink order.”

3. Select at least one use case in the Chef package and develop a sequence dia-
gram. Use the list of components mentioned in this hour. Are any addition-
al ones necessary?

4. Use your imagination on this one: The use cases in the Coat-Check Clerk
package seem pretty simple. Can you embellish each one by adding a step
or two? Would any additional components be helpful? Draw a sequence
diagram for one of these use cases.

5. Take a look at the three sequence diagrams. Do you see any repetitions
from one to another? If so, use the UML 2.0 techniques from Hour 9,
“Working with Sequence Diagrams,” to reuse the repeated information from
one diagram to another.

24.067232640X.chap20.qxd 2/20/04 10:43 AM Page 350

HOUR 21

Designing Look, Feel, and
Deployment

What You’ll Learn in This Hour:
. Some general principles of GUI design
. The GUI JAD session
. From use cases to user interfaces
. UML diagrams for GUI design
. Mapping out system deployment

You’ve come through a lot of use case–driven analysis. In this hour, you’re going to
look at two aspects of system design. Both are ultimately traceable to use cases, and
both are extremely important to the final product. Graphical user interfaces (GUIs)
determine system usability. Deployment turns the system’s planned physical archi-
tecture into a reality.

Some General Principles of GUI Design
User interface design, equal parts art and science, draws upon the vision of the
graphic artist, the findings of the human factors researcher, and the intuitions of the
potential user. After much experience with WIMP (Windows, Icons, Menus, Pointing
device) interfaces, some general principles have emerged. Here are some of the
major ones:

1. Understand what the user has to do. User interface designers typically perform
a task analysis to understand the nature of the user’s work. Your use case
analysis roughly corresponds to this.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 351

352 Hour 21

2. Make the user feel in control of the interaction. Always include the capability
for the user to cancel an interaction after it’s started.

3. Give the user multiple ways to accomplish each interface-related action (like
closing a window or a file) and forgive user errors gracefully.

4. Because of cultural influences, our eyes are drawn to the upper left corner of
a screen. Put the highest priority information there.

5. Take advantage of spatial relationships. Screen components that are related
should appear near one another, perhaps with a box around them.

6. Emphasize readability and understanding. (Words for all of us to live by!)
Use the active voice to communicate ideas and concepts.

7. Even though you might have the capability to include upwards of umpteen
gazillion colors on a screen, limit the number of colors you use. Limit that
number severely. Too many colors will distract the user from the task at hand.
It’s also a good idea to give the user the option of modifying the colors.

8. If you’re thinking of using color to denote meaning, remember it’s not always
easy for a user to see an association between a color and a meaning. Also,
bear in mind that some users (about 10% of adult males) have color confu-
sion, and they may find it difficult to distinguish one color from another.

9. As is the case with color, limit your use of fonts. Avoid italics and ornate
fonts. “Haettenschweiler” is a font name that’s fun to say, but it doesn’t
always promote ease of use.

10. Try to keep components (like buttons and list boxes) the same size as much
as possible. If you use different-size components, a multiplicity of colors,
and a variety of fonts, you’ll create a patchwork that GUI specialists call a
“clown-pants” design.

11. Left-align components and data fields—line them up according to their left-
side edges. This minimizes eye movements when the user has to scan the
screen.

12. When the user has to read and process information and then click a button,
put the buttons in a column to the right of the information or in a row
below and to the right of the information. This is consistent with the natu-
ral tendency (in our culture) to read left to right. If one of the buttons is a
default button, highlight it and make it the first button in the set.

These dozen principles aren’t the only ones, but they give you an idea of what’s
involved in designing a GUI. The challenge is to convey the proper information in
an uncomplicated, straightforward, intuitive visual context.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 352

Designing Look, Feel, and Deployment 353

Figure 21.1 shows what happens when you put some of these principles into
action. Figure 21.2 shows what happens when you don’t.

By the way, if you’re creating Web pages, check out GUI honcho Jakob Nielsen’s
highly informative www.useit.com for more information on user interface design.

The GUI JAD Session
Although this doesn’t directly connect to the UML, it’s a good idea to talk about
how potential users determine the GUI. Once again, a Joint Application
Development (JAD) session is in order.

For this session, you recruit potential users of the system. For WIN, you’d recruit
servers, chefs, assistant servers, assistant chefs, bussers, and coat-check clerks. The
development team players should include programmers, analysts, modelers, and
a facilitator. The objective is to understand the users’ needs and implement an
interface based on their ideas—an interface that enables the system to integrate

FIGURE 21.1
Applying GUI design
principles.

FIGURE 21.2
The result of not
applying GUI design
principles.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 353

354 Hour 21

smoothly into business processes. The old way of developing a system—writing a
program from scratch, molding the behavior of the users so they can interact with
it, and modifying business processes to accommodate it—is extinct.

To keep the session efficient, you’d schedule the users in groups according to their
roles. You’d plan the length of each session according to the number of use cases
in each role’s package. This is just a rough guideline, of course, as some use cases
are more complex than others. Remember, too, that new use cases might emerge
as you design the GUI.

The users’ participation in the session is a two-part affair. In the first part, they
derive the user interface screens. In the second, they approve prototypes generated
by the development team.

How do the users derive the screens? The facilitator suggests a use case to start
from, and the users discuss ways to implement that use case via the system.
When they’re ready to start talking at the level of a specific screen, the users work
with paper mockups. The facilitator provides a large sheet of easel paper in land-
scape view (long dimension as the horizontal) to represent the screen. Post-it
notes represent the GUI components (for example, pop-up menus, buttons, combo
boxes, and list boxes). The users’ task is to work as a group to position the com-
ponents appropriately.

When they reach agreement on which components should be on a screen and
where those components should be located, development team members create
prototype screens. As they work, they use appropriate GUI principles outlined in
the preceding section. Then, they present those screens on computers, and the
users make any necessary modifications.

The point of all this, of course, is to have users (rather than developers) drive the
process as much as possible. That way, the system will work optimally in the real
world of everyday business activities.

From Use Cases to User Interfaces
Use cases describe system usage. Therefore, the user interface has to serve as a
means of implementing the use cases.

Think of a use case’s sequence diagram as one view of a use case. If you could
“rotate” that view in three dimensions so that the leftmost part of the sequence
diagram sticks out of the page and faces you, you’d be looking at the user inter-
face that takes the user into the sequence. (See Figure 21.3.)

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 354

Designing Look, Feel, and Deployment 355

Let’s examine the use cases in the Server package and show how they map into
the WIN user interface. Here are those use cases once again:

. Take an order

. Transmit the order to the kitchen

. Change an order

. Track order status

. Notify chef about party status

. Total up a check

. Print a check

. Summon an assistant

. Summon a busser

. Take a drink order

. Transmit drink order to lounge

. Receive acknowledgment

. Receive notification from lounge

. Receive notification from the kitchen

The Server interface has to accommodate all these use cases.

User
Interface

FIGURE 21.3
Rotating the
sequence diagram
orients the user
interface toward
you.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 355

356 Hour 21

One way to begin is to partition the set of use cases into groups. Three groups are
sufficient. One group deals with orders (“Take an order,” “Change an order,”
“Track order status,” and “Take a drink order”). Another group deals with checks
(“Total up a check” and “Print check”). A third is concerned with sending and
receiving messages (“Notify chef about party status,” “Summon an assistant,”
“Summon a busser,” “Transmit drink order to lounge,” “Receive acknowledg-
ment,” and “Receive notification from lounge”).

You might want to start with a main screen that takes the server to screens for all
the other groups of use cases. You’d want to be able to navigate from one group
to any other group. Within a group, you’d want to navigate to any use case within
the group. Figure 21.4 shows a first cut at the main screen. This will have to go
on a handheld, so it will probably be scaled down in some ways.

FIGURE 21.4
First cut at a
Server main
screen.

Your JAD session might arrive at the convention that navigation within a group
will be done by buttons on the right of the screen, whereas navigation between
groups will be accomplished via buttons at the bottom of the screen. Figure 21.5
shows a first cut at one of the Server interface screens—the screen for the orders-
related use cases.

This screen opens in the Take Order mode. The large white box will be a scrolla-
ble copy of the dinner menu with check boxes that the server clicks to indicate a
customer’s selections. (When you deal with the interface, remember you’re deal-
ing with the world of restaurants and be extra careful about how you use the
word menu.) Clicking OK creates the order and sends it to the kitchen PC. Clicking
a button on the right brings its associated capabilities to the screen.

Clicking a bottom-row button brings up a separate group of capabilities. The
Message button, for example, brings up the screen in Figure 21.6. By the way, the
user interface doesn’t have to be just visual. This interface incorporates a sound
signal to notify the server that a message has arrived. He or she clicks the Read
button to read a scrollable list of messages.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 356

Designing Look, Feel, and Deployment 357

UML Diagrams for GUI Design
The UML makes no specific recommendations regarding diagrams for GUI
designs. Earlier, however, I hinted at a possibility: Recall from Hour 8, “Working
with State Diagrams,” that I presented an example that dealt with state changes
in a GUI. Although that example drilled deeper into the mechanics of GUIs than
you have to at this point, it suggests that state diagrams are useful when you dis-
cuss user interfaces.

You’d use a state diagram to show the flow of a user interface. Figure 21.7 shows
how the high-level screens in the Server interface connect with one another.

FIGURE 21.5
Screen for orders-
related use cases.

FIGURE 21.6
Screen for mes-
sage-related use
cases.

Server Main Screen

MessagesChecksOrders

FIGURE 21.7
A state diagram for
high-level screen
flow in the Server
interface.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 357

358 Hour 21

Because a particular screen consists of a number of components, a class diagram
of a composite is appropriate for modeling a screen. Figure 21.8 shows a compos-
ite diagram that corresponds to the screen in Figure 21.5.

ServerScreen

ChecksScreenOrdersScreen MessagesScreen MessagesButton

ChecksButton

OrdersButton

TakeButtonOrdersBox ChangeButton TrackButton DrinkButton OKButton

Mapping Out System Deployment
After the GRAPPLE analysis segment has produced the general concept of the
WIN system, a system engineer will start thinking about how the physical archi-
tecture should look. He or she will start considering alternative network topologies
and how to implement them in a wireless way. The system engineer will also start
figuring out which software artifacts belong on which nodes in the network. This
design segment doesn’t have to wait for analysis to be complete. Its actions can
proceed in parallel with actions in other GRAPPLE segments, such as the design of
the GUI.

The key is for the project manager to track all the actions in all the segments.

The Network
Remembering the different types of LANs available (from Hour 13, “Working with
Deployment Diagrams”), the system engineer has a number of choices. The objec-
tive is to pick the one that integrates most smoothly with wireless connectivity for
the handheld computers.

To understand some of the decisions the system engineer has to make, let’s delve
a little into Wireless LANs (WLANs). A radio transceiver called an access point

FIGURE 21.8
A class diagram
that corresponds to
the screen in
Figure 21.5.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 358

Designing Look, Feel, and Deployment 359

sits at a fixed location and communicates with wireless-enabled devices. The
access point can connect to a LAN (of the standard, everyday garden-variety
wired type). Multiple access points increase the WLAN’s range and the number of
users that can access it.

The system engineer has to decide how many access points to have in the restau-
rant, the type and layout of the wired network, and whether to have handhelds
with built-in WLAN capability or handhelds that require PC cards for wireless net-
working.

For this exercise, suppose the system engineer decides on a thin ethernet for the
LAN (see Hour 13).

The Nodes and the Deployment Diagram
You’ve already enumerated the nodes in your system. The servers, assistant
servers, and bussers will have handheld computers. Let’s assume the system engi-
neer chooses a handheld device that requires a PC card.

The kitchen, cloakroom, and cocktail lounge will have desktops. Each desktop will
connect to a printer. In addition, each serving area will have a desktop connected
to a printer so the server can print checks and retrieve them without walking too
far. (A server’s print server, so to speak.)

To illustrate the deployment, the system engineer delivers the initial deployment
diagram shown in Figure 21.9. It will ultimately have to be fleshed out, but this is
a good start.

Next Steps
The development team has traveled the road from use cases to user interfaces to
WLANs. What’s next?

First, the analysts clean up the model. They look through the model dictionary
and clear up any ambiguities. They make sure that all terminology is used consis-
tently throughout all diagrams and that problems with terms like menu and server
haven’t crept in. When all appropriate analysis and design parts of GRAPPLE are
complete, the team compiles its results into a design document and hands off
copies to the client and to the programmers.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 359

360 Hour 21

It then falls to the programmers to start turning the design into code, which is
beyond the scope of this book. The code will be tested, rewritten according to the
results of the tests, and retested—a process that will continue until the code passes
all tests. The use case analysis forms the basis for the tests.

Document specialists begin creating documentation for the system, and they cre-
ate training materials as well. A good document creation effort should proceed
like a good system development effort—with careful planning, analysis, and test-
ing—and should begin early in the development process.

With a solid analysis and design and an informative, well-organized design docu-
ment, these next steps should proceed smoothly all the way through deployment.

TerminatorPrinter

Repeater

Printer

Manager PC

Kitchen PC

«Artifact»
Chef UI

T-Connector

T-Connector

T-Connector

T-Connector

T-Connector

T-Connector

T-Connector

T-Connector

T-Connector

Terminator

Terminator

Terminator

Central PC

«Artifact»
Order Processor

«Artifact»
Order Database

Handheld PC

«Artifact»
Busser UI

Handheld PC

«Artifact»
Server UI

Access Point

Wireless Adapter
PC Card

Wireless Adapter
PC Card

Printer

Cloakroom PC

Printer

Lounge PC

Area PC
Printer

«Wireless»

«Wireless»

FIGURE 21.9
Initial deployment
diagram for WIN.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 360

Designing Look, Feel, and Deployment 361

The main idea is to focus intense efforts on analysis and design. That way the
developer confronts as few challenges as possible during implementation and the
result of the project is a system that fully meets the client’s needs.

And Now a Word from Our Sponsor
Messrs. LaHudra, Nar, and Goniff couldn’t be more thrilled with the way the
development effort has gone. The development team has kept them posted
throughout the process and has given them UML-based blueprints that show
where the project is headed. They’re even happy with the System Engineer’s
strategic thinking on which mobile device to use.

The whole effort has fired up their imaginations, impelling them to look for new
ways to harness technology—both inside and outside the restaurant world.
They’ve come to the realization that most business processes involve the move-
ment of information. To the extent that technology accelerates that movement, it
provides a potentially huge competitive advantage.

Empowering a Sales Force
Outside the restaurant world, the three entrepreneurs see the potential of reusing
the wireless LAN ideas for a mobile sales force inside a huge work area. Reuse
shouldn’t be difficult, as all the modeling information is intact.

One application of this idea might be in the gigantic home supply stores that
cater to do-it-yourself types. (Places where “hardware” has a different connotation
than the one in this book.) Salespersons on the floor of that kind of store would
benefit from a handheld device that accesses product information through a wire-
less LAN. A system like this would help the salesperson answer questions about
where the product is located in the store, whether it’s in stock, and how someone
would use it.

This has some intriguing implications for both salesperson and customer. The cus-
tomers would always be sure they’re getting the latest and most accurate infor-
mation from the salespeople. A new salesperson trained in the use of the system
could quickly start working with minimal training about the stock.

LaHudra, Nar, and Goniff will soon invade the world of home improvement.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 361

362 Hour 21

No Strings Attached
Although LaHudra, Nar, and Goniff are obviously trailblazers, they’re no longer alone
in their visions for mobile devices and wireless LANs.

For example, tablet PCs have already invaded the restaurant world. One restaurant is
using a tablet PC as a digital wine list that links wirelessly to information about its
wines. The next time you hear a sommelier describe a wine as “somewhat impetu-
ous, with an amusing insouciance and a brisk bouquet,” he or she might just be rely-
ing on a tablet PC and a wireless LAN.

Of course, “Internet hotspots” in restaurants and coffee houses are also popular.
Bring your wireless-enabled laptop, have a snack, and read your e-mail via the
restaurant’s WLAN.

And what about servers using wireless handhelds to send orders to the kitchen?
When I dreamed up the whole thing for the first edition of this book, I thought we’d
really see this kind of futuristic restaurant someday. Apparently, “someday” is now.
Zozobra, a restaurant in Israel, took the pencils and pads out of the hands of its
waiters and gave them wireless handheld computers instead. By all accounts, wait-
ers and customers couldn’t be happier.

Expanding in the Restaurant World
This mobile sales force idea isn’t enough for LaHudra, Nar, and Goniff. They
want to do nothing less than use technology to revolutionize the entire restaurant
business. They believe they can build WIN-based restaurants in major cities
throughout the world. They feel the technology will expedite the dining experi-
ence and make it more convenient for everyone to eat out.

Goniff, ever on the lookout for new ways to make a buck, had been thinking about
this for a while (at least since the end of Hour 20, “Getting into Interactions”!).

“Fellas,” said he to his partners, “if we build restaurants in all the major cities, we
can take technology to the next step and move information all over.”

“How so?” asked Nar, always a little slow on the uptake.

“Think about it. If we’re international, we can go on the Web and . . . ”

LaHudra interjected: “Just a second. We’re already on the Web. We get hits all day
on www.lahudranargoniff.com, don’t we?”

“Let me finish, LaHudra. We can use the Web to get people to come into all these
restaurants. We’ll use the Web to give them a free sandwich.”

“What???!!!” asked Nar and LaHudra simultaneously, and incredulously.

By the
Way

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 362

Designing Look, Feel, and Deployment 363

“Work with me on this. We devote a page of our Web site to our restaurants divi-
sion. Someone hits that page, supplies his name and a bunch of other informa-
tion, and gets to select the sandwich of his choice. If our database shows he
hasn’t done this before, he gets to go to another page where he can print out a
coupon for a sandwich. He takes the coupon into the nearest restaurant. He gets
the sandwich, eats it, loves it, and comes back as a paying customer.”

“Nice, but the Web goes everywhere,” said Nar. “Suppose somebody doesn’t live
near one of our restaurants but still wants the sandwich?”

“Wait! I know!” said LaHudra. “They can use their credit card to pay a nominal
shipping fee on the Web site, and our closest restaurant will send it right to their
house in an inexpensive cold container. They can put the sandwich in the
microwave and warm it up. That way, they can have a LaHudra-Nar-Goniff expe-
rience wherever they are. Then, when they happen to travel to a city that has one
of our restaurants, they’re likely to eat there.”

“By the way, what about that ‘other information’ they entered when they printed
the coupon?” asked Nar.

“I’m way ahead of you,” said Goniff. “We use that information to e-mail them
promotional information about our other businesses, according to their demo-
graphics—if they indicate it’s OK to do that, of course.

“Now where’s that development team? We’ve got work to do.”

Summary
When your project moves into the Design segment, two items to focus on are the
user interface and the system deployment. Both are ultimately use case–driven,
and both are extremely important.

User interface design depends on artistic vision and scientific research. A number
of principles of user interface design have emerged after years of work with WIMP
interfaces. This hour presented some of them. Keep them in mind as your devel-
opment team designs GUIs.

Use cases drive the design of the user interface. The system has to enable the user to
complete every use case, and the user interface is the gateway into the use cases.

In parallel with a number of project efforts, the team’s system engineer maps out
the physical architecture. The architecture is use case–driven because system
usage ultimately determines the physical nature and layout of the system. The
system engineer provides a UML deployment diagram that shows the nodes, the

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 363

364 Hour 21

software components that live in each node, and the internodal connections.
Although deployment issues show up late in the GRAPPLE process, there’s no rea-
son to hold back on starting to think about deployment. As shown in this hour,
fundamental issues can arise that require resolution.

After the system is modeled, the modeling information can be reused in a variety
of contexts. The model can fuel a multitude of new business ideas.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 364

Design Look, Feel, and Deployment 365

Q&A
Q. After the users have developed a paper prototype, is it really necessary to

go to the trouble of creating a screen and showing it to them? After all,
they’ve created the paper screen and positioned the paper components.
Can’t they just wait to see the screen on the working system?

A. You absolutely have to show the users a real screen—“real” in the sense that
it’s on a computer. First of all, users are likely to see things on the screen
they didn’t see on paper. Another reason—related to the first—is that the
dimensions of post-it notes only approximate the dimensions of onscreen
components (relative to the larger sheet that represents the screen). Placing
the post-its results in some distortion of the spatial relationships among the
onscreen components. The screen is likely to look somewhat different from
the paper prototype. Also, screen shots become valuable parts of your
design document.

Q. I know this isn’t directly related to the UML, but one of the GUI principles
you mentioned is to give a user multiple ways to accomplish interface-
related actions. Why is that important?

A. This is important because you can’t predict all the contexts in which a user
will perform an action. Sometimes the user will be using a keyboard-intensive
application, and a keystroke combination will be more appropriate than a
mouseclick. At other times the user will be using the mouse, and a mouseclick
will be more appropriate. Providing multiple ways of accomplishing the same
thing makes the interaction that much easier for the user.

Q. Speaking of questions not directly related to the UML, why the “active
voice” GUI principle?

A. Studies show that people have an easier time understanding the active voice
than the passive. Also, the active voice typically requires fewer words and
thus takes up less precious screen real estate than the passive voice does.
Users (as well as publishers and editors) appreciate it if your directions say,
“Click the Next button to continue” rather than “The Next button should be
clicked by you in order for the process to be continued.”

Q. I’ve got one more unrelated question. Where can I find out more about
WLANs?

A. To find out more about WLANs, visit www.wlana.org, the Web site of the
Wireless LAN Association (WLANA). WLANA is a consortium of corpora-
tions that market WLAN components.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 365

366 Hour 21

Workshop
This workshop tests your knowledge of issues related to designing a system’s look
and feel and to mapping out the system’s physical architecture. Design your
answers well, and then interface with Appendix A, “Quiz Answers.”

Quiz
1. What is a task analysis?

2. Which analysis that we’ve already done is roughly equivalent to a task
analysis?

3. What is a clown-pants design?

4. Give three reasons for limiting the use of color in a GUI.

Exercises
1. Use a UML state diagram to model the chef’s user interface.

2. Use pencil and paper to design at least one of the screens for the chef’s user
interface. Start by grouping the use cases, and then stick to the JAD session
conventions. If you have access to Visual Basic or another visual screen
design tool, try using it to complete this exercise.

3. Play the role of system engineer and research alternatives (other than the
selected PC card and access point) for implementing the WLAN with hand-
held devices.

4. Suppose the development team had decided to use palmtops instead of
handhelds. Play the role of system engineer again and list all the implica-
tions of this choice. Research potential ways of implementing the WLAN
with Palm OS–based devices or with Pocket PCs. Modify Figure 21.9 accord-
ingly.

25.067232640X.chap21.qxd 2/20/04 10:26 AM Page 366

HOUR 22

Understanding Design
Patterns

What You’ll Learn in This Hour:
. How to parameterize a class
. The thought process behind design patterns
. Applying a design pattern
. Using your own design pattern
. The advantages of design patterns

Now that you’ve learned the fundamentals of the UML and you’ve seen how to use
it in the context of a development project, we end Part II with a look at applying the
UML to support a useful idea—design patterns.

In the preceding 21 hours, you covered a variety of topics. From class diagrams to
sequence diagrams, from state diagrams to JAD sessions, the goal was to get you
ready to apply the UML in frequently occurring, real-world situations.

Now we change direction a bit. In this hour, I’ll delve into a popular application
of the UML. This application, the representation of design patterns, captures the
essence of solutions that have worked repeatedly in real-world projects and
situations.

Parameterization
In Hour 2, “Understanding Object-Orientation,” I mentioned that a class is a tem-
plate for creating objects. I said you could think of a class as a cookie-cutter that
stamps out new objects. An object, you’ll recall, is an instance of a class.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 367

368 Hour 22

To further refresh your memory, return once again to the washing machine
example. Specifying the washing machine class—or to be notationally correct, the
WashingMachine class—as having the attributes brandName, modelName,
serialNumber, and capacity, and the operations acceptClothes(),
acceptDetergent(), and turnOn() gives you a way to create new objects in the
WashingMachine class. Each time you want to create an object, you assign values
to the attributes.

As it happens, the UML enables you to move a step higher. It gives you a mecha-
nism for creating classes in a way that’s analogous to creating objects. You can set
up a class so that when you assign values to a subset of its attributes, you create a
class rather than an object. This kind of class is called a parameterized class. Its
UML representation appears in Figure 22.1. The dashed box in the upper right cor-
ner holds the parameters to which you assign values in order to generate the class.
Just for the record, these are called unbound parameters. When you assign values
to them, you bind them to those values. The T in the dashed box is a classifier
that indicates the class is a template for creating other classes.

TFIGURE 22.1
The UML icon for a
parameterized
class.

Here’s an example: Suppose you set up LivingThing as a parameterized class. The
unbound parameters could be genus and species, along with the attributes name,
height, and weight as shown in Figure 22.2.

T,genus:String,species:String

LivingThing

name: String
height: Integer
weight: Integer

FIGURE 22.2
LivingThing as a
parameterized
class.

If you bind genus to homo, and species to sapiens, you create a class called Human.
The class name is bound to T. Figure 22.3 shows one way of representing the
binding. This particular style is called explicit binding because it explicitly shows
the generated class in a relationship with the parameterized class, and it provides
the generated class with its own name.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 368

Understanding Design Patterns 369

The connection between Human and LivingThing is the realization arrow you saw ear-
lier in connection with interfaces. Recall that an interface has simple operations and
that connecting an interface with a class brings “reality” to those operations.
Somewhat analogously, Human brings reality to the specifications of LivingThing.
Notice I said “somewhat.” In order to show the special nature of this relationship, you
add «Bind», along with the parenthesized list of bindings.

Another binding style is called implicit binding. With this you don’t show the
relationship, and the bindings appear in an angle-bracketed list in the name of
the generated class. Figure 22.4 shows this.

LivingThing

name: String
height: Integer
weight: Integer

«Bind»
(Human, homo, sapiens)

Human

T,genus:String,species:String FIGURE 22.3
Explicitly binding
the LivingThing
parameterized
class.

LivingThing

name: String
height: Integer
weight: Integer

LivingThing<Human,homo,sapiens>

T,genus:String,species:String FIGURE 22.4
Implicitly binding
the LivingThing
parameterized
class.

In either case, you can then assign values to name, height, and weight to create
objects in the Human class.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 369

370 Hour 22

Design Patterns
It’s possible to expand on the parameterization idea. Any UML classifier can be
parameterized. In fact, a group of collaborating classifiers can be parameterized,
and that leads off in an intriguing direction.

After several decades of increasingly widespread use, object orientation has resulted
in a number of robust solutions to frequently recurring problems. These solutions
are called design patterns. Because design patterns have grown out of the object-
oriented world they’re easy to conceptualize, diagram, and reuse. Because we now
have the UML, we have a common modeling language to explain and dissemi-
nate them.

The first book to popularize design patterns is entitled, unsurprisingly, Design
Patterns (Addison-Wesley, 1995). Its authors—Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides—have become widely known as the “Gang of Four.”

A design pattern is essentially a solution—a design—that has emerged through
practical experience with a number of projects, and that development teams have
found to be applicable in a variety of contexts. Each design pattern describes a set
of communicating objects and classes. The set is customized to solve a design
problem in a specific context.

In their book, the Gang of Four cataloged and characterized 23 fundamental
design patterns. They partitioned these patterns into three categories according to
each pattern’s purpose: (1) Creational patterns that concern themselves with the
process of object creation, (2) Structural patterns that deal with the composition
of objects and classes, and (3) Behavioral patterns that specify how classes or
objects interact and apportion responsibility. They further partition their design
patterns in terms of whether they apply to objects or classes. They refer to this cri-
terion as scope, and most patterns’ scope is at the object level.

Each design pattern has four elements: (1) a name that enables you to describe a
design problem in a word or a phrase, (2) a problem that defines when to apply
the pattern, (3) a solution that specifies the elements that make up the design and
how they collaborate, and (4) the consequences of applying the pattern.

Now you come to that “intriguing direction” I mentioned earlier: Within a model,
you can represent a design pattern as a parameterized collaboration in the UML.
The design pattern is expressed in a general way, with generic names for the col-
laborators. Assigning domain-specific names makes the pattern applicable to a
specific model. The parameterized collaboration helps you visualize the specificity
within the context of the pattern.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 370

Understanding Design Patterns 371

Chain of Responsibility
Let’s examine one design pattern, and you’ll see what I mean.

The Chain of Responsibility is a behavioral pattern that applies to a number of
domains. This pattern deals with the relationship between a set of objects and a
request. You apply this pattern when more than one object can handle a request.
The first object in the chain gets the request and either resolves it or moves it
along to the next object in the chain until one can handle it. The original
requesting object doesn’t know which object will handle its request. The object
that ultimately handles the request is said to be an implicit receiver.

Restaurants are set up this way, and so are car dealerships when they finance
auto purchases. In a restaurant, a customer typically doesn’t send a request
directly to a chef and isn’t usually acquainted with the chef the request is going
to. Instead, the customer gives an order to a server and the server gets it to the
chef, who might fulfill the order or pass it along to an assistant chef. (That’s how
it happens at the LaHudra, Nar, & Goniff restaurants, anyway.) In an automobile
dealership, the dealer passes a loan application to several financial institutions
until one decides to offer a loan.

Now that you’ve seen the Chain of Responsibility design pattern in a couple of
contexts, you’re ready to understand it in the abstract. The participants in this
pattern are a Client, an abstract Handler, and concrete Handlers that are chil-
dren of the abstract Handler. The Client initiates a request. If a (concrete)
Handler can take care of that request, it does so. If not, it passes the request along
to the next concrete Handler. Figure 22.5 shows how this structure looks.

Handler
Client

Successor

handleRequest()

Handler

handleRequest()

ConcreteHandler1

handleRequest()

ConcreteHandler2

handleRequest()

Handler

handleReques

FIGURE 22.5
The structure of
the Chain of
Responsibility
design pattern.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 371

372 Hour 22

The idea behind this pattern is to free an object from having to know which other
object fulfills its request. It gives you additional flexibility when you assign
responsibilities to objects. The downside is that the pattern gives no guarantee
that any object will handle the request. For example, it’s possible that no finan-
cial institution will offer a car loan in response to a loan application.

Note the reflexive association on the abstract Handler class. The Gang of Four
intended to show that you have the option of having the Handler implement the
successor link. (In some contexts, the objects know how to find their own succes-
sors.) I decided to represent that implementation with an association class, as in
Figure 22.5, to allow the further option of adding attributes to the successor.

Chain of Responsibility: Restaurant Domain
In the restaurant domain, the abstract Handler is the Employee class, and concrete
Handlers are the Server, the Chef, and the Assistant Chef. The Customer is the
Client, who might initiate a request, like placing an order, and doesn’t know
who will ultimately fulfill it.

Substituting domain-specific names into Figure 22.5 gives you Figure 22.6.

Employee
Customer

Successor

handleRequest()

Server

handleRequest()

Chef

handleRequest()

AssistantChef

handleRequest()

FIGURE 22.6
The Chain of
Responsibility
design pattern in
the restaurant
domain.

Figure 22.6, while a useful diagram, doesn’t show how the domain-specific names
fit into the pattern. To show the context, you use a parameterized collaboration
as in Figure 22.7.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 372

Understanding Design Patterns 373

In Figure 22.7, the dashed oval represents the collaboration that is the design pattern,
hence the name inside the oval. The surrounding boxes represent the collaborators.
The dependencies show that the collaboration depends on the collaborators. The label
on a dependency tells which role the depended-on collaborator satisfies within the
pattern. The collaboration has been parameterized with the addition of the domain-
specific class names.

Chain of Responsibility: Web Browser
Event Models
When developing interactive Web pages, a designer has to consider the event
model of the browser that will open it. In Internet Explorer (IE), you write
JavaScript or VBScript code for reacting to an event like a button click. This code,
called an event handler, specifies the changes, if any, that occur when the button
is clicked.

In an HTML document, you can divide a page into areas called DIVs, and subdi-
vide a DIV into forms. You can position a button inside a form. Does this sound
strangely like a composite? That’s because it is. Each element is a component of
the document, and some components are components of other components.
Gamma, Helm, Johnson, and Vlissides list the Composite as one of their design
patterns, and note that it’s often used in conjunction with the Chain of
Responsibility pattern. The component-composite relationship implements the
successor links. When I showed you the class diagram for the Chain of

ConcreteHandler3ConcreteHandler2ConcreteHandler1

Handler

AssistantChefChefServer

Employee

Chain of Responsibility

FIGURE 22.7
A parameterized
collaboration for
representing the
Chain of
Responsibility in a
restaurant.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 373

374 Hour 22

Responsibility, I mentioned parenthetically that in some contexts the objects
know how to find their own successors. This is one of those contexts.

When the button is positioned in a form inside a DIV whose document opens in
IE, the button-click event starts with the button, is passed along to the form, then
to the DIV, and finally to the containing document. Each of these elements can
have its own button-click event handler to react to the click event.

If a document-resident script dynamically specifies which element’s event handler
fires, the script is an instance of the Chain of Responsibility design pattern. Figure
22.8 shows the class diagram, and Figure 22.9 shows the parameterized collabo-
ration for this design pattern applied to the IE event model. Incidentally, this
model is called event bubbling.

WebPageElement
User

Successor

eventHandler()

Button

eventHandler()

Form

eventHandler()

Div

eventHandler()

Document

eventHandler()

FIGURE 22.8
Class diagram for
the Chain of
Responsibility in a
Web page that
opens in IE.

Netscape Navigator has an event model, too. Known as event capturing, its model is
the exact opposite of IE’s. In Navigator, the highest-level element (the document) gets
the event first and passes it along until it ends up at the element from which it origi-
nated. How would you change the class diagram in Figure 22.8 to model the
Navigator event model? (The Exercise at the end of this hour asks you to do just that.)

Your Own Design Patterns
While the Gang of Four became justly famous for their catalog of design patterns,
they didn’t mean to imply that their patterns were the only ones possible. On the
contrary, their intent was to encourage the overall discovery and use of patterns.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 374

Understanding Design Patterns 375

Just to give you an idea of how these patterns emerge, remember your work in
Hour 11, “Working with Activity Diagrams.” During that hour, you saw an
example dealing with Fibonacci numbers and an exercise concerning triangle
numbers.

What were the common features? Each one started with an initial value or set of
values, followed a rule to accumulate numbers, and ended with the nth number
in a series.

Let’s refer to this pattern as “Series Calculator.” Although you could implement
this as one object, you’ll make it a set of collaborating objects to illustrate some
concepts about design patterns.

The Series Calculator has three participants, InitialValue (which can hold one
or more values), AccumulationRule, and FinalValue. Figure 22.10 shows the class
diagram for this pattern. The starting value is in the attribute first. If a second
starting value is necessary, as in the case of Fibonacci numbers, it’s specified in an
attribute called second. Sometimes, as in the case of factorials, the pattern will
need a value for the zeroth term. The algorithm for AccumulationRule is imple-
mented in the operation accumulate(). The number of terms to calculate is in the
attribute nth in AccumulationRule.

In the collaboration, InitialValue creates the list of starting values,
AccumulationRule accepts this list from InitialValue, and applies the rule the
requisite number of times, and FinalValue accepts the result and prints it.
Figure 22.11 shows the interaction.

ConcreteHandler4

ConcreteHandler2

ConcreteHandler1 ConcreteHandler3

Handler

DivFormButton

WebPageElement Document

Chain of Responsibility

FIGURE 22.9
Parameterized
collaboration for
the Chain of
Responsibility in a
Web page that
opens in IE.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 375

376 Hour 22

To apply this design pattern to the triangle numbers series, adopt some triangle-
numberish names for the classes to show the parameterized collaboration in
Figure 22.12. (This collaboration, of course, avoids the “trivial” solution I pointed
out at the end of Exercise 3 in Hour 11.)

For good measure, show the parameterized collaboration for a Factorial calcula-
tor seen in Figure 22.13.

InitialValue

zeroth:Integer
first:Integer
second:Integer

createStartList(list)

FinalValue

result:integer

acceptResult()
printResult()

AccumulationRule

nth:Integer

accumulate()
acceptStartValues()

Get starting values from Send result to

FIGURE 22.10
The class structure
for the Series
Calculator design
pattern.

:FinalValue:IntialValue :AccumulationRule

createStartList(valuesList)

acceptStartValues(valuesList)

accumulate(valuesList, nth)

acceptResult(result)

printResult(result)

FIGURE 22.11
The interaction
within the Series
Calculator design
pattern.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 376

Understanding Design Patterns 377

The Advantages of Design Patterns
Design patterns are useful in a number of different ways. First, they promote reuse. If
you express a solid design as a pattern, you make it easy for you and others to work
with it again. Also, they give you a clear, concise way of speaking and thinking about
a set of classes or objects that work together to solve a problem. This increases the like-
lihood that you’ll use the pattern as a component of a design. Finally, if you use pat-
terns in your design, you’ll probably find it easier to document the system you build.

Summary
A parameterized class has unbound parameters. Binding these parameters results in
the creation of a class. You can parameterize any UML classifier. A parameterized

Series Calculator

Accumulation Rule
Final Value

Initial Value

FinalTriangleNumberTriangleRule

FirstTriangleNumber
FIGURE 22.12
The parameterized
collaboration for a
Triangle Number
calculator.

Series Calculator

Accumulation Rule
Final Value

Initial Value

FinalFactorialFactorialRule

FactorialStart
FIGURE 22.13
The parameterized
collaboration for a
Factorial calculator.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 377

378 Hour 22

collaboration serves as the representation of a design pattern—a solution that’s use-
ful in a variety of domains.

One design pattern, the Chain of Responsibility, deals with objects passing a
request from one to another until one object can handle it. This pattern comes
from Design Patterns, the best-known book on design patterns.

Your own design patterns emerge from work you did in Hour 11 on activity dia-
grams. You can create a design pattern for a calculator that computes the nth
value in an arithmetic series. This pattern’s participants are InitialValue,
AccumulationRule, and FinalValue.

Design patterns afford a number of advantages. They enable designers to easily
reuse proven solutions, incorporate solid components into designs, and clearly
document the systems they create.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 378

Understanding Design Patterns 379

Q&A
Q. How difficult is it to discover design patterns?

A. It’s not a question of difficulty; it’s more a matter of experience. As you
progress in your career as an analyst and a designer, you’ll see certain regu-
larities occur again and again. After a while, you’ll think in terms of those
regularities. Studies show that experts in a particular domain think in terms
of patterns and apply those patterns in most situations they encounter. It’s
the basis of their seemingly smooth, effortless performance.

Q. Are patterns useful only for design?

A. No. Patterns can emerge anywhere in the development process or in any
field of endeavor. The Gang of Four was inspired by the work of an architect
who discerned recurring patterns in the designs of buildings.

Workshop
The quiz questions and exercises in this workshop get you thinking about some of
the UML’s advanced features. Advance to Appendix A, “Quiz Answers,” for the
answers.

Quiz
1. How do you represent a parameterized class?

2. What is binding and what are the two types of binding?

3. What is a design pattern?

4. What is the Chain of Responsibility design pattern?

Exercise
Change the class diagram in Figure 22.8 so that it visualizes the Netscape
Navigator event model. As I pointed out earlier this hour, an event in
Navigator starts at the document level and is passed along until it winds up
at the element from which it originated. The originating element may be
buried several levels deep in the HTML document.

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 379

26.067232640X.chap22.qxd 2/20/04 10:53 AM Page 380

PART III

Looking Ahead

HOUR 23 Modeling Embedded Systems 383

HOUR 24 Shaping the Future of UML 403

27.067232640X.PartIII.qxd 2/20/04 11:00 AM Page 381

27.067232640X.PartIII.qxd 2/20/04 11:00 AM Page 382

HOUR 23

Modeling Embedded Systems

What You’ll Learn in This Hour:
. Embedded systems concepts
. Modeling an embedded system in the UML

As in Hour 22, “Understanding Design Patterns,” you’re going to look at a particular
application of UML. In this hour, you’ll learn about computer systems that don’t sit
on desks, laps, or palms. Instead, they’re embedded deep inside venues like planes,
trains, and automobiles.

Back to the Restaurant
LaHudra and his intrepid partners, Nar and Goniff, have been raking in the profits
from their LNG Restaurants Division. The service is so good and the meals so tasty
that people are coming from miles around to sample the delicious fare in an effi-
cient and friendly atmosphere.

Two flaws have marred their otherwise good fortune. As they read over the monthly
reports, these ominous trends stood out. “Take a look at this,” said Nar, handing the
printouts to Goniff and LaHudra. “We’re making a boatload of money, but we
should be making more. The waiters . . . uhm . . . servers seem to be dropping more
than their fair share of dishes.”

“Yes, I noticed that, too,” said Goniff. “Every time they drop a dish full of food, the
chef has to prepare another meal, and we have to pay for a new dish.”

“Does it really make a difference if a few of our waiters have butterfingers?” asked
LaHudra.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 383

384 Hour 23

“It most certainly does,” replied Goniff. “A couple of dishes here, a couple there,
pretty soon we’re talking real money. But something else about the servers is
bothering me even more.”

“What’s that?” asked Nar.

“These reports show they call in sick a lot. It’s a good thing we’ve got all this tech-
nology in the restaurants. It helps us when we have to work shorthanded; we can
usually get by with the servers who do show up covering larger service areas than
they typically do.”

“Let’s find out what’s wrong,” said LaHudra.

The Mother of Invention
The three partners interviewed several of the servers who had frequently called in
sick over the previous two months, and they made an astounding discovery: The
dropped dishes and the sick days were related. The servers had been handling
and grasping their handheld computers so much that their wrists began to weaken.
Just as loose lips sink ships, weak wrists drop dishes. What’s more, their wrists had
often become so painful they couldn’t come in to work.

“Can’t we help these people somehow?” asked a disconsolate Nar.

“And in the process, maybe help ourselves?” countered an opportunistic Goniff.

“Maybe there’s some way we can help them strengthen their grip and their
wrists,” said LaHudra.

“Well, what should we do,” asked Goniff, “buy each of them a grip strengthener?”

“We could do worse,” said LaHudra, “but I don’t know how effective those little
hand grippers really are. It might take forever for our people to strengthen their
wrists by using them.”

“Still, the idea is a good one,” said Nar. “Maybe we just need a better grip
strengthener than the ones you can buy in a store.”

“Really? How would we make a better grip strengthener?” LaHudra asked.

He didn’t have long to wait for an answer. Nar was on one of his patented rolls.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 384

Modeling Embedded Systems 385

“As I recall, lots of people believe that the best and most efficient form of exercise
is one that creates the greatest challenge when your muscles are working their
hardest. If we can create a gripper that increases its resistance as the forearm
muscles work harder, I bet we can strengthen our servers’ wrists in half the time
they’d need with a regular gripper.”

“Exactly how do we do that?” wondered the perpetually pragmatic LaHudra.

“The same way we revolutionized the restaurant business,” said Nar, “with tech-
nology.”

“Wait a second,” said LaHudra, “we did what we did in the restaurants by adding
computers. Do you seriously mean to tell me that we’re going to add a computer
to a grip-strengthening device?”

“Why not?” said Nar.

“Why not indeed,” Goniff chimed in. “I’m with you, Nar. And when we’ve fin-
ished creating this gizmo, we can market it. I’ve got the perfect name: How about
the LNG ‘GetAGrip’?”

“I think I’m going to like it,” said LaHudra, cautiously.

“I like it already,” bubbled Nar, enthusiastically. “Where’s that development
team?”

Fleshing Out the GetAGrip
The WIN development team reassembled. Their new mission was to implement
the vision of the GetAGrip, a “smart” wrist/forearm strengthening device that pro-
vides variable resistance during the repetitions of an exercise: The more the mus-
cles work, the harder it should be to squeeze the GetAGrip.

In the course of realizing the vision, the team did some research to find out how
to measure how hard a muscle is working. They learned about electronic signals
from active muscle fibers. These signals, called EMGs (short for electromyographic
signals), are the basis for fascinating devices that allow handicapped people to
manipulate electronic equipment.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 385

386 Hour 23

Working with EMG Signals
This isn’t an excursion into science fiction. In the early ‘90s, neuroscientist David
Warner at the Loma Linda University Medical Center placed electrodes on a boy’s
face and connected them to a computer. The boy, completely paralyzed from the
neck down in an auto accident, was able to move objects on the computer screen by
tensing some of his facial muscles.

To learn more about this exciting area, read Hugh S. Lusted and R. Benjamin
Knapp’s article, “Controlling Computers with Neural Signals,” in the October, 1996
issue of Scientific American.

In the time since I wrote about this in the original edition, Lusted moved on to found
SGS Interactive, a company that interfaces computers with biosensors. One of their
products is a sensor you strap on your arm, connect to a computer, and voilà: you’re
ready to arm wrestle a similarly plugged-in opponent . . . over the Internet! Read all
about it at www.sgspartners.com.

The team concluded that they could capture these EMGs via a small, inexpensive
surface electrode placed on the forearm. pass the captured EMGs through a com-
puter, and then use them as a basis for the computer to adjust resistance in a
hand-gripping device. This involves real-time data capture and analysis because
the adjustments have to occur as soon as the muscle contracts.

One design possibility is to put the surface electrode on the forearm, connect it to a
desktop computer, and have the desktop analyze the EMGs and make the neces-
sary resistance adjustments in the hand gripper. The upside of this design is that it
makes it possible to display all kinds of data onscreen, print informative progress
reports, and analyze trends. The downside, however, is that the exerciser is teth-
ered to a computer.

Another possibility is to embed a computer chip directly into the gripping device
so that the exerciser is free to move around while he or she uses the GetAGrip.
Figure 23.1 shows how this design would look. In each repetition of the exercise,
the exerciser grips the squeeze bar and moves it toward the base bar.

The upside of the embedded design is that the exerciser can use a device like this
almost anywhere (if the computer is battery powered). The downside, of course, is
the loss of all the potential information that a desktop could store and display.

JAD sessions revealed that everyone would be much happier with the second
design, and this takes us into the wonderful world of embedded systems.

By the
Way

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 386

Modeling Embedded Systems 387

What Is an Embedded System?
Of course, you know that computers are everywhere. What you might not know is
just how much territory “everywhere” encompasses. The computers you see all
around you are just the tip of the iceberg. Many of them lurk below the surface,
in places you can’t easily see. They’re inside appliances, cars, airplanes, factory
machinery, biomedical devices, and more. Fairly powerful processors live inside
printers.

All of these not-readily-visible-to-the-naked-eye computers are examples of
embedded systems. Wherever you have a “smart” device, you have an embedded
system.

Embedded systems don’t have keyboards and monitors that interact with us.
Instead, each one is a chip that sits inside a device (like a home appliance), and
the device doesn’t look like a computer at all. The embedded system decides what
that device should do.

Embedded Computer
Spring Interface,
and Actuator

Springs

Squeeze Bar

Base Bar

Surface Electrode

FIGURE 23.1
The embedded
system version of
GetAGrip.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 387

388 Hour 23

If you use a system of this type, you don’t get the sense of working with a computer.
Instead, you’re just interacting with the device. If you never know the computer chip
is inside, all the better. When you’re toasting a slice of bread, you don’t care that an
embedded computer chip is distributing the heat—you just want your bread toasted.

When you finish working with a desktop, you turn it off. An embedded system
doesn’t usually have that luxury. After it’s in place, an embedded system has to
go on working for days or even years (as in a pacemaker, for example).

If a word processor or a spreadsheet has a glitch and crashes your desktop, you
reboot. If the software in an embedded system fails, the results can be disastrous.

So an embedded system doesn’t do computing in the usual sense. It’s in place to
help some other type of device do its work. The other device is the one that inter-
faces with the user and with the environment.

As you might imagine, programming an embedded system is not for the squeam-
ish. It requires a lot of knowledge about the device the system will live in—what
kinds of signals it sends out, what kind of timing parameters it has, and more.

Embedded Systems Concepts
Let’s take a closer look at embedded systems and what they typically have to do.
The subsections that follow deal with some of the more important embedded sys-
tem concepts.

Time
If you go back over the discussion thus far, you’ll see that time figures prominent-
ly in the embedded systems world. In fact, time is the basis of categorizing embed-
ded systems as either soft or hard.

A soft system does its work as quickly as possible without having to meet specific
deadlines. A hard system also has to work as quickly as possible, as well as finish
its tasks according to strict deadlines.

Threads
In the embedded systems world, a thread (also called a task) is a simple pro-
gram. It’s a piece of an application, and it performs some meaningful job within
that application. It tries to get the full attention of the CPU. Multitasking is the
process of sheduling the CPU to work with many threads and switching its atten-
tion from one to the other.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 388

Modeling Embedded Systems 389

Each thread has a number that denotes its priority within the application pro-
gram, and it is usually in one of six states:

. dormant—it’s in memory and hasn’t been made available to the operating
system.

. ready—it can run, but the thread that’s running has a higher priority.

. delayed—it has suspended itself for a specified amount of time.

. waiting for an event—some event has to happen for it to run.

. running—it has the attention of the CPU.

. interrupted—because the CPU is taking care of an interrupt.

Figure 23.2 shows a UML state diagram that presents these states and the inter-
state transitions. Notice the absence of a start symbol and a termination symbol.
This tells you the thread moves from state to state in an infinite loop.

FIGURE 23.2
States of a thread
in an embedded
system application.

Waiting for an Event

Dormant

DelayedInterrupted

ReadyRunning

Delete Thread

Delete Thread

Delete Thread

Delay Thread

Interrupt Request

Delete Thread

Create ThreadEvent

Wait

Priority is Highest
Interrupt
Processed

By the way, you might be wondering what an “interrupt” is. Read on to find out.

Interrupts
An interrupt is an important little item in an embedded system. It’s a hardware-
based mechanism that tells the CPU an asynchronous event has happened. An
event is asynchronous if it appears unpredictably (that is, “out of sync”). In the
GetAGrip, for example, EMG signals arrive asynchronously.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 389

390 Hour 23

When the CPU recognizes an interrupt, it saves what it was doing and then invokes
an ISR (Interrupt Service Routine) that processes the event. When the ISR finishes its
job, the CPU goes back to what it was doing when the interrupt happened.

After processing an interrupt, what the CPU goes back to is determined by the
type of operating system that runs the CPU, as you’ll see in a moment.

Interrupts are important because they enable a CPU to disengage from whatever
thread it’s working on and process events as they happen. This is tremendously
significant for a real-time system that has to respond to environmental events in
a timely fashion.

Because timeliness is so crucial, embedded systems have to worry about the time
course of an interrupt and its processing, even though that time might seem
infinitesimal. The CPU has to take some time from when it’s notified about an
interrupt until it starts saving what it was doing (that is, its context). That’s
called the interrupt latency. The interrupt response is the time between the
arrival of the interrupt request and when the CPU starts the ISR. After the ISR fin-
ishes, the interrupt recovery is the time it takes the CPU to get back to where it
was—its context—when the interrupt occurred.

One type of interrupt is special: the clock tick. A sort of system heartbeat, the
clock tick occurs at regular intervals specific to an application (typically between
10 and 200 microseconds). Clock ticks determine an embedded system’s time con-
straints. For example, a thread in the delayed state remains in that state for a
specified number of clock ticks.

Operating System
A real-time operating system (RTOS) acts as a traffic cop among threads and
interrupts, and mediates the communication between threads and between an
interrupt and a thread. The kernel is the part of the RTOS that manages the time
the CPU spends on individual threads. The kernel also determines which thread
executes next. As I mentioned before, each thread has a priority assigned to it.

The kernel schedules the CPU in either a preemptive or a nonpreemptive fashion,
depending on what it has the CPU deal with after an ISR. With a nonpreemptive ker-
nel, when an ISR finishes executing, the CPU goes back to the thread it was working
on when the interrupt request arrived. A nonpreemptive kernel is said to engage in
cooperative multitasking. Figure 23.2 applies to a nonpreemptive kernel.

With a preemptive kernel, on the other hand, when an ISR finishes, the priority of
threads in the ready state determines which thread the CPU is scheduled to tackle

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 390

Modeling Embedded Systems 391

next. If a thread in the ready state has a higher priority than the interrupted
thread, the CPU executes the higher priority task rather than the one it was work-
ing on when the interrupt request arrived. Thus, the higher priority task
preempts the interrupted task. Figure 23.3 shows the modification to two of the
states in Figure 23.2, in order to model the preemptive kernel.

Running Ready

Priority is Highest

Context Change

FIGURE 23.3
Modification of
transitions between
two of the states in
Figure 23.2 to
reflect what
happens in a
preemptive kernel.

It’s helpful to model the two types of kernels as sequence diagrams. Figure 23.4
shows the classes whose instances interact in these diagrams.

Kernel

changeThreadState()
getNextThread()

NonPreEmptiveKernel

getWorkingThread()

CPU

saveContext()
processInterruptRequest()
invokeISR()

PreEmptiveKernel

examinePriorities()

Thread

changeState()

priority:Integer
Schedules

Processes

Sends interrupt
 requests

Interrupt

FIGURE 23.4
Instances of these
classes interact in
the sequence
diagrams that
follow.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 391

392 Hour 23

Figure 23.5 models the nonpreemptive kernel, and Figure 23.6 models the preemp-
tive kernel. In Figure 23.5, I’ve used the duration constraint, a new time-related
modeling element in UML 2.0. The idea is to visualize the terms I mentioned
before in the section on interrupts. Within the curly braces, d stands for duration.

:Interrupt :NonPreEmptiveKernel workingThread:Tread:CPU

processInterruptRequest()

changeThreadState(interrupted)

getNextThread()

invokelSR()

saveContext()

getWorkingThread()

changeState(interrupted)

changeState(running)

«become»

«become»

Interrupted

Running

Running

{d = interrupt
recovery}

{d = interrupt latency}

{d = interrupt response}

FIGURE 23.5
Sequence diagram
for the
nonpreemptive
kernel.

:Interrupt :PreEmptiveKernel workingThread:Thread:CPU

processInterruptRequest()

changeThreadState(interrupted)

getNextThread()

invokelSR()

saveContext()

examinePriorities(ready)

changeState(interrupted)

[priority > workingThread.priority]

changeState(running)

[workingThread.priority is highest]

changeState(running)

«become» «become»

«become»

Interrupted

Running

Running

:Thread

Running

Ready

FIGURE 23.6
Sequence diagram
for the preemptive
kernel.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 392

Modeling Embedded Systems 393

Each diagram is an example of a hybrid diagram, as I’ve superimposed state
icons onto the lifelines of the thread objects. These icons represent states from
Figure 23.2. Note that «become» on each lifeline indicates an object transition
from one state to the next.

Although we’ve covered a lot of ground here, bear in mind that we’ve just
scratched the surface of embedded systems.

Modeling the GetAGrip
Back to the task (thread?) at hand—to start creating a model of the GetAGrip.
Although it’s not the case that all embedded systems are object oriented, you can
still use object orientation to model the system and its interactions with the out-
side world.

From the section on embedded systems, it’s clear that you have to consider tim-
ing, events, state changes, and sequences.

Classes
As is the case with any other type of system, you’ll begin with classes. To under-
stand the class structure, start with a summary description of the GetAGrip and
how it works. This summary would have resulted from a domain analysis.

Here’s the description: The GetAGrip consists of a surface electrode, a CPU, a ker-
nel, an actuator (to carry out the CPU’s adjustment commands), and a set of five
springs. The actuator connects to the springs via a mechanical interface. The sur-
face electrode captures asynchronous EMG signals from the user’s muscles and
passes them to the CPU. Each EMG causes an interrupt request, which the CPU
services with an ISR. Software in the CPU analyzes the signals. When the analysis
is complete, the CPU sends a signal to an actuator to adjust the tension in the
springs. The actuator specifies the adjustment by manipulating the mechanical
interface with the springs and the interface adjusts the tension.

Figure 23.7 shows a class diagram that summarizes the preceding paragraph. The
CPU continuously receives and analyzes signals and then directs adjustments. It
also performs general housekeeping duties within the system.

Note the use of association classes to model EMGSignal and AdjustMessage. This
allows you to focus on the properties of these classes and use those properties in
your modeling efforts. For example, the system will be interested in the exact time
a signal arrives and how strong it is, so arrivalTime and amplitude would seem

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 393

394 Hour 23

For AdjustMessage, the attributes generationTime and adjustmentAmount seem
reasonable.

Figure 23.8 shows the attributes for these classes.

CPU

processInterruptRequest()
invokeISR()
analyze()
adjust()
performGeneralHousekeeping()
processAnalysisResults()

Kernel

resetThreadPriorities

Captures

Creates

Spring

Actuator

GetAGrip

SurfaceElectrode

AdjustMessage«Asynchronous»
EMGSignal

1

1

1

1

1

0..* 1 5

5

FIGURE 23.7
A model of the
GetAGrip.

FIGURE 23.8
A closer look at
EMGSignal and
AdjustMessage.

«Asynchronous»
EMGSignal

AdjustMessage

arrivalTime
amplitude
signalCharacteristics

generationTime
adjustmentAmount

Use Cases
The JAD session I referred to earlier (which resulted in the design decision for an
embedded system rather than a desktop) also resulted in a number of use cases,
as depicted in Figure 23.9.

to be reasonable attributes for the EMGSignal. Also, the EMGSignal will undoubted-
ly have complex characteristics that are beyond the scope of this discussion.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 394

Modeling Embedded Systems 395

These use cases determine the capabilities to build into the system. “Turn it on”
includes “Perform a self-test” which, in turn, includes “Test the electrode” and
“Test the CPU.”

“Select usage” refers to a number of different ways to set up the GetAGrip—ways
that never occurred to Mr. Nar when he dreamed up this device. For example, the
JAD participants said they’d like the option of setting “negative” repetitions—
limited resistance when they squeeze the bars together, maximal resistance as
they release them.

This means you have to add an attribute to AdjustMessage to reflect the system
usage. You can call it usageAlgorithm and give it the possible values
increasingTension and negativeRep. Figure 23.10 shows the modified
AdjustMessage class.

Select usage

Squeeze the bar

«include»

«include»
«include»

Test the electrode Test the CPU

Turn it on

GetAGrip

Perform a self-test

FIGURE 23.9
Use cases for
GetAGrip.

AdjustMessage

generationTime
adjustmentAmount
usageAlgorithm

FIGURE 23.10
The modified
AdjustMessage
class.

Interactions
Direct your attention to “Squeeze the bar,” and assume that the exerciser has
selected the originally conceived mode—increasing resistance with increasing
muscular activity. In this part of the model, you have to make sure that you con-
sider time constraints and state changes. Assume that a clock tick interval is 20
microseconds and that the time from receiving a signal to sending an adjustment
message must take no longer than 10 clock ticks.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 395

396 Hour 23

One more assumption: suppose that the kernel works preemptively. This necessi-
tates a few modeling decisions. First, in order to reflect the kernel’s operation,
we’ll treat the CPU’s analyze(), adjust(), and generalHousekeeping() operations
as threads and assign them priorities.

To show them this way in the model, you have to treat them as classes—something
you don’t usually do with operations. This is an example of an advanced UML
concept called reification—treating something as a class (or an object) that isn’t
usually treated that way. When you do that, you add richness to your model
because your reified classes have relationships with other classes, have attributes
of their own, and become structures that you can manipulate and store. In this
case, reification allows you to show thread priorities as attributes and use the
threads in your interaction diagrams.

Figure 23.11 shows the class structure for the GetAGrip threads. In this model,
threads know how to change their states and downgrade their priorities.

Thread

changeState()
downgradePriority()

priority:Integer

Adjust

updateSpringTension()

Analyze

parseSignal()

GeneralHousekeeping

How should you prioritize the threads? When an interrupt request arrives, the
CPU has to stop what it’s doing, remember its context, and service the interrupt
with an ISR. The processISR() operation grabs the EMGSignal’s amplitude and
the other complex signal characteristics and places them in memory for
analyze() to work on. The analyze() operation, then, has to have the highest
priority. The adjust() operation should follow. The generalHousekeeping()
operation should have the lowest priority.

Here’s an example of how all this would play together preemptively: If the CPU is
in the middle of carrying out some general housekeeping operations and a signal

FIGURE 23.11
Class structure for
the GetAGrip
threads.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 396

Modeling Embedded Systems 397

arrives, the signal interrupts what the CPU is doing. The CPU executes
processISR() and extracts the appropriate values from the signal. What happens
next? Going back to the general housekeeping would be unproductive. Instead,
the CPU executes the highest priority operation, analyze(), followed by adjust().
Presumably, each thread downgrades its priority accordingly after it does its work,
and the kernel resets all the priorities after the adjustment is complete.

Figure 23.12 shows the sequence diagram for the “Squeeze the bar” use case. Once
again, I’ve used the domain constraint. The first one shows the duration of a clock
tick. The second indicates the upper limit (in terms of clock ticks) from the recep-
tion of a signal until the CPU is notified that the Adjust thread has done its job.

:Interrupt :PreEmptiveKernel :GeneralHousekeeping:CPU

processInterruptRequest(emg)

{d clock tick
= 20 microsec}

{d < = 10 clock ticks}

changeThreadState(interrupted)

parseSignal(emg)

changeState(ready)

processAnalysisResults(amplitude)

changeState(running)

updateSpringTension(adjustmentAmount)

changeThreadState(ready)

getNextThread()

getNextThread()

invokelSR()

saveContext()

examinePriorities(ready)

changeState(running)

downgradePriority()

examinePriorities(ready)

changeState(interrupted)

«become»

Interrupted

Running

:Analyze

«become»

«become»

«become»

Running

Ready

:Adjust

Ready

Ready

Ready

FIGURE 23.12
Sequence diagram
for “Squeeze the
bar.”

This diagram follows the sequence up until the adjustment message is processed
by the Adjust thread. At the end of this hour, Exercise 4 gives you an opportunity
to add to this diagram.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 397

398 Hour 23

General State Changes
In addition to changes of state within an interaction, you can examine sys-
temwide state changes. Generally, we expect that the GetAGrip will be either in
the Working state or the Waiting state (between sets of an exercise, for example).
It can also be in the Off state. As you might imagine, the Working state is a com-
posite. Figure 23.14 presents the details.

Deployment
How will GetAGrip look once it’s implemented? Figure 23.15 is a deployment diagram
that shows the parts of the system, along with a battery that supplies the power.

:Adjust

Clock Ticks

Running

Ready

10 2 3 4 5 76 8 9 10

FIGURE 23.13
A timing diagram
that models the
time course of
state changes in
the Adjust thread.

At this point, a timing diagram (new in UML 2.0) is appropriate. Figure 23.13
shows the time course of the Adjust thread’s state changes, given the duration
constraints in Figure 23.12. In creating this diagram, I assumed that Figure 23.12
represents a scale—that is, that the distance delineated by the second duration
constraint represents 10 clock ticks.

28.067232640X.chap23.qxd 2/20/04 10:37 AM Page 398

Modeling Embedded Systems 399

Waiting

Off

Self-Test

Turn on

Timed outBegin exercise

Turn off

Working

Analysis AdjustmentSqueeze Unsqueeze

Surface Electrode Actuator Spring Interface

Spring

Battery

CPU

Pre-emptive

FIGURE 23.15
A deployment dia-
gram for GetAGrip.

Flexing Their Muscles
When the partners received the UML diagrams for the GetAGrip, the wheels
started turning.

“This is a concept we can expand on,” said Goniff.

“How so?” asked Nar.

“Think about it. How many muscles are there in the human body? We can build
a smart exercise device that covers lots of them.”

FIGURE 23.14
GetAGrip state
changes.

28.067232640X.chap23.qxd 2/20/04 10:38 AM Page 399

400 Hour 23

“Really?” asked Nar again, enthralled.

“Sure,” said Goniff. “If we take the electrode-CPU-springs concept a step or two fur-
ther, we can develop a smart, portable barbell that people could take with them when
they travel. It wouldn’t weigh very much because lightweight springs would provide
the resistance and the CPU would provide the smarts. We could call it ‘GetABuild.’”

“Yeah,” said Nar, “or we could go in another direction and make a separate
machine for each body part.”

“Sure. Something like ‘GetAChest.‘“

“Or ‘GetAnArm.’”

“Or ‘GetALeg.’”

“How about ‘GetALegUp’!”

At this point, LaHudra couldn’t take it anymore.

“I’ve got one for the both of you,” he said to his partners.

“What’s that?” they asked in unison.

“Get a life.”

Summary
An embedded system is a computer that lives inside another type of device, like an
appliance. Programming an embedded system requires a great deal of knowledge
about the characteristics of the device the system resides in. An embedded system can
be soft, meaning that it doesn’t have to meet deadlines, or hard, meaning that it does.

Time, threads (simple programs that are parts of an application), and interrupts
(hardware devices that let a CPU know an event has occurred) are important
embedded system concepts. One particular interrupt, the clock tick, occurs at reg-
ular intervals and acts as a system heartbeat.

A real-time operating system (RTOS) directs traffic among threads and interrupts. The
kernel is the part of the RTOS that manages the time the CPU spends on individual
threads. The kernel’s scheduler determines which thread will execute next. A kernel
might be preemptive (in which a higher-priority thread preempts an interrupted
lower-priority thread when an interrupt service routine finishes) or nonpreemptive (in
which the interrupted thread resumes after the interrupt service routine finishes).

We applied these concepts by modeling a “smart” exercise device that varies its
resistance as a function of how hard a muscle is working.

28.067232640X.chap23.qxd 2/20/04 10:38 AM Page 400

Modeling Embedded Systems 401

Q&A
Q. You mentioned “smart” systems. Do these embedded systems ever include

anything like Artificial Intelligence?

A. Absolutely. One subfield of AI, called “fuzzy logic,” is at the heart of numer-
ous kinds of embedded systems.

Q. Is one type of RTOS more appropriate than another for certain types of
embedded systems applications?

A. Yes. One type I didn’t elaborate on, the superloop, is the simplest RTOS. It’s
often embedded in high-volume applications like toys. The preemptive ker-
nel is the RTOS of choice for hard systems.

Workshop
I’ve embedded some questions here to test your newfound knowledge, and I’ve
embedded the answers in Appendix A, “Quiz Answers.”

Quiz
1. What is an embedded system?

2. What is an asynchronous event?

3. In terms of embedded systems, what is a “hard” system? What is a “soft”
system?

4. What happens in a “preemptive kernel”?

Exercises
1. Imagine an embedded system for a toaster. Assume that the toaster has a

sensor that looks at a slice of bread as it’s toasting and can sense how dark
it is. Assume also that you can set how dark you want the toast. Draw a
class diagram of this system. Include the sensor, CPU, and heating element
(and the slice of bread!).

2. Draw a sequence diagram for the embedded toaster system. Justify your
choice of a preemptive or a nonpreemptive kernel. Just for the heck of it,
draw a deployment diagram too.

3. Draw a communication diagram equivalent to Figure 23.12.

28.067232640X.chap23.qxd 2/20/04 10:38 AM Page 401

402 Hour 23

4. Refine Figure 23.12 so that the Adjust thread finishes in the Ready state, the
General Housekeeping thread finishes in the Running state, and the priori-
ties are reset.

5. After you finish Exercise 4, create a timing diagram that traces the state
changes in the Analyze thread. Base this diagram on the duration con-
straints in Figure 23.12. Assume that the vertical distances in Figure 23.12
and in your solution represent a scale.

28.067232640X.chap23.qxd 2/20/04 10:38 AM Page 402

HOUR 24

Shaping the Future
of the UML

What You’ll Learn in This Hour:
. Extensions for business
. Lessons from the business extensions
. Modeling GUIs
. Modeling expert systems

Here we are in the final hour. It’s been a long haul, but in the process you’ve seen a
lot of the UML. In the last two hours, you’ve looked at applications in hot areas. In
this hour, you’ll wrap it all up with a current UML extension and a look at some
other areas for applying the UML.

You read about UML extensions and profiles in Hour 14, “Understanding Packages
and Foundations.” The goal of this hour is to start you thinking about how you
would apply the UML in your domain and perhaps ultimately develop a domain-
specific profile. Like any language, the UML is evolving. Its future depends on how
modelers like you use and extend it.

Extensions for Business
One popular extension is a set of stereotypes designed to model a business. The
stereotypes abstract some of the major ideas of what a business is all about. You can
visualize them in terms of UML symbols you already know or as specialized icons
(created by UML Amigo Ivar Jacobson). The intent is to model business-world situa-
tions rather than to serve as the basis for software construction.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 403

404 Hour 24

Within a business, one obvious class is a worker. In the context of this UML exten-
sion, a worker acts within the business, interacts with other workers, and partici-
pates in use cases. A worker can be either an internal worker or a case worker.
An internal worker interacts with other workers inside the business, and a case
worker interacts with actors outside the business. An entity doesn’t initiate any
interactions, but it does participate in use cases. Workers interact with entities.

Figure 24.1 shows the customary UML notation for these stereotypes, along with
the specialized icons. For each one, I’ve included an example from the restaurant
domain.

«Worker»
Manager

Manager

«Internal Worker»
Chef

Chef

«Case Worker»
MaitreD

MaitreD

«Entity»
Order

Order

FIGURE 24.1
Stereotypes for
business modeling.

The business extensions include two association stereotypes—communicates and
subscribes. The first stereotype is for interactions between objects. The second
describes an association between a source (called a subscriber) and a target
(called a publisher). The source specifies a set of events. When one of those
events occurs in the target, the source receives a notification.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 404

Shaping the Future of the UML 405

Entities combine to form work units, which are task-oriented sets of objects. Work
units, classes, and associations combine to form organization units. An organization
unit, which can include other organization units, corresponds to an organization unit
of the business.

By the way, for another take on UML extensions for modeling businesses and
business processes, see Business Modeling with UML by Hans-Erik Eriksson and
Magnus Penker (John Wiley & Sons, 2000).

Lessons from the Business Extensions
The business extensions teach some valuable lessons. First, it’s apparent that with
a little imagination, it’s possible to come up with simple icons and representa-
tions that capture fundamental aspects of a domain. The operative word is “sim-
ple.” Second, the representations help you think about, and create solutions in, a
domain.

We’ll consider these lessons as we try and move the UML into two important
modeling efforts—graphic user interfaces and expert systems.

Graphic User Interfaces
A hallmark of contemporary software packages, the graphic user interface (GUI)
is here to stay. GRAPPLE and other development methodologies devote a JAD ses-
sion to the development of an application’s GUI.

In a design document, you typically include screen shots to show your client and
your developers what the GUI will look like to the users. For several reasons, you
still might want a specialized diagram to model a GUI.

Connecting to Use Cases
The primary reason has to do with use cases. Like most parts of a development
effort, GUI development is use case–driven. In fact, the GUI connects directly to
use cases because it’s the window (pardon the pun) through which the end-user
initiates and completes use cases. It might be difficult to use screen shots to cap-
ture the relationship between screens and use cases.

Another reason is that you might want to capture the evolution in the thought
process as the GUI takes shape. In GRAPPLE, GUI development starts when end-
users participating in the JAD session manipulate post-it sticky notes (which

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 405

406 Hour 24

represent onscreen controls) on large sheets of paper (which represent screens). It
would be helpful to have a type of diagram that directly captures the results of
these manipulations—one that a modeler could easily change when the JAD par-
ticipants modify the design.

A diagram that shows the connections of the screens to the use cases will help the
JAD participants remember what each screen is supposed to do when they’re lay-
ing out the screen components. Showing the use case connections will also help
ensure that all use cases are implemented in the final design.

Modeling the GUI
A typical UML model would present a particular application’s window as a com-
posite of a number of controls, as in Figure 24.2.

DataWindow

OKButtonMenuBar CancelButtonShowDataListBox EnterDataTextBox

You can use attributes to add the spatial location of each component—a horizon-
tal location and a vertical location, both measured in pixels. Another pair of
attributes could represent the component’s size (height and width). It’s easier to
comprehend those parameters, however, if you visualize them. You can specify
that a package will represent a window and that the location and size of objects
within the package reflects their location and size in the window. Figure 24.3
shows this.

FIGURE 24.2
A UML model of a
window.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 406

Shaping the Future of the UML 407

Figure 24.4 is the hybrid diagram that adds the finishing touch by showing the
connections with use cases.

This type of modeling doesn’t preclude showing screen shots. Instead, it can be a
helpful addition—a schematic diagram that keeps the big picture in view.

MenuBar

EnterDataTextBox

Window

ShowDataListBox

CancelButton

OKButton

FIGURE 24.3
A model of a
window that shows
the locations of
components.

MenuBar

CancelButton

ShowDataListBox

Show
Product

Data

Retrieve
Product

Data

EnterDataTextBox

OKButton

Window FIGURE 24.4
Modeling a
window and
showing how
onscreen
components
connect to use
cases.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 407

408 Hour 24

Expert Systems
Expert systems experienced a surge in popularity in the 1980s. Something of a
curiosity when they first appeared, today they’re part of the mainstream of
computing.

An expert system is designed to capture the insights and expertise of a human
expert in a specific domain. It stores that expertise in a computer program. The
intent is to use the expert system to answer repetitive questions so the human
expert doesn’t have to or to store the expertise so that it’s available when the
expert is not.

Components of an Expert System
The expertise resides in the expert system’s knowledge base as a set of if-then
rules. The if-part of each rule describes some real-world situation in the expert’s
domain. The then-part of each rule indicates the course of action to take in that
situation. How does the expertise get into the knowledge base? A knowledge
engineer holds extensive interviews with an expert, records the results, and repre-
sents the results in software. It’s similar to the interview that takes place in a
domain analysis, although knowledge-engineering sessions are typically more
extensive.

The knowledge base isn’t the only component in an expert system. If it were, an
expert system would merely be a laundry list of if-then rules. What’s needed is a
mechanism for working through the knowledge base to solve a problem. That
mechanism is called an inference engine. Another necessary piece of the puzzle
is a work area that stores the conditions of a problem the system has to solve,
creates a record of the problem, and displays the solution. One more component,
of course, is the user interface for entering the problem conditions. Condition
entry may proceed via checklist, question-and-multiple-choice-answer, or in
extremely sophisticated systems via natural language. Figure 24.5 shows a class
diagram of an expert system.

To interact with an expert system, a user enters the conditions of a problem
into the user interface, which stores them in the work area. The inference
engine uses those conditions to go through the knowledge base and find a
solution. Figure 24.6 presents a sequence diagram for this process.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 408

Shaping the Future of the UML 409

FIGURE 24.5
A class diagram of
an expert system.

ExpertSystem

KnowledgeBase

processSearchRequests()

WorkArea

storeProblem()

Rule

ifPart:String
thenPart:String

ProblemRecord

conditions:String

InferenceEngine

solveProblem()

1

*

UserInterface

:UserInterface :InferenceEngine :KnowledgeBase:WorkArea

storeProblem(conditions)

solveProblem(conditions)

display Solution(conditions)

:ProblemRecord
«create»

processSearchRequests(conditions)

FIGURE 24.6
Interactions in an
expert system.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 409

410 Hour 24

If you can form an analogy between an expert system and a human, you’ve
pretty much got it: The work area is roughly analogous to a person’s short-term
memory, the knowledge base is like the long-term memory, and the inference
engine is the problem-solving process. When you “rack your brain” to come up
with an answer to a sticky problem, you’re doing something like what an expert
system does.

An Example
An inference engine usually goes through its knowledge base (“racks its brain”) in
one of two ways, and the best way to explain is with an example. Suppose you
have an expert system that captures the expertise of a plumber. If you had a
leaky faucet, you’d use the expert system by entering the details of the leak into
the system. The inference engine would do the rest.

Two of the rules in the knowledge base might look like this:

Rule 1:

IF you have a leaky faucet

AND the faucet is a compression faucet

AND the leak is in the handle

THEN tighten the packing nut

Rule 2:

IF the packing nut is tight

AND the leak persists

THEN replace the packing

Without getting into the specifics of the plumbing world, suffice it to say that
these two rules are obviously related—notice the similarity between the then-part
of Rule 1 and the if-part of Rule 2. That similarity is the basis for working through
the knowledge base, which typically has many, many more than two rules. The
inference engine might start with a potential solution, like “replace the packing”
from Rule 2, and work backward to see whether the specifics of the problem
demand that solution.

How does the inference engine work backward? It looks at the if-part of the rule
that has the solution and tries to find a rule whose then-part matches it. In the
two-rule example, that’s easy—Rule 1 has a matching then-part. In industrial-
strength applications, it’s not so easy because a knowledge base might store hun-
dreds, even thousands, of rules.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 410

Shaping the Future of the UML 411

After the inference engine has found a rule, it checks to see whether the condi-
tions in the if-part match the conditions of the problem. If they do, the engine
keeps moving in the same direction—a matching if-part, check the if-part, another
matching if-part, and so forth. When the inference engine runs out of rules, it
asks the user for more information. The point of all this is that if the path
through the rules is successful (that is, matches the conditions of the problem),
the expert system offers the original potential solution as the solution to the prob-
lem. If not, the system tries a new path.

This technique of trying a solution and seeing whether the associated conditions
match the conditions of the problem is called backward chaining—“backward”
because it starts with then-parts and proceeds to examine if-parts.

As you can imagine, another technique starts with if-parts and matches then-
parts, and it’s called forward chaining. Here’s how it works: The user enters the
conditions of the problem, and the inference engine finds a rule whose if-part
matches the conditions. It checks that rule’s then-part and looks for a rule whose
if-part matches that then-part. In this example, suppose Rule 1’s if-part matches
the problem conditions. The inference engine checks Rule 1’s then-part and then
looks for a rule with a matching if-part. Again, this is easy with only two rules.
When the system runs out of rules to match, it offers the then-part of the final
rule as the solution. The forward in forward chaining refers to this movement from
if-parts to then-parts.

If you were to model an expert system as in Figure 24.5, it would be helpful to
add a stereotype that indicates the type of chaining the inference engine per-
forms. You would add either «forward chaining» or «backward chaining» to the
composite ExpertSystem class.

Chaining
Both kinds of chaining are examples of the Chain of Responsibility design pattern
you saw earlier. In each one, the system searches for a rule’s successor.

Just as the Chain of Responsibility sometimes ends without finding a successor, an
expert system doesn’t always come up with a solution.

Modeling the Knowledge Base
What can the UML add to all this, and why would we want it to? One of the stick-
ing points in expert system development is the lack of a solid standard for a visual
representation of the knowledge base rules. A UML-based representation would go

By the
Way

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 411

412 Hour 24

a long way toward standardizing the field and toward encouraging good docu-
mentation practices. It’s not enough for the knowledge to reside in a software rep-
resentation in a knowledge base—the rules should all be in a document as well.

Another sticking point is that use case analyses are rarely done in the course of
developing an expert system. A use case analysis, complete with UML use case
diagrams, might help determine the best type of inference engine to use in an
expert system implementation. The deployment diagram is still another possible
point of UML applicability to expert system development. Although they were
once stand-alone devices, expert systems today typically have to fit into a corpo-
rate computing structure and interact smoothly with other systems. Deployment
diagrams can be used to show where an expert system resides and how it depends
on (and feeds into) other areas of information technology. Given that an actor in
a use case diagram can be another system, the deployment diagram and the use
case diagram can work together to provide views of an expert system in a corpo-
rate context.

Let’s focus on the knowledge base. How can you represent a knowledge base in
the spirit of the UML? One possibility, of course, is to represent each rule as an
object. Have one of the attributes be the if-part, another be the then-part, and
add attributes as necessary. Figure 24.7 shows this arrangement.

rule1:Rule

ifPart=“leaky faucet and compression faucet and leak in handle”
thenPart = “tighten packing nut”

rule2:Rule

ifPart=“packing nut tight and leak persists”
thenPart = “replace packing”

FIGURE 24.7
Representing rules
as objects.

Although this is eminently doable (and many developers do it), I believe rules are
important enough to warrant their own representation—and not only because
they serve as the foundation of knowledge bases in expert systems. The growing
emphasis on knowledge management within organizations and institutions calls
out for a unique way to represent rules.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 412

Shaping the Future of the UML 413

What would that unique representation look like? First, you’d want to make sure
you show something that gives the contents of a rule’s if-part and the contents of
its then-part. In order to make this representation useful, you’d also want to
somehow visualize the connections among rules.

This can all get very thorny very quickly. Industrial-strength rules tend to have a
lot more information than the two plumbing rules I showed you, and the rules
tend to proliferate. You have to balance these proliferations against the need for
simplicity.

Let’s first create a simple icon to represent a rule. Begin with a box divided by a
centered vertical line. The left half of the box represents the if-part and the right
half the then-part. Within each part, you’ll write a meaningful summary of the
contents. Figure 24.8 shows what I mean, using the two plumbing rules as an
example.

Leaky compression
Leak in handle

Tighten
packing nut

Packing nut tight
Leak persists

Change
packing

FIGURE 24.8
The two plumbing
rules cast into
a visual
representation.

Now you have to incorporate some identification information for each rule. Across
the top of each box, add a compartment that holds a numerical identifier. This
accomplishes two things: (1) It makes each rule unique and (2) It shows where to
go in a rules catalog for a complete description and explanation of the rule. If a
rule is part of a subgroup of rules (as in a “faucet” subset of the plumbing knowl-
edge base), you can treat the subgroup as a package. You then add the package
information to the identifier in the UML’s usual way—have the package name pre-
cede a pair of colons that precede the identifier. Figure 24.9 shows this addition.

Faucets :: rule1:Rule Faucets :: rule2:Rule

Tighten
packing nut

Leaky compression
Leak in handle

Packing nut tight
Leak persists

Change
packing

Represent the relation between the two as a line between the then-part of Rule 1
and the if-part of Rule 2. Figure 24.10 shows the connection.

FIGURE 24.9
Adding an identifier
to each rule.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 413

414 Hour 24

Unlike the two-rule set in this example, a rule in a real expert system is usually
related to more than one other rule. If the related rules aren’t nearby—either in
the knowledge base or in the documentation—it will be helpful to have a way of
showing the relationship even when you can’t draw connecting lines.

Compartments at the bottom of the icon will do the trick. If you put them below
the compartments you already have, you can show identifiers for other rules, as
in Figure 24.11. The lower compartment on the left identifies rules whose then-
parts connect to this rule’s if-part. The lower compartment on the right identifies
rules whose if-parts connect to this rule’s then-part.

Faucets :: rule1:Rule Faucets :: rule2:Rule

Tighten
packing nut

Leaky compression
Leak in handle

Packing nut tight
Leak persists

Change
packing

FIGURE 24.10
Connecting the
then-part of one
rule to the if-part of
the other.

Faucets :: rule1:Rule Faucets :: rule2:Rule

Tighten
packing nut

Leaky compression
Leak in handle

Packing nut tight
Leak persists

Change
packing

2, 6, Washer ::2210, 11, 15, Pipe ::22 2, 13, Pipe ::15 17, 18, 31

FIGURE 24.11
Compartments at
the bottom of the
rule icon identify
related rules.

As is the case with class diagrams, compartments within the rule icon could be
elided depending on the purpose of the diagram. The idea is to concisely show the
connections among rules as well as their content and thus clearly communicate
the nature of the knowledge base.

The model for the expert system is more drastic than the model for the GUI in
that it proposes a new view element (the rule icon) for the UML. The model for the
GUI, on the other hand, is a hybrid diagram that consists of current UML
elements.

Web Applications
Since the first edition of this book appeared, a number of analysts have created
sets of UML extensions for important domains. In this section, we examine one
for Web application development.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 414

Shaping the Future of the UML 415

Simply put, a Web-based system allows an end-user with a browser (a software
application on a client computer) to access and view a document that resides on
a host computer (a server). A Web application augments a Web-based system by
adding business functionality, like the ability to add selections to a shopping cart
and to complete transactions via credit card.

The Web Application Extension (WAE) to the UML is the brainchild of Rational’s
Jim Conallen. This profile includes about a dozen graphic stereotype icons, addi-
tional stereotyped associations, attributes, and some “well-formedness” rules for
combining all these elements to create a model.

Each element is associated with zero or more tagged values. Recall from Hour 14
that a tagged value is a bracketed string consisting of a tag, an equal sign (=),
and a value. Its purpose is to provide important information about an element.
In the WAE, for example, the tagged value for a Web page shows the path that
specifies the Web page on the Web server.

While you’re on the subject, Figure 24.12 shows the WAE icon for a Web page.

FIGURE 24.12
The WAE icon for a
Web page.

Notice the similarity between this icon and the UML icon for a note. The folded
corner is designed to reinforce the notion of a page. Keep in mind that conceptu-
ally a Web page is a class with attributes and operations, and a specific Web page
is an object. (See Exercise 1.)

Figure 24.13 shows WAE icons for three types of pages that can appear in a Web
application: a server page, a JavaServer Pages (JSP) page, and an Active Server
Page. Figure 24.14 shows three more: client page, frameset, and servlet.

<%

%>

FIGURE 24.13
The WAE icons for
(left to right) server
page, JSP page,
and Active Server
Page.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 415

416 Hour 24

The WAE has icons for structures other than pages. For example, when you surf
the Web you often see pages whose components allow you to enter information
into the page (check boxes, radio buttons, combo boxes, and more). A collection
of these components for a particular page is called a form, and Figure 24.15
shows the WAE icon for a form.

Portfolio Manager - Portfolio XYZ

Bonds Stocks

CancelApplyOK

Assets

CancelApplyOK

FIGURE 24.14
The WAE icons for
(left to right) client
page, frameset,
and servlet.

Portfolio Manager - Portfolio XYZ

Bonds Stocks

CancelApplyOK

AssetsFIGURE 24.15
The WAE icon for a
form.

The WAE is much richer than the description in this section. For further details
and updates, see Jim Conallen’s Building Web Applications with UML Second Edition
(Addison-Wesley, 2003). To download WAE icons and use them in a UML model-
ing tool like Rational Rose or Visio, visit www.wae-uml.org.

That’s All, Folks
We’ve come to the end of the road. Now that you have a bag full of UML tricks,
you’re ready to go out on your own and apply them to your domain. You’ll find
that as you gain experience, you’ll add to that bag of tricks. You might even
come up with some suggestions for adding to the UML. If you do, you’ll be carry-
ing on a grand tradition.

Just after the beginning of the twentieth century, the renowned mathematician
Alfred North Whitehead pointed out the importance of symbols and their use. A
symbol, he said, stands for the presentation of an idea: The importance of a sym-
bol is that it quickly and concisely shows how an idea fits together with a com-
plex set of other ideas.

In the first decade of the twenty-first century, Whitehead’s observations still ring
true for the world of system development. Carefully crafted symbols show us the

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 416

Shaping the Future of the UML 417

thought processes and complexities behind the wonderful systems we propose to
build, and help us ensure their efficient performance when we build them.

Summary
As modelers extend and mold the UML to fit their needs, they’ll shape its future.
In this hour, you looked at an extension for business modeling and saw some
ways of applying the UML to other areas. We also examined the Web Application
Extension (WAE), which is a UML extension for modeling Web applications.

Taking a lesson from the business extension’s simplicity, we explored ways for
modeling GUIs and expert systems. To model a GUI, we set up a hybrid diagram
that shows the spatial relationships of screen components and their connections
with use cases. This has the advantages of showing the evolution of a GUI as it
takes shape and keeping the appropriate use cases within the focus of attention.

In an expert system the if-then rule is the building block of the knowledge base, the
component that contains the knowledge of a human domain expert. We suggested
a diagram that visualizes the rules and their interrelationships. In this diagram, a
box divided into compartments models the rule. One compartment contains the
rule identifier, another summarizes the if-part, another the then-part, and two
others show related rules. Links to nearby rules appear as connecting lines between
appropriate parts of the rules.

The WAE encompasses a set of stereotyped icons, stereotyped associations, attri-
butes, and rules for modeling a Web application. Many of the icons are designed
to reinforce the idea of a page.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 417

418 Hour 24

Q&A
Q. Although in principle it looks like an expert system isn’t particularly diffi-

cult to model, it seems like it would be an extremely hard program to
write.

A. It would be if you had to create one from scratch. Fortunately, most of the
programming is done for you in a package called an expert system shell. All
its components are ready-made; you just add the knowledge. Extracting the
knowledge from a human expert is not always an easy task, however.

Q. Haven’t vendors of expert system shells come up with a notation for rep-
resenting rules?

A. Yes, and that’s the problem. No single notation is standard. This field typifies
the statement (attributed, I think, to famed computer scientist Edsger Dijkstra):
“The great thing about standards is that there are so many of them.”

Workshop
The questions in this workshop test your knowledge about applying the UML to
GUIs and expert systems. The answers to the quiz questions are in Appendix A,
“Quiz Answers.”

Quiz
1. What are the advantages of our model of a GUI?

2. What are the components of an expert system?

3. What expert system features does our diagram encompass?

Exercises
1. Visit the home page of Sams Publishing (www.samspublishing.com) and use

the WAE Web page icon to model that page. Next, model the page without
using the WAE icon—that is, with a standard UML icon.

2. Imagine that an appliance manufacturer wants to create a Web-based
expert system that provides troubleshooting information. When something
goes wrong, an appliance owner would be able to go to this Web site, enter
the symptoms, and receive advice on how to proceed. Perform a use case
analysis, and use the information on expert systems and the WAE from this
hour to create a rudimentary model of the Web site.

29.067232640X.chap24.qxd 2/20/04 10:20 AM Page 418

PART IV

Appendixes

A Quiz Answers 421

B Working with a UML Modeling Tool 435

C A Summary in Pictures 457

30.067232640X.PartIV.qxd 2/20/04 10:27 AM Page 419

30.067232640X.PartIV.qxd 2/20/04 10:27 AM Page 420

APPENDIX A

Quiz Answers

Hour 1
1. Why is it necessary to have a variety of diagrams in a model of a system?

Any system has a variety of stakeholders. Each type of UML diagram presents
a view that speaks to one or more of these stakeholders.

2. Which diagrams give a static view of a system?

These diagrams provide a static view: class, object, component, and deployment.

3. Which diagrams provide a dynamic view of a system (that is, show change
over time)?

These diagrams provide a dynamic view: use case, state, sequence, activity,
and collaboration.

4. What kinds of objects are in Figure 1.5?

The objects in Figure 1.5 are anonymous objects.

Hour 2
1. What is an object?

An object is an instance of a class.

2. How do objects work together?

Objects work together by sending messages to one another.

3. What does multiplicity indicate?

Multiplicity indicates the number of objects of one class that relate to one
object of an associated class.

4. Can two objects associate with one another in more than one way?

Yes. Two persons, for example, can be associated as friends and also as
co-workers.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 421

422 Appendix A

5. What is inheritance?

Inheritance is a relationship between two classes. One of the classes has all
the attributes and operations of the other, and it also adds its own. The class
that supplies the attributes and operations is the superclass. The class that
has all those attributes and operations and adds its own is the subclass.

6. What is encapsulation?

Encapsulation means that when an object carries out its operations, it hides
what it’s doing. That is, the object doesn’t let you see how it does what it
does.

Hour 3
1. How do you represent a class in the UML?

You use a rectangle to represent a class. The class’s name is inside the rec-
tangle, near the top.

2. What information can you show on a class icon?

You can show the class’s attributes, operations, and responsibilities.

3. What is a constraint?

Represented by text enclosed in curly brackets, a constraint is a set of one or
more rules that a class follows.

4. Why would you attach a note to a class icon?

You attach a note to a class icon to add information that’s not in the attri-
butes, operations, or responsibilities. You might, for example, want the user
of the model to refer to a particular document that contains additional
information about the class.

Hour 4
1. How do you represent multiplicity?

At one end of the association line, you put the number of objects from the
class at that end that relate to one object in the class at the other end.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 422

Quiz Answers 423

2. How do you discover inheritance?

In the list of classes in your initial model, find two or more classes that
share attributes and operations. Either another class in your initial model
will be the parent of these classes, or you will have to create a parent class.

3. What is an abstract class?

An abstract class is a class that serves as the basis for inheritance but pro-
vides no objects.

4. What’s the effect of a qualifier?

The effect of a qualifier is to reduce a one-to-many multiplicity to a one-to-
one multiplicity.

Hour 5
1. What is the difference between an aggregation and a composite?

Both an aggregation and a composite specify a part-whole association
between component classes and a whole. In an aggregation, a component
may be part of more than one whole. In a composite, a component can be
part of only one whole.

2. What is realization? How is realization similar to inheritance? How does
realization differ from inheritance?

Realization is the relationship between a class and an interface. The class is
said to realize the operations in the interface. Realization is similar to inheri-
tance in that a class takes operations from its interface and can inherit pro-
cedures from its parent class. Realization is different from inheritance in
that a class takes no attributes from its interface but can inherit attributes
from its parent class.

3. How do you model interaction through an interface?

You model interaction through an interface as a dependency.

4. Name the three levels of visibility and describe what each one means.

If a class’s attributes and operations have public visibility, another class
may use them. If they have protected visibility, a child (or other descendant)
class may use them. If they have private visibility, only the owning class
can use them. An interface’s operations have public visibility.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 423

424 Appendix A

Hour 6
1. What do you call the entity that initiates a use case?

The entity that initiates a use case is called an actor.

2. What is meant by including a use case?

Including a use case means that some of the steps in a scenario in one use
case are the same as the steps from another use case. Instead of listing all
those same steps, we just indicate the use case they’re part of.

3. What is meant by extending a use case?

Extending a use case means to add steps to an existing use case. You do
that to create a new use case.

4. Is a use case the same as a scenario?

No. A use case is a collection of scenarios.

Hour 7
1. Name two advantages to visualizing a use case.

With visualization, you can (1) show use cases to users and get them to tell
you additional information and (2) combine them with other kinds of
diagrams.

2. Describe generalization and grouping, the relationships among use cases
that you learned about in this hour. Name two situations in which you
would group use cases.

In generalization, one use case inherits the meaning and behaviors of
another. Grouping is the organization of a collection of use cases into
packages.

3. What are the similarities between classes and use cases? What are the
differences?

Similarities: Both are structural elements. Both can inherit.

Differences: The class consists of attributes and operations. The use case con-
sists of scenarios, and each scenario consists of a sequence of steps. The class
provides a static view of the parts of the system, whereas the use case pro-
vides a dynamic view of behavior. The class shows the inside of the system.
The use case shows how the system looks to an outsider.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 424

Quiz Answers 425

4. How do you model inclusion and extension?

You use a dependency arrow for both inclusion and extension. For inclu-
sion, you label the arrow with the keyword «include». For extension, you
label the arrow with the keyword «extend».

Hour 8
1. In what important way does a state diagram differ from a class diagram, an

object diagram, or a use case diagram?

A state diagram models the states of just a single object. Class diagrams, object
diagrams, and use case diagrams model a system, or at least part of a system.

2. Define these terms: transition, event, and action.

A transition is a change from one state to another. An event is an occur-
rence that causes a transition to occur. An action is an executable computa-
tion that results in a state change.

3. What is a triggerless transition?

A triggerless transition is a transition that occurs because of activities within
a state, rather than in response to an event.

4. What is the difference between sequential substates and concurrent substates?

Substates are states within a state. Sequential substates occur one after the
other. Concurrent substates occur at the same time.

Hour 9
1. Define synchronous message and asynchronous message.

When an object sends a synchronous message, it waits for an answer before
moving on. When it sends an asynchronous message, it doesn’t wait for an
answer.

2. In UML 2.0, what is an interaction fragment?

An interaction fragment is a part of a sequence diagram.

3. In UML 2.0, what does par mean?

The par operator signifies that combined interaction fragments work in par-
allel and don’t interfere with each other.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 425

426 Appendix A

4. In a sequence diagram, how do you represent a newly created object?

A newly created object is represented by an object rectangle positioned in
the timeline (that is, along the top-to-bottom dimension) so that its location
represents the time it was created in the sequence. You also add «create» to
the message arrow that points to the created object.

Hour 10
1. How do you represent a message in a communication diagram?

By placing an arrow near the association line that joins two objects. The
arrow points to the receiving object.

2. How do you show sequential information in a communication diagram?

By attaching a number to the label of a message arrow. The number corre-
sponds to the sequential order of the message.

3. How do you show an object changing its state?

One way is to show, in the object, the attribute that corresponds to the state
along with the value of the attribute when the object is in that state. Link that
object with a copy of the object. In the copy, show the value of the attribute in
the new state. Along the link, place a message whose label is «becomes». The
message goes from the original state to the new state.

Here’s another way: Inside an object’s rectangle, indicate its state inside
brackets next to the name of the object. Add a copy of the object and show
the changed state. Connect the two with a dashed line arrow with an open-
stick arrowhead pointing to the changed state. Label the arrow with
«becomes».

4. What is meant by the semantic equivalence of two diagram types?

The two types of diagrams present the same information, and you can turn
one into another.

Hour 11
1. What are the two ways of representing a decision point?

One way is to show a diamond with branches coming out of it. The other is
to show branches coming directly out of an activity. Either way, put a brack-
eted condition on each branch.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 426

Quiz Answers 427

2. What is a swimlane?

In an activity diagram, a swimlane is a segment that shows the activities a
particular role performs.

3. How do you represent signal transmission and reception?

Use a convex pentagon to show signal transmission and a concave penta-
gon to show signal reception.

4. What is an action?

An action is a component of an activity.

5. What is an object node?

An object node is a piece of information that’s an input to an activity or an
output from an activity. In UML 2.0, activity diagrams typically show the
flow of objects through a sequence of activities.

6. What is a pin?

A pin is an object node for an action.

Hour 12
1. What is the difference between components and artifacts?

Components are modular, replaceable parts of a system. They define a system’s
functionality. Artifacts are pieces of information that a system uses or creates.

2. What are the two ways of representing the relationship between a compo-
nent and its interface?

You can represent the interface as a rectangle (like a class icon) and the
connection with the component as a dashed line with an empty triangle
that points to the interface. Alternatively, you can use a small circle to rep-
resent the interface, connected by a solid line to the component.

3. What is a provided interface? What is a required interface?

A provided interface is an interface that one component makes available so
that other components can use its services. When another component uses
these services, it goes through a required interface. Thus, the same interface
is provided by one component and required for another.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 427

428 Appendix A

Hour 13
1. How do you represent a node in a deployment diagram?

A cube represents a node in a deployment diagram.

2. What kinds of information can appear on a node?

Information on a node can include the node name, package name, and
components deployed on the node.

3. How does a token-ring network work?

Computers in a token-ring network connect to multistation access units
(MSAUs) connected in the form of a ring. The MSAUs pass a signal called a
token around the ring. The position of the token indicates which computer
can send information at any moment.

Hour 14
1. What is a metamodel?

A metamodel is a model that defines the language for expressing a model.
The UML is an example of a metamodel.

2. What is a classifier?

A classifier is any element that defines structure and behavior.

3. Why is it important to be able to extend the UML?

When you start to use the UML to model real systems, you’ll run into situa-
tions that are richer and more complex than the ones you find in textbooks
and references. If you can extend the UML, you’ll be able to reflect the
nature of those real-world situations.

4. What are the UML’s extension mechanisms?

The UML’s extension mechanisms are stereotypes, constraints, and tagged
values.

Hour 15
1. What are some typical concerns of a client?

Does the development team understand the problem? Do the team mem-
bers understand the client’s vision of how to solve it? What work-products

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 428

Quiz Answers 429

can the client expect from the development team? How will the project
manager report to the client? How far along is the team at any point?

2. What is meant by a development methodology?

A development methodology sets the structure and nature of steps in a sys-
tem development effort.

3. What is the waterfall method? What are its weaknesses?

In the waterfall method, analysis, design, coding, and deployment follow
one another sequentially. One major weakness is the compartmentalization
of effort, which often prevents team-members from working together and
sharing insights. Another weakness is that it minimizes the impact of
knowledge gained during the course of the project. Still another is that the
waterfall method typically allots most of the project time to coding and
shortchanges analysis and design.

4. What are the segments of GRAPPLE?

The segments of GRAPPLE are Requirements gathering, Analysis, Design,
Development, and Deployment.

5. What is a JAD session?

A JAD (Joint Application Development) session brings together decision-
makers from the client’s organization, potential end-users of the system,
and members of the development team. Some GRAPPLE JAD sessions pair
the development team with just the users.

Hour 16
1. Which UML diagram is appropriate for modeling a business process?

The UML activity diagram is the one for modeling business processes.

2. How can you modify this diagram to show what the different roles do?

You can use the activity diagram to create a swimlane diagram. Each role is
at the top of a swimlane.

3. What is meant by business logic?

Business logic is a set of rules the business follows in specific situations.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 429

430 Appendix A

Hour 17
1. How do you make use of the nouns derived from the interview with an

expert?

Nouns become candidates for class names and attribute names.

2. How do you use the verbs and verb phrases?

Verbs and verb phrases become candidates for operations and for names of
associations.

3. What is a ternary association?

A ternary association involves three classes.

4. How do you model a ternary association?

You model a ternary association by linking each of the three classes to a
diamond. You write the name of the association near the diamond.
Multiplicities in a ternary association reflect the number of instances of any
two classes associated with a constant number of instances of the third.

Hour 18
1. How does the development team represent system requirements?

The team uses the UML package diagram along with use cases to represent
system requirements.

2. Does class modeling stop after the domain analysis?

Class modeling continues to evolve after the domain analysis.

3. What is the schlepp factor?

This is the term I whimsically applied to the server having to walk around
all over the restaurant. I just wanted to see if you were paying attention.

Hour 19
1. What are the parts of a typical use case diagram?

The parts of a typical use case diagram are the initiating actor, the use case,
and the benefiting actor. Many modelers leave out the benefiting actor, but
you should include this actor in your design document.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 430

Quiz Answers 431

2. What does it mean for a use case to include (or use) another use case?

Including a use case means that one use case incorporates the steps of
another use case.

Hour 20
1. How do you represent an object that’s created during the course of a

sequence diagram?

You represent a created object by placing it below the level of the other
objects. You’ll increase clarity if you also add «create» to the message lead-
ing to that object.

2. How is time represented in a sequence diagram?

Time is represented as proceeding in the downward direction.

3. What is a lifeline?

The lifeline is a dashed line descending from an object. It represents the
existence of an object over time.

4. In a sequence diagram, how do you show an activation, and what does it
represent?

An activation is represented as a small narrow rectangle on an object’s life-
line. It represents the time period during which the object performs an
action.

Hour 21
1. What is a task analysis?

A task analysis is an analysis that a GUI designer carries out in order to
understand what the user will do with the application associated with the
GUI.

2. Which analysis that we’ve already done is roughly equivalent to a task
analysis?

The use case analysis is roughly equivalent to the task analysis.

3. What is a clown-pants design?

A clown-pants design is a GUI design that incorporates an excessive number
of colors, component sizes, and fonts.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 431

432 Appendix A

4. Give three reasons for limiting the use of color in a GUI.

Three reasons to limit the use of color in a GUI are

. The association of a color with a meaning may not be as obvious to the
user as it is to the designer.

. Too many colors will distract users from the task at hand.

. Part of the user population may have some trouble distinguishing
between colors.

Hour 22
1. How do you represent a parameterized class?

The icon for a parameterized class is the standard class icon with a small
box superimposed on the upper right corner. The small box consists of
dashed lines.

2. What is binding and what are the two types of binding?

Binding is the attachment of a value to a parameter. The two types of bind-
ing are explicit and implicit.

3. What is a design pattern?

A design pattern is a proven solution to a design problem. It’s usable in a
variety of situations, and you represent it in the UML as a parameterized
collaboration.

4. What is the Chain of Responsibility design pattern?

In the Chain of Responsibility design pattern, a client object initiates a
request and passes it to the first in a chain of objects. If the first object
can’t handle the request, it passes it to the next. If that one can’t handle
the request, it passes it to the next, and so forth until an object can
handle the request.

Hour 23
1. What is an embedded system?

An embedded system is a computer system that resides inside some other
kind of device, like a home appliance.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 432

Quiz Answers 433

2. What is an asynchronous event?

An event is asynchronous if you can’t predict its occurrence.

3. In terms of embedded systems, what is a hard system? What is a soft system?

A hard system has to meet time deadlines, but a soft system does not.

4. What happens in a preemptive kernel?

In a preemptive kernel, after an ISR executes, the CPU doesn’t return to the
interrupted thread if a higher priority thread is in the ready state. Instead, it
executes the higher priority thread.

Hour 24
1. What are the advantages of our model of a GUI?

This model can capture the thought processes in the evolution of a GUI, and
it keeps attention on the use cases connected with each screen.

2. What are the components of an expert system?

The components of an expert system are a knowledge base, a work area,
and an inference engine.

3. What expert system features does our diagram encompass?

The diagram shows the parts of a rule, associated rules, and the relation-
ships among rules.

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 433

31.067232640X.AppA.qxd 2/20/04 10:43 AM Page 434

APPENDIX B

Working with a
UML Modeling Tool

As you followed along with the book’s discussion and did the exercises, you probably
used pencil and paper to create your diagrams. If you had to do that in your project-
related modeling efforts, you’d quickly hit a number of snags. In addition to draw-
ing those troublesome lines, circles, ellipses, and rectangles, you’d have a difficult
time when you wanted to move them around and change the layout of a finished
diagram.

Fortunately, technology comes to the rescue. A number of tools are available to help
you create UML models.

What You Should Find in a Modeling Tool
One fundamental feature of a UML modeling tool is a palette of UML elements. You
use that palette to create diagrams by selecting elements from the palette and then
dragging and dropping them onto a drawing page. Once you’ve added your ele-
ments, “rubber-band” diagramming allows you to create a connection between two
elements and have the connection adjust accordingly when you drag those elements
around the screen.

Another important feature is the use of dialog boxes for editing. That is, if you want to
modify an element in a diagram, you should be able to somehow access a dialog box
for that element and enter information into its fields. Because of those dialog boxes,
one thing you find when you work with a modeling tool is that the model consists of
more than just the diagrams: Much of the model’s information resides in the dialog
boxes that sit behind the diagrams.

Still another practical consideration is that the tool should allow you the flexibility
to format the onscreen information in various ways.

Possibly the most important feature of a UML modeling tool is what I call its
dictionary. This is a record of all the elements you create and all their features. In
addition to keeping track of your creations, the dictionary is important because it

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 435

436 Appendix B

enables you to reuse them from diagram to diagram. In other words, if you create
a class for one diagram, you should be able to use it again by selecting it from
the dictionary and dragging-and-dropping it onto another.

Finally, some high-end (read “expensive”) modeling tools allow you to generate
code from your models.

When I wrote the earlier editions of this book, only a few UML modeling tools
were available, and I discussed three of them.

Since those earlier editions, the number of modeling tools has grown substantially.
Two that come to mind, for example, are Together, a recent acquisition of Borland,
and Poseidon, a product of Gentleware.

Rather than survey the entire field, I thought that this time around, I’d give you a
feel for what it’s like to work with a modeling tool: I’ll take you through some
steps with one of them—Microsoft Visio Professional Edition. If you’re familiar
with Visio, that’s helpful. If not, that’s OK, too.

Working with UML in Visio
Professional Edition
One of the best-known diagramming tools, Visio Professional Edition adds a num-
ber of UML-related capabilities that turn it into a surprisingly strong modeling
tool. UML is just one of Visio’s capabilities.

I’ll walk you through the creation of a class diagram, an object diagram, and a
sequence diagram. As I do, I’ll point out the features of this tool.

To give you an idea of where you’re headed, I’ll start by showing you the dia-
grams I’m going to create. The diagrams will form a rudimentary model of our
solar system. Because I’m focusing on the tool rather than on the UML, I’ll keep
the diagrams simple.

Because our particular solar system is an instance of a planetary system, you’ll
begin with a class model of a planetary system as shown in Figure B.1.

Figure B.2 is an object diagram of Earth and the sun. If you’re feeling ambitious,
you can fill in the remaining planets.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 436

Working with a UML Modeling Tool 437

The sequence diagram (Figure B.3) shows just one message from the sun to Earth.
(I told you I’d keep it simple.)

PlanetarySystem

HabitablePlanet NonHabitablePlanet

Star Planet

diameter
distanceFromStar

receiveLight()

1

1 1..*

FIGURE B.1
A class model of a
planetary system.

theSun:Star earth:HabitablePlanet

diameter = 8,000
distanceFromStar = 93,000,000

FIGURE B.2
An object model of
Earth and the sun.

theSun:Star earth:HabitablePlanet

receiveLight()

FIGURE B.3
A sequence
diagram showing
one interaction
between the sun
and Earth.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 437

438 Appendix B

Getting Started
Figure B.4 shows Visio ready for UML modeling. The large white area is the
Drawing page. Model Explorer (upper left) is Visio’s dictionary. Visio’s palette of
UML elements is in the lower left. It’s called “Shapes,” and it consists of a number
of tabbed pages. Each tabbed page supplies the icons for a specific UML diagram.
When Visio opens in the UML, the UML Static Structure tabbed page is visible.
This one enables you to create class diagrams and object diagrams.

FIGURE B.4
Visio ready for UML
modeling.

Just to get you in the mood, I’ll write this as if you have Visio Professional and
you’re working along.

The Class Diagram
The first step is to select a class icon from UML Static Structure and drop it on the
Drawing page. This causes the Drawing page to resemble Figure B.5.

Next, with the class selected on the Drawing page you type PlanetarySystem to
rename the class. (Figure B.6)

Model Explorer reflects the addition of the new class. (Figure B.7)

Now you can add the Planet class, as in Figure B.8.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 438

Working with a UML Modeling Tool 439

FIGURE B.5
Starting the class
diagram.

FIGURE B.6
Renaming the
class.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 439

440 Appendix B

For this class, you’ll add the two attributes and the operation from Figure B.1, and
you’ll make Planet an abstract class. To do this, double-click on the Planet class
to bring up the UML Class Properties dialog box (Figure B.9).

FIGURE B.7
The
PlanetarySystem
class in Model
Explorer.

FIGURE B.8
Adding the Planet
class.

FIGURE B.9
The UML Class
Properties dialog
box.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 440

Working with a UML Modeling Tool 441

The first step is to click the IsAbstract checkbox. Next, select Attributes from the
Categories field on the left to open the Attributes table in this dialog box (Figure B.10).

FIGURE B.10
The Attributes table
for the Planet
class.

Type diameter and distanceFromStar into this table. Then select Operations from
the Categories field to open the Operations table, into which you type
receiveLight, as shown in Figure B.11.

Clicking OK gives you the abstract Planet class with its attributes and its opera-
tion, as in Figure B.12.

Note the minus sign to the left of each attribute and the plus sign to the left of
the operation. These are the visibilities. To make the diagram less busy, you can
take them out of the diagram. In order to do that, right-click on the Planet class
to bring up the popup menu in Figure B.13.

FIGURE B.11
The Operations
table for the
Planet class.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 441

442 Appendix B

Selecting Shape Display Options opens the UML Shape Display Options dialog
box in Figure B.14.

FIGURE B.12
The abstract class
Planet with its
attributes and
operation.

FIGURE B.13
Right-clicking a
model element
pops up this menu.

FIGURE B.14
The UML Shape
Display Options
dialog box.

Unchecking the Visibility checkbox and clicking OK makes the Planet class look
like Figure B.15. By the way, if you look closely at Figure B.14, you’ll notice the
checks in the two bottom checkboxes. Checking these boxes specifies that your
choices in this dialog box determine the appearance of any subsequent elements
of this type in this diagram.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 442

Working with a UML Modeling Tool 443

Note that the Planet class and its attributes and operation are now in Model
Explorer (Figure B.16).

FIGURE B.15
The Planet class
without the
visibilities.

FIGURE B.16
Model Explorer
records the
attributes and
operation of the
Planet class.

The next order of business is to drag and drop the remaining classes into the dia-
gram so that the Drawing page resembles Figure B.17.

FIGURE B.17
All the classes in
the model.

Of course, you’re not through yet. You have to add the composition relationship
and the inheritance relationship. Start with the composition. Dragging a compo-
sition from Shapes into the Drawing page, connecting the filled diamond to
Planetary System, and connecting the other end (the “tail”) to Star result in
Figure B.18.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 443

444 Appendix B

As you can see, you have multiplicities, visibilities, and default names for the
ends of the composition. To take the default names and visibilities (-End1 and
-End2) out of the diagram, right-click on the composition and select Shape
Display Options from the popup menu. This time, in the UML Shape Display
Options dialog box (Figure B.19), uncheck First End Name, Second End Name,
and End Visibilities.

FIGURE B.18
Starting the
composition.

FIGURE B.19
The UML Shape
Display Options
dialog box for the
composition
symbol.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 444

Working with a UML Modeling Tool 445

Now you have to take care of the multiplicity for the Star class. Double-clicking
on the composition symbol opens the UML Association Properties dialog box
(Figure B.20).

In the Association Ends table, select End2 and click in its cell in the Multiplicity col-
umn. Clicking the down arrow in that cell reveals a list of possible multiplicity expres-
sions for End2. If you select 1 from that list and click OK, you’ll have the desired mul-
tiplicity (Figure B.21).

FIGURE B.20
The UML
Association
Properties dialog
box.

Dragging and dropping another composition symbol, superimposing the diamond
on the first, and connecting the tail to the Planet class gives you Figure B.22. The
default multiplicity (“many,” as denoted by the asterisk) is appropriate.

FIGURE B.21
The list of possible
multiplicities.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 445

446 Appendix B

Finally, you’ll add the inheritance relationships. Drag and drop a generalization
symbol from Shapes and connect the triangle indicator to Planet and the tail to
HabitablePlanet. Do the same thing with another generalization symbol, super-
imposing the triangle on the first and connecting the tail to NonHabitablePlanet.
When you’re finished, the Drawing page shows the completed class diagram
(Figure B.23).

FIGURE B.22
Completing the
composition.

FIGURE B.23
The completed
class diagram.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 446

Working with a UML Modeling Tool 447

As I mentioned earlier, however, when you use a modeling tool, the information is
not just in the diagrams. It’s also in the dialog boxes that sit behind the diagrams.
You’re at a point where I can give you an example. If you double-click on
HabitablePlanet, the UML Class Properties dialog box appears. Clicking on
Attributes in the Categories field opens the Attributes table, as shown in Figure B.24.

FIGURE B.24
The Attributes table
for the
HabitablePlanet
class.

At the bottom of the Attributes table, you see a tab. This tab indicates that you’re
looking at the page of attributes for HabitablePlanet. That page, of course, is
empty because you didn’t specify any attributes for this class. But
HabitablePlanet inherits a couple of attributes from Planet, and this table shows
them. The tabs are scrollable, and if you scroll, you’ll see a tab for Planet.
Clicking on this tab opens the page of attributes for Planet (Figure B.25).

FIGURE B.25
The Attributes table
for the Planet
class opens up in
the dialog box for
HabitablePlanet.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 447

448 Appendix B

So, because of the inheritance indicator in the diagram, the dialog box for the
subclasses shows the attributes for the class from which they inherit. (Visio does
this for operations as well.)

The Object Diagram
To get started on the object diagram, right-click in Model Explorer on the package
icon labeled Top Package. A sequence of popup menus enables you to open a
new Static Structure Diagram. From UML Static Structure in Shapes, select an
Object icon and drop it on the Drawing page. Figure B.26 shows what the
Drawing page looks like after this.

Double-clicking on the object opens the UML Object Properties dialog box
(Figure B.27).

In the Name field, type theSun to change from the default name (Object1). You
also have to indicate that theSun is an instance of the Star class. To do this, click
in the Class field and click the down arrow. This opens a list of classes you creat-
ed. Figure B.28 shows how the dialog box looks when you do all this.

FIGURE B.26
The Drawing page
after with a newly
added Object icon.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 448

Working with a UML Modeling Tool 449

Selecting Star from the list of classes and clicking OK makes the object appear as
in Figure B.29.

FIGURE B.27
The UML Object
Properties dialog
box.

FIGURE B.28
The UML Object
Properties dialog
box, with the object
renamed and the
list of the classes.

FIGURE B.29
The renamed
sun-object showing
the name of its
class.

Next, the same series of steps creates an earth-object. Figure B.30 shows the UML
Object Properties dialog box after renaming the object and selecting its class.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 449

450 Appendix B

Selecting Attribute Values from the Categories field opens the Attribute Values
table. In this table you fill in the values for the diameter and
distanceFromTheStar properties that HabitablePlanet inherits from Planet
(Figure B.31). Remember, you didn’t put those attributes into the HabitablePlanet
class. The modeling tool supplies them for you here because of the inheritance
relationships you set up in the class diagram.

FIGURE B.30
The UML Object
Properties dialog
box after renaming
the earth-object
and selecting its
class.

FIGURE B.31
Supplying values
for an object’s
attributes.

As the figure shows, I supplied the values (8,000 and 93,000,000) in the Values
column. Clicking OK makes the earth-object appear as in Figure B.32.

FIGURE B.32
The renamed
earth-object along
with the values of
its attributes.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 450

Working with a UML Modeling Tool 451

All that’s left is to add the link between the two objects. Drag a link symbol from
UML Static Structure to the Drawing page and connect an end to each object. The
names End1 and End2 show up when you do this, but right-clicking on the link
and working with Shape Display Options enables you to remove them from the
diagram. The completed object diagram appears in Figure B.33.

The Sequence Diagram
Let’s finish up. Once again, right-clicking in Model Explorer (on the Top Package
icon) and selecting from a sequence of popup menus opens a new Drawing page
and opens the UML Sequence tab in Shapes.

From UML Sequence, dragging an Object Lifeline icon and dropping it on the
Drawing page makes Visio look like Figure B.34.

As you did with the Object diagram, rename the icon and show its class. Double-
clicking on the icon opens the UML Classifier Roles dialog box (Figure B.35).

After renaming the object in the Name field and selecting its class from the list of
your classes in the Classifier field, this dialog box appears as in Figure B.36.

FIGURE B.33
The completed
object diagram.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 451

452 Appendix B

FIGURE B.34
Starting the
sequence diagram
with an Object
Lifeline icon.

FIGURE B.35
The UML Classifier
Roles dialog box.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 452

Working with a UML Modeling Tool 453

Clicking OK makes the Object Lifeline icon look like Figure B.37.

FIGURE B.36
The UML Classifer
Roles dialog box
after renaming the
object and
selecting its class.

FIGURE B.37
The appearance of
the Object Lifeline
after renaming
the object and
selecting its class.

Right-clicking and working with Shape Display Options allows you to show the
class name. Following a similar series of steps with another Object Lifeline icon
(to represent Earth) results in Figure B.38.

FIGURE B.38
Two Object Lifeline
icons, showing the
names and classes
of the objects.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 453

454 Appendix B

Now it’s time for the message from the sun-object to the earth-object. Select a
Message symbol from UML Sequence, drag it to the Drawing page, connect the
tail to the sun-object’s lifeline and the arrowhead to the earth-object’s lifeline
(Figure B.39).

FIGURE B.39
Connecting the two
lifelines with a
message.

To change from the message’s default label, double-click on the message icon to
open (you guessed it) the UML Message Properties dialog box (Figure B.40).

FIGURE B.40
The UML Message
Properties dialog
box.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 454

Working with a UML Modeling Tool 455

With only one possible operation, the name (in the Name field) and the opera-
tion that the message requests from the earth-object are already selected. (Had
you specified more operations for this class in your class diagram, you would
have chosen from a list of operations here.) Clicking OK puts that operation on
the message, as in Figure B.41.

FIGURE B.41
The relabeled
message
connecting the two
lifelines.

Dragging and dropping an Activation symbol completes the diagram (Figure B.42).

FIGURE B.42
The completed
sequence diagram.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 455

456 Appendix B

A Few Words About a Few Tools
In this section, I revisit a few old friends and describe some of their recent devel-
opments. As I write this, these tools still comply with UML 1.x (as does the version
of Visio I walked you through).

Rational Rose
Still the gold standard in UML modeling tools, Rational Rose is a product of the
company where the Three Amigos created UML. Renamed IBM Rose XDE Modeler
to reflect IBM’s acquisition of Rational, Rose has spawned a variety of tools for
modeling in numerous contexts. One is intended for database modeling, another
is for working with Microsoft Visual Studio, and still another is aimed at Java.
Visit http://www.ibm.com/rational for more information.

Select Component Architect
This tool is the updated and extended version of Select Enterprise, one of the first
UML modeling tools I worked with. I described Select Enterprise in editions 1 and
2. Select Component Architect is geared toward development via reusable soft-
ware components and provides UML extensions for that purpose. It also includes
capabilities for database design via entity-relationship diagrams.

As one of the tools in the Select Component Factory, it’s part of Select Business
Solutions’ effort to generally provide and promote component-based develop-
ment. Their Web site http://www.selectbs.com will tell you all about it.

Visual UML
Now in Version 3.2, Visual UML continues to be a personal favorite. In fact, I used
an earlier version of this tool to create many of the diagrams in the first edition.
Its opening screen is so easy to use, you’ll be diagramming in UML almost as
soon as you finish installation. Go to http://www.visualuml.com to learn more
about Visual UML and to download a trial copy.

32.067232640X.AppB.qxd 2/20/04 10:29 AM Page 456

APPENDIX C

A Summary in Pictures

This appendix presents some of the major aspects of each UML diagram.

Activity Diagram

Action ActionPin Pin

Activity

Start

Object
Node

[Condition1] [Condition2]

Stop

Figure C.1

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 457

458 Appendix C

Start

Swimlane 1 Swimlane 2

Stop

Figure C.2

Figure C.3
Sending Signal Receiving Signal

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 458

A Summary in Pictures 459

Class Diagram

ClassName

operation

attribute:type
/derivedAttribute AbstractClass

Class1 Class2
AssociationName

Association:

Class1 Class2
1 1..*

Multiplicity:

Class1 Class2
roleName1 roleName2

Role names in
an association:

Class1 Class2Qualified
association:

GeneralClass

SpecificClass

Class1

Class2

Interfacing:Generalization:

qualifier

Figure C.4

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 459

460 Appendix C

Communication Diagram

Aggregation:

Ternary Association:

ClassA ClassB ClassA ClassB

ClassC

T

Parameterized Class

Whole

Part

Composite:
Whole

Part

AssociationClass

Figure C.5

object1:Class1

object3:Class3 object2:Class2

3: Message 3 1: Message 1
4: Message 4

2: Message 2

Figure C.6

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 460

A Summary in Pictures 461

Component Diagram

ComponentName

«component»

ComponentName

«component»

ComponentName

UML 1.x

UML 2.0

Figure C.7

Composite Structure Diagram

Class1

Class2 Class3

Figure C.8

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 461

462 Appendix C

Deployment Diagram

Node1

Node2«artifact»
Artifact1

«artifact»
Artifact2

Dependency

Figure C.9

object1:Class1
linkname

object2:Class2
Figure C.10

Object Diagram

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 462

A Summary in Pictures 463

Package Diagram
Figure C.11Package1

Package2

Class1 Class2

Parameterized Collaboration

ClassA

ClassB ClassC

Parameterized Collaboration

Figure C.12

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 463

464 Appendix C

Sequence Diagram

:Class1 :Class2 :Class3

:Class4

Asynchronous Message

«destroy»

Synchronous Message

Return Message

Activation

«create»

Figure C.13

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 464

A Summary in Pictures 465

State Diagram

Timing Diagram

Figure C.14

:ClassName

State 3

State 2

State 1

10 2 3 4 5

Figure C.15

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 465

466 Appendix C

Use Case Diagram

Initiating Actor

Use Case 3

«extend»

«include»

Use Case 1

Use Case 2

Figure C.16

33.067232640X.AppC.qxd 2/20/04 10:59 AM Page 466

exit, 125

inputs and outputs of,
181-183

UML notation for, 124-125

activity diagrams, 16, 255, 259

activities, 174

for case study, 270, 273,
275, 279, 281

concurrent activities, 175

constraint notation in, 187

decision points,
174-175

endpoint, 174

exceptions, 183-184

flow final node, 186

flow of a token in, 193

hourglass symbol, 186

note symbol, 180

object nodes, 181-183

objects and operations in,
180-181

overview of interactions in,
188-191

pictorial summary of,
117-118

sequence diagrams within
an UML notation for,
189

signals, 175

Index

A

abstract classes

definition of, 70

forming groups with,
289-290

UML notation for, 70

abstraction, 34-35

definition of, 34

Abstractions package, 236

access points for WLANs,
358-359

actions

definition of, 125

pins on, 184-186

actions in GRAPPLE, 254

activations in sequence dia-
grams, 344

active objects

in a communication dia-
gram, 166

activities

decomposed into actions,
184-186

do, 125

with effects on objects,
187

entry, 125

and exceptions, 183-184

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 467

similarity to flowcharts,
173

starting point, 174

swimlanes, 177-180

transitions, 174

UML notation for, 18

actors. See also use case

definition of, 13, 92

generalization, 110

initiating versus receiving,
104

UML notation for, 13, 104

aggregation, 41-42

composites, 81

composition, 42

constraints, 80

definition of, 41, 79

UML notation for, 80

alt operator, 151-152

analysis in GRAPPLE, 257-258.
See also modeling

analysts

clean-up role of, 359

definition of, 7

design documents and,
359

analyzing interactions, 339-350

objective of, 348

annotation, 117

applications

and embedded systems,
134-135

multitasking in, 134-135

tasks within, 134-135

artifacts

definition of, 197

deployment of, 214

assembly connector, 205

association classes, 295

definition of, 63

in embedded systems,
139-140

associations, 40-41

aggregation, 41-42

composition, 42

bi-directional versus unidi-
rectional, 40

class, 295

multiplicity, 41, 293

n-ary, 293

ternary, 293

associations (class)

definition of, 61

qualified, 65-67

reflexive, 67

UML notation for, 61-62

asynchronous events, 135

asynchronous messages, 137

attributes (class)

assigning a default value
to, 49-50

assigning values to, 49

constraints on, 63

definition of, 48

naming, 48

specifying a data type for,
49-50

UML notation for, 48-50

attributes (object), 32

B

base class. (See root class)

base use case

definition of, 107

Basic package, 237

behavioral design patterns, 116

behavioral elements

definition of, 123

state diagram, 123

sequence diagram, 153

binding relationship, 114-115

black box view (of interface), 202

Booch, Grady. See Three Amigos

business process diagrams, 308

business-process interview

analyzing the, 286-287

business process modeling.
See modeling

C

call message, 136

case study, 267-283

activity diagrams, 270,
273, 275, 279, 281

discovering business
processes, 268-282

GRAPPLE and, 268-282

swimlane diagrams,
276-277, 280

chain of responsibility pattern

restaurant example,
118-119

structure and purposes of,
117-118

Web browser example,
119-121

child class

definition of, 67-68

child use case, 109

class diagrams, 255-256, 438

definition of, 12

in embedded systems,
139-140

example of, 56, 138-139

and GUI design, 358

pictorial summary of,
119-120

classes

adding a constraint to,
53

adding responsibilities to,
52-53

468 activity diagrams

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 468

assigning associations to,
61

assigning links to, 64

associations, 41

attaching notes to, 54

attributes of, 48-50

data type, 49

default value, 49

definition of, 11

dependencies, 70-71

eliciting from clients, 54-56

eliding a, 51-52

in embedded systems,
139-140

inheritance, 67-69

modeling internal structure
of, 22, 81

multiplicity, 64

naming, 47-48

object, 49

operations of, 50-51

optionality, 65

parameterized, 114

pathname, 48

purposes of, 32-33

qualifier, 66

roles, 62

stereotypes for, 244

types of

abstract class, 70

association class, 63

base class (see root
class)

child class, 67-69

leaf class, 69

parent class, 68

root class, 69

subclass, 35 (see also
child class)

superclass, 35 (see also
parent class)

UML notation for, 11, 47

using client jargon in,
54-56

using keywords in, 52

classifiers, 236

classifier scope

definition of, 87

UML notation for, 87

client business logic, 113

client domain

understanding for system
analysis, 111

client jargon, using to create
classes, 54-56

client of dependency, 243

clients

definition of, 7

and working with develop-
ment team, 361

clock ticks, 136

collaboration diagrams. See
communication diagrams

communication diagrams, 258

active objects, 166

within activity diagrams,
193-194

as a behavioral element,
168

changes of state in,
160-162

compared to sequence dia-
gram, 157-158

definition of, 16-18

as an extension of the
object diagram, 158

message sending,
165

message synchronization
in, 166-167

multiple message
receivers, 165

multiple messages between
objects in, 159

nested-message relation-
ship in a, 161-163

numbering messages with
mutually exclusive guard
conditions in, 164

object creation in, 163

pictorial summary of, 120

representing sequential
information in a, 158

semantic equivalence with
sequence diagram

examples of, 160,
162-163

symbol set for, 158

syntax for returned result,
165-166

as a type of interaction
diagram, 157

UML notation for, 17-18

component diagrams, 200-208,
259

artifacts in, 197

changes from version 1.x,
19

components in, 197

definition of, 18-19

for a Java application,
203-208

relationships in

dependency, 202

implementation, 201

realization, 201-202

role of in the UML, 209

pictorial summary of, 121

UML notation for

components, 197-200

interaction between, 199

interfaces revealed by use
case analysis, 336-337

replacement and reuse,
199-200

revealed by use case analy-
sis, 336

UML notation for, 200-201

components

How can we make this index more useful? Email us at indexes@samspublishing.com

469

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 469

composites

definition of, 81

UML notation for, 81

composite state

definition of, 129

composite structure diagrams

definition of, 22, 81

pictorial summary of, 121

UML notation for, 22, 81-82

composition

definition of, 42

computer hardware

modeling in the UML,
19-20

concurrency

definition of, 166

concurrent substates

definition of, 128-129

UML notation for, 129

configuration management, 262

connection points

definition of, 130

entry point, 130-131

exit point, 130-131

UML notation for,
130-131

constraints, 245

constraints (aggregation)

UML notation for, 80

Or type, 80

constraints (association)

definition of, 63

Or type, 63

UML notation for, 63

constraints (class)

definition of, 53

UML notation for, 53

context, 136

context diagramming. See com-
posite structure diagram

Constructs package, 237

cooperative multitasking

in kernels, 136-139

Core package, 235

creational design patterns, 116

D

data types, enumerated, 50

decomposing activities, 184-186

delegation connector, 205

dependencies (class)

definition of, 70

elided UML notation for, 86

UML notation for, 70-71, 85

dependencies (component), 202

dependency arrows, decipher-
ing, 109

dependency relationship, 226-227

stereotypes for, 243

deployment of embedded
systems, 144

deployment diagrams, 256

applied

to an ARCnet, 218

to a home system, 216,
217

to a ricochet wireless
network, 219, 221

to a thin ethernet,
218-219, 220

to a token-ring system,
216-218

artifacts on node, 214

connections between
nodes, 215

definition of, 19-20

deployment specifications,
215

nodes, 213-214, 359, 360

pictorial summary of, 122

role within the UML, 221

UML notation for, 20

deployment in GRAPPLE, 261

deployment relationships, 214

deployment specifications,
215

design documents, 327. See
also documentation

including use cases in, 105

design in GRAPPLE, 259-260.
See also modeling

design patterns

categories of, 116

chain of responsibility

restaurant example,
118-119

structure and purposes
of, 117-118

Web browser example,
119-121

discovering new, 116,
120-122

“Gang of Four,” 370

as parameterized collabora-
tions in the UML, 116

represented using the UML,
116-123

Series Calculator example,
121-122

as solutions of recurring
problems, 116, 123

«destroy» keyword, 148

developers

definition of, 7

development in GRAPPLE, 260

development team, client
relations and, 361

470 composites

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 470

diagrams

need for, 26

types

activity diagram, 16

class diagram, 11-12

communication diagram,
16-18

component diagram,
18-19

composite structure dia-
gram, 22

deployment diagram,
19-20

interaction overview dia-
gram, 23-24

object diagram, 12

package diagram, 25

sequence diagram, 14-16

state diagram, 13-14

timing diagram, 24-25

use case diagram, 13

dictionary, 95-96

do

definition of, 125

documentation, 260. See also
design documents

creation of, 360

document specialists

work of, 360

domain analysis, 285-304

analyzing the interview,
286-287

developing the initial class-
es, 287-289

forming associations and
composites, 290-299

general guidelines for,
297-298, 303-304

refining the classes,
300-303

domain (client)

definition of, 43

duration constraint, 138

E

eliding

definition of, 52

embedded systems

concepts for, 134-139

definition of, 133-134

hard versus soft, 134

interrupts and, 135-136

modeling in the UML,
139-140

multitasking in, 134-135

“smart” devices and,
133-134

tasks and, 134-135

threads and, 134

time and, 134

EMGs (electromyographic sig-
nals), 131-132

working with, 132

encapsulation, 37-38, 82,
198

benefits of, 38

definition of, 37

entry

definition of, 125

entry point

definition of, 130

UML notation for, 130-131

enumerated data type

definition of, 50

Ericsson phones

as an interface, 146, 148

event bubbling, 120

event capturing, 120

event handler, 119

exception handler, 184

exceptions, 183-184

exit

definition of, 125

exit point

definition of, 130

UML notation for, 130-131

expert systems, 68-74

explicit binding, 114

extending the UML

mechanisms for, 243-245

extension, 117

extension points

definition of, 107

extension (use case), 97-98,
107-108

definition of, 97-98

F - G

factorials, 121

features (object), 32

Fibonacci numbers, 121

flow final node, 186

«framework», 244

fully qualified names, 226

function, definition of, 51

generalization (actor), UML
notation for, 110

generalization (class). See
inheritance (class)

generalization hierarchy (actor),
example of, 112

generalization (package),
226-227

generalization (use case), UML
notation for, 109

general principles of GUI
design, 351-353

general state changes, in
embedded systems, 144

generic sequence diagrams,
144-146

definition of, 144

example of, 145

generic sequence diagrams

How can we make this index more useful? Email us at indexes@samspublishing.com

471

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 471

graphic stereotypes,
244-245

graphical user interfaces. See
GUIs

GRAPPLE (Guidelines for Rapid
APPLication Engineering),
253-262. See also software
development; modeling

case study using,
268-282

structure of

segment 1: require-
ments gathering,
255-257, 285

segment 2: analysis,
257-258

segment 3: design,
259-260

segment 4: develop-
ment, 260

segment 5: deployment,
261

use cases, 325-338

grouping, 117

grouping (use case)

UML notation for, 110

guard conditions, 141

definition of, 127

if statement, 145

GUI design

class diagrams and, 358

general principles of, 351-353

state diagrams and, 357

UML diagrams for, 357-358

GUI JAD session, 353-354

objective of, 353

paper mockups and, 354

scheduling, 354

users’ participation in, 354

guillemets

definition of, 21

GUIs (graphical user inter-
faces), 351, 65-67

H - I

hardware modeling

with deployment diagrams
(see deployment diagrams)

hierarchy for the UML,
230-231, 240. See also UML
architecture

history states

deep versus shallow, 130

definition of, 129

UML notation for, 129-130

hybrid diagrams, 180-181

in embedded systems, 139

IBM Rose XDE Modeler

Web site, 116, 456

if statement, 145

«implementationClass», 244

implementation relationship,
198

implicit binding, 115

«import» dependency, 243

«include» dependency, 329

inclusion (use case), 96-97,
106-107

definition of, 96-97

UML notation for,
106-107

information hiding. See encap-
sulation

information, movement of,
309-316

Infrastructure Library package,
234, 247

inheritance (class), 67-69

definition of, 35

multiple versus single, 69

UML notation for, 68

versus realization, 85

inheritance (use case), 109

UML notation for, 109

input event, 175

instances

within the layers of the
UML, 240

instance scope

definition of, 87

instance sequence diagram

definition of, 144

«instantiate» dependency, 243

interaction diagrams, 14-18,
157

interaction fragments,
151-152

alt operator, 151-152

par operator, 151-152

interaction occurrences,
149-151, 189

interaction overview diagrams,
188-191, 193-194

definition of, 23

interaction occurrences in,
189

UML notation for, 23-24

interactions

analyzing, 339-350

in embedded systems,
141-144

interfaces, 38, 198-199

ball-and-socket notation for,
202-205

and a class, modeling con-
nection between, 86

conforming, 199

definition of, 21, 82

dependency, 85

elided UML notation for, 84

external versus internal
views, 202

lollipop diagram for, 84

port, 86

realization, 83

UML notation for, 21, 84,
201-203

internode connections, 199

472 graphic stereotypes

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 472

interrupt latency, 136

interrupt recovery, 136

interrupt response,
136

interrupts

in embedded systems,
135-136

Interrupt Service Routine. See
ISR

interviewing

tips for, 270, 271, 272,
274, 281-282

ISR (Interrupt Service Routine),
136

J - K - L

Jacobson, Ivar. See Three
Amigos

JAD (Joint Application
Development), 256-257

JAD session, 316-323

GUI, 353-354

objective of, 317

use cases, 325-326

kernels, 136

kernel schedules

nonpreemptive verus pre-
emptive, 136, 138

keywords

definition of, 21

«destroy», 148

UML notation for,
21

using in classes, 52

leaf class

definition of, 69

lifelines, 140

in sequence diagrams, 344

links (association)

definition of, 64

UML notation for, 64

lollipop diagram, 84

lookup

definition of, 65

M

mapping out

system deployment,
358-361

«merge» dependency, 228

merge relationship, 228

messages

asynchronous, 137

call, 136

compartmentalizing and
reusing, 189

controlled by active objects,
166

implicit receiver of, 117

with multiple recipients,
165

with mutually exclusive
guard conditions, 164

nested, 161-163

ordered, 165

return, 136

in sequence diagrams,
136-137

synchronization among,
166-167

synchronous, 136-137

UML notation for, 159-168

message sending, 38-39

message-signature

definition of, 166

«metaclass», 244

metametamodel layer, 231

foundational concepts of,
232-239

metamodel layer, 231

Meta-Object Facility (MOF), 233

methodologies

GRAPPLE, 253-262

newer, 251

waterfall method, 250-251

model

definition of, 10-11

model dictionary, 303

modeling. See also software
development

business process diagrams
in, 308

with component diagrams
(see components; compo-
nent diagrams)

with deployment diagrams
(see deployment diagrams)

domain analysis in, 285-304

JAD session in, 316-322

movement of information,
309-316

use cases in, 320-323

model layer, 231

modeling tool, UML, 435

«modelLibrary», 244

movement of information,
309-316

multiple inheritance

definition of, 69

multiplicity

definition of, 41

multiplicity (association), 293

definition of, 64

UML notation for, 64-65,
66

multitasking

embedded systems and,
134-135

multitasking

How can we make this index more useful? Email us at indexes@samspublishing.com

473

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 473

N

namespace, 226

n-ary associations, 293

nested messages

UML notation for,
161-162

network modeling

with deployment diagrams
(see deployment dia-
grams)

networks

WLANs in, 358-359

Nielsen, Jakob

Web site, 353

nodes

definition of, 213

and the deployment dia-
gram, 359, 360

notes

definition of, 20

UML notation for, 20

notes (class)

UML notation for, 54

nouns and verbs in a model,
255, 286-291, 303-304

O

object categorization

brain research, 43

object creation

UML notation for, 163

object diagrams, 11, 259, 448

example, 72-73

pictorial summary of, 122

versus class diagrams,
71-73

Object Management Group

Web site, 54

object nodes, 181-183

object-orientation, 31-45

abstraction, 34-35

advantages of, 31

aggregation, 41-42

composition, 42

applying the UML, 47-57

associations, 40-41

multiplicity, 41

encapsulation, 37-38

inheritance, 35-36

message sending, 38-39

and model accuracy, 33

The Object-Oriented Thought
Process, Second Edition,
45

polymorphism, 36-37

The Object-Oriented Thought
Process, Second Edition, 45

objects, 32-34

abstraction, 34-35

in activity diagrams,
180-181

aggregation, 41-42

composition, 42

anonymous, 12, 49

associations, 40-41

multiplicity, 41

attributes of, 32

creating in the sequence,
146-149

definition of, 12, 32

encapsulation, 37-38

features of, 32

inheritance, 35-36

interface, 38

message sending, 38-39

messages to, 136-137

asynchronous, 137

call, 136

return, 136-137

synchronous, 136

naming, 12, 49

operations of, 32

polymorphism, 36

in sequence diagrams,
136-137, 344

structure of, 32

UML notation for, 12

objects of an activity, 181-183

OCL (Object Constraint
Language), 54

operations (class)

function, 51

naming, 50

signature, 51

UML notation for, 50-51

operations (object), 32

operators

alt, 151-152

defined, 149

par, 151-152

optionality (class)

definition of, 65

Or constraint (aggregation)

UML notation for, 80

Or constraint (association)

UML notation for, 63

output event, 175

ownership, 226

P

package diagrams, 226-229,
256-257

definition of, 25

pictorial summary of, 123

UML notation for, 25

package names

UML notation for, 226

packages, 226-229

definition of, 25

grouping elements in, 226

merging, 228-229

474 namespace

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 474

organizing use cases, 110

relationships between,
226-228

dependency, 226-227

generalization,
226-227

refinement, 227-228

stereotypes for, 244

UML notation for, 47-48

parameterization relationship,
215-216

parameterized class, 114

parameterized collaboration

pictorial summary of,
123

parent class

definition of, 68

parent use case, 109

par operator, 151-152

pathname

definition of, 48

patterns, 244

Petri Nets, 193

pin

definition of, 184

players in GRAPPLE, 254

polymorphism

benefits to modelers, 37

definition of, 36

example, 70

ports

definition of, 86

UML notation for, 86

Primitive Types package,
235

private level (visibility)

definition of, 87

UML notation for, 87

Profiles package, 237

programmers

coding by, 360

testing the work of, 360

protected level (visibility)

definition of, 87

UML notation for, 87

provided interface, 199

public level (visibility)

definition of, 87

UML notation for, 87

Q - R

qualifiers

definition of, 66

UML notation for, 66-67

RAD3. See GRAPPLE
(Guidelines for Rapid
APPLication Engineering),
structure of

Rational Rose. See IBM Rose
XDE Modeler

realization, 199

definition of, 83

UML notation for, 84

versus inheritance, 85

real-time operating system. See
RTOS

«refine» dependency, 243

refinement relationship,
227-228

reflective, 236

reflexive association

definition of, 67

UML notation for, 67

reification, 142

relationships. See associations
(class)

requests

implicit receiver of, 117

required interface, 199

requirements gathering in
GRAPPLE, 255-257. See also
modeling; software develop-
ment

business process diagrams
in, 308

discovering business
processes, 268-282

domain analysis in,
285-304

JAD session in,
316-323

use cases in, 320-323

responsibilities

definition of, 52

UML notation for, 53

return messages, 136-137

roles (activity), 179-180

roles (class)

definition of, 62

UML notation for, 62

root class

definition of, 69

RTOS (real-time operating sys-
tem), 136

Rumbaugh, James. See Three
Amigos

run-time instances layer, 231

S

scope

classifier versus instance,
87

of a design pattern, 116

segments in GRAPPLE, 254

Select Business Solutions

Web site, 116

Select Component Architect,
116, 436

Select Component Architect

How can we make this index more useful? Email us at indexes@samspublishing.com

475

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 475

Select Component Factory,
116

Select Enterprise. See Select
Component Architect

sequence diagrams, 258, 451

activations in, 344

within activity diagrams

UML notation for, 189

in behavioral elements cat-
egory, 153

definition of, 14-16,
135-136

examples of, 138-144

framing a sequence in,
149-150

generic, 144-146

guard conditions

if statement, 145

if statement, 145

instance, 144

interaction fragment,
151-152

alt operator, 151-152

par operator, 151-152

interaction occurrences,
149-151

lifelines in, 344

messages in, 136-137

for modeling the scenarios
of a use case, 141-144

object creation, 147-148

object destruction, 148

objects in, 344

activation of, 136

lifeline, 136

messages to, 136-137

positioning of, 136

operators in, 149

overview of interactions in,
188-191

pictorial summary of, 124

preparing, 343-344,
345-346

relation to interaction
overview diagram, 188

reusing, 189

semantic equivalence with
communication diagram,
157

time in, 137-138

UML notation for, 16, 17

«send» dependency, 243

sequential substates

definition of, 128

UML notation for, 128

SGS Partners

Web site, 132

signature (operation)

definition of, 51

single inheritance

definition of, 69

“smart” devices

and embedded systems,
133-134

software components

modeling in the UML, 18-19

software development

challenges of, 251-253

compartmentalization of
effort in, 251

evolution of understanding
of, 251

feedback across stages of,
252

GRAPPLE methodology,
253-262

newer methodology, 251

team approach to, 252

time allotted to coding in,
251

waterfall method of,
250-251

software modeling

with component diagrams
(see components; compo-
nent diagrams)

stakeholders

definition of, 26

state

activities, 124-125

definition of, 13

naming conventions, 124

transition, 124-127

UML notation for, 13-14

state changes

UML notation for, 160-162

statechart. See state diagrams

state diagrams, 123-132, 258

definition of, 124

and GUI design, 357

history states, 129-130

importance to system
analysis, 131

pictorial summary of, 125

substates, 127-129

UML notation for, 13-14

state machine. See state dia-
grams

stereotypes, 237-239, 243-245.
See also keywords

advantages of, 21

definition of, 20-22

organizing, 21

UML notation for, 21

structural design patterns, 116

structure (object), 32

subclass, 35 (See also child
class)

substates, 127-129

concurrent, 128-129

definition of, 128

sequential, 128

superclass, 35 (See also parent
class)

supplier of dependency, 243

swimlane diagrams, 276-277,
280

476 Select Component Factory

34.067232640X.Index.qxd 2/20/04 10:30 AM Page 476

swimlanes, 177-180

definition of, 179

example of, 179-180

UML notation for, 179-180

synchronization of messages,
166-167

definition of, 166

UML notation for, 167

synchronous messages, 136

system analysis

building use case models,
110-111, 113-115

client business logic, 113

interviewing users,
111-112

listing use cases, 113

modeling change, 123

state diagrams, 131

understanding client
domain, 111

system boundary, 104

system deployment

mapping out, 358-361

system development

challenges of, 7-8

definition of, 7

involving users in, 92

need for the UML, 8-9

systems

definition of, 7

documentation for, 360

and expanding business
opportunities, 362-363

interactions in, 342-350

listing the working parts of,
339-342

other applications, 361-362

reusing, 361

training materials for, 360

systems modeling

with deployment diagrams
(see deployment dia-
grams)

T

tag, 245

tagged values, 245

task analysis, 351

tasks

in embedded systems,
134-135

templates, 244

ternary association, 293

test scripts, 260

time

represented in sequence
diagram, 137-138

timing diagram

definition of, 24-25

pictorial summary of,
125

UML notation for, 25

tips

for interviewing, 270, 271,
272, 274, 281-282

token

definition of, 193

training materials

creation of, 360

transitions, 124-127

actions, 125

guard conditions, 127

trigger events, 125-126

triggerless transitions,
125-126

triangle numbers, 121

trigger event, 125-126

definition of, 125

triggerless transition, 125-126

definition of, 125

«type», 244

U

UML, the

applied to design patterns,
116-123

business modeling with,
63-65

extending (see UML archi-
tecture)

foundational concepts of,
230-231, 240 (see also
UML architecture)

GUI modeling with, 65-67

importance of, 26-27

invention of, 9-10

as a means for communi-
cating ideas to develop-
ers, 1

modeling an embedded sys-
tem in, 139-140

modeling expert systems
with, 68-74

modeling Web applications
with, 74-76

need for, 8-9

structure of (see UML archi-
tecture)

Three Amigos, 9

WAE, 75

UML architecture

based on the Meta-Object
Facility, 233-234

customizing a metamodel,
237-239

defining a metamodel,
235-237

extending the UML,
243-245

four layers of, 230-231, 240

infrastructure of

Core package, 235-237

Infrastructure Library
package, 234-239,
247

UML architecture

How can we make this index more useful? Email us at indexes@samspublishing.com

477

34.067232640X.Index.qxd 2/20/04 10:31 AM Page 477

Profiles package,
237-239

reflective metametalan-
guage for, 236

as a metametamodel,
232-234

as a metamodel, 239-242

superstructure of, 241

AuxiliaryConstructs
package, 242

Classes package, 242

CommonBehaviors pack-
age, 242

CompositeStructures
package, 242

dependencies in, 225

summarized, 241

UseCases package, 242

UML components

interaction between, 14-18

UML diagrams

for GUI design, 357-358

pictorial summary of,
117-126

UML elements

creating new, 21

organizing, 21

UML infrastructure,
234

UML modeling tools

dictionary of, 95-96

features of, 95-96

Select Component
Architect, 116

Visio Professional Edition
(Microsoft), 96-115, 436

Visual UML, 116

UML notation

conventions of, 32

UML superstructure, 241

UML 2.0 versus 1.x

activity diagram symbols

flow final node, 186

hourglass, 186

collaboration/communica-
tion diagram, 18, 158

component diagram, 19

connection points, 130-131

context diagramming/com-
posite structure diagram,
81

dependencies

elided UML notation for,
86

finishing a flow, 186

including versus using a
use case, 97

interaction overview dia-
gram,
188-190

marking time, 186

new diagrams, 22-25

ports, 86

sequence diagramming in,
149-150

unbound parameters, 114

use case analysis, 92

as the basis for testing, 360

and components of the sys-
tem, 336

procedures for, 98

showing system boundary,
104

use case diagrams, 103-117,
258

pictorial summary of, 126

representing use case mod-
els, 103-106

showing relationships
among use cases,
106-110

and system analysis,
110-111

UML notation for, 13

use case diagrams, high-level

example of, 114

use case models

building, 110-111

example of, 113-115

definition of, 104

UML notation for, 103-104

use cases, 91-99, 258,
320-323, 325-338

actors, 92, 104

analysis

for case study, 326

scenarios and,
326-327

analyzing, 325-327

assumptions and, 328

base use case, 107

case study examples,
326-336

child use case, 109

definition of, 13, 91-92

documenting sequence of
steps, 105

in embedded systems,
140-141

examples of, 92-96

extension, 97-98, 107-108

extension points, 107

generalization, 109

grouping, 110, 356

and GUI development, 65

implementing, 354-357

importance of, 92

inclusion, 96-97, 106-107

inheritance, 109

initiation of, 93

modifying, 345-346

organization of, 110

parent use case, 109

postconditions, 93, 331

preconditions, 93, 329-330

relationships among,
106-110

478 UML architecture

34.067232640X.Index.qxd 2/20/04 10:31 AM Page 478

repeating assumptions, 329

sequence diagrams and,
343-344, 345-346

and the system, 327

UML notation for, 13, 104,
107-108

use case analysis, 92

using activity diagram to show
sequence of steps, 106

user interface design

Web site, 353

user interfaces

deriving from use cases,
354-357

users

interviewing, 111-112

modeling system for, 91

«utility», 244

V

verbs and nouns in a model,
255, 286-291,
303-304

visibility

definition of, 87

levels of, 87

UML notation for, 87

Visio Professional Edition
(Microsoft),
96-115, 436

creating a class diagram,
98-108

creating an object diagram,
108-111

creating a sequence dia-
gram,
111-115

Visual UML, 116, 456

Web site, 116

W - Z
waterfall method, 250-251

WAE (Web Application
Extension), 75-76

Web site, 76

Web applications, 74-76

Web sites

IBM Rose XDE Modeler,
116

Nielsen, Jakob, 353

Object Management Group,
54

Select Business Solutions,
116

SGS Partners, 132

user interface design, 353

Visual UML, 116

WAE, 76

WLANs (Wireless LANs),
358-359

work-products in GRAPPLE

management of, 262

work-products in GRAPPLE

How can we make this index more useful? Email us at indexes@samspublishing.com

479

34.067232640X.Index.qxd 2/20/04 10:31 AM Page 479

Windows Installation Instructions
1. Insert the disc into your CD-ROM drive.

2. From the Windows desktop, double-click the My Computer icon.

3. Double-click the icon representing your CD-ROM drive.

4. Double-click on start.html. Follow the instructions to access the CD-ROM
information.

By opening this package, you are also agreeing to be bound by the following
agreement:

You may not copy or redistribute the entire CD-ROM as a whole. Copying and
redistribution of individual software programs on the CD-ROM is governed by
terms set by individual copyright holders.

The installer and code from the author(s) are copyrighted by the publisher and
the author(s). Individual programs and other items on the CD-ROM are copy-
righted or are under an Open Source license by their various authors or other
copyright holders. You must agree to the license agreement(s) to install and/or
use the software.

This software is sold as-is without warranty of any kind, either expressed or
implied, including but not limited to the implied warranties of merchantability
and fitness for a particular purpose. Neither the publisher nor its dealers or
distributors assumes any liability for any alleged or actual damages arising from
the use of this program. (Some states do not allow for the exclusion of implied
warranties, so the exclusion may not apply to you.)

NOTE: This CD-ROM uses long and mixed-case filenames requiring the use of a
protected-mode CD-ROM Driver.

35.067232640x License Agree 2/20/04 10:14 AM Page 480

	Title Page
	Copyrights, Trademarks, and Credits
	Contents at a Glance
	Table of Contents
	Introduction
	PART I: Getting Started
	HOUR 1: Introducing the UML
	HOUR 2: Understanding Object-Orientation
	HOUR 3: Working with Object-Orientation
	HOUR 4: Working with Relationships
	HOUR 5: Understanding Aggregations, Composites, Interfaces, and Realizations
	HOUR 6: Introducing Use Cases
	HOUR 7: Working with Use Case Diagrams
	HOUR 8: Working with State Diagrams
	HOUR 9: Working with Sequence Diagrams
	HOUR 10: Working with Communication Diagrams
	HOUR 11: Working with Activity Diagrams
	HOUR 12: Working with Component Diagrams
	HOUR 13: Working with Deployment Diagrams
	HOUR 14: Understanding Packages and Foundations
	HOUR 15: Fitting the UML into a Development Process

	PART II: A Case Study
	HOUR 16: Introducing the Case Study
	HOUR 17: Performing a Domain Analysis
	HOUR 18: Gathering System Requirements
	HOUR 19: Developing the Use Cases
	HOUR 20: Getting into Interactions
	HOUR 21: Designing Look, Feel, and Deployment
	HOUR 22: Understanding Design Patterns

	PART III Looking Ahead
	HOUR 23: Modeling Embedded Systems
	HOUR 24: Shaping the Future of the UML

	PART IV: Appendixes
	APPENDIX A: Quiz Answers
	APPENDIX B: Working with a UML Modeling Tool
	APPENDIX C: A Summary in Pictures

	Index

