
492 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Measuring and Improving Cache
Performance

In this section, we begin by looking at how to measure and analyze cache perfor­
mance; we then explore two different techniques for improving cache perfor­
mance. One focuses on reducing the miss rate by reducing the probability that
two different memory blocks will contend for the same cache location. The sec­
ond technique reduces the miss penalty by adding an additional level to the hier­
archy. This technique, caUed multilevel caching, first appeared in high-end
computers selling for over $100,000 in 1990; since then it has become common on
desktop computers seUing for less than $1000!

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time= (CPU execution clock cycles+ Memory-staU clock cycles)
x Clock cycle time

The memory-staU clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the staUs generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very
detailed simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the staU cycles coming
from reads plus those coming from writes:

Memory-staU clock cycles = Read-stall cycles + W rite-staU cycles

The read-staU cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-staU cycles = p Reads x Read miss rate X Read miss penalty
rogram

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continu­
ing the write (see the Elaboration on page 484 for more details on dealing with
writes), and write buffer stalls, which occur when the write buffer is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

Babar
Highlight

Babar
Rectangle

7.3 Measuring and Improving Cache Performance 493

Writes ,,7 . . ,., · · 1) Write-stall cycles --- x v\ nte m1ss rate x v\ nte m1ss pena ty(Program

+Write buffer stalls

Because the write buffer stalls depend on the timing of writes, and not just the
frequency, it is not possible to give a simple equation to compute such stalls. For­
tunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly
exceeds the average write frequency in programs (e.g., by a factor of two), the
write buffer stalls will be small, and we can safely ignore them. If a system did not
meet these criteria, it would not be well designed; instead, the designer should have
used either a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 7.5.

In most write-through cache organizations, the read and write miss penalties
are the same (the time to fetch the block from memory). If we assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

Memory accesses x Miss rate x Miss penalty Memory-stall clock cycles
Program

We can also factor this as

Memory-stall clock cycles = Instructions x Misse~ x Miss penalty
Program InstructiOn

Let's consider a simple example to help us understand the impact of cache perfor­
mance on processor performance.

Calculating Cache Performance

Assume an instruction cache miss rate for a program is 2% and a data cache
miss rate is 4%. If a processor has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles for all misses, determine how much faster a pro­
cessor would run with a perfect cache that never missed. Use the instruction
frequencies for SPECint2000 from Chapter 3, Figure 3.26, on page 228.

EXAMPLE

Babar
Highlight

Babar
Rectangle

Babar
Cross-Out

Babar
Text Box
The frequency of load and store instructions is 36%

494 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

ANSWER

The number of memory miss cycles for instructions in terms of the Instruc­
tion count (I) is

Instruction miss cycles = I X 2% X 100 = 2.00 X I

The frequency of all loads and stores in SPECint2000 is 36%. Therefore, we can
find the number of memory miss cycles for data references:

Data miss cycles = I x 36% x 4% x 100 = 1.44 xI

The total number of memory-stall cycles is 2.00 I + 1.44 I =3.44 I. This is
more than 3 cycles ofmemory stall per instruction. Accordingly, the CPI with
memory stalls is 2 + 3.44 =5.44. Since there is no change in instruction count
or clock rate, the ratio of the CPU execution times is

CPU time with stalls _ I X CPistall X Clock cycle

CPU time with perfect cache I X CPiperfect X Clock cycle

_ CPistall _ 5.44

CPiperfect 2

44The performance with the perfect cache is better by 5· - 2.72.

2

What happens if the processor is made faster, but the memory system is not?
The amount of time spent on memory stalls will take up an increasing fraction of
the execution time; Amdahl's law, which we examined in Chapter 4, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 =4.44, and the
system with the perfect cache would be

4.44 4 44 . c-- = . t1mes taster
1

The amount ofexecution time spent on memory stalls would have risen from

3.44 = 63%

5.44

to

Babar
Rectangle

Babar
Rectangle

Babar
Cross-Out

Babar
Callout
When CPI is 2

Babar
Callout
Performance Difference Increases

7.3 Measuring and Improving Cache Performance 495

3.44 = 77%
4.44

Similarly, increasing clock rate without changing the memory system also
increases the performance lost due to cache misses, as the next example shows.

Cache Performance with Increased Clock Rate

Suppose we increase the performance of the computer in the previous exam­
ple by doubling its clock rate. Since the main memory speed is unlikely to
change, assume that the absolute time to handle a cache miss does not
change. How much faster will the computer be with the faster clock, assum­
ing the same miss rate as the previous example?

Measured in the faster clock cycles, the new miss penalty will be twice as
many clock cycles, or 200 clock cycles. Hence:

Total miss cycles per inst ruction = (2% X 200) + 36% X (4% x 200) = 6.88

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88 =
8.88, compared to a CPI with cache misses of 5.44 for the slower computer.

Using the formula for CPU time from the previous example, we can compute
the relative performance as

Performance with fast clock Execution time with slow clock
Performance with slow clock Execution time with fast clock

_ IC X CPislowdock X Clock cycle

IC X CPI X Clock cycle
fast dock 2

5.44 - 1.23
8.88 X!

2

Thus, the computer with the faster clock is about 1.2 times faster rather than
2 times faster, which it would have been if we ignored cache misses.

EXAMPLE

ANSWER

Babar
Highlight

Babar
Callout
In Case when CPI is reduced to 1

Babar
Rectangle

Babar
Callout
In Previous case It was I X 2% X 100

Babar
Callout
In Previous case It was I X 36% X 4% X 100

Babar
Underline

496 	 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

As these examples illustrate, relative cache penalties increase as a processor
becomes faster. Furthermore, if a processor improves both clock rate and CPI, it
suffers a double hit:

1. 	 The lower the CPI, the more pronounced the impact of stall cycles.

2. 	 The main memory system is unlikely to improve as fast as processor cycle
time, primarily because the performance of the underlying DRAM is not
getting much faster. \'\Then calculating CPI, the cache miss penalty is mea­
sured in processor clock cycles needed for a miss. Therefore, if the main
memories of two processors have the same absolute access times, a higher
processor clock rate leads to a larger miss penalty.

Thus, the importance of cache performance for processors with low CPI and
high clock rates is greater, and consequently the danger of neglecting cache
behavior in assessing the performance of such processors is greater. As we will
see in Section 7.6, the use of fast, pipelined processors in desktop PCs and
workstations has led to the use of sophisticated cache systems even in comput­
ers selling for less than a $1000.

The previous examples and equations assume that the hit time is not a fac­
tor in determining cache performance. Clearly, if the hit time increases, the
total time to access a word from the memory system will increase, possibly
causing an increase in the processor cycle time. Although we will see addi­
tional examples of what can increase hit time shortly, one example is increas­
ing the cache size. A larger cache could clearly have a longer access time, just
as if your desk in the library was very large (say, 3 square meters), it would
take longer to locate a book on the desk. With pipelines deeper than five
stages, an increase in hit time likely adds another stage to the pipeline, since it
may take multiple cycles for a cache hit. Although it is more complex to calcu­
late the performance impact of a deeper pipeline, at some point the increase in
hit time for a larger cache could dominate the improvement in hit rate, lead­
ing to a decrease in processor performance.

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in Fal­
lacies <md Pitfalls (Section 7.7).

Reducing Cache Misses by More Rexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it

Babar
Highlight

Babar
Highlight

Babar
Highlight

Babar
Highlight

7.3 Measuring and Improving Cache Performance 497

is called direct mapped because there is a direct mapping from any block address in
memory to a single location in the upper level of the hierarchy. There is actually a
whole range of schemes for placing blocks. At one extreme is direct mapped,
where a block can be placed in exactly one location.

At the other extreme is a scheme where a block can be placed in any location in
the cache. Such a scheme is called fully associative because a block in memory
may be associated with any entry in the cache. To find a given block in a fully asso­
ciative cache, all the entries in the cache must be searched because a block can be
placed in any one. To make the search practical, it is done in parallel with a com­
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively making fully associative placement practical only for
caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative is
called set associative. In a set-associative cache, there are a fixed number of
locations (at least two) where each block can be placed; a set-associative cache
with n locations for a block is called an n-way set-associative cache. An n-way
set-associative cache consists of a number of sets, each of which consists of n

blocks. Each block in the memory maps to a unique set in the cache given by the
index field, and a block can be placed in any element of that set. Thus, a set­
associative placement combines direct-mapped placement and fully associative
placement: a block is directly mapped into a set, and then all the blocks in the
set are searched for a match.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of cache blocks)

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags ofall the ele­
ments of the set must be searched. In a fully associative cache, the block can go
anywhere and all tags of all the blocks in the cache must be searched. For example,
Figure 7.13 shows where block 12 may be placed in a cache with eight blocks total,
according to the block placement policy for direct-mapped, two-way set-associa­
tive, and fully associative caches.

We can think of every block placement strategy as a variation on set asso­
ciativity. Figure 7.14 shows the possible associativity structures for an eight-block
cache. A direct-mapped cache is simply a one-way set-associative cache: each

fully associative cache A
cache structure in which a block
can be placed in any location in
the cache.

set-associative cache A cache
that has a fixed number ofloca­
tions (at least two) where each
block can be placed.

Babar
Highlight

Babar
Highlight

Babar
Callout
Search in 1 location

Babar
Line

Babar
Line

Babar
Line

Babar
Line

Babar
Callout
Search in 2 locations

Babar
Callout
Search in 8 locations

Babar
Callout
The Block Addresses of Memory

500 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

ANSWER

The direct-mapped case is easiest. First, let's determine to which cache block
each block address maps:

Block address Cache block

0 (0 modulo 4) =0

6 (6 modulo 4) =2

8 (8 modulo 4) =0

Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored tell.'t to show a new entry added to
the cache for the associate reference, and a plain text to show an old entry in
the cache:

Contents of cache blocks after referenceAddress of memory Hit

block accessed or miss

0 miss Memory[OJ

8 miss Memory[8)

0 miss Memory[OJ

6 miss Memory[OJ Memory[6)

8 miss Memory[8) Memory[6)

The direct-mapped cache generates five misses for the five accesses.

The set-associative cache has two sets (with indices 0 and 1) with two ele­
ments per set. Let's first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) =0

6 (6 modulo 2) =0

8 (8 modulo 2) =0

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past is
replaced. (We will discuss replacement rules in more detail shortly.) Using
this replacement rule, the contents of the set-associative cache after each ref­
erence looks like this:

Babar
Highlight

Babar
Highlight

7.3 Measuring and Improving Cache Performance 501

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[OJ

8 miss Memory[OJ Memory[8)

0 hit Memory[OJ Memory[8)

6 miss Memory[OJ Memory[6)

8 miss Memory[8) Memory[6)

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any memo­
ry block can be stored in any cache block. The fully associative cache has the
best performance, with only three misses:

Contents of cache blocks after referenceAddress of memory Hit
block accessed or miss Block 0 Block 1 Block 2 Block 3

0

8

0

6

8

miss

miss

hit

miss

hit

Memory[O)

Memory[O)

Memory[O)

Memory[8)

Memory[8)

Memory[8)

Memory[8)

Memory[6)

Memory[6)

Memory[O)

For this series of references, three misses is the best we can do because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all three caches would
have the same number of misses. This change in miss rate shows us that cache
size and associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? Figure 7.15
shows the improvement for the SPEC2000 benchmarks for a 64 KB data cache with
a 16-word block, and associativity ranging from direct mapped to eight-way. Going
from one-way to two-way associativity decreases the miss rate by about 15%, but
there is little further improvement in going to higher associativity.

Babar
Highlight

502 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 7.15 The data cache miss rates for an organization like the lntrinsity FastMATH
processor for SPEC2000 benchmarks with associativity varying from one·way to eight·
way. These results for 10 SPEC2000 programs are from Hem1essy and Patterson [2003].

Locating a Block in the Cache

Now, let's consider the task of finding a block in a cache that is set associative. Just
as in a direct-mapped cache, each block in a set-associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it matches the block address from the proces­
sor. Figure 7.16 shows how the address is decomposed. The index value is used to
select the set containing the address of interest, and the tags ofall the blocks in the
set must be searched. Because speed is of the essence, all the tags in the selected set
are searched in parallel. As in a fully associative cache, a sequential search would
make the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity increases
the number of blocks per set, which is the number of simultaneous compares
needed to perform the search in parallel: each increase by a factor of two in
associativity doubles the number of blocks per set and halves the number of
sets. Accordingly, each factor-of-two increase in associativity decreases the size
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa­
tive cache, there is effectively only one set, and all the blocks must be checked in
parallel. Thus, there is no index, and the entire address, excluding the block off­
set, is compared against the tag of every block. In other words, we search the
entire cache without any indexing.

In a direct-mapped cache, such as in Figure 7.7 on page 478, only a single com­
parator is needed, because the entry can be in only one block, and we access the
cache simply by indexing. Figure 7.17 shows that in a four-way set-associative
cache, four comparators are needed, together with a 4-to-1 multiplexor to choose

Tag Index Block Offset

FIGURE 7.16 The three portions of an address in a set-associative or direct-mapped
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

Babar
Highlight

Babar
Highlight

Babar
Highlight

504 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

EXAMPLE

ANSWER

least recently used (LRU) A
replacement scheme in which
the block replaced is the one
that has been unused for the
longest time.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators, and more tag bits per cache
block. Asswning a cache of 4K blocks, a four-word block size, and a 32-bit ad­
dress, find the total number ofsets and the total number of tag bits for caches that
are direct mapped, two-way and four-way set associative, and fully associative.

Since there are 16 (=24
) bytes per block, a 32-bit address yields 32 - 4 = 28

bits to be used for index and tag. The direct-mapped cache has the same
number of sets as blocks, and hence 12 bits of index, since log2(4K) = 12;
hence, the total number of tag bits is (28 - 12) x 4K = 16 X 4K = 64 Kbits.

Each degree of associativity decreases the number of sets by a factor of two and
thus decreases the number of bits used to index the cache by one and increases the
number of bits in the tag by one. Thus, for a two-way set-associative cache, there
are 2K sets, and the total number oftag bits is (28 - 11) X 2x 2K= 34X 2K= 68 Kbits.
For a four-way set-associative cache, the total number of sets is 1K, and the total
number oftag bits is (28 - 10) x4x 1K = 72X 1K= 72 Kbits.

For a fuUy associative cache, there is only one set with 4K blocks, and the tag
is 28 bits, leading to a total of 28 x 4K X 1 = 112K tag bits.

Choosing Which Block to Replace

\Nhen a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, aU blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme. The block replaced is the one that has
been unused for the longest time. LRU replacement is implemented by keeping
track of when each element in a set was used relative to the other elements in the
set. For a two-way set-associative cache, tracking when the two elements were
used can be implemented by keeping a single bit in each set and setting the bit to
indicate an element whenever that element is referenced. As associativity
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative
scheme for replacement.

Babar
Underline

Babar
Highlight

Babar
Callout
Each location/set has 2 blocks and hence 2 tags

