492

Chapter 7 Large and Fasl: Exploiting Memory Hierarchy

Measuring and Improving Cache
Performance

In this section, we begin by looking at how to measure and analyze cache perfor-
mance; we then explore two different techniques for improving cache perfor-
mance. One focuses on reducing the miss rate by reducing the probability that
two different memory blocks will contend for the same cache location. The sec-
ond technique reduces the miss penalty by adding an additional level to the hier-
archy. This technique, called multilevel caching, first appeared in high-end
computers selling for over $100,000 in 1990; since then it has become common on
desktop computers selling for less than $1000!

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
x Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very
detailed simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

Memory-stall clock cycles = Read-stall cycles + Write-stall cycles

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles = Red X Read miss rate X Read miss penalty

Program

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continu-
ing the write (see the Elaboration on page 484 for more details on dealing with
writes), and write buffer stalls, which occur when the write butter is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

Babar
Highlight

Babar
Rectangle

7.3 Measuring and Improving Cache Performance

493

Writes
Program

Write-stall cycles = (X Write miss rate X Write miss penalt}fj

+ Write buffer stalls

Because the write bufter stalls depend on the timing of writes, and not just the
frequency, it is not possible to give a simple equation to compute such stalls. For-
tunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly
exceeds the average write frequency in programs (e.g., by a factor of two), the
write bufter stalls will be small, and we can safely ignore them. If a system did not
meet these criteria, it would not be well designed; instead, the designer should have
used either a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 7.5.

In most write-through cache organizations, the read and write miss penalties
are the same (the time to fetch the block from memory). If we assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

Memory accesses
Program

Memory-stall clock cycles = X Miss rate X Miss penalty

We can also factor this as

Instructions » Misses
Program Instruction

Memory-stall clock cycles = X Miss penalty

Let’s consider a simple example to help us understand the impact of cache pertor-
mance on processor performance.

Calculating Cache Performance

Assume an instruction cache miss rate for a program is 2% and a data cache
miss rate is 4%. If a processor has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles for all misses, determine how much faster a pro-

cessor wnuld run w1th a perfec:t cache that never missed —Hse—the—fﬂ&lefﬂet-raﬂ

The frequency of load and store instructions is 36%

Babar
Highlight

Babar
Rectangle

Babar
Cross-Out

Babar
Text Box
The frequency of load and store instructions is 36%

494 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

The number of memory miss cycles for instructions in terms of the Instruc-
tion count (1) is

Instruction miss cycles = 1 X 2% x 100 = 2.00 X I

The frequency of all loads and stores in SPECint2000 is 36%. Therefore, we can
find the number of memory miss cycles for data references:

Data miss cycles = [X 36% X 4% X 100 = 1.44 x|

The total number of memory-stall cycles is 2.00 [+ 1.44 I = 3.44 1. This is
more than 3 cycles of memory stall per instruction. Accordingly, the CPI with

memory stalls is 2 + 3.44 = 5.44, Since there is no change in instruction count
or clock rate, the ratio of the CPU execution times is

CPU time with stalls _ I xCPI,; x Clock cycle

CPU time with perfect cache ~ 1x CPL . fece X Clock cycle
_ CPIstaH — .44
CPIperfﬂct 2

The performance with the perfect cache is better by DT = 272,

What happens if the processor is made faster, but the memory system is not?
The amount of time spent on memory stalls will take up an increasing traction of
the execution time; : —ovrbi A ' - i
thisfaet A few simple examples show how serious this problem can be. Suppose
we speed up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the

system with the perfect cache would be Performance
Difference
Increases

4.44 = 4.44 times faster

The amount of execution time spent on memory stalls would have risen from

[When CPl is 2 |—\ 3 .44 = 63%

5.44

to

Babar
Rectangle

Babar
Rectangle

Babar
Cross-Out

Babar
Callout
When CPI is 2

Babar
Callout
Performance Difference Increases

7.3 Measuring and Improving Cache Performance 495

In Case when CPl is

reduced to 1 T 3.44 770
4.44

Similarly, increasing clock rate without changing the memory system also
increases the performance lost due to cache misses, as the next example shows.

Cache Performance with Increased Clock Rate

Suppose we increase the performance of the computer in the previous exam- m
ple by doubling its clock rate. Since the main memory speed is unlikely to

change, assume that the absolute time to handle a cache miss does not
change. How much faster will the computer be with the faster clock, assum-
ing the same miss rate as the previous example?

In Previous case It was
| X 36% X 4% X 100

In Previous case It
was | X 2% X 100

Measured in the faster clock cycles, the new miss penalty will be twice as m
many clock cycles, or 200 clock cycles\Hence:

~ %
Total miss cycles per instruction = (2% X 200) + 36% X (4% X 200) = 6.88

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88

Using the formula for CPU time from the previous example, we can compute
the relative performance as

Performance with fast clock _ Execution time with slow clock
Performance with slow clock Execution time with fast clock

IC X CPL... doak X Clock cycle

IC X CPl, o X Cl“d; eycle
- .
SESX%

Thus, the computer with the faster clock is about 1.2 times faster rather than
2 times faster, which it would have been if we ignored cache misses.

Babar
Highlight

Babar
Callout
In Case when CPI is reduced to 1

Babar
Rectangle

Babar
Callout
In Previous case It was I X 2% X 100

Babar
Callout
In Previous case It was I X 36% X 4% X 100

Babar
Underline

496 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

As these examples illustrate, relative cache penalties increase as a processor

becomes faster. Furthermore, if a processor improves both clock rate and CPI, it
suffers a double hit:

. The lower the CPI, the more pronounced the impact of stall cycles.

2. The main memory system is unlikely to improve as fast as processor cycle
time, primarily because the performance of the underlying DRAM is not
getting much faster. When calculating CPI, the cache miss penalty is mea-
sured in processor clock cycles needed for a miss. Therefore, if the main
memories of two processors have the same absolute access times, a higher
processor clock rate leads to a larger miss penalty.

Thus, the importance of cache performance for processors with low CPI and
high clock rates is greater, and consequently the danger of neglecting cache
behavior in assessing the performance of such processors is greater. As we will
see in Section 7.6, the use of fast, pipelined processors in desktop PCs and
workstations has led to the use of sophisticated cache systems even in comput-
ers selling for less than a $1000.

The previous examples and equations assume that the hit time is not a fac-
tor in determining cache performance. Clearly, if the hit time increases, the
total time to access a word from the memory system will increase, possibly
causing an increase in the processor cycle time. Although we will see addi-
tional examples of what can increase hit time shortly, one example is increas-
ing the cache size. A larger cache could clearly have a longer access time, just
as if your desk in the library was very large (say, 3 square meters), it would
take longer to locate a book on the desk. With pipelines deeper than five
stages, an increase in hit time likely adds another stage to the pipeline, since it
may take multiple cycles for a cache hit. Although it is more complex to calcu-
late the performance impact of a deeper pipeline, at some point the increase in
hit time for a larger cache could dominate the improvement in hit rate, lead-
ing to a decrease in processor performance.

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in Fal-
lacies and Pitfalls (Section 7.7).

Reducing Cache Misses by More Flexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it

Babar
Highlight

Babar
Highlight

Babar
Highlight

Babar
Highlight

7.3 Measuring and Improving Cache Performance

497

is called direct mapped because there is a direct mapping from any block address in
memory to a single location in the upper level of the hierarchy. There is actually a
whole range of schemes for placing blocks. At one extreme is direct mapped,
where a block can be placed in exactly one location.

At the other extreme is a scheme where a block can be placed in any location in
the cache. Such a scheme is called fully associative because a block in memory
may be associated with any entry in the cache. To find a given block in a fully asso-
ciative cache, all the entries in the cache must be searched because a block can be
placed in any one. To make the search practical, it is done in parallel with a com-
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively making fully associative placement practical only for
caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative is
called set associative. In a set-associative cache, there are a fixed number of
locations (at least two) where each block can be placed; a set-associative cache
with n locations for a block is called an n-way set-associative cache. An n-way
set-associative cache consists of a number of sets, each of which consists of n
blocks. Each block in the memory maps to a unique set in the cache given by the
index field, and a block can be placed in any element of that set. Thus, a set-
associative placement combines direct-mapped placement and fully associative
placement: a block is directly mapped into a set, and then all the blocks in the
set are searched for a match.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of cache blocks)
In a set-associative cache, the set containing a memory block is given by
(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the ele-
ments of the set must be searched. In a fully associative cache, the block can go
anywhere and all tags of all the blocks in the cache must be searched. For example,
Figure 7.13 shows where block 12 may be placed in a cache with eight blocks total,
according to the block placement policy for direct-mapped, two-way set-associa-
tive, and fully associative caches.

We can think of every block placement strategy as a variation on set asso-
ciativity. Figure 7.14 shows the possible associativity structures for an eight-block
cache. A direct-mapped cache is simply a one-way set-associative cache: each

fully associative cache A
cache structure in which a block
can be placed in any location in

the cache.

set-associative cache A cache
that has a fixed number of loca-
tions (at least two) where each
block can be placed.

Babar
Highlight

Babar
Highlight

498 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Direct mapped Set associative Fully associative
Block# 0123456 7 Set # 0 1 2 3
Data Data Data
|, —{Searchin 1
1 llocation 1 1
Ta /] Ta Ta
£ Z/ 2 P s 2
Search T Search T T Search T T T T T T T T&Search in8
N~—|Searchin 2 locations
locations

FIGURE 7.13 The location of a memory block whose address is 12 in a cache with 8 blocks varies for direct-mapped, set-
associative, and fully associative placement. In direct-mapped placement, there is only one cache block where memory block 12 can be
found, and that block is given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block 12 must be in set
(12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative placement, the memory block for block address 12 can
appear in any of the eight cache blocks.

cache entry holds one block and each set has one element. A fully associative
cache with m entries is simply an m-way set-associative cache; it has one set with
m blocks, and an entry can reside in any block within that set.

The advantage of increasing the degree of associativity is that it usually
decreases the miss rate, as the next example shows. The main disadvantage, which
we discuss in more detail shortly, is an increase in the hit time.

Babar
Callout
Search in 1 location

Babar
Line

Babar
Line

Babar
Line

Babar
Line

Babar
Callout
Search in 2 locations

Babar
Callout
Search in 8 locations

7.3 Measuring and Improving Cache Performance 499

One-way set associative
(direct mapped)

Block Tag Data

0 Two-way set associative
1

P Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0
.1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

FIGURE 7.14 An eight-block cache configured as direct mapped, two-way sel associa-
tive, four-way set associative, and fully associative. The total size of the cache in blocks is equal
to the number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity
decreases the number of sets, while increasing the number of elements per set. With eight blocks, an eight-

way set-associative cache is the same as a fully associative cache.

Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set associative, and the
third is direct mapped. Find the number of misses for each cache organiza-
tion given the following sequence of block addresses: 0, 8, 0, 6, 8.

The Block
Addresses of
Memory

Babar
Callout
The Block Addresses of Memory

500

Chapter 7 Large and Fasl: Exploiting Memory Hierarchy

The direct-mapped case is easiest. First, let’s determine to which cache block
each block address maps:

Block address |Cache block

0 (0 modulo 4) =0
6 (6 modulo 4) = 2
8 (8 modulo 4) =0

Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored text to show a new entry added to
the cache for the associate reference, and a plain text to show an old entry in
the cache:

Address of memory Hit
block accessed or miss
0

Contents of cache blocks after reference

miss Memory[0]
8 miss Memory[8]
0 miss Memory[O]
6 miss Memaory[0] Memory[6]
8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.

The set-associative cache has two sets (with indices 0 and 1) with two ele-
ments per set. Let's first determine to which set each block address maps:

0] (0 modulo 2) =0
G (6 modulo 2) =0
8 (8 modulo 2) =0

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past is
replaced. (We will discuss replacement rules in more detail shortly.) Using
this replacement rule, the contents of the set-associative cache after each ref-
erence looks like this:

Babar
Highlight

Babar
Highlight

7.3 Measuring and Improving Cache Performance

501

Contents of cache blocks after reference

:
block accessed _| ormiss | Set0 | Seto | seti | seti
0 miss Memory[0]
8 miss Memory[0] Memory[&]
0 hit Memory[O] Memory[8]
G miss Memory[O] Memory[6]
8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any memo-

ry block can be stored in any cache block. The fully associative cache has the
best performance, with only three misses:

Address of memory Hit Contentis of cache blocks after reference
block accessed or miss Block 0 m m Block 3

0 miss Memory[O]

8 miss Memory[O] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[O] Memory[8] Memory[6]
8 hit Memory[O] Memory[8] Memory[6]

For this series of references, three misses is the best we can do because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
tully associative cache. Similarly, if we had 16 blocks, all three caches would
have the same number of misses. This change in miss rate shows us that cache
size and associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? Figure 7.15

shows the improvement for the SPEC2000 benchmarks for a 64 KB data cache with

a 16-word block, and associativity ranging from direct mapped to eight-way. Going
from one-way to two-way associativity decreases the miss rate by about 15%, but

there is little further improvement in going to higher associativity.

Babar
Highlight

502

Chapter 7 Large and Fasl: Exploiting Memory Hierarchy

Associativity Data miss rate

1 10.3%
2 8.6%
4 8.3%
8 8.1%

FIGURE 7.15 The data cache miss rates for an organization like the Intrinsity FastMATH
processor for SPEC2000 benchmarks with associativity varying from one-way to eight-
way. These results for 10 SPEC2000 programs are from Hennessy and Patterson [2003].

Locating a Block in the Cache

Now, let’s consider the task of finding a block in a cache that is set associative. Just
as in a direct-mapped cache, each block in a set-associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it matches the block address from the proces-
sor. Figure 7.16 shows how the address is decomposed. The index value is used to
select the set containing the address of interest, and the tags of all the blocks in the
set must be searched. Because speed is of the essence, all the tags in the selected set
are searched in parallel. As in a fully associative cache, a sequential search would
make the hit time of a set-associative cache too slow.

It the total cache size is kept the same, increasing the associativity increases
the number of blocks per set, which is the number of simultaneous compares
needed to perform the search in parallel: each increase by a factor of two in
associativity doubles the number of blocks per set and halves the number of
sets. Accordingly, each factor-of-two increase in associativity decreases the size
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa-
tive cache, there is effectively only one set, and all the blocks must be checked in
parallel. Thus, there is no index, and the entire address, excluding the block oftf-
set, is compared against the tag of every block. In other words, we search the
entire cache without any indexing.

[n a direct-mapped cache, such as in Figure 7.7 on page 478, only a single com-
parator is needed, because the entry can be in only one block, and we access the
cache simply by indexing. Figure 7.17 shows that in a four-way set-associative
cache, four comparators are needed, together with a 4-to-1 multiplexor to choose

Tag Index Block Offset

FIGURE 7.16 The three portions of an address in a set-associative or direct-mapped
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

Babar
Highlight

Babar
Highlight

Babar
Highlight

7.3 Measuring and Improving Cache Performance 503

Address
3130+++1211 10983210

422 J8
Tag
Index
Index V Tag Data V Tag Data V' Tag Data V Tag Data
0
1
2
— (| ¥ o 9 [o 9 v o @ I
253
254
255
422 32
P REr |
- = -

It 1]

:;t-tnd multiplexﬂD
P

l

Hit Data

FIGURE 7.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1 multiplexor.
The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators is used to select the data from
one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the
data portions of the cache RAMs can be used to select the entry in the set that drives the output. The Output enable signal comes from the compara-
tors, causing the element that matches to drive the data outputs. This organization eliminates the need for the multiplexor.

among the four potential members of the selected set. The cache access consists of
indexing the appropriate set and then searching the tags of the set. The costs of an
associative cache are the extra comparators and any delay imposed by having to
do the compare and select from among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware.

504

Chapter 7 Large and Fasl: Exploiting Memory Hierarchy

least recently used (LRU) A
replacement scheme in which
the block replaced is the one
that has been unused for the
longest time.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators, and more tag bits per cache
block. Assuming a cache of 4K blocks, a four-word block size, and a 32-bit ad-
dress, find the total number of sets and the total number of tag bits for caches that
are direct mapped, two-way and four-way set associative, and fully associative.

Since there are 16 (=2*) bytes per block, a 32-bit address yields 32 — 4 = 28
bits to be used for index and tag. The direct-mapped cache has the same
number of sets as blocks, and hence 12 bits of index, since log,(4K) = 12;

hence, the total number of tag bits is (28 — 12) X 4K = 16 X 4K = 64 Kbits.

Each degree of associativity decreases the number of sets by a factor of two and
thus decreases the number of bits used to index the cache by one and increases the
number of bits in the tag by one. Thus, for a two-way set-associative cache, there

are 2K sets, and the total number of tag bits is (28 —11) X 2x 2K= 34 X 2K = 68 Kbits.
For a four-way set-associative cache, the total number of sefsis1K, and the total
number of tag bits is (28 — 10) x4 x 1K = 72 X 1K = 72 Kbits. Each location/set

has 2 blocks and
hence 2 tags

For a fully associative cache, there is only one set with 4K blocks, and the tag

is 28 bits, leading to a total of 28 X 4K x 1 = 112K tag bits.

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a tully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme. The block replaced is the one that has
been unused for the longest time. LRU replacement is implemented by keeping
track of when each element in a set was used relative to the other elements in the
set. For a two-way set-associative cache, tracking when the two elements were
used can be implemented by keeping a single bit in each set and setting the bit to
indicate an element whenever that element is referenced. As associativity
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative
scheme for replacement.

Babar
Underline

Babar
Highlight

Babar
Callout
Each location/set has 2 blocks and hence 2 tags

7.3 Measuring and Improving Cache Performance

505

Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. In most cases, these caches are imple-
mented on the same die as the microprocessor that forms the processor. To fur-
ther close the gap between the fast clock rates of modern processors and the
relatively long time required to access DRAMs, many microprocessors support an
additional level of caching. This second-level cache, which can be on the same
chip or off-chip in a separate set of SRAMs, is accessed whenever a miss occurs in
the primary cache. If the second-level cache contains the desired data, the miss
penalty for the first-level cache will be the access time of the second-level cache,
which will be much less than the access time of main memory. If neither the pri-
mary nor secondary cache contains the data, a main memory access is required,
and a larger miss penalty is incurred.

How significant is the performance improvement from the use of a secondary
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 5 GHz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the proces-
sor be if we add a secondary cache that has a 5 ns access time for either a hit
or a miss and is large enough to reduce the miss rate to main memory to
0.5%¢

The miss penalty to main memory is

100 ns

ns
e clock cycle

= 500 clock cycles

506

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

The eftective CPI with one level of caching is given by
Total CPI = Base CPI + Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI = 1.0 + Memory-stall cycles per instruction = 1.0 + 2% x 500 = 11.0

With two levels of cache, a miss in the primary (or first-level) cache can be
satisfied either by the secondary cache or by main memory. The miss penalty
for an access to the second-level cache is

5 ns

ige———
clock cycle

= 25 clock cycles

It the miss is satisfied in the secondary cache, then this is the entire miss penal-
ty. If the miss needs to go to main memory, then the total miss penalty is the
sum of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI:

Total CPI = 1 + Primary stalls per instruction

+ Secondary stalls per instruction
=1+2%x25+05%x500=1+05+25=4.0

Thus, the processor with the secondary cache is faster by

1.0 _
4.0

2.8

Alternatively, we could have computed the stall cycles by summing the stall cycles

of those references that hit in the secondary cache ((2% — 0.5%) x 25 = 0.4) and
those references that go to main memory, which must include the cost to access
the secondary cache as well as the main memory access time (0.5% x (25 + 500) =
2.6). The sum, 1.0 + 0.4 + 2.6, is again 4.0.

7.3 Measuring and Improving Cache Performance

507

The design considerations for a primary and secondary cache are significantly
different because the presence of the other cache changes the best choice versus a
single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle, while allow-
ing the secondary cache to focus on miss rate to reduce the penalty of long mem-
Ory access times.

The interaction of the two caches permits such a focus. The miss penalty of the
primary cache is significantly reduced by the presence of the secondary cache,
allowing the primary to be smaller and have a higher miss rate. For the secondary
cache, access time becomes less important with the presence of the primary cache,
since the access time of the secondary cache affects the miss penalty of the pri-
mary cache, rather than directly affecting the primary cache hit time or the pro-
cessor cycle time.

The eftect of these changes on the two caches can be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore,
the primary cache often uses a smaller block size, to go with the smaller cache size
and reduced miss penalty. In comparison, the secondary cache will often be larger
than in a single-level cache, since the access time of the secondary cache is less
critical. With a larger total size, the secondary cache often will use a larger block
size than appropriate with a single-level cache

multilevel cache A memory
hierarchy with multiple levels of
caches, rather than just a cache
and main memory.

In Chapter 2, we saw that Quicksort had an algorithmic advantage over Bubble
Sort that could not be overcome by language or compiler optimization. Figure
7.18(a) shows instructions executed by item searched for Radix Sort versus Quick-
sort. Indeed, for large arrays, Radix Sort has an algorithmic advantage over quick-
sort in terms of number of operations. Figure 7.18(b) shows time per key instead
of instructions executed. We see that the lines start on the same trajectory as Fig-
ure 7.18(a), but then the Radix Sort line diverges as the data to sort increases.
What is going on? Figure 7.18(c) answers by looking at the cache misses per item
sorted: Quicksort consistently has many fewer misses per item to be sorted.

Alas, standard algorithmic analysis ignores the impact of the memory hierar-
chy. As faster clock rates and Moore’s law allow architects to squeeze all of the per-
formance out of a stream of instructions, using the memory hierarchy well is
critical to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today’s computers.

Understanding
Program
Performance

