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Measuring and Improving Cache 
Performance 

In this section, we begin by looking at how to measure and analyze cache perfor­
mance; we then explore two different techniques for improving cache perfor­
mance. One focuses on reducing the miss rate by reducing the probability that 
two different memory blocks will contend for the same cache location. The sec­
ond technique reduces the miss penalty by adding an additional level to the hier­
archy. This technique, caUed multilevel caching, first appeared in high-end 
computers selling for over $100,000 in 1990; since then it has become common on 
desktop computers seUing for less than $1000! 

CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Thus, 

CPU time= (CPU execution clock cycles+ Memory-staU clock cycles) 
x Clock cycle time 

The memory-staU clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplified model of the 
memory system. In real processors, the staUs generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very 
detailed simulations of the processor and memory system. 

Memory-stall clock cycles can be defined as the sum of the staU cycles coming 
from reads plus those coming from writes: 

Memory-staU clock cycles = Read-stall cycles + W rite-staU cycles 

The read-staU cycles can be defined in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate: 

Read-staU cycles = p Reads x Read miss rate X Read miss penalty 
rogram 

Writes are more complicated. For a write-through scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continu­
ing the write (see the Elaboration on page 484 for more details on dealing with 
writes), and write buffer stalls, which occur when the write buffer is full when a 
write occurs. Thus, the cycles stalled for writes equals the sum of these two: 
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+Write buffer stalls 

Because the write buffer stalls depend on the timing of writes, and not just the 
frequency, it is not possible to give a simple equation to compute such stalls. For­
tunately, in systems with a reasonable write buffer depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that significantly 
exceeds the average write frequency in programs (e.g., by a factor of two), the 
write buffer stalls will be small, and we can safely ignore them. If a system did not 
meet these criteria, it would not be well designed; instead, the designer should have 
used either a deeper write buffer or a write-back organization. 

Write-back schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 7.5. 

In most write-through cache organizations, the read and write miss penalties 
are the same (the time to fetch the block from memory). If we assume that the 
write buffer stalls are negligible, we can combine the reads and writes by using a 
single miss rate and the miss penalty: 

Memory accesses x Miss rate x Miss penalty Memory-stall clock cycles 
Program 

We can also factor this as 

Memory-stall clock cycles = Instructions x Misse~ x Miss penalty 
Program InstructiOn 

Let's consider a simple example to help us understand the impact of cache perfor­
mance on processor performance. 

Calculating Cache Performance 

Assume an instruction cache miss rate for a program is 2% and a data cache 
miss rate is 4%. If a processor has a CPI of 2 without any memory stalls and 
the miss penalty is 100 cycles for all misses, determine how much faster a pro­
cessor would run with a perfect cache that never missed. Use the instruction 
frequencies for SPECint2000 from Chapter 3, Figure 3.26, on page 228. 

EXAMPLE 
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ANSWER 

The number of memory miss cycles for instructions in terms of the Instruc­
tion count (I) is 

Instruction miss cycles = I X 2% X 100 = 2.00 X I 

The frequency of all loads and stores in SPECint2000 is 36%. Therefore, we can 
find the number of memory miss cycles for data references: 

Data miss cycles = I x 36% x 4% x 100 = 1.44 xI 

The total number of memory-stall cycles is 2.00 I + 1.44 I =3.44 I. This is 
more than 3 cycles ofmemory stall per instruction. Accordingly, the CPI with 
memory stalls is 2 + 3.44 =5.44. Since there is no change in instruction count 
or clock rate, the ratio of the CPU execution times is 

CPU time with stalls _ I X CPistall X Clock cycle 

CPU time with perfect cache I X CPiperfect X Clock cycle 

_ CPistall _ 5.44 

CPiperfect 2 

44The performance with the perfect cache is better by 5· - 2.72. 

2 


What happens if the processor is made faster, but the memory system is not? 
The amount of time spent on memory stalls will take up an increasing fraction of 
the execution time; Amdahl's law, which we examined in Chapter 4, reminds us of 
this fact. A few simple examples show how serious this problem can be. Suppose 
we speed up the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
The system with cache misses would then have a CPI of 1 + 3.44 =4.44, and the 
system with the perfect cache would be 

4.44 4 44 . c-- = . t1mes taster 
1 

The amount ofexecution time spent on memory stalls would have risen from 

3.44 = 63% 

5.44 

to 
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3.44 = 77% 
4.44 

Similarly, increasing clock rate without changing the memory system also 
increases the performance lost due to cache misses, as the next example shows. 

Cache Performance with Increased Clock Rate 

Suppose we increase the performance of the computer in the previous exam­
ple by doubling its clock rate. Since the main memory speed is unlikely to 
change, assume that the absolute time to handle a cache miss does not 
change. How much faster will the computer be with the faster clock, assum­
ing the same miss rate as the previous example? 

Measured in the faster clock cycles, the new miss penalty will be twice as 
many clock cycles, or 200 clock cycles. Hence: 

Total miss cycles per inst ruction = (2% X 200) + 36% X ( 4% x 200) = 6.88 

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88 = 
8.88, compared to a CPI with cache misses of 5.44 for the slower computer. 

Using the formula for CPU time from the previous example, we can compute 
the relative performance as 

Performance with fast clock Execution time with slow clock 
Performance with slow clock Execution time with fast clock 

_ IC X CPislowdock X Clock cycle 

IC X CPI X Clock cycle 
fast dock 2 


5.44 - 1.23 
8.88 X! 

2 

Thus, the computer with the faster clock is about 1.2 times faster rather than 
2 times faster, which it would have been if we ignored cache misses. 

EXAMPLE 
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As these examples illustrate, relative cache penalties increase as a processor 
becomes faster. Furthermore, if a processor improves both clock rate and CPI, it 
suffers a double hit: 

1. 	 The lower the CPI, the more pronounced the impact of stall cycles. 

2. 	 The main memory system is unlikely to improve as fast as processor cycle 
time, primarily because the performance of the underlying DRAM is not 
getting much faster. \'\Then calculating CPI, the cache miss penalty is mea­
sured in processor clock cycles needed for a miss. Therefore, if the main 
memories of two processors have the same absolute access times, a higher 
processor clock rate leads to a larger miss penalty. 

Thus, the importance of cache performance for processors with low CPI and 
high clock rates is greater, and consequently the danger of neglecting cache 
behavior in assessing the performance of such processors is greater. As we will 
see in Section 7.6, the use of fast, pipelined processors in desktop PCs and 
workstations has led to the use of sophisticated cache systems even in comput­
ers selling for less than a $1000. 

The previous examples and equations assume that the hit time is not a fac­
tor in determining cache performance. Clearly, if the hit time increases, the 
total time to access a word from the memory system will increase, possibly 
causing an increase in the processor cycle time. Although we will see addi­
tional examples of what can increase hit time shortly, one example is increas­
ing the cache size. A larger cache could clearly have a longer access time, just 
as if your desk in the library was very large (say, 3 square meters), it would 
take longer to locate a book on the desk. With pipelines deeper than five 
stages, an increase in hit time likely adds another stage to the pipeline, since it 
may take multiple cycles for a cache hit. Although it is more complex to calcu­
late the performance impact of a deeper pipeline, at some point the increase in 
hit time for a larger cache could dominate the improvement in hit rate, lead­
ing to a decrease in processor performance. 

The next subsection discusses alternative cache organizations that decrease 
miss rate but may sometimes increase hit time; additional examples appear in Fal­
lacies <md Pitfalls (Section 7.7). 

Reducing Cache Misses by More Rexible Placement 
of Blocks 

So far, when we place a block in the cache, we have used a simple placement 
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it 
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is called direct mapped because there is a direct mapping from any block address in 
memory to a single location in the upper level of the hierarchy. There is actually a 
whole range of schemes for placing blocks. At one extreme is direct mapped, 
where a block can be placed in exactly one location. 

At the other extreme is a scheme where a block can be placed in any location in 
the cache. Such a scheme is called fully associative because a block in memory 
may be associated with any entry in the cache. To find a given block in a fully asso­
ciative cache, all the entries in the cache must be searched because a block can be 
placed in any one. To make the search practical, it is done in parallel with a com­
parator associated with each cache entry. These comparators significantly increase 
the hardware cost, effectively making fully associative placement practical only for 
caches with small numbers of blocks. 

The middle range of designs between direct mapped and fully associative is 
called set associative. In a set-associative cache, there are a fixed number of 
locations (at least two) where each block can be placed; a set-associative cache 
with n locations for a block is called an n-way set-associative cache. An n-way 
set-associative cache consists of a number of sets, each of which consists of n 

blocks. Each block in the memory maps to a unique set in the cache given by the 
index field, and a block can be placed in any element of that set. Thus, a set­
associative placement combines direct-mapped placement and fully associative 
placement: a block is directly mapped into a set, and then all the blocks in the 
set are searched for a match. 

Remember that in a direct-mapped cache, the position of a memory block is 
given by 

(Block number) modulo (Number of cache blocks) 

In a set-associative cache, the set containing a memory block is given by 

(Block number) modulo (Number of sets in the cache) 

Since the block may be placed in any element of the set, all the tags ofall the ele­
ments of the set must be searched. In a fully associative cache, the block can go 
anywhere and all tags of all the blocks in the cache must be searched. For example, 
Figure 7.13 shows where block 12 may be placed in a cache with eight blocks total, 
according to the block placement policy for direct-mapped, two-way set-associa­
tive, and fully associative caches. 

We can think of every block placement strategy as a variation on set asso­
ciativity. Figure 7.14 shows the possible associativity structures for an eight-block 
cache. A direct-mapped cache is simply a one-way set-associative cache: each 

fully associative cache A 
cache structure in which a block 
can be placed in any location in 
the cache. 

set-associative cache A cache 
that has a fixed number ofloca­
tions (at least two) where each 
block can be placed. 
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ANSWER 

The direct-mapped case is easiest. First, let's determine to which cache block 
each block address maps: 

Block address Cache block 

0 (0 modulo 4) =0 

6 (6 modulo 4) =2 

8 (8 modulo 4) =0 

Now we can fill in the cache contents after each reference, using a blank entry 
to mean that the block is invalid, colored tell.'t to show a new entry added to 
the cache for the associate reference, and a plain text to show an old entry in 
the cache: 

Contents of cache blocks after referenceAddress of memory Hit 

block accessed or miss 


0 miss Memory[ OJ 

8 miss Memory[8) 

0 miss Memory[ OJ 

6 miss Memory[ OJ Memory[6) 

8 miss Memory[8) Memory[6) 

The direct-mapped cache generates five misses for the five accesses. 

The set-associative cache has two sets (with indices 0 and 1) with two ele­
ments per set. Let's first determine to which set each block address maps: 

Block address Cache set 

0 (0 modulo 2) =0 

6 (6 modulo 2) =0 

8 (8 modulo 2) =0 

Because we have a choice of which entry in a set to replace on a miss, we need 
a replacement rule. Set-associative caches usually replace the least recently 
used block within a set; that is, the block that was used furthest in the past is 
replaced. (We will discuss replacement rules in more detail shortly.) Using 
this replacement rule, the contents of the set-associative cache after each ref­
erence looks like this: 
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Address of memory 
block accessed 

Hit 
or miss 

Contents of cache blocks after reference 

Set 0 Set 0 Set 1 Set 1 

0 miss Memory[ OJ 

8 miss Memory[ OJ Memory[8) 

0 hit Memory[ OJ Memory[8) 

6 miss Memory[ OJ Memory[6) 

8 miss Memory[8) Memory[6) 

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. The two-way set-associative cache 
has four misses, one less than the direct-mapped cache. 

The fully associative cache has four cache blocks (in a single set); any memo­
ry block can be stored in any cache block. The fully associative cache has the 
best performance, with only three misses: 

Contents of cache blocks after referenceAddress of memory Hit 
block accessed or miss Block 0 Block 1 Block 2 Block 3 

0 

8 

0 

6 

8 

miss 

miss 

hit 

miss 

hit 

Memory[O) 

Memory[O) 

Memory[O) 

Memory[8) 

Memory[8) 

Memory[8) 

Memory[8) 

Memory[6) 

Memory[6) 

Memory[O) 

For this series of references, three misses is the best we can do because three 
unique block addresses are accessed. Notice that if we had eight blocks in the 
cache, there would be no replacements in the two-way set-associative cache 
(check this for yourself), and it would have the same number of misses as the 
fully associative cache. Similarly, if we had 16 blocks, all three caches would 
have the same number of misses. This change in miss rate shows us that cache 
size and associativity are not independent in determining cache performance. 

How much of a reduction in the miss rate is achieved by associativity? Figure 7.15 
shows the improvement for the SPEC2000 benchmarks for a 64 KB data cache with 
a 16-word block, and associativity ranging from direct mapped to eight-way. Going 
from one-way to two-way associativity decreases the miss rate by about 15%, but 
there is little further improvement in going to higher associativity. 
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Associativity Data miss rate 

1 10.3% 

2 8.6% 

4 8.3% 

8 8.1% 

FIGURE 7.15 The data cache miss rates for an organization like the lntrinsity FastMATH 
processor for SPEC2000 benchmarks with associativity varying from one·way to eight· 
way. These results for 10 SPEC2000 programs are from Hem1essy and Patterson [2003]. 

Locating a Block in the Cache 

Now, let's consider the task of finding a block in a cache that is set associative. Just 
as in a direct-mapped cache, each block in a set-associative cache includes an 
address tag that gives the block address. The tag of every cache block within the 
appropriate set is checked to see if it matches the block address from the proces­
sor. Figure 7.16 shows how the address is decomposed. The index value is used to 
select the set containing the address of interest, and the tags ofall the blocks in the 
set must be searched. Because speed is of the essence, all the tags in the selected set 
are searched in parallel. As in a fully associative cache, a sequential search would 
make the hit time of a set-associative cache too slow. 

If the total cache size is kept the same, increasing the associativity increases 
the number of blocks per set, which is the number of simultaneous compares 
needed to perform the search in parallel: each increase by a factor of two in 
associativity doubles the number of blocks per set and halves the number of 
sets. Accordingly, each factor-of-two increase in associativity decreases the size 
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa­
tive cache, there is effectively only one set, and all the blocks must be checked in 
parallel. Thus, there is no index, and the entire address, excluding the block off­
set, is compared against the tag of every block. In other words, we search the 
entire cache without any indexing. 

In a direct-mapped cache, such as in Figure 7.7 on page 478, only a single com­
parator is needed, because the entry can be in only one block, and we access the 
cache simply by indexing. Figure 7.17 shows that in a four-way set-associative 
cache, four comparators are needed, together with a 4-to-1 multiplexor to choose 

Tag Index Block Offset 


FIGURE 7.16 The three portions of an address in a set-associative or direct-mapped 
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. The block offset is the address of the desired data within the block. 
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EXAMPLE 


ANSWER 


least recently used (LRU) A 
replacement scheme in which 
the block replaced is the one 
that has been unused for the 
longest time. 

Size of Tags versus Set Associativity 

Increasing associativity requires more comparators, and more tag bits per cache 
block. Asswning a cache of 4K blocks, a four-word block size, and a 32-bit ad­
dress, find the total number ofsets and the total number of tag bits for caches that 
are direct mapped, two-way and four-way set associative, and fully associative. 

Since there are 16 (=24
) bytes per block, a 32-bit address yields 32 - 4 = 28 

bits to be used for index and tag. The direct-mapped cache has the same 
number of sets as blocks, and hence 12 bits of index, since log2(4K) = 12; 
hence, the total number of tag bits is (28 - 12) x 4K = 16 X 4K = 64 Kbits. 

Each degree of associativity decreases the number of sets by a factor of two and 
thus decreases the number of bits used to index the cache by one and increases the 
number of bits in the tag by one. Thus, for a two-way set-associative cache, there 
are 2K sets, and the total number oftag bits is (28 - 11) X 2x 2K= 34X 2K= 68 Kbits. 
For a four-way set-associative cache, the total number of sets is 1K, and the total 
number oftag bits is (28 - 10) x4x 1K = 72X 1K= 72 Kbits. 

For a fuUy associative cache, there is only one set with 4K blocks, and the tag 
is 28 bits, leading to a total of 28 x 4K X 1 = 112K tag bits. 

Choosing Which Block to Replace 

\Nhen a miss occurs in a direct-mapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, aU blocks are 
candidates for replacement. In a set-associative cache, we must choose among the 
blocks in the selected set. 

The most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme. The block replaced is the one that has 
been unused for the longest time. LRU replacement is implemented by keeping 
track of when each element in a set was used relative to the other elements in the 
set. For a two-way set-associative cache, tracking when the two elements were 
used can be implemented by keeping a single bit in each set and setting the bit to 
indicate an element whenever that element is referenced. As associativity 
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative 
scheme for replacement. 
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