
Computer Architecture
)213-CS(

Outline

• Addressing Modes
 Indirect addressing mode
 Relative addressing mode
 Indexed addressing mode
 Summary of Addressing modes
• CISC vs RISC architecture
• Data Transfer instructions
• Data Manipulation Instructions
 Floating Point Computations

Direct Addressing Mode
• In direct addressing mode the address field directly specify the address of

the memory where operand is stored.

Direct Addressing Mode
• Following example illustrates a branch type instruction

Indirect Addressing Mode
• In the indirect addressing mode, the address field of the instruction gives

the address at which the effective address is stored in memory.
• The control unit fetches the instruction from memory and uses the

address part to access memory again in order to read the effective
address. Then accesses the operand placed at effective address.

500

600

600 15

ACC=15

198

15

ACC=15

Relative Addressing Mode
• In relative addressing mode, address is calculated as follows
• Effective address = Address part of the instruction + Contents of PC
• Relative addressing is often used in branch-type instructions when the

branch address is in a location close to the instruction word.
• Relative addressing produces, more compact instructions, since the

relative address can be specified with fewer bits than are required to
designate the entire memory address.

198+302=500

Indexed Addressing Mode
• In the indexed addressing mode, the contents of an index register are

added to the address part of the instruction to obtain the effective
address.

• It is often used to access consecutive locations of an array by using the
same instruction and incrementing the index register after each
instruction.

• A specialized variation of the index mode is the base-register mode. In this
mode, the contents of a base register are added to the address part of the
instruction to obtain the effective address.

Summary of Addressing Mode

RISC VS CISC architectures
• RISC, or Reduced Instruction Set Computer, is a type of microprocessor

architecture that utilizes a small, highly-optimized set of instructions,
rather than a more specialized set of instructions often found in other
types of architectures.

• A RISC architecture has the following properties:
1. Memory accesses are restricted to load and store instructions, and data

manipulation instructions are register-to-register.
2. Addressing modes are limited in number.
3. Instruction formats are all of the same length.
4. Instructions perform elementary operations.
5. RISC design philosophy generally incorporates a larger number of

registers to prevent in large amounts of interactions with memory

RISC VS CISC architectures
• CISC is an acronym for Complex Instruction Set Computer and are chips

that are easy to program and which make efficient use of memory.
• A CISC architecture has the following properties:
1. Memory access is directly available to most type of instructions.
2. Addressing modes are substantial in number.
3. Instruction formats are of different lengths.
4. Instructions perform both elementary and complex operations.

• The goal of the CISC architecture is to match more closely the operations

used in programming languages and to provide instructions that facilitate
compact programs and conserve memory.

Data Transfer Instructions
• Data transfer instructions move data from one place in the computer to

another without changing the data.
• Typical transfers are between memory and processor registers, between

processor registers and input and output registers, and among the
processor registers themselves.

• Following is a list of data manipulation instructions

Stack Instructions
• The stack instructions push and pop transfer data between a memory

stack and a processor register or memory. The push operation places an
item onto the top of the stack (TOS).

• The pop operation removes one item from the TOS.
• Stack is basically part of the memory, and to provide the logic of pushing

and popping a register is used which is called Stack Pointer (SP).
• Below is an example illustrating the operation
• For a push operation:

• For a pop operation:

Independent vs Memory-Mapped I/O

• Input and output instructions transfer data between processor registers
and input and output devices.

• These instructions are similar to load and store instructions except that
the transfers are to and from external registers (I/O) instead of memory
words.

• A port is typically a register with input and/or output lines connected to
the device. And each port requires an address to be accessed by the
computer.

• In the independent I/O the address ranges memory and I/O ports are
independent from each other.

• In memory-mapped I/O the portion of memory address range is used to
address the I/Os. So same type of instructions (e.g. load, store) can be
used to access the both memory and I/Os.

Data Manipulation Instructions
• Data manipulation instructions perform operations on data and provide

the computational capabilities of the Computer.
• There are three types of data manipulation instructions
1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

Arithmetic Instructions
• Four basic arithmetic instructions are addition, multiplication, subtraction

and division.
• The subtract reverse instruction performs B-A instead of A-B.
• The negate instruction calculates the 2’s complement of the number.

Logical and Bit-Manipulation
Instructions

Logical and Bit-Manipulation
Instructions

• Clear means making all the bit of a register ‘0’.
• Set means making all the bit of a register ‘1’.
• AND is sometimes referred to as bit clear instruction or mask
• OR is sometimes referred to as bit set instruction
• XOR is referred to as bit complement instruction

Shift Instructions
• The table shows exemplary instructions of shifting. Below is a format of

shift instruction which has following fields.
• OP is opcode field
• REG determines which register is to be shifted
• TYPE tells the type of shifting from the list given below
• RL tells whether to shift right or left.
• COUNT tells the number of places to be shifted

Difference between Logical and
Arithmetic Shift

Difference between Logical and
Arithmetic Shift

• A logical shift is the shifting that we have been studying so far
• An arithmetic shift left is identical to a logical shift left, but an arithmetic

shift right causes the most significant bit, the sign bit, to be propagated
right. This action preserves the correct sign of a two's complement value.

• There is a chance of overflow in case of shift left. In case the sign is
changed, the ALU indicates the V overflow flag. Following is an example
illustrating shifting mechanism

Floating Point Computations
• Floating point notation is used to represent long range numbers often

found in scientific calculations.
• The floating-point number has two parts:
• Fraction (or mantissa) contains the sign and a fraction.
• Exponent designates position of the radix point in the number.

• Decimal numbers are interpreted as representing the number in the form

• Only fraction and exponent are represented in the computer registers. 10
and decimal point are not stored explicitly.

• For example the number +1001.11 is represented with 8-bit fraction and
6-bit exponent as

Floating Point Computations
• A floating point number is said to be normalized if the most significant

digit of the fraction is non zero. E.g., .350 is normalized but .0035 is not.
• Floating point representation increases the range of the numbers that can

be accommodated in a given register.

Arithmetic Operations
• Adding and subtracting the two numbers requires that radix point must be

aligned since exponent part must be equal.
• Alignment is done by shifting the one numbers radix point.
• Consider sum of following numbers

• We can either shift the first number three positions to the left or shift the

second number three positions to the right.
• Shifting left is preferable cause shifting right causes loss of most significant

digits.
• We shift the smaller exponent to the right by the number of places equal

to the difference of exponent.

•

Arithmetic Operations
• In division we just divide the fraction and subtract the exponent.
• In multiplication we just multiply the fraction and add the exponent.

Biased Exponent
• Bias is number that is added to the exponent to make it positive.
• The biased number therefore all are positive and hence we do not need to

have a sign bit for them.
• The bias is greater in magnitude than the magnitude of the exponent in

order to avoid negative numbers.
• It is represented as

e = E+ number
• E is actual exponent and e is biased exponent.
• It makes it easier to compare the exponent.

Standard Representation
• IEEE has defined two types of formats
• Single precision floating point number
• Double precision floating point number
• Single precision is 32-bit (float) while double precision is 64-bit(double).

IEEE standard format
• In IEEE format number is distributed in three fields. Sign, exponent and

fraction field.

• Fraction part has 1 implicitly defined. While the number is represented in
normalized form.

•

IEEE standard format
 Note: This Example is taken from Wikipedia

IEEE standard format
• Exponents with all 0's or all 1’s, (decimal 255) are reserved for the

following special conditions.
1) When e = 255 and f = 0, the number represents plus or minus infinity,

The sign is determined from the sign bit ‘s’.
2) When e = 255 and f ≠ 0, the representation is considered to be not a

number or NaN, regardless of the sign value. NaNs are used to signify
invalid operations such as the multiplication of zero by infinity.

3) When e = 0 and f = 0, the number denotes plus or minus zero.
4) When e = 0 and f ≠ 0, the number is said to be denormalized. This is the

name given to the numbers with a magnitude less than the minimum
value that is represented in the normalized format.

