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PREFACE

Wireless communications, together with its applications and underlying technologies, is

among today’s most active areas of technology development. The very rapid pace of im-

provements in both custom and programmable integrated circuits for signal processing ap-

plications has led to the justfiable view of advanced signal processing as a key enabler of the

aggressively escalating capacity demands of emerging wireless systems. Consequently, there

has been a tremendous and very widespread effort on the part of the research community

to develop novel signal processing techniques that can fulfill this promise. The published

literature in this area has grown explosively in recent years, and it has become quite diffi-

cult to synthesize the many developments described in this literature. The purpose of this

monograph is to present, in one place and in a unified framework, a number of key recent

contributions in this field. Even though these contributions come primarily from the research

community, the focus of this presentation is on the development, analysis, and understanding

of explicit algorithms for performing advanced processing tasks arising in receiver design for

emerging wireless systems.

Although this book is largely self-contained, it is written principally for designers, re-

searchers, and graduate students with some prior exposure to wireless communication sys-

tems. Knowledge of the field at the level of Theodore Rappaport’s book, Wireless Commu-

nications: Principles & Practice [397], for example, would be quite useful to the reader of

this book, as would some exposure to digital communications at the level of John Proakis’

book, Digital Communications [388].
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Chapter 1

Introduction

1.1 Motivation

Wireless communications is one of the most active areas of technology development of our

time. This development is being driven primarily by the transformation of what has been

largely a medium for supporting voice telephony, into a medium for supporting other services

such as the transmission of video, images, text and data. Thus, similarly to what happened

to wireline capacity in the 1990’s, the demand for new wireless capacity is growing at a

very rapid pace. Although there are of course still a great many technical problems to be

solved in wireline communications, demands for additional wireline capacity can be fulfilled

largely with the addition of new private infrastructure, such as additional optical fiber,

routers, switches, and so forth. On the other hand, the traditional resources that have

been used to add capacity to wireless systems are radio bandwidth and transmitter power.

Unfortunately, these two resources are among the most severely limited in the deployment

of modern wireless networks - radio bandwidth because of the very tight situation with

regard to useful radio spectrum, and transmitter power because of the provision of mobile

or otherwise portable services requires the use of battery power, which is limited. These

two resources are simply not growing or improving at rates than can support anticipated

demands for wireless capacity. On the other hand, one resource that is growing at a very

rapid rate is that of processing power. Moore’s Law, which asserts a doubling of processor

capabilities every eighteen months, has been quite accurate over the past twenty years, and

13
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its accuracy promises to continue for years to come. Given these circumstances, there has

been considerable research effort in recent years aimed at developing new wireless capacity

through the deployment of greater intelligence in wireless networks. (See, for example, in

[142, 143, 268, 374, 383] for reviews of some of this work.) A key aspect of this movement has

been the development of novel signal transmission techniques and advanced receiver signal

processing methods that allow for significant increases in wireless capacity without attendant

increases in bandwidth or power requirements. The purpose of this monograph is to present

some of the most recent of these receiver signal processing methods in a single place and in

a unified framework.

Wireless communications today covers a very wide array of applications. The telecom-

munications industry is one of the largest industries worldwide, with more than a trillion

US dollars in annual revenues for services and equipment. (To put this in perspective, this

number is comparable to the gross domestic product of many of the world’s richest coun-

tries, including France, Italy and the United Kingdom.) The largest, and most noticeable,

part of the telecommunications business is telephony. The principal wireless component of

telephony is mobile (i.e., cellular) telephony. The worldwide growth rate in cellular tele-

phony is very aggressive, and most analysts predict that the number of cellular telephony

subscriptions worldwide will surpass the number of wireline (i.e., fixed) telephony subscrip-

tions by the time this book is in print. Moreover, the number of cellular subscriptions is

similarly expected to surpass one billion in the very near future. (At the time of this writing

in 2002, the number of fixed telephony subscriptions worldwide is reportedly on the order

of 900 million.) These numbers make cellular telephony a very important driver of wireless

technology development, and in recent years the push to develop new mobile data services,

which go collectively under the name third-generation (3G) cellular, has played a key role

in motivating research in new signal processing techniques for wireless. However, cellular

telephony is only one of a very wide array of wireless technologies that are being developed

very rapidly at the present time. Among other technologies are wireless pico-networking (as

exemplified by the Bluetooth radio-on-a-chip) and other personal area network (PAN) sys-

tems (e.g., the IEEE 802.15 family of standards), wireless local area network (LAN) systems

(exemplified by the IEEE 802.11 and HiperLAN families of standards - so-called Wi-Fi sys-

tems), wireless metropolitan area network (MAN) systems (exemplified by the IEEE 802.16
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family of standards), wireless local loop (WLL) systems, and a variety of satellite systems.

These additional wireless technologies provide a basis for a very rich array of applications,

including local telephony service, broadband Internet access, and distribution of high-rate

entertainment content such as high-definition video and high-quality audio to the home,

within the home, to automobiles, etc. (See, e.g., [9, 40, 41, 129, 156, 158, 161, 163, 339, 356,

358, 361, 385, 386, 387, 420, 428, 440, 448, 499, 550, 551] for further discussion of these and

related applications.) Like 3G, these technologies have also spurred considerable research in

signal processing for wireless.

These technologies are supported by a number of transmission and channel-assignment

techniques, including time-division multiple-access (TDMA), code-division multiple access

(CDMA) and other spread-spectrum systems, orthogonal frequency-division multiplexing

(OFDM) and other multi-carrier systems, and high-rate single-carrier systems. These tech-

niques are chosen primarily to address the physical properties of wireless channels, among

the most prominent of which are multipath fading, dispersion, and interference. In addition

to these temporal transmission techniques, there are also spatial techniques, notably beam-

forming and space-time coding, that can be applied at the transmitter to exploit the spatial

and angular diversity of wireless channels. To obtain maximal benefit from these transmis-

sion techniques, to exploit the diversity opportunities of the wireless channel, and to mitigate

the impairments of the wireless channel, advanced receiver signal processing techniques are

of interest. These include channel equalization to combat dispersion, RAKE combining to

exploit resolvable multipath, multiuser detection to mitigate multiple-access interference,

suppression methods for co-channel interference, beamforming to exploit spatial diversity,

and space-time processing to jointly exploit temporal and spatial properties of the signaling

environment. These techniques are all described in the ensuing chapters.

1.2 The Wireless Signaling Environment

1.2.1 Single-user Modulation Techniques

In order to discuss advanced receiver signal processing methods for wireless, it is useful to

first specify a general model for the signal received by a wireless receiver. To do so, we can

first think of a single transmitter, transmitting a sequence or frame {b[0], b[1], . . . , b[M−1]} of
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channel symbols over a wireless channel. These symbols can be binary (e.g., ±1), or they may

take on more general values from a finite alphabet of complex numbers. In this treatment,

we will consider only linear modulation systems, in which the symbols are transmitted into

the channel by being modulated linearly onto a signaling waveform to produce a transmitted

signal of this form:

x(t) =
M−1∑
i=0

b[i] si(t) , (1.1)

where si(·) is the modulation waveform associated with the ith symbol. In this expression,

the waveforms can be quite general. For example, a single-carrier modulation system with

carrier frequency ωc, baseband pulse shape p(·), and symbol rate 1/T is obtained by choosing

si(t) = A p(t− iT ) e(ωct+φ) , (1.2)

where A > 0 and φ ∈ (−π, π] denote carrier amplitude and phase offset, respectively. The

baseband pulse shape may, for example, be a simple unit-energy rectangular pulse of duration

T, i.e.,

p(t) = pT (t)
�
=

{
1√
T
, 0 ≤ t < T

0 , otherwise
(1.3)

or it could be a raised-cosine pulse, a bandlimited pulse, etc. Similarly, a direct-sequence

spread-spectrum system is produced by choosing the waveforms as in (1.2) but with the

baseband pulse shape chosen to be a spreading waveform:

p(t) =
N−1∑
�=0

a�ψ(t− � Tc) , (1.4)

where N is the spreading gain, a0, a1, . . . , aN−1, is a pseudo-random spreading code (typically

a� ∈ {±1}), ψ(·) is the chip waveform, and Tc
�
= T/N is the chip interval. The chip waveform

may, for example, be a unit-energy rectangular pulse of duration Tc :

ψ(t) = pTc(t) . (1.5)

Other choices of the chip waveform can also be made to lower the chip bandwidth. The

spreading waveform of (1.4) is periodic when used in (1.2), since the same spreading code is

repeated in every symbol interval. Some systems (e.g., CDMA systems for cellular telephony)

operate with so-called long spreading codes, for which the periodicity is much longer than a
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single symbol interval. This situation can be modelled by (1.1) by replacing p(t) in (1.2) by

a variant of (1.4) in which the spreading code varies from symbol to symbol; i.e.,

pi(t) =
N−1∑
�=0

a
(i)
� ψ(t− � Tc) . (1.6)

Spread spectrum modulation can also take the form of frequency hopping, in which the carrier

frequency in (1.2) is changed over time according to a pseudorandom pattern. Typically,

the carrier frequency changes at a rate much slower than the symbol rate, a situation known

as slow frequency hopping; however, fast hopping, in which the carrier changes within a

symbol interval, is also possible. Single-carrier systems, including both types of spread-

spectrum, are widely used in cellular standards, in wireless LANs, Bluetooth, etc. (See, e.g.,

[41, 128, 147, 160, 174, 244, 333, 356, 358, 384, 386, 399, 400, 440, 514, 581].)

Multicarrier systems can also be modelled in the framework of (1.1) by choosing the

signaling waveforms {si(·)} to be sinusoidal signals with different frequencies. In particular,

(1.2) can be replaced by

si(t) = A p(t) e(ωit+φi) , (1.7)

where now, the frequency and phase depend on the symbol number i, but all symbols are

transmitted simultaneously in time with baseband pulse shape p(·). We can see that (1.2) is

the counterpart of this situation with time and frequency reversed: all symbols are transmit-

ted at the same frequency, but at different times. (Of course, in practice multiple symbols

are sent in time sequence over each of the multiple carriers in multi-carrier systems.) The

individual carriers can also be direct-spread, and the baseband pulse shape used can depend

on the symbol number i. (For example, the latter situation is used in so-called multicarrier

CDMA, in which a spreading code is used across the carrier frequencies.) A particular case of

(1.7) is OFDM, in which the baseband pulse shape is a unit pulse pT , the intercarrier spacing

is 1/T cycles per second, and the phases are chosen so that the carriers are orthogonal at

this spacing. (This is the minimal spacing for which such orthogonality can be maintained.)

OFDM is widely believed to be among the most effective techniques for wireless broadband

applications, and is the basis for the IEEE 802.11a high-speed wireless LAN standard. (See,

e.g., [349] for a discussion of multi-carrier systems.)

An emerging type of wireless modulation scheme is ultra-wideband (UWB) modulation,

in which data is transmitted with no carrier through the modulation of extremely short
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pulses. Either the timing or amplitude of these pulses can be used to carry the information

symbols. Typical UWB systems involve the transmission of many repetitions of the same

symbol, possibly with the use of a direct-sequence type spreading code from transmission to

transmission. (See, e.g., [561] for a basic description of UWB systems.)

Further details on the above modulation waveforms and their properties will be intro-

duced as needed throughout this treatment.

1.2.2 Multiple-access Techniques

The above section discussed ways in which a symbol stream associated with a single user

can be transmitted. Many wireless channels, particulary in emerging systems, operate as

multiple-access systems, in which multiple users share the same radio resources.

There are several ways in which radio resources can be shared among multiple users.

These can be viewed as ways of allocating regions in frequency, space and time to different

users, as shown in Fig. 1.1. For example, a classic multiple-access technique is frequency-

division multiple-access (FDMA), in which the frequency band available for a given service

is divided into sub-bands that are allocated to individual users who wish to use the service.

Users are given exclusive use of their sub-band during their communication session, but they

are not allowed to transmit signals within other sub-bands. FDMA is the principal multi-

plexing method used in radio and television broadcast, and in the first-generation (analog

voice) cellular telephony systems, such as Advanced Mobile Phone Systems (AMPS), Nordic

Mobile Telephone (NMT), etc., developed in the 1980’s (cf. [449]). FDMA is also used

in some form in all other current cellular systems, in tandem with other multiple-access

techniques that are used to further allocate the sub-bands to multiple users.

Similarly, users can share the channel on the basis of time-division multiple-access

(TDMA) in which time is divided into equal-length intervals, which are further divided

into equal-length sub-intervals, or time slots. Each user is allowed to transmit throughout

the entire allocated frequency band during a given slot in each interval, but is not allowed

to transmit during other time slots when other users are transmitting. So, whereas FDMA

allows each user to use part of the spectrum all of the time, TDMA allows each user to

use all of the spectrum part of the time. This method of channel sharing is widely used in

wireless applications, notably in a number of second-generation cellular (i.e., digital voice)
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sytems including the widely used Global System for Mobile (GSM) system [174, 399, 400],

and in the IEEE 802.16 wirless MAN standards. A form of TDMA is also used in Bluetooth

networks, in which one of the Bluetooth devices in the network acts as a network controller

to poll the other devices in time sequence.

FDMA and TDMA systems are intended to assign orthogonal channels to all active

users by giving each a slice of the available frequency band or of the available transmission

time for their exclusive use. These channels are said to be orthogonal because interference

between users does not, in principle, arise in such assignments. (Although, in practice, there

is often such interference, as will be discussed further below.) Code-division Multiple Access

(CDMA) assigns channels in a way that allows all users to simultaneously use all of the

available time and frequency resources, through the assignment of a pattern or code to each

user that specifies the way in which these resources will be used by that user. Typically,

CDMA is implemented via spread-spectrum modulation, in which the pattern is the pseudo-

random code that determines the spreading sequence in the case of direct-sequence, or the

hopping pattern in the case of frequency-hopping. In such systems, a channel is defined by

a particular pseudo-random code, and so each user is assigned a channel by being assigned

a pseudo-random code. CDMA is used, notably, in the second-generation cellular standard

IS-95 (Interim Standard 95), which makes use of direct-sequence CDMA to allocate sub-

channels of larger-bandwidth (125 MHz) sub-channels of the entire cellular band. It is also

used, in the form of frequency-hopping, in GSM in order to provide isolation among users

in adjacent cells. The spectrum spreading used in wireless LAN systems is also a form of

CDMA in that it allows multiple such systems to operate in the same, lightly regulated, part

of the radio spectrum. CDMA is also the basis for the principal standards being developed

and deployed for 3G cellular telephony (e.g., [127, 356, 358, 399]).

Any of the multiple-access techniques discussed here can be modelled analytically by

considering multiple transmitted signals of the form (1.1). In particular, for a system of K

users, we can write a transmitted signal for each user as

xk(t) =
M−1∑
i=0

bk[i] sk,i(t) , k = 1, 2, . . . , K , (1.8)

where xk(·), {bk[0], bk[1], · · · , bk[M − 1]}, and sk,i(·) represent the transmitted signal, the

symbol stream, and the ith modulation waveform, respectively, of User k. That is, each user
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in a multiple-access system can be modelled in the same way as a single-user system, but with

(usually) differing modulation waveforms (and symbol streams, of course). If the waveforms

{sk,i(·)} are of the form (1.2) but with different carrier frequencies {ωk} say, then this is

FDMA. If they are of the form (1.2) but with time-slotted amplitude pulses {pk(·)} say,

then this is TDMA. And finally, if they are spread-spectrum signals of this form, but with

different pseudo-random spreading codes or hopping patterns, then this is CDMA. Details

of these multiple-access models will be discussed in the sequel as needed.

1.2.3 The Wireless Channel

From a technical point of view, the greatest distinction between wireless communications and

wireline communications lies in the physical properties of wireless channels. These physical

properties can be described in terms of several distinct phenomena, including ambient noise,

propagation losses, multipath, interference, and properties arising from the use of multiple

antennas. Here will review these phenomena only briefly. Further discussion and details can

be found, for example, in [37, 45, 145, 213, 397, 441, 449, 456].

Like all practical communications channels, wireless channels are corrupted by ambient

noise. This noise comes from thermal motion of electrons on the antenna and in the receiver

electronics, and from background radiation sources. This noise is well-modelled as having a

very wide bandwidth (much wider than the bandwidth of any useful signals in the channel)

and no particular deterministic structure (structured noise can be treated separately as inter-

ference). A very common and useful model for such noise that it is additive white Gaussian

noise (AWGN), which, as the name implies, means that it is additive to the other signals

in the receiver, it has a flat power spectral density, and it induces a Gaussian probability

distribution at the output of any linear filter to which it is input. Impulsive noise also occurs

in some wireless channels. Such noise is similarly wideband, but induces a non-Gaussian

amplitude distribution at the output of linear filters. Specific models for such impulsive

noise will be discussed in Chapter 4.

Propagation losses are also an issue in wireless channels. These are of two basic types:

diffusive losses and shadow fading. Diffusive losses arise because of the open nature of

wireless channels. For example, the energy radiated by a simple point source in free space

will spread over an ever-expanding spherical surface as the energy propagates away from the
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source. This means that an antenna with a given aperature size will collect an amount of

energy that decreases with the square of the distance between the antenna and the source. In

most terrestrial wireless channels, the diffusion losses are actually greater than this, due to

the effects of ground-wave propagation, foilage, etc. For example, in cellular telephony, the

diffusion loss is inverse-square with distance within line-of-sight of the cell tower, and it falls

off with a higher power (typically 3 or 4) at greater distances. As its name implies, shadow

fading results from the presence of objects (buildings, walls, etc.) between transmitter and

receiver. Shadow fading is typically modelled by an attenuation (i.e., a multiplicative factor)

in signal amplitude that follows a log-normal distribution. The variation in this fading is

specified by the standard deviation of the logarithm of this attenuation.

Multipath refers to the phenomenon in which multiple copies of a transmitted signal are

received at the receiver due to the presence of multiple radio paths between the transmitter

and receiver. These multiple paths arise due to reflections from objects in the radio channel.

Multipath is manifested in several ways in communications receivers, depending on the degree

of path difference relative to the wavelength of propagation, the degree of path difference

relative to the signaling rate, and the relative motion between the transmitter and receiver.

Multipath from scatterers that are spaced very close together will cause a random change in

the amplitude of the received signal. Due to central-limit type effects, the resulting received

amplitude is often modelled as being a complex Gaussian random variable. This results in a

random amplitude whose envelope has a Rayleigh distribution, and this phenomenon is thus

termed Rayleigh fading. Other fading distributions also arise, depending on the physical

configuration. (See, e.g., [388].) When the scatterers are spaced so that the differences

in their corresponding path lengths are significant relative to a wavelength of the carrier,

then the signals arriving at the receiver along different paths can add constructively or

destructively. This gives rise to fading that depends on the wavelength (or, equivalently, the

frequency) of radiation, which is thus called frequency-selective fading. When there is relative

motion between the transmitter and receiver, this type of fading also depends on time, since

the path length is a function of the radio geometry. This results in time-selective fading.

(Such motion also causes signal distortion due to Doppler effects.) A related phenomenon

arises when the difference in path lengths is such that the time delay of arrival along different

paths is significant relative to a symbol interval. This results in dispersion of the transmitted
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signal, and causes intersymbol interference (ISI); i.e., contributions from multiple symbols

arrive at the receiver at the same time.

Many of the advanced signal transmission and processing methods that have been devel-

oped for wireless systems are designed to contravene the effects of multipath. For example,

wideband signaling techniques, such as spread spectrum, are often used as a countermeasure

to frequency-selective fading. This both minimizes the effects of deep frequency-localized

fades, and also facilitates the resolvability and subsequent coherent combining of multi-

ple copies of the same signal. Similarly, by dividing a high-rate signal into many parallel

lower-rate signals, OFDM mitigates the effects of channel dispersion on high-rate signals.

Alternatively, high-data-rate single-carrier systems make use of channel equalization at the

receiver to counteract this dispersion. Some of these issues will be discussed further in the

next sub-section.

Interference is also a significant issue in many wireless channels. This interference is

typically one of two types: multiple-access interference (MAI) and co-channel interference

(CCI). MAI refers to interference arising from other signals in the same network as the signal

of interest. For example, in cellular telephony systems, MAI can arise at the base station

when the signals from multiple mobile transmitters are not orthogonal to one another. This

happens by design in CDMA systems, and it happens in FDMA or TDMA systems due to

channel properties such as multipath or to non-ideal system characteristics such as imperfect

channelization filters. CCI refers to interference from signals from different networks, but

operating in the same frequency band, as the signal of interest. An example is the interference

from adjacent cells in a cellular telephony system. This problem is a chief limitation of using

FDMA in cellular systems, and was a major factor in moving away from FDMA in second

generation systems. Another example is the interference from other devices operating in the

same part of the unregulated spectrum as the signal of interest, such as interference from

Bluetooth devices operating in the same 2.4GHz ISM band as IEEE802.11 wireless LANs.

Interference mitigation is also a major factor in the design of transmission techniques (like

the above-noted movement away from FDMA in cellular systems), as well as in the design

of advanced signal processing systems for wireless, as we shall see in the sequel.

The phenomena we have discussed above can be incorporated into a general analytical

model for a wireless multiple-access channel. In particular, the signal model in a wireless
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Figure 1.2: Signal model in a wireless system.

system is illustrated in Fig. 1.2. We can write the signal received at a given receiver in the

following form:

r(t) =
K∑

k=1

M−1∑
i=0

bk[i]

∫ ∞

−∞
hk(t, u)sk,i(u)du + i(t) + n(t) , −∞ < t <∞ , (1.9)

where hk(t, u) denotes the impulse response of a linear filter representing the channel be-

tween the kth transmitter and the receiver, i(·) represents co-channel interference, and n(·)
represents ambient noise. The modelling of the wireless channel as a linear system seems

to agree well with the observed behavior of such channels. All of the quantities hk(·, ·), i(·)
and n(·) are, in general, random processes. As noted above, the ambient noise is typically

represented as a white process with very little additional structure. However, the co-channel

interference and channel impulse responses are typically structured processes that can be

parameterized.

An important special case is that of a pure multipath channel, in which the channel

impulse responses can be represented in the form:

hk(t, u) =

Lk∑
�=1

gk,� δ(t− u− τk,�) , (1.10)

where Lk is the number of paths between User k and the receiver, gk,� and τk,� are the gain

and delay, respectively, associated with the �th path of the kth user, and where δ(·) denotes

the Dirac delta function. This model is an idealization of the actual behavior of a multipath

channel, which would not have such a sharply defined impulse response. However, it serves

as a useful model for signal processor design and analysis. Note that this model gives rise to
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frequency selective fading, since the relative delays will cause constructive and destructive

interference at the receiver, depending on the wavelength of propagation. Often the delays

{τk,�} are assumed to be known to the receiver, or they are spaced uniformly at the inverse

of the bulk bandwidth of the signaling waveforms. A typical model for the path gains {gk,�}
is that they are independent, complex Gaussian random variables, giving rise to Rayleigh

fading.

Note that, in general, the receiver will see the following composite modulation waveform

associated with the symbol bk[i] :

fk,i(t) =

∫ ∞

−∞
hk(t, u)sk,i(u)du. (1.11)

If these waveforms are not orthogonal for different values of i, then ISI will result. Consider,

for example, the pure multipath channel of (1.10) with signaling waveforms of the form

sk,i(t) = sk(t− iT ) , (1.12)

where T is the inverse of the single-user symbol rate. In this case, the composite modulation

waveforms are given by

fk,i(t) = fk(t− iT ) , (1.13)

with

fk(t) =

Lk∑
�=1

gk,� sk (t− τk,�) . (1.14)

If the delay spread, i.e., the maximum of the differences of the delays {τk,�} for different

values of �, is significant relative to T, ISI may be a factor. Note that, for a fixed channel

the delay spread is a function of the physical geometry of the channel, whereas the symbol

rate depends on the date-rate of the transmitted source. Thus, higher-rate transmissions are

more likely to encounter ISI than are lower-rate transmissions. Similarly, if the composite

waveforms for different values of k are not orthogonal, then MAI will result. This can happen,

for example, in CDMA channels when the pseudo random code sequences used by different

users are not orthogonal. It can also happen in CDMA and TDMA channels due to the

effects of multipath or of asynchronous transmission. Further discussion of these issues will

be included in the sequel as the need arises.
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This model can be further generalized to account for multiple antennas at the receiver.

In particular, we can modify (1.9) as follows:

r(t) =
K∑

k=1

bk[i]

∫ ∞

−∞
hk(t, u)sk,i(u)du + i(t) + n(t) , −∞ < t <∞ , (1.15)

where the boldface quantities denote (column) vectors with dimensions equal to the number

of antennas at the received array. For example, the pth component of hk(t, u) is the impulse

response of the channel between User k and the pth element of the receiving array. A useful

such model is to combine the pure multipath model of (1.10) with a model in which the

spatial aspects of the array can be separated from its temporal properties. This yields

channel impulse responses of the form

hk(t, u) =

Lk∑
�=1

gk,� ak,� δ(t− u− τk,�) , (1.16)

where the complex vector ak,� describes the response of the array to the �th path of User k.

The simplest such situation is the case of a uniform linear array (ULA), in which the array

elements are uniformly spaced along a line, receiving a single-carrier signal arriving along

a planar wavefront, and satisfying the so-called narrowband array assumption. The nar-

rowband array assumption essentially assumes that the the signaling waveforms are carriers

carrying narrowband modulation, and that all of the variation in the received signal across

the array at any given instant in time is due to the carrier (i.e., the modulating waveform

is changing slowly enough to be assumed constant across the array). In this case, the array

response depends only on the angle φk,� at which the corresponding path’s signal is incident

on the array. In particular, the response of a P -element array is given in this case by

ak,� =



1

e−γ sin φk,�

e−2γ sin φk,�

...

e−(P−1)γ sin φk,�


, (1.17)

where  denotes the imaginary unit, and where γ
�
= 2πλ

d
with λ the carrier wavelength and d

the inter-element spacing. (See, [123, 264, 267, 396, 436, 441, 501] for further discussion of

systems involving multiple receiver antennas.)



1.3. BASIC RECEIVER SIGNAL PROCESSING FOR WIRELESS 27

It is also of interest to model systems in which there are multiple antennas at both the

transmitter and receiver – so-called multi-input/multi-output (MIMO) systems. In this case,

the channel transfer functions are matrices, with the number of rows equal to the number of

receiving antennas, and the number of columns equal to the number of transmitting anten-

nas at each source. There are several ways of handling the signaling in such configurations,

depending on the desired effects and the channel conditions. For example, transmitter beam-

forming can be implemented by transmitting the same symbol simultaneously from multiple

antenna elements on appropriately phased versions of the same signaling waveform. Space-

time coding can be implemented by transmitting frames of related symbols over multiple

antennas. Other configurations are of interest as well. Issues concerning multiple-antenna

systems will be discussed further in the sequel as they arise.

1.3 Basic Receiver Signal Processing for Wireless

This book is concerned with the design of advanced signal processing methods for wireless

receivers, based largely on the models discussed in the preceding sections. Before moving

to these methods, however, it is of interest to review briefly some basic elements of signal

processing for these models. This is not intended to be a comprehensive treatment, and the

reader is referred to [142, 143, 268, 371, 374, 383, 388, 501, 511, 514] for further details.

1.3.1 The Matched Filter/RAKE Receiver

To do so, we consider first the particular case of the model of (1.9) in which there is only

a single user (i.e., K = 1), the channel impulse h1(·, ·) is known to the receiver, there is no

CCI (i.e., i(·) ≡ 0), and the ambient noise is AWGN with spectral height σ2. That is, we

have the following model for the received signal:

r(t) =
M−1∑
i=0

b1[i] f1,i(t) + n(t) , −∞ < t <∞ , (1.18)

where f1,i(·) denotes the composite waveform of (1.11), given by

f1,i(t) =

∫ ∞

−∞
h1(t, u)s1,i(u)du . (1.19)
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Let us further restrict attention, for the moment, to the case in which there is only a single

symbol to be transmitted (i.e., M = 1), in which case, we have the received waveform

r(t) = b1[0] f1,0(t) + n(t) , −∞ < t <∞ , (1.20)

Optimal inferences about the symbol b1[0] in (1.20) can be made on the basis of the likelihood

function of the observations, conditioned on the symbol b1[0], which is given in this case by

L
(
r(·) | b1[0]

)
= exp

{
1

σ2

[
2 �

{
b∗1[0]

∫ ∞

−∞
f ∗1,0(t)r(t)dt

}
− |b1[0]|2

∫ ∞

−∞
|f1,0(t)|2dt

] }
,

(1.21)

where the superscript asterisk denotes complex conjugation, and �{·} denotes the real part

of its argument.

Optimal inferences about the symbol b1[0] can be made, for example, by choosing max-

imum likelihood (ML) or maximum a posteriori probability (MAP) values for the symbol.

The ML symbol decision is given simply by the argument that maximizes L ( r(·) | b1[0] )

over the symbol alphabet, A, i.e.,

b̂1[0] = arg

{
max
b∈A

L
(
r(·) | b1[0] = b

)}
= arg

{
max
b∈A

[
2 �

{
b∗

∫ ∞

−∞
f ∗1,0(t)r(t)dt

}
− |b|2

∫ ∞

−∞
|f1,0(t)|2dt

]}
. (1.22)

It is easy to see that the corresponding symbol estimate is the solution to the problem

min
b∈A

∣∣∣b − z
∣∣∣2 , (1.23)

where

z
�
=

∫∞
−∞ f

∗
1,0(t)r(t)dt∫∞

−∞ |f1,0(t)|2dt
. (1.24)

Thus, the ML symbol estimate is the closest point in the symbol alphabet to the observable

z.

Note that the two simplest and most common choices of symbol alphabet are M -ary

phase shift keying (MPSK) and quadrature amplitude modulation (QAM). In MPSK, the

symbol alphabet is

A =
{
e2πm/M | m ∈ {0, 1, · · · ,M − 1}

}
, (1.25)
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or some rotation of this set around the unit circle. For QAM, a symbol alphabet containing

M ×N values is

A =
{
bR + bI | bR ∈ AR and bI ∈ AI

}
, (1.26)

where AR and AI are discrete sets of amplitudes containing M and N points, respectively;

e.g., for M = N even, a common choice is

AR = AI =

{
±1

2
,±3

2
, · · · ,±M

4

}
, (1.27)

or a scaled version of this choice. A special case of both of these is that of binary phase-shift

keying (BPSK), in which A = {−1,+1}. This latter case is the one we will consider most

often in this treatment, primarily for the sake of simplicity. However, most of the results

discussed herein extend straightforwardly to these more general signaling alphabets.

ML symbol estimation (i.e., the solution to (1.23) ) is very simple for MPSK and QAM. In

particular, since the MPSK symbols correspond to phasors at evenly spaced angles around

the unit circle, the ML symbol choice is that whose angle is closest to the angle of the

complex number z. For QAM, the choices of the real and imaginary parts of the ML symbol

estimate are decoupled , with �{b} being chosen to be the closest element of AR to �{z},
and similarly for �{b}. For BPSK, the ML symbol estimate is

b̂i[0] = sign { �{z} } �
= sign

{
�
{∫ ∞

−∞
f ∗1,0(t)r(t)dt

} }
, (1.28)

where sign{·} denotes the signum function:

sign{x} =


−1 if x < 0

0 if x = 0

+1 if x > 0

. (1.29)

MAP symbol detection in (1.20) is also based on the likelihood function of (1.21), after

suitable transformation. In particular, if the symbol b1[0] is a random variable, taking values

in A with known probabilities, then the a posteriori probability distribution of the symbol

conditioned on r(·), is given via Bayes’ formula as

P
(
b1[0] = b | r(·)

)
=

L ( r(·) | b1[0] = b ) P (b1[0] = b)∑
a∈A L ( r(·) | b1[0] = a ) P (b1[0] = a)

, b ∈ A . (1.30)
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The MAP criterion specifies a symbol decision given by

b̂1[0] = arg

{
max
b∈A

P (b1[0] = b)

}
= arg

{
max
b∈A

[L ( r(·) | b1[0] = b ) P (b1[0] = b)]

}
. (1.31)

Note that, in this single-symbol case, if the symbol values are equiprobable, then the ML

and MAP decisions are the same.

The structure of the above ML and MAP decision rules shows that the main receiver

signal-processing task in this single-user, single-symbol, known-channel case is the compu-

tation of the term

y1[0]
�
=

∫ ∞

−∞
f ∗1,0(t)r(t)dt. (1.32)

This structure is called a correlator because it correlates the received signal r(·) with the

known composite signaling waveform f1,0(·). This structure can also be implemented by

sampling the output of a time-invariant linear filter:∫ ∞

−∞
f ∗1,0(t)r(t)dt = (h � r)(0) , (1.33)

where � denotes convolution, and h is the impulse response of the time-invariant linear filter,

given by

h(t) = f ∗1,0(−t) . (1.34)

This structure is called a matched filter, since its impulse response is matched to the com-

posite waveform on which the symbol is received. When the composite signaling waveform

has a finite duration so that h(t) = 0 for t < −D ≤ 0, then the matched filter receiver can

be implemented by sampling at time D the output of the causal filter with the following

impulse response:

hD(t) =

{
f ∗1,0(D − t) if t ≥ 0

0 if t < 0
. (1.35)

For example, if the signaling waveform s1,0(t) has duration [0, T ] and the channel has delay

spread τd with ∆ ≥ 1, then the composite signaling waveform will have this property with

D = T + τd.

A special case of the correlator (1.32) arises in the case of a pure multipath channel, in

which the channel impulse response is given by (1.10). The composite waveform (1.11) is
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this case is

f1,0(t) =

L1∑
�=1

g1,� s1,0(t− τ1,�) , (1.36)

and the correlator output (1.32) becomes

y1[0]
�
=

L1∑
�=1

g∗1,�

∫ ∞

−∞
s∗1,0(t− τ1,�)r(t)dt , (1.37)

a configuration known as a RAKE receiver.

Further details on this basic receiver structure can be found, for example, in [388].

1.3.2 Equalization

We now turn to the situation in which there is more than one symbol in the frame of

interest; i.e., when M > 1. In this case, we would like to consider the likelihood function of

the observations r(·) conditioned on the entire frame of symbols, b1[0], b1[1], · · · , b1[M − 1],

which is given by

L
(
r(·) | b1[0], b1[1], · · · , b1[M − 1]

)
= exp

{
1

σ2

[
2 �{

bH
1 y1

} − bH
1 H1b1

] }
, (1.38)

where the superscript H denotes the conjugate transpose (i.e, the Hermitian transpose),

b1 denotes a column vector whose ith component is b1[i], i = 0, 1, . . . ,M − 1, y1 denotes a

column vector whose ith component is given by

y1[i]
�
=

∫ ∞

−∞
f ∗1,i(t)r(t)dt , i = 0, 1, . . . ,M − 1 , (1.39)

and H1 is anM×M Hermitian matrix, whose (i, j)th element is the cross-correlation between

f1,i(t) and f1,j(t), i.e.,

H1[i, j] =

∫ ∞

−∞
f ∗1,i(t)f1,j(t)dt . (1.40)

Since the likelihood function depends on r(·) only through the vector y1 of correlator outputs,

this vector is a sufficient statistic for making inferences about the vector b1 of symbols.

Maximum likelihood detection in this situation is given by

b̂1 = arg

{
max
b∈AM

[
2 �{

bHy1

} − bHH1b
] }

. (1.41)
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Note that, if H1 is a diagonal matrix (i.e., all of its off-diagonal element are zero), then

(1.41) decouples into a set of M independent problems of the single-symbol type (1.22). The

solution in this case is correspondingly given by

b̂1[i] = arg min
b∈A

∣∣∣b − z1[i]
∣∣∣2 , (1.42)

where

z1[i]
�
=

yi[i]∫∞
−∞ |f1,i(t)|2dt

. (1.43)

However, in the more general case in which there is intersymbol interference, (1.41) will not

decouple and the optimization must take place over the entire frame, a problem known as

sequence detection.

The problem of (1.41) is an integer quadratic program, which is known to be an NP-

complete combinatorial optimization problem [377]. This implies that the complexity of

(1.41) is potentially quite high: exponential in the frame length M, which is essentially

the complexity order of exhausting over the sequence alphabet AM . This is a prohibitive

degree of complexity for most applications, since a typical frame length might be hundreds

or even thousands of symbols. Fortunately, this complexity can be mitigated substantially

for practical ISI channels. In particular, if the composite signaling waveforms have finite

duration D, then the matrix H1 is a banded matrix with non-zero elements only on those

diagonals that are no more than ∆ =
⌈

D
T

⌉
diagonals away from the main diagonal (here �·	

denotes the smallest integer not less than its argument); i.e.,

|H1[i, j]| = 0 , ∀ |i− j| > ∆. (1.44)

This structure on the matrix permits solution of (1.41) with a dynamic program of complexity

order O (|A|∆)
, as opposed to the O (|A|M)

complexity of direct search. In most situations

∆�M, which implies an enormous savings in complexity. (See, e.g., [377].) This dynamic

programming solution, which can be structured in various ways, is known as a maximum-

likelihood sequence detector (MLSD).

MAP detection in this model is also potentially of very high complexity. The a posteriori

probability distribution of a particular symbol, say b1[i], is given by

P
(
b1[i] = b | r(·)

)
=

∑
{a∈AM |ai=b} L ( r(·) | b1 = a ) P (b1 = a)∑

{a∈AM} L ( r(·) | b1 = a ) P (b1 = a)
, b ∈ A . (1.45)
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Note that these summations have O (|A|M)
terms, and thus are of similar complexity to

those of the maximization in (1.41) in general. Fortunately, like (1.41), when H1 is banded

these summations can be computed much more efficiently using a generalized dynamic pro-

gramming technique that results in O (|A|∆)
complexity (see, e.g., [377]).

The dynamic programs that facilitate (1.41) and (1.45) are of much lower complexity

than brute-force computations. However, even this lower complexity is too high for many

applications. A number of lower complexity algorithms have been devised to deal with such

situations. These techniques can be easily discussed by examining the sufficient statistic

vector y1, which can be written as

y1 = H1b1 + n1 , (1.46)

where n1 is a complex Gaussian random vector with independent real and imaginary parts

having identical N (0, σ2

2
H1) distributions. Equation (1.46) describes a linear model, and

the goal of equalization is thus to fit this model with the data vector b1. The ML and MAP

detectors are two ways of doing this fitting, each of which has exponential complexity with

exponent equal to the bandwidth of H1. The essential difficulty of this problem arises from

the fact that the vector b1 takes on values from a discrete set. One way of easing this

difficulty is to first fit the linear model without constraining b1 to be discrete, and then to

quantize the resulting (continuous) estimate of b1 into symbol estimates. In particular, we

can use a linear fit, My1, as a continuous estimate of b1, where M is an M ×M matrix.

In this way, the ith symbol decision is

b̂1[i] = q ([My1]i) , (1.47)

where [My1]i denotes the ith component of My1, and where q(·) denotes a quantizer map-

ping the complex numbers to the symbol alphabet A. Various choices of the matrix M lead

to different linear equalizers. For example, if we choose M = IM , the M × M identity

matrix, the resulting linear detector is the common matched filter, which is optimal in the

absence of ISI. A difficulty with the matched filter is that it ignores the ISI. Alternatively, if

H1 is invertible, the choice M = H−1
1 forces the ISI to zero, i.e.,

H−1
1 y1 = b1 + H−1

1 n1 , (1.48)
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and is thus known as the zero-forcing equalizer (ZFE). Note that this would be optimal (i.e,

it would give perfect decisions) in the absence of AWGN. A difficulty with the ZFE is that

it can significantly enhance the effects of AWGN by placing high gains on some directions

in the set of M -dimensional complex vectors. A tradeoff between these extremes is effected

by the so-called minimum-mean-square-error (MMSE) linear equalizer, which chooses M to

give an MMSE fit of the model (1.46). Assuming that the symbols are independent of the

noise, this results in the choice

M = (H1 + σ2Σ−1
b )−1 , (1.49)

where Σb denotes the covariance matrix of the symbol vector b1. (Typically, this would be

in the form of a constant times IM .) A number of other techniques for fitting the model

(1.46) have been developed, including iterative methods with and without quantization of

intermediate results (decision-feedback equalizers (DFEs)), etc.

For a more detailed treatment of equalization methods see, again, [388].

1.3.3 Multiuser Detection

To finish this section, we turn finally to the full multiple-access model of (1.9), within which

data detection is referred to as multiuser detection. This situation is very similar to the

ISI channel described above. In particular, we now consider the likelihood function of the

observations r(·) conditioned on all symbols of all users. Sorting these symbols first by

symbol number and then by user number, we can collect them in a column vector b given

as

b =



b1[0]

b2[0]
...

bK [0]
...

b1[M − 1]

b2[M − 1]
...

bK [M − 1]



, (1.50)
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so that the nth element of b is given by

[b]n = bk[i] with k
�
= [n− 1]K and i

�
=

⌊
n− 1

K

⌋
, n = 1, 2, . . . KM , (1.51)

where [·]K denotes reduction of the argument modulo K, and �· denotes the integer part of

the argument. Analogously with (1.38) we can write the corresponding likelihood function

as

L ( r(·) | b ) = exp

{
1

σ2

[
2 �{

bHy
} − bHHb

] }
, (1.52)

where y is a column vector that collects the set of observables

yk[i]
�
=

∫ ∞

−∞
f ∗k,i(t)r(t)dt , i = 0, 1, . . . ,M − 1 , k = 1, 2, . . . , K , (1.53)

indexed conformally with b, and where H denotes theKM×KM Hermitian cross-correlation

matrix of the composite waveforms associated with the symbols in b, again with conformal

indexing:

H[n,m] =

∫ ∞

−∞
f ∗k,i(t)f�,j(t)dt (1.54)

with

k
�
= [n− 1]K , i

�
=

⌊
n− 1

K

⌋
, �

�
= [m− 1]K , and j

�
=

⌊
m− 1

K

⌋
. (1.55)

Comparing (1.52), (1.53), and (1.54) with their single-user counterparts (1.38), (1.39) and

(1.40), we see that y is a sufficient statistic for making inferences about b, and moreover that

such inferences can be made in a manner very similar to that for the single-user ISI channel.

The principal difference is one of dimensionality: decisions in the single-user ISI channel

involve simultaneous sequence detection with M symbols, whereas decisions in the multiple-

access channel involves simultaneous sequence detection with KM symbols. This, or course,

can increase the complexity considerably. For example, the complexity of exhaustive search

in ML detection, or exhaustive summation in MAP detection, is now on the order of |A|MK .

However, as in the single-user case, this complexity can be mitigated considerably if the

delay spread of the channel is small. In particular, if the duration of the composite signaling

waveforms is D, then the matrix H will be a banded matrix with

H [m,n] = 0 , ∀ |n−m| > K∆ , (1.56)

where, as before, ∆ =
⌈

D
T

⌉
. This bandedness allows the complexity of both ML and MAP

detection to be reduced to the order of |A|K∆ via dynamic programming.
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Although further complexity reduction can be obtained in this problem within additional

structural constraints on H (see, for example, [377]), the O (|A|K∆
)

complexity of ML and

MAP multiuser detection is not generally reducible. Consequently, as with the equalization

of single-user channels, a number of lower complexity sub-optimal multiuser detectors have

been developed. For example, analogously with (1.47), linear multiuser detectors can be

written in the form

b̂k[i] = q ([My]n) , with k
�
= [n− 1]K and i

�
=

⌊
n− 1

K

⌋
, (1.57)

where M is anKM×KM matrix and [My]n denotes the nth component of My, and where,

as before, q(·) denotes a quantizer mapping the complex numbers to the symbol alphabet A.
The choice M = H−1 forces both MAI and ISI to zero, and is known as the decorrelating

detector, or decorrelator. Similarly, the choice

M = (H + σ2Σ−1
b )−1 , (1.58)

where Σb denotes the covariance matrix of the symbol vector b, is known as the linear MMSE

multiuser detector. Linear and nonlinear iterative versions of these detectors have also been

developed, both to avoid the complexity of inverting KM ×KM matrices and the exploit

the finite-alphabet property of the symbols. (See, for example, [511].)

As a final issue here we note that all of the above discussion has involved the direct

processing of continuous-time observations to obtain a sufficient statistic (in practice, this

corresponds to the hardware front-end processing), followed by algorithmic processing to

obtain symbol decisions (in practice, this corresponds to software). Increasingly, an interme-

diate step is of interest. In particular, it is often of interest to project the continuous-time

observations onto a large but finite set of orthonormal functions to obtain a set of observ-

ables. These observables can then be processed further using digital signal processing (DSP)

to determine symbol decisions (perhaps with intermediate calculation of the sufficient statis-

tic), which is the principal advantage of this approach. A tacit assumption in this process

is that the orthonormal set spans all of the composite signaling waveforms of interest, al-

though this will often be only an approximation. A prime example of this kind of processing

arises in direct-sequence spread-spectrum systems, in which the received signal can be passed

through a filter matched to the chip waveform, and then sampled at the chip rate to produce



1.4. OUTLINE OF THE BOOK 37

N samples per symbol interval. These N samples can then be combined in various ways

(usually linearly) for data detection. A significant advantage of this approach is that this

combining can often be done adaptively when some aspects of the signaling waveforms are

unknown. For example, the channel impulse response may be unknown to the receiver, as

may the waveforms of some interfering signals. This kind of processing is a basic element of

many of the results to be discussed in this book, and so it will be revisited in more detail in

Chapter 2.

1.4 Outline of the Book

The preceding section described the basic principles of signal reception for wireless systems.

The purpose of this book is to delve into advanced methods for this problem in the contexts

of the signaling environments that are of most interest in emerging wireless applications. The

scope of this treatment includes advanced receiver techniques for key signaling environments,

including multiple-access, MIMO, and OFDM systems, as well as methods that address

unique physical issues arising in many wireless channels, including fading, impulsive noise,

co-channel interference, and other channel impairments. This material is organized into

nine chapters. The first five of these deal explicitly with multiuser detection - i.e., with

the mitigation of multiple-access interference - combined with other channel features or

impairments. The remaining four chapters deal with the treatment of systems involving

narrowband co-channel interference, time-selective fading, or multiple carriers, and with a

general technique for receiver signal processing based on Monte Carlo Bayesian techniques.

These contributions are outlined briefly in the following paragraphs.

Chapter 2 is concerned with the basic problem of adaptive multiuser detection in channels

whose principal impairments (aside from multiple-access interference) are additive white

Gaussian noise and multipath distortion. Adaptivity is a critical issue in wireless systems

because of the dynamic nature of wireless channels. Such dynamism arises from several

sources, notably from mobility of the transmitter or receiver, and from the fact that the

user population of the channel changes due to the entrance and exit of users and interferers

from the channels and due to the bursty nature of many information sources. This chapter

deals primarily with so-called blind multiuser detection, in which the receiver is faced with
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the problem of demodulating a particular user in a multiple-access system, using knowledge

only of the signaling waveform (either the composite receiver waveform, or the transmitted

waveform) of that user. The “blind” qualifier means that the receiver algorithms to be

described are to be adapted without any knowledge of the transmitted symbol stream. This

chapter introduces the basic methods for blind adaptation of the linear multiuser detectors

discussed in the preceding section via traditional adaptation methods including least-mean-

squares (LMS), recursive least-square (RLS) and subspace tracking . The combination of

multiuser detection with estimation of the channel intervening the desired transmitter and

receiver is also treated in this context, as is the issue of correlated noise.

The methods of Chapter 2 are of particular interest in downlink situations (e.g., base

to mobile), in which the receiver is interested in the demodulation only of a single user

in the system. In the uplink situation (e.g., mobile to base), the receiver has knowledge

of the signaling waveforms used by a group of transmitters and wishes to demodulate this

entire group, while suppressing the effects of other interfering transmitters. An example

of a situation in which this type of problem occurs is the reverse, or mobile-to-base, link

in a CDMA cellular telephony system, in which a given base station wishes to demodulate

the users in its cell while suppressing interference from users in adjacent cells. Chapter 3

continues with the issue of blind multiuser detection, but in this more general context of

group detection. Here, both linear and nonlinear methods are considered, and again the

issues of multipath and correlated noise are examined.

Both Chapters 2 and 3 consider channels in which the ambient noise is assumed to

be Gaussian. Of course this assumption of Gaussian noise is a very common one in the

design and analysis of communication systems, and there are often good reasons for this

assumption, including tractability and a degree of physical reality stemming from phenomena

such as thermal noise. However, many practical channels involve noise that is decidedly not

Gaussian. This is particularly true in urban and indoor environments, in which there is

considerable impulsive noise due to man-made ambient phenomena. Also, in underwater

acoustic channels (which are not specifically addressed in this book, but which are used for

tetherless communications) the ambient noise tends to be non-Gaussian. In systems limited

by multiple-access interference, the assumption of Gaussian noise is a reasonable one, since

it allows the focus to be placed on the main source of error - namely, the multiple-access
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interference. However, as we shall see in Chapters 2 and 3, the use of multiuser detection can

return such channels to ones limited by the ambient noise. Thus, the structure of the ambient

noise is again important, particularly since the performance and design of receiver algorithms

can be affected considerably by the shape of the noise distribution even when the noise

energy is held constant. Chapter 4 considers the problem of adaptive multiuser detection in

channels with non-Gaussian ambient noise. This problem is a particularly challenging one,

because traditional methods for mitigating non-Gaussian noise involve nonlinear front-end

processing, while methods for mitigating MAI tend to rely on the linear separating properties

of the signaling multiplex. Thus, the challenge for non-Gaussian multiple-access channels

is to combine these two methodologies without destroying the advantages of either. An

powerful approach to this problem based on non-linear regression is described in Chapter 4.

In addition to the design and analysis of basic algorithms for known signaling environments,

blind and group blind methods are also discussed. It is seen that these methods lead to

methods for multiuser detection in non-Gaussian environments that perform much better

than linear methods, in terms of both absolute performance and robustness.

In Chapter 5, we introduce the issue of multiple antennas into the receiver design problem.

In particular, we consider the design of optimal and adaptive multiuser detectors for MIMO

systems. Here, for known channel and antenna characteristics, the basic sufficient statistic

(analogous to (1.53)) is a so-called space-time matched filter bank, which forms a generic

front-end for a variety of space-time multiuser detection methods. For adaptive systems,

a significant issue that arises beyond those in the single-antenna situation is the lack of

knowledge of the response of the receiving antenna array. This can be handled through a

novel adaptive MMSE multiuser detector described in this chapter. Again, as in the scalar

case, the issues of multipath and blind channel identification are considered as well.

Chapter 6 treats the problem of signal reception in channel-coded multiple-access sys-

tems. In particular, the problem of joint channel decoding and multiuser detection is con-

sidered. A turbo-style iterative technique is presented that mitigates the high complexity

of optimal processing in this situation. The essential idea of this turbo multiuser detector

is to consider the combination of channel coding followed by a multiple-access channel as a

concatenated code, which can be decoded by iterating between the constituent decoders -

the multiuser detector for the multiple-access channel, and a conventional channel decoder
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for the channel codes - exchanging soft information between each iteration. The constituent

algorithms must be soft-input/soft-output (SISO) algorithms, which implies MAP multiuser

detection and decoding. In the case of convolutional channel codes, the MAP decoder can be

implemented using the well-known BCJR algorithm. However, the MAP multiuser detector

is quite complex, and thus a SISO MMSE detector is developed to lessen this complexity.

A number of issues are treated in this context, including a group-blind implementation to

suppress interferers, multipath, and space-time coded systems.

In Chapter 7 we turn to the issue of narrowband interference suppression in spread-

spectrum systems. This problem arises for many reasons. For example, in multimedia trans-

mission, signals with different data rates make use of the same radio resources, giving rise to

signals of different bandwidths in the same spectrum. Also, some emerging services are being

placed in parts of the radio spectrum which are already occupied by existing narrowband

legacy systems. Many other systems operate in license-free parts of the spectrum, where

signals of all types can share the same spectrum. Similarly, in tactical military systems,

jamming gives rise to narrowband interference. The use of spread-spectrum modulation in

these types of situations creates a degree of natural immunity to narrowband interference.

However, active methods for interference suppression can yield significant performance im-

provements over systems that simply rely on this natural immunity. This problem is an old

one, dating to the 1970’s. Here, we review the development of this field, which has progressed

from methods that exploit only the bandwidth discrepancies between spread and narrowband

signals, to more powerful “code-aided” techniques that make use of ideas similar to those

used in multiuser detection. We consider several types of narrowband interference, includ-

ing tonal signals and narrowband digital communication signals, and in all cases it is seen

that active methods can offer significant performance gains with relatively small increases in

complexity.

Chapter 8 is concerned with the problem of Monte Carlo Bayesian signal processing

and its applications in developing adaptive receiver algorithms for tasks such as multiuser

detection, equalization and related tasks. Monte Carlo Bayesian methods have emerged in

statistics over the past few years. When adapted to signal processing tasks, they give rise

to powerful, low complexity adaptive algorithms whose performance approaches theoretical

optima, for fast and reliable communications in the dynamic environments in which wireless
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systems must operate. This chapter begins with a review of the large body of methodology

in this area that has been developed over the past decade. It then continues to develop these

ideas as signal processing tools, both for batch processing using so-called Markov chain Monte

Carlo methods and for on-line processing using sequential Monte Carlo methods. These

methods are particularly well-suited to problem involving unknown channel conditions, and

the power of these techniques is illustrated in the contexts of blind multiuser detection in

unknown channels and blind equalization of MIMO channels.

Although most of the methodology discussed in the preceding paragraphs can deal with

fading channels, the focus of these previous methods has been on quasi-static channels in

which the fading characteristics of the channel can be assumed to be constant over an entire

processing window such as a data frame. This allows the representation of the fading with

a set of parameters, which can be well-estimated by the receiver. An alternative situation

arises when the channel fading is fast enough so that it can change at a rate comparable

to the signaling rate. For such channels, new techniques must be developed in order to

mitigate the fast fading, either by tracking it simultaneously with data demodulation, or by

using modulation techniques that are impervious to fast fading. Chapter 9 is concerned with

problems of this type. In particular, after an overview of the physical and mathematical

modelling of fading processes, several basic methods for dealing with fast fading channels

are considered. In particular, these methods include the application of the expectation-

maximization (EM) algorithm and its sequential counterpart, decision-feedback differential

detectors for scalar and space-time-coded systems, and sequential Monte Carlo methods for

both coded and uncoded systems.

Finally, in Chapter 10, we turn to problems of advanced receiver signal processing for

coded OFDM systems. As noted previously, OFDM is becoming the technique of choice

for many high data rate wireless applications. Recall that OFDM systems are are mul-

ticarrier systems in which the carriers are spaced as closely as possible while maintaining

orthogonality, thereby efficiently using available spectrum. This technique is very useful in

frequency-selective channels, since it allows a single high-rate data stream to be converted

into a group of many low-rate data streams, each of which can be transmitted without

intersymbol interference. This chapter begins with a review of OFDM systems, and then

considers receiver design for OFDM signaling through unknown frequency-selective chan-
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nels. In particular, the treatment focuses on turbo receivers in several types of OFDM

systems, including systems with frequency offset, a space-time block coded OFDM system,

and space-time coded OFDM system using low density parity check (LDPC) codes.

Taken together, the techniques described in these chapters provide a unified methodology

for the design of advanced receiver algorithms to deal with the impairments and diversity

opportunities associated with wireless channels. Although most of these algorithms rep-

resent very recent research contributions, they have generally been developed with an eye

toward low complexity and ease of implementation. Thus, it is anticipated that they can

be applied readily in the development of practical systems. Moreover, the methodology de-

scribed herein is sufficiently general that it can be adapted as needed to other problems of

receiver signal processing. This is particularly true of the Monte Carlo Bayesian methods

described in Chapter 8, which provide a very general toolbox for designing low-complexity,

yet sophisticated, adaptive signal processing algorithms.

Note to the Reader: Each chapter of this book describes a number of advanced receiver

algorithms. For convenience, the introduction to each chapter contains a list of the algorithms

developed in that chapter. Also, the cited references for all chapters are listed near the end

of the book.



Chapter 2

Blind Multiuser Detection

2.1 Introduction

As noted in Chapter 1, code-division multiple-access (CDMA) implemented with direct-

sequence spread-spectrum (DS-SS) modulation continues to gain popularity as a multiple-

access technology for personal, cellular and satellite communication services. Also as noted in

Chapter 1, multiuser detection techniques can substantially increase the capacity of CDMA

systems, and a significant amount of research has addressed various such schemes. Con-

siderable recent attention has been focused on the problem of adaptive multiuser detection

[180, 181]. For example, methods for adapting the linear decorrelating detector that require

the transmission of training sequences during adaptation have been proposed in [69, 329, 330].

An alternative linear detector, the linear minimum mean-square error (MMSE) detector,

however, can be adapted either through the use of training sequences [1, 302, 320, 395], or

in the blind mode, i.e., with the prior knowledge of only the signature waveform and timing

of the user of interest [179, 540]. Blind adaptation schemes are especially attractive for the

downlinks of CDMA systems, since in a dynamic environment, it is very difficult for a mobile

user to obtain the accurate information of other active users in the channel, such as their

signature waveforms; and the frequent use of training sequence is certainly a waste of chan-

nel bandwidth. There are primarily two approaches to blind multiuser detection, namely,

the direct matrix inversion (DMI) approach and the subspace approach. In this chapter, we

present batch algorithms and adaptive algorithms under both approaches. For the sake of

43
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exposition, we first treat the simple synchronous single-path CDMA channels and present

the principal techniques for blind multiuser detection. We then generalize these methods

to the more general asynchronous CDMA channels with multipath effects. The rest of this

chapter is organized as follows. In Section 2.2, we introduce the synchronous CDMA signal

model and linear multiuser detectors; In Sections 2.3 and Section 2.4, we discuss the direct

approach and the subspace approach to blind multiuser detection, respectively; In Section

2.5, we present analytical performance assessment for the direct and the subspace multiuser

detectors; In Section 2.6, we discuss various subspace tracking algorithms for adaptive imple-

mentations of the subspace blind multiuser detectors; In Section 2.7, we treat blind multiuser

detection in general asynchronous CDMA systems with multipath channels; Finally, Section

2.8 contains the mathematical derivations and proofs for some results in this chapter.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 2.1: DMI blind linear MMSE detector - synchronous CDMA;

• Algorithm 2.2: LMS blind linear MMSE detector - synchronous CDMA;

• Algorithm 2.3: RLS blind linear MMSE detector - synchronous CDMA;

• Algorithm 2.4: QR-RLS blind linear MMSE detector - synchronous CDMA;

• Algorithm 2.5: Subspace blind linear detector - synchronous CDMA;

• Algorithm 2.6: Blind adaptive linear MMSE detector based on subspace tracking -

synchronous CDMA;

• Algorithm 2.7: Subspace blind linear multiuser detector - multipath CDMA;

• Algorithm 2.8: Adaptive blind linear multiuser detector based on subspace tracking -

multipath CDMA;

• Algorithm 2.9: Blind linear MMSE detector in multipath CDMA with correlated noise

- SVD-based method;

• Algorithm 2.10: Blind linear MMSE detector in multipath CDMA with correlated

noise - CCD-based method.
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2.2 Linear Receivers for Synchronous CDMA

2.2.1 Synchronous CDMA Signal Model

We start by considering the most basic multiple-access signal model, namely, a baseband, K-

user, time-invariant, synchronous, additive white Gaussian noise (AWGN) system, employing

periodic (short) spreading sequences, and operating with a coherent BPSK modulation for-

mat. As noted in Chapter 1, the continues-time waveform received by a given user in such

a system can be modelled as follows

r(t) =
K∑

k=1

Ak

M−1∑
i=0

bk[i]sk(t− iT ) + n(t), 0 ≤ t ≤MT, (2.1)

whereM is the number of data symbols per user in the data frame of interest; T is the symbol

interval; Ak, {bk[i]}M−1
i=0 and sk(t) denote respectively the received complex amplitude, the

transmitted symbol stream, and the normalized signaling waveform of the kth user; and n(t)

is the baseband complex Gaussian ambient noise with independent real and imaginary com-

ponents and with power spectral density σ2. It is assumed that for each User k, {bk[i]}M−1
i=0

is a collection of independent equiprobable ±1 random variables, and the symbol streams

of different users are independent. For direct-sequence spread-spectrum format, each user’s

signaling waveform is of the form

sk(t) =
1√
N

N−1∑
j=0

sj,kψ(t− jTc), 0 ≤ t < T, (2.2)

where N is the processing gain; {sj,k}N−1
j=0 is a signature sequence of ±1’s assigned to the kth

user; and ψ(·) is a chip waveform of duration Tc = T
N

and with unit energy, i.e.,

∫ Tc

0

ψ(t)2dt =

1.

At the receiver, the received signal r(t) is filtered by a chip-matched filter and then

sampled at the chip rate. The sample corresponding to the jth chip of the ith symbol is given

by

rj[i]
�
=

∫ iT+(j+1)Tc

iT+jTc

r(t)ψ(t− iT − jTc)dt, (2.3)

j = 0, · · · , N − 1; i = 0, · · · ,M − 1.
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The resulting discrete-time signal corresponding to the ith symbol is then given by

r[i] =
K∑

k=1

Akbk[i]sk + n[i] (2.4)

= SAb[i] + n[i], (2.5)

with

r[i]
�
=


r0[i]

r1[i]
...

rN−1[i]

 , sk
�
= 1√

N


s0,k

s1,k

...

sN−1,k

 , n[i]
�
=


n0[i]

n1[i]
...

nN−1[i]


where nj[i]

�
=

∫ (j+1)Tc

jTc

n(t)ψ(t − iT − jTc)dt is a complex Gaussian random variable with

independent real and imaginary components; n[i] ∼ Nc(0, σ
2IN) (Here Nc(·, ·) denotes a

complex Gaussian distribution, and IN denotes theN×N identity matrix.); S
�
= [s1 · · · sK ];

A
�
= diag(A1, · · · , AK); and b[i]

�
= [b1[i] · · · bK [i]]T .

Suppose that we are interested in demodulating the data bits of a particular user, say

User 1, {b1[i]}M−1
i=0 , based on the received waveforms {r[i]}M−1

i=0 . A linear receiver for this

purpose is described by a weight vector w1 ∈ C
N , such that the desired user’s data bits are

demodulated according to

z1[i] = wH
1 r[i], (2.6)

b̂1[i] = sign {� (A∗
1z1[i])} . (2.7)

In case that the complex amplitude A1 of the desired user is unknown, we can resort to

differential detection. Define the differential bit as

β1[i]
�
= b1[i] b1[i− 1]. (2.8)

Then using the linear detector output (2.6), the following differential detection rule can be

used

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} . (2.9)
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Substituting (2.4) into (2.6), the output of the linear receiver w1 can be written as

z1[i] = A1

(
wH

1 s1

)
b1[i] +

K∑
k=2

Ak

(
wH

1 sk

)
bk[i] + wH

1 n[i]. (2.10)

In (2.10), the first term contains the useful signal of the desired user; the second term

contains the signals from other undesired users – the so-called multiple-access interference

(MAI); and the last term contains the ambient Gaussian noise. The simplest linear receiver

is the conventional matched-filter, where w1 = s1. As noted in Chapter 1, such a matched-

filter receiver is optimal only in a single-user channel (i.e., K = 1). In a multiuser channel

(i.e., K > 1), this receiver may perform poorly since it makes no attempt to ameliorate

the MAI, a limiting source of interference in multiple-access channels. Two popular forms of

linear detectors that are capable of suppressing the MAI are the linear decorrelating detector

and the linear minimum mean-square error (MMSE) detector, which are discussed next.

2.2.2 Linear Decorrelating Detector

A linear decorrelating detector for User 1, w1
�
= d1 ∈ C

N , is such that when correlated

with the received signal r[i], results in zero MAI (i.e., the second term in (2.10) is zero). In

particular, the linear decorrelating detector d1 for User 1 satisfies

dH
1 s1 = 1, (2.11)

and dH
1 sk = 0, k = 2, · · · , K. (2.12)

Denote ek as a K-vector with all entries zeros, except for the kth entry, which is 1. Assume

that the user signature sequences are linearly independent, i.e., the matrix S
�
= [s1 · · · sK ]

has full column rank, rank(S) = K. Let R
�
= SHS be the correlation matrix of the user

signature sequences. Then R is invertible. The following result gives the expression for the

linear decorrelating detector.

Proposition 2.1 The linear decorrelating detector for User 1 is given by

d1 = SR−1e1. (2.13)

Proof: It is easily verified that

dH
1 sk = eH

1 R−1 SHS︸ ︷︷ ︸
R

ek = eH
1 IKe1 = [IK ]1,k =

{
1, k = 1

0, k �= 1
. (2.14)
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Therefore (2.11) and (2.12) hold. �

The output of the linear decorrelating detector is given by

z1[i]
�
= dH

1 r[i] = A1b1[i] + v1[i], (2.15)

with v1[i]
�
= dH

1 n[i] ∼ Nc

(
0, σ2‖d1‖2

)
, (2.16)

where by (2.13)

‖d1‖2 = eH
1 R−1 SHS︸ ︷︷ ︸

R

R−1e1 = eH
1 R−1e1 =

[
R−1

]
1,1
, (2.17)

where in (2.17) [A]i,j denotes the (i, j)th element of the matrix A. Note that by Cauchy-

Schwartz inequality, we have

‖d1‖2 · ‖s1‖2 ≥ ‖dH
1 s1‖2. (2.18)

Since ‖s1‖ = 1 and dH
1 s1 =1, it then follows that ‖d1‖ ≥ 1. Hence by (2.16) we have

Var{v1[i]} ≥ σ2, i.e., the linear decorrelating detector enhances the output noise level.

2.2.3 Linear MMSE Detector

While the linear decorrelating detector is designed to completely eliminate the MAI, at the

expense of enhancing the ambient noise, the linear MMSE detector, w1
�
= m1 ∈ C

N , is

designed to minimize the total effect of the MAI and the ambient noise at the detector

output. Specifically, the linear MMSE detector for User 1 is given by the solution to the

following optimization problem

m1 = arg min
w∈CN

E
{∥∥A1b1[i] − wHr[i]

∥∥2
}
. (2.19)

Denote |A| �
= diag(|A1|, · · · , |AK |). The following result gives the expression for the linear

MMSE detector.

Proposition 2.2 The linear MMSE detector for User 1 is given by

m1 = S
(
R + σ2|A|−2

)−1
e1. (2.20)
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Proof: First note that any linear detector must lie in the column space of S, i.e., m1 ∈
range(S). This is because any component outside this space does not affect the signal

components of the detector output (i.e., the first and the second terms of (2.10)), and it

merely increases the noise level (i.e., the third term of (2.10)). Therefore, we can write

m1 = Sx1 for some x1 ∈ C
K , where

x1 = arg min
x∈CK

E
{∥∥A1b1[i] − xHSHr[i]

∥∥2
}

= arg min
x∈CK

xH
[
SHE

{
r[i]r[i]H

}
S
]
x − 2xHSH�{A∗

1E (b1[i]r[i])}
= arg min

x∈CK
xH

[
SH

(
S|A|2SH + σ2IN

)
S
]︸ ︷︷ ︸

R|A|2R+σ2R

x − 2xHR|A|2e1

=
(
R + σ2|A|−2

)−1
e1. (2.21)

Hence (2.20) is obtained. �

The output of the linear MMSE detector is given by

z1[i]
�
= mH

1 r[i] = A1

(
mH

1 s1

)
b1[i] +

K∑
k=2

Ak

(
mH

1 sk

)
bk[i] + v1[i], (2.22)

with v1[i]
�
= mH

1 n[i] ∼ Nc

(
0, σ2‖m1‖2

)
, (2.23)

where using (2.20), we have

mH
1 sk =

[(
R + σ2|A|−2

)−1
R
]

1,k
, (2.24)

‖m1‖2 =
[(

R + σ2|A|−2
)−1

R
(
R + σ2|A|−2

)−1
]

1,1
. (2.25)

Note that, unlike the decorrelator output (2.15), the linear MMSE detector output (2.22)

contains some residual MAI. However, we will in general have ‖m1‖ < ‖d1‖, so that the

effects of ambient noise are reduced by the linear MMSE detector.

2.3 Blind Multiuser Detection: Direct Methods

It is seen from (2.13) and (2.20) that these two linear detectors are expressed in terms of a

linear combination of the signature sequences of all K users. Recall that for the matched-

filter receiver, the only prior knowledge required is the desired user’s signature sequence. In
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the downlink of a CDMA system, the mobile receiver typically only has the knowledge of its

own signature sequence, but not of those of the other users. Hence it is of interest to consider

the problem of blind implementation of the linear detectors, i.e., without the requirement of

knowing the signature sequences of the interfering users. This problem is relatively easy for

the linear MMSE detector. To see this, consider again the definition (2.19). Directly solving

this optimization problem, we obtain

m1 = arg min
w∈CN

[
wH E

{
r[i]r[i]H

}︸ ︷︷ ︸
Cr

w − 2wH�{A∗
1E(r[i]b1[i])︸ ︷︷ ︸

A1s1

}
]

= |A1|2 C−1
r s1, (2.26)

where by (2.5),

Cr
�
= E

{
r[i]r[i]H

}
= S|A|2SH + σ2IN , (2.27)

is the autocorrelation matrix of the received signal. Note that Cr can be estimated from the

received signals by the corresponding sample autocorrelation. Note also that the constant

|A1|2 in (2.26) does not affect the linear decision rule (2.7) or (2.9). Hence (2.26) leads

straightforwardly to the following blind implementation of the linear MMSE detector – the

so-called direct matrix inversion (DMI) blind detector. Here we do not assume knowledge of

the complex amplitude of the desired user, hence differential detection will be employed.

Algorithm 2.1 [DMI blind linear MMSE detector - synchronous CDMA]

• Compute the detector:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H , (2.28)

m̂1 = Ĉ
−1

r s1. (2.29)

• Perform differential detection:

z1[i] = m̂H
1 r[i], (2.30)

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} , (2.31)

i = 1, · · · ,M − 1.
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The above algorithm is a batch processing method, i.e., it computes the detector only

once based on a block of received signals {r[i]}M−1
i=0 ; and the estimated detector is then used

to detect all data bits of the desired user contained in the same signal block, {b1[i]}M−1
i=0 . In

what follows, we consider on-line implementations of the blind linear MMSE detector. The

idea is to perform sequential detector estimation and data detection. That is, suppose that

at time (i− 1), an estimated detector m1[i− 1] is employed to detect the data bit b1[i− 1].

At time i, a new signal r[i] is received which is then used to update the detector estimate

to obtain m1[i]. The updated detector is used to detect the data bit b1[i]. Hence the blind

detector is sequentially updated at the symbol rate. In order to develop such an adaptive

algorithm, we need an alternative characterization of the linear MMSE detector. Consider

the following constrained optimization problem

m1 = arg min
w∈CN

E
{∥∥wHr[i]

∥∥2
}
, subject to wHs1 = 1. (2.32)

To solve (2.32), define the Lagrangian

L(w)
�
= E

{∥∥wHr[i]
∥∥2

}
− 2λ

(
wHs1 − 1

)
= wHCrw − 2λwHs1 + 2λ. (2.33)

The solution to (2.32) is then obtained by solving

d

dw
L(w)|w=m1 = 0 =⇒ m1 = λC−1

r s1, (2.34)

where λ is such that mH
1 s1 = 1, i.e., λ =

(
sH

1 C−1
r s1

)−1
. Comparing the above solution with

(2.26), it is seen that they differ only by a positive scaling constant. Since such a scaling

constant will not affect the linear decision rule (2.7) or (2.9), (2.32) constitutes an equivalent

definition of the linear MMSE detector. The approach to multiuser detection based on (2.32)

was proposed in [179], and was termed minimum-output-energy (MOE) detector. A similar

technique has been developed for array processing [122, 172, 507], and in that context is

termed the linear constrained minimum variance (LCMV) array.

We next consider adaptive algorithms for recursively (on-line) estimating the linear

MMSE detector defined by (2.32).
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2.3.1 LMS Algorithm

We first consider the least mean-square (LMS) algorithm for recursive estimation of m1

based on (2.32). Define

P
�
= IN − s1

(
sH

1 s1

)
sH

1 = IN − s1s
H
1 , (2.35)

as a projection matrix that projects any signal in C
N onto the orthogonal space of s1. Note

that m1 can be decomposed into two orthogonal components

m1 = s1 + x1, (2.36)

with x1
�
= Pm1 = Px1. (2.37)

Using the above decomposition, the constrained optimization problem (2.32) can then be

converted to the following unconstrained optimization problem

x1 = arg min
x∈CN

E

{∥∥∥(s1 + Px)H r[i]
∥∥∥2

}
. (2.38)

The LMS algorithm for adapting the vector x1 based on the cost function (2.38) is then

given by

x1[i+ 1] = x1[i] − µ

2
g (x1[i]) , (2.39)

where µ is the step size and where the stochastic gradient g (x1[i]) is given by

g (x1[i])
�
=

d

dx

∥∥∥(s1 + Px)H r[i]
∥∥∥2

|x=x1[i]

= 2 Pr[i]
[
(s1 + Px1[i])

H r[i]
]∗

= 2
(
I − s1s

H
1

)
r[i]

[
(s1 + Px1[i])

H r[i]
]∗

= 2
[
r[i] − (

sH
1 r[i]

)
s1

] [
(s1 + Px1[i])

H r[i]
]∗
. (2.40)

Substituting (2.40) into (2.39), we obtain the following LMS implementation of the blind

linear MMSE detector. Suppose that at time i, the estimated blind detector is m1[i] =

s1 + x1[i]. The algorithm performs the following steps for data detection and detector

update.

Algorithm 2.2 [LMS blind linear MMSE detector - synchronous CDMA]
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• Compute the detector output:

z1[i] = (s1 + Px1[i])
H r[i], (2.41)

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} . (2.42)

• Update the detector:

x1[i+ 1] = x1[i] − µ z1[i]∗
[
r[i] − (

sH
1 r[i]

)
s1

]
. (2.43)

The convergence analysis of the above algorithm is given in [179]. An alternative stochas-

tic gradient algorithm for blind adaptive multiuser detection is developed in [234], which

employs the technique of averaging to achieve an accelerated convergence rate (compared

with the LMS algorithm). An LMS algorithm for blind adaptive implementation of the linear

decorrelating detector is developed in [492]. Moreover, a comparison of the steady-state per-

formance (in terms of output mean-square error) shows that the blind detector incurs a loss

compared with the training-based detector [179, 381, 382]. A two-stage adaptive detector

is proposed in [59], where symbol-by-symbol pre-decisions at the output of a first adaptive

stage are used to train a second stage, to achieve improved performance.

2.3.2 RLS Algorithm

The LMS algorithm discussed above has a very low computational complexity, on the order

of O(N) per update. However, its convergence is usually very slow. We next consider

the recursive least-squares (RLS) algorithm for adaptive implementation of the blind linear

MMSE detector, which has a much faster convergence rate than the LMS algorithm. Based

on the cost function (2.32), at time i, the exponentially windowed RLS algorithm selects

the weight vector m1[i] to minimize the sum of exponentially weighted mean-square output

values

m1[i] = arg min
w∈CN

i∑
n=0

λi−n
∥∥wHr[n]

∥∥2
, subject to wHs1 = 1, (2.44)

where 0 < λ < 1 (1−λ� 1) is called the forgetting factor. The solution to this optimization

problem is given by

m1[i] = Cr[i]
−1s1

(
sH

1 Cr[i]
−1s1

)−1
, (2.45)
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with Cr[i]
�
=

i∑
n=0

λi−nr[i]r[i]H . (2.46)

Denote Φ[i]
�
= Cr[i]

−1. Note that since

Cr[i] = λCr[i− 1] + r[i]r[i]H , (2.47)

by the matrix inversion lemma, we have

Φ[i] = λ−1Φ[i− 1] − λ−2Φ[i− 1]r[i]r[i]HΦ[i− 1]

1 + λ−1r[i]HΦ[i− 1]r[i]
. (2.48)

Hence we obtain the RLS algorithm for adaptive implementation of the blind linear MMSE

detector as follows. Suppose at time (i− 1), Φ[i− 1] is available. Then at time i, the follows

steps are performed to update the detector m1[i] and to detect the differential bit β1[i].

Algorithm 2.3 [RLS blind linear MMSE detector - synchronous CDMA]

• Update the detector:

k[i]
�
=

λ−1Φ[i− 1]r[i]

1 + λ−1r[i]HΦ[i− 1]r[i]
, (2.49)

Φ[i] = λ−1
(
Φ[i− 1] − k[i]r[i]HΦ[i− 1]

)
, (2.50)

m1[i] = Φ[i]s1. (2.51)

• Compute the detector output:

z1[i] = m1[i]
Hr[i], (2.52)

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} . (2.53)

The convergence properties of the above RLS blind adaptive multiuser detection algorithm

are analyzed in detail in [381].

2.3.3 QR-RLS Algorithm

The RLS approach discussed in the previous subsection, which is based on the matrix in-

version lemma for recursively updating Cr[i]
−1, has O(N2) complexity per update. Note

that although fast RLS algorithms of O(N) complexity exist [62, 79, 113, 121], all these
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algorithms exploit the shifting property of the input data. In this particular application,

however, successive input data vectors do not have the shifting relationship, in fact, r[i] and

r[i − 1] do not overlap at all. Therefore, these standard fast RLS algorithms can not be

applied in this application.

The RLS implementation of the blind linear MMSE detector suffers from two major prob-

lems. The first problem is numerical. Recursive estimation of Cr[i]
−1 is poorly conditioned

because it involves inversion of a data correlation matrix. The condition number of a data

correlation matrix is the square of the condition number of the corresponding data matrix;

hence twice the dynamic range is required in the numerical computation [155]. The second

problem is that the form of the recursive update of Cr[i]
−1 severely limits the parallelism

and pipelining that can effectively be applied in implementation.

A well-known approach for overcoming these difficulties associated with the RLS algo-

rithms is the rotation-based QR-RLS algorithm [105, 381, 580]. The QR decomposition

transforms the original RLS problem into a problem that uses only transformed data values,

by Cholesky factorization of the original least-squares data matrix. This causes the numeri-

cal dynamic range of the transformed computational problem to be halved, and enables more

accurate computation, compared with the RLS algorithms that operate directly on Cr[i]
−1.

Another important benefit of the rotation-based QR approaches is that the computation

can be easily mapped onto systolic array structures for parallel implementations. We next

describe the QR-RLS blind linear MMSE detector, which was first developed in [381].

QR-RLS Blind Linear MMSE Detector

Assume that Cr[i] is positive definite. Let

Cr[i] = C[i]HC[i] (2.54)

be the Cholesky decomposition, i.e., C[i] is the unique upper triangular Cholesky factor with

positive diagonal elements. Define the following quantities:

u[i]
�
= C[i]−Hs1, (2.55)

v[i]
�
= C[i]−Hr[i], (2.56)

and α[i]
�
= sH

1 Cr[i]
−1s1 = u[i]Hu[i]. (2.57)
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At time i, the a posteriori least-squares (LS) estimate is given by

z[i]
�
= m1[i]

Hr[i] =
sH

1 Cr[i]
−1r[i]

sH
1 Cr[i]−1s1

(2.58)

= u[i]Hv[i]/α[i]. (2.59)

The a priori LS estimate at time i is given by

ξ[i]
�
= m1[i− 1]Hr[i]. (2.60)

It can be shown that ξ[i] and z[i] are related by [381]

ξ[i] =
z[i]

1 − ‖v[i]‖2 + α[i]|z[i]|2 . (2.61)

Suppose that C[i− 1] and u[i− 1] are available from the previous recursion. At time i, the

new observation r[i] becomes available. We construct a block matrix consisting of C[i− 1],

u[i− 1] and r[i], and apply an orthogonal transformation as follows

Q[i]

[ √
λC[i− 1] u[i− 1]/

√
λ 0

r[i]H 0 1

]
=

[
C[i] u[i] v[i]

0H η[i] γ[i]

]
. (2.62)

In (2.62) the matrix Q[i], which zeros the first N elements on the last row of the partitioned

matrix appearing on the left-hand side of (2.62), is an orthonormal matrix consisting of N

Givens rotations,

Q[i] = Q
N

[i] · · ·Q
2
[i]Q

1
[i], (2.63)

where Q
n
[i] zeros the nth element in the last row by rotating it with the (n + 1)th row. An

individual rotation is specified by two scalars, cn and sn (which can be regarded as the cosine

and sine respectively of a rotation angle φn), and affects only the last row and the (n+ 1)th

row. The effects on these two rows are[
cn sn

−s∗n cn

][
0 · · · 0 yn yn+1 · · ·
0 · · · 0 rn rn+1 · · ·

]

=

[
0 · · · 0 y′n y′n+1 · · ·
0 · · · 0 0 r′n+1 · · ·

]
.
←− (n+ 1)th row

←− last row
(2.64)
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where the rotation factors are defined by

cn =
y∗n√|yn|2 + |rn|2

, (2.65)

and sn =
r∗n√|yn|2 + |rn|2

. (2.66)

The correctness of (2.62) is shown in the Appendix (Section 2.8.1). It is seen from (2.62)

that the computed quantities appearing on the right-hand side are C[i], u[i] and v[i] at time

n. It is also shown in the Appendix (Section 2.8.1) that the quantities α[i], z[i] and ξ[i] can

be updated according to the following equations

α[i] = α[i− 1]/λ− |η[i]|2, (2.67)

z[i] = −η[i]∗γ[i]/α[i], (2.68)

and ξ[i] =
z[i]

|γ[i]|2 + α[i]|z[i]|2 . (2.69)

Note that γ[i] in (2.62) is the last diagonal element of Q[i]. A direct calculation shows that

γ[i] =
∏N

i=1 cn [105, 311].

The initialization of the QR-RLS blind adaptive algorithm is given by C[−1] =
√
δIN ,

u(0) = s1/
√
δ and α[−1] = δ, where δ is a small number. This corresponds to the initial

condition Cr[−1] = δIN and m1[−1] = s1, i.e., the adaptation starts with the matched

filter. At each time i, the algorithm proceeds as follows.

Algorithm 2.4 [QR-RLS blind linear MMSE detector - synchronous CDMA]

• Update the detector: Apply the orthonormal transformation (2.62).

• Compute the detector output and perform differential detection:

z1[i] = η[i]∗γ[i], (2.70)

β̂1[i] = sign {�(z1[i]z1[i− 1]∗)} . (2.71)

The orthonormal transformation (2.62) on the block matrix can be mapped onto a triangular

systolic array for highly efficient parallel implementation, which is discussed next.
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Figure 2.1: Systematic illustration of the systolic array implementation of the QR-RLS blind

adaptive algorithm (N = 4, K = 2), and the operations at each cell.

Left boundary cell

r←−
√

λr2+x2
in

φ←−tan−1(xin/
√

λr)

γout←−γin cos φ

Internal cell

r←−√
λr cos φ+xin sin φ

xout←−−√
λr sin φ+xin cos φ

Right boundary cell

r←−r/
√

λ cos φ+xin sin φ

xout←−−r/
√

λ sin φ+xin cos φ

Output cell

z=−η∗γ
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Parallel Implementation on Systolic Arrays

The QR-RLS blind adaptive algorithm derived above has good numerical properties and

is well suited for parallel implementation. Fig. 2.1 shows systematically a systolic array

implementation of this algorithm, using a triangular array first proposed by McWhirter [311].

It consists of three sections — the basic upper triangular array, which stores and updates

C[i]; the right-hand column of cells which stores and updates u[i]; and the final processing

cell which computes the demodulated data bit. The system is initialized as C[−1] =
√
δIN

and u[−1] = s1/
√
δ. The received data r[i] are fed from the top and propagate to the bottom

of the array. The rotation angles φn are calculated in left boundary cells and propagate from

left to right. The internal cells update their elements by Givens rotations using the angles

received from the left. The factor γ[i] is calculated along the left boundary cells where

the dot “•” represent an extra delay. The final cell extracts the signs of η[i] and γ[i], and

produces the demodulated differential data bit, according to (2.71). The computation at

each cell is also outlined in Fig. 2.1. The QR-RLS algorithm may also be carried out using

the square-root free Givens rotation algorithm to reduce the computational complexity at

each cell [155, 311]. For more details on the systolic array implementations, see [105, 311].

The systolic array in Fig. 2.1 operates in a highly pipelined manner. The computational

wavefront propagates at the received data symbol rate. The demodulated data bits are also

output at the received data symbol rate. Note that the demodulated data bit produced on

a given clock corresponds to the received vector entered 2N clock cycles earlier.

If multiple synchronous user data streams need to be demodulated, then we can simply

add more column arrays on the right-hand side, and initialize each of them by the corre-

sponding signature vector of each user. It is clear that by using the same triangular array,

multiple users’ data can be demodulated simultaneously. This is also illustrated in Fig. 2.1

for the case of two users. (Also multiple paths of the same signal can be handled by adding

appropriate linear array to Fig. 2.1.)

2.4 Blind Multiuser Detection: Subspace Methods

In this section, we discuss another approach to blind multiuser detection, which was first de-

veloped in [540] and is based on estimating the signal subspace spanned by the user signature
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waveforms. This approach leads to blind implementation of both the linear decorrelating

detector and the linear MMSE detector. It also offers a number of advantages over the direct

methods discussed in the previous section.

Assume that the spreading waveforms {sk}K
k=1 of K users are linearly independent. Note

that Cr of (2.27) is the sum of the rank-K matrix S|A|2SH and the identity matrix σ2IN .

This matrix then has K eigenvalues that are strictly larger than σ2, and (N−K) eigenvalues

that equal to σ2. Its eigendecomposition can be written as

Cr = U sΛsU
H
s + σ2UnU

H
n , (2.72)

where Λs = diag(λ1, · · · , λK) contains the largest K eigenvalues of Cr; U s = [u1, · · · ,uK ]

contains the K orthogonal eigenvectors corresponding to the largest K eigenvalues in Λs;

Un = [uK+1, · · · ,uN ] contains the (N − K) orthogonal eigenvectors corresponding to the

smallest eigenvalue σ2 of Cr. It is easy to see that range (S) = range (U s). The column

space of U s is called the signal subspace and its orthogonal complement, the noise subspace,

is spanned by the columns of Un. We next derive expressions for the linear decorrelating

detector and the linear MMSE detector in terms of the signal subspace parameters U s, Λs

and σ2.

2.4.1 Linear Decorrelating Detector

The linear decorrelating detector given by (2.13) is characterized by the following results.

Lemma 2.1 The linear decorrelating detector d1 in (2.13) is the unique weight vector w ∈
range (U s), such that wHs1 = 1, and wHsk = 0, for k = 2, · · · , K.

Proof : Since rank (U s) = K, the vector w that satisfies the above conditions exists and

is unique. Moreover, these conditions have been verified in the proof of Proposition 1 in

Section 2.2.2. �

Lemma 2.2 The decorrelating detector d1 in (2.13) is the unique weight vector w ∈
range (U s) that minimizes ϕ(w)

�
= E

{∥∥wH (SAb)
∥∥2

}
, subject to wHs1 = 1.

Proof : Since

ϕ(w) = wHE
{

(SAb) (SAb)H
}

w



2.4. BLIND MULTIUSER DETECTION: SUBSPACE METHODS 61

= wH
(
S|A|2SH

)
w

= |A1|2
∣∣wHs1

∣∣2 +
K∑

k=2

|Ak|2
∣∣wHsk

∣∣2
= |A1|2 +

K∑
k=2

|Ak|2
∣∣wHsk

∣∣2 , (2.73)

it then follows that for w ∈ range (U s) = range (S), ϕ(w) is minimized if and only if

wHsk = 0, for k = 2, · · · , K. By Lemma 1 the unique solution is w = d1. �

Proposition 2.3 The linear decorrelating detector d1 in (2.13) is given in terms of the

signal subspace parameters by

d1 = αd U s

(
Λs − σ2IK

)−1
UH

s s1, (2.74)

with αd
�
=

[
sH

1 U s

(
Λs − σ2IK

)−1
UH

s s1

]−1

. (2.75)

Proof: A vector w ∈ range (U s) if and only if it can be written as w = U sx, for some

x ∈ C
K . Then by Lemma 2 the linear decorrelating detector d1 has the form d1 = U sx1,

where

x1 = arg min
x∈CK

(U s x)H (
S|A|2SH

)
(U sx), s.t. (U sx)Hs1 = 1,

= arg min
x∈CK

xH
[
UH

s

(
S|A|2SH

)
U s

]
x, s.t. xH

(
UH

s s1

)
= 1,

= arg min
x∈CK

xH
(
Λs − σ2IK

)
x, s.t. xH

(
UH

s s1

)
= 1, (2.76)

where the third equality follows from the fact that

S|A|2SH = U s

(
Λs − σ2IK

)
UH

s ,

which in turn follows directly from (2.27) and (2.72). The optimization problem (2.76) can

be solved by the method of Lagrange multipliers. Let

L(x)
�
= xH

(
Λs − σ2IK

)
x − 2αd

[
xH

(
UH

s s1

) − 1
]
.

Since the matrix (Λs − σ2IK) is positive definite, L(x) is a strictly convex function of x.

Therefore the unique global minimum of L(x) is achieved at x1 where ∇ L(x1) = 0, or(
Λs − σ2IK

)
x1 = αdU

H
s s1. (2.77)

Therefore x1 = αd (Λs − σ2IK)
−1

UH
s s1, where αd is determined from the constraint

(U sx1)
H s1 = 1, i.e., αd =

[
sH

1 U s (Λs − σ2IK)
−1

UH
s s1

]−1

. Finally weight vector of the

linear decorrelating detector is given by d1 = U sx1 = αdU s (Λs − σ2IK)
−1

UH
s s1. �
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2.4.2 Linear MMSE Detector

The following result gives the subspace form of the linear MMSE detector, defined by (2.32).

Proposition 2.4 The weight vector m1 of the linear MMSE detector defined by (2.32) is

given in terms of the signal subspace parameters by

m1 = αm U sΛ
−1
s UH

s s1, (2.78)

with αm =
(
sH

1 U sΛ
−1
s UH

s s1

)−1
. (2.79)

Proof: From (2.34) the linear MMSE detector defined by (2.32) is given by

m1 = C−1
r s1

(
sH

1 C−1
r s1

)−1
. (2.80)

By (2.72)

C−1
r = U sΛ

−1
s UH

s +
1

σ2
UnU

H
n . (2.81)

Substituting (2.81) into (2.80), and using the fact that UH
n s1 = 0, we obtain (2.78). �

Since the decision rules (2.7) and (2.9) are invariant to a positive scaling, the two sub-

space linear multiuser detectors given by (2.74) and (2.78) can be interpreted as follows. First

the received signal r[i] is projected onto the signal subspace to get y[i]
�
= UH

s r[i] ∈ C
K ,

which clearly is a sufficient statistic for demodulating the K users’ data bits. The spread-

ing waveform s1 of the desired user is also projected onto the signal subspace to ob-

tain p1
�
= UH

s s1 ∈ C
K . The projection of the linear multiuser detector in the sig-

nal subspace is then a signal c1 ∈ C
K such that the detector output is z1[i]

�
= cH

1 y[i],

and the data bit is demodulated as b̂1[i] = sign {� (A∗
1z1[i])} for coherent detection, and

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} for differential detection. According to (2.74) and (2.78),

the projections of the linear decorrelating detector and that of the linear MMSE detector in

the signal subspace are given respectively by

c1,d =


1

λ1−σ2

. . .

1
λK−σ2

p1, (2.82)

and c1,m =


1
λ1

. . .

1
λK

p1. (2.83)
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Therefore the projection of the linear multiuser detectors in the signal subspace are obtained

by projecting the spreading waveform of the desired user onto the signal subspace, followed by

scaling the kth component of this projection by a factor of (λk−σ2)−1 (for linear decorrelating

detector) or λ−1
k (for linear MMSE detector). Note that as σ2 → 0, the two linear detectors

become identical, as we would expect.

Since the autocorrelation matrix Cr, and therefore its eigencomponents, can be estimated

from the received signals, from the above discussion we see that both the linear decorrelating

detector and the linear MMSE detector can be estimated from the received signal with the

prior knowledge of only the spreading waveform and the timing of the desired user, i.e.,

they both can be obtained blindly. We summarize the subspace blind multiuser detection

algorithm as follows.

Algorithm 2.5 [Subspace blind linear detector - synchronous CDMA]

• Compute the detector:

Ĉr
�
=

1

M

M−1∑
i=0

r[i]r[i]H , (2.84)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n , (2.85)

d̂1 = Û s

(
Λ̂s − σ̂2IK

)
Û

H

s s1, [linear decorrelating detector] (2.86)

m̂1 = Û sΛ̂sÛ
H

s s1. [linear MMSE detector] (2.87)

• Perform differential detection:

z1[i] = ŵH
1 r[i], [ŵ1 = d̂1 or ŵ1 = m̂1], (2.88)

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} , (2.89)

i = 1, · · · ,M − 1.

2.4.3 Asymptotics of Detector Estimates

We next examine the consistency and asymptotic variance of the estimates of the two sub-

space linear detectors. Assuming that the received signal samples are independent and

identically distributed (i.i.d.), then by the strong law of large numbers, the sample mean
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Ĉr converges to Cr almost surely (a.s.) as the number of received signal M → ∞. It then

follows [512] that as M → ∞, λ̂k → λk a.s., and ûk → uk a.s., for k = 1, · · · , K. Therefore

we have

m̂1 =
K∑

k=1

1

λ̂k

ûkû
H
k s1 (2.90)

→
K∑

k=1

1

λk

uku
H
k s1 = α−1

m m1 a.s. as M → ∞. (2.91)

Similarly, d̂1 → α−1
d d1 a.s. as M → ∞. Hence both the estimated subspace linear multiuser

detectors based on the received signals are strongly consistent. However it is in general biased

for finite number of samples. We next consider an asymptotic bound on the estimation errors.

First, for all eigenvalues and the K largest eigenvectors of Ĉr, the following bounds hold

a.s. [512, 599]: ∣∣∣λ̂k − λk

∣∣∣ = O(
√

log logM/M), k = 1, · · · , N, (2.92)

‖ûk − uk‖ = O(
√

log logM/M), k = 1, · · · , K. (2.93)

Using the above bounds, we have

‖α−1
d m1 − m̂1‖ =

∥∥∥(U sΛ
−1
s UH

s − Û sΛ̂
−1

s Û
H

s

)
s1

∥∥∥
≤

∥∥∥U sΛ
−1
s UH

s − Û sΛ̂
−1

s Û
H

s

∥∥∥ ‖s1‖
=

∥∥∥(U sΛ
−1
s UH

s − Û sΛ
−1
s UH

s

)
+

(
Û sΛ

−1
s UH

s − Û sΛ
−1
s Û

H

s

)
+ Û s

(
Λ−1

s − Λ̂
−1

s

)
Û

H

s

∥∥∥
≤

∥∥∥U s − Û s

∥∥∥ ∥∥Λ−1
s UH

s

∥∥ +
∥∥∥Û sΛ

−1
s

∥∥∥ ∥∥∥U s − Û s

∥∥∥ +
∥∥∥Û s

∥∥∥ ∥∥∥Λ−1
s − Λ̂

−1

s

∥∥∥ ∥∥∥Û s

∥∥∥ . (2.94)

Note that
∥∥Λ−1

s UH
s

∥∥,
∥∥∥Û sΛ

−1
s

∥∥∥ and
∥∥∥Û s

∥∥∥ are all bounded. On the other hand, it is easily

seen that ∥∥∥U s − Û s

∥∥∥ =
K∑

k=1

‖uk − ûk‖ = O(
√

log logM/M), a.s. (2.95)

and
∥∥∥Λ−1

s − Λ̂
−1

s

∥∥∥ =
K∑

k=1

∣∣∣λk − λ̂k

∣∣∣/(λkλ̂k

)
= O(

√
log logM/M), a.s. (2.96)

Therefore we obtain the asymptotic estimation error for the linear MMSE detector, and

similarly that for the decorrelating detector, given respectively by∥∥m̂1 − α−1
m m1

∥∥ = O
(√

log logM/M
)

a.s.,
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and
∥∥∥d̂1 − α−1

d d1

∥∥∥ = O
(√

log logM/M
)

a.s.

2.4.4 Asymptotic Multiuser Efficiency under Mismatch

We now consider the effect of spreading waveform mismatch on the performance of the sub-

space linear multiuser detectors. Let s̃1 with ‖s̃1‖ = 1 be the assumed spreading waveform

of the desired user, and s1 be the true spreading waveform of that user. s̃1 can then be

decomposed into components of the signal subspace and the noise subspace, i.e.,

s̃1 = s̃s
1 + s̃n

1 , (2.97)

with s̃s
1

�
= U sU

H
s s̃1 ∈ range (U s) = range(S), (2.98)

and s̃n
1

�
= UnU

H
n s̃1 ∈ range (Un) . (2.99)

For simplicity, in the following we consider the real-valued signal model, i.e., Ak > 0, k =

1, · · · , K, and n[i] ∼ N (0, σ2IN). (Here N (·, ·) denotes a real-valued Gaussian distribution.)

The signal subspace component s̃s
1 can then be written as

s̃s
1 =

K∑
k=1

ψksk = Sψ, (2.100)

for some ψ ∈ R
K with α1 > 0. A commonly used performance measure for a multiuser

detector is the asymptotic multiuser efficiency (AME) [511], defined as 1

η1
�
= sup

{
0 ≤ r ≤ 1 : lim

σ→0
P1(σ)/Q

(√
rA1

σ

)
= 0

}
, (2.101)

which measures the exponential decay rate of the error probability as the background noise

approaches zero. A related performance measure, the near-far resistance, is the infimum of

AME as the interferers’ energies are allowed to arbitrarily vary,

η1 = inf
Ak≥0

k �=1

{η1} . (2.102)

Since, as σ → 0, the linear decorrelating detector and the linear MMSE detector become

identical, these two detectors have the same AME and near-far resistance [292, 302]. It is

1P1(σ) is the probability of error of the detector for noise level σ; Q(x) �= 1√
2π

∫ ∞

x

exp
(
−x2

2

)
.
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straightforward to compute the AME of the linear decorrelating detector, since its output

consists of only the desired user’s signal and the ambient Gaussian noise. By (2.15)-(2.17),

we conclude that the AME and the near-far resistance of both linear detectors are given by

η1 = η̄1 =
1[

R−1
]
1,1

. (2.103)

Next we compute the AME and the near-resistance of the two subspace linear detectors

under spreading waveform mismatch. Define the N ×N diagonal matrices

Λ0
�
= diag

(
λ1 − σ2, · · · , λK − σ2, 0, · · · , 0) , (2.104)

and Λ†
0

�
= diag

(
[λ1 − σ2]−1, · · · , [λK − σ2]−1, 0, · · · , 0) . (2.105)

Denote the singular value decomposition (SVD) of S by

S = WΓV T , (2.106)

where the N × K matrix Γ = [γij] has γij = 0 for all i �= j, and γ11 ≥ γ22 ≥ · · · ≥ γKK .

The columns of the N ×N matrix W are the orthonormal eigenvectors of
(
SST

)
, and the

columns of the K ×K matrix V are the orthonormal eigevectors of R = ST S. We have the

following result, whose proof is found in the Appendix (Section 2.8.2).

Lemma 2.3 Let the eigendecomposition of Cr be Cr = UΛUT . Then N × N diagonal

matrix Λ†
0 in (2.105) is given by

Λ†
0 = UT WΓ †T V T A−2V Γ †W T U . (2.107)

where Γ † is the transpose of Γ in which the singular values are replaced by their reciprocals.

Using the above result, we obtain the AME of the subspace linear detectors under spread-

ing waveform mismatch, as follows.

Proposition 2.5 The AME of the subspace linear decorrelating detector given by (2.74)

and that of the subspace linear MMSE detector given by (2.78) under spreading waveform

mismatch is given by

η1 =

max2

{
0, |ψ1| −

K∑
k=2

|ψk|A1/Ak

}
A4

1 ψT A−2R−1A−2ψ
. (2.108)
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Proof: Since d1 and m1 have the same AME, we need only to compute the AME for d1.

Because a positive scaling on the detector does not affect its AME, we consider the AME of

the following scaled version of d1 under the signature waveform mismatch.

d̃1
�
= U s

(
Λs − σ2IK

)−1
UT

s s̃1

= U s

(
Λs − σ2IK

)−1
UT

s ss
1

= UΛ†
0U

T Sψ, (2.109)

where the second equality follows from the fact that the noise subspace component s̃n
1 is

orthogonal to the signal subspace U s. Substituting (2.106) and (2.107) into (2.109), we have

d̃
T

1 sk = ψT ST UΛ†
0U

T Sek

= ψT
(
V Γ T W T

) (
WΓ †T V T A−2V Γ †W T

) (
WΓV T

)
ek

= ψT A−2ek =
ψk

A2
k

, (2.110)

d̃
T

1 d̃1 = ψT
(
V Γ T W T

) (
WΓ †T V T A−2V Γ †W T U

)
(2.111)(

UT WΓ †T V T A−2V Γ †W T
) (

WΓV T
)
ψ (2.112)

= ψT A−2 V Γ †Γ †T V T︸ ︷︷ ︸
R−1

A−2ψ. (2.113)

The output of the detector d̃1 is given by

z[i]
�
= d̃

T

1 r[i] =
K∑

k=1

Akbk

(
d̃

T

1 sk

)
+ d̃

T

1 n[i]

=
K∑

k=1

ψk

Ak

bk + v[i],

where v[i] ∼ N
(
0, σ2‖d̃1‖2

)
. The probability of error for User 1 is then given by

P1(σ) =
1

2K−1

∑
(b2,···,bk)∈{−1,1}K−1

Q

A1

σ
· ψ1 − ∑K

k=2 ψkbkA1/Ak√
A4

1 ψT A−2R−1A−2ψ

 . (2.114)

It then follows that the AME is given by (2.108). �

It is seen from (2.114) that spreading waveform mismatch causes MAI leakage at the de-

tector output. Strong interferers (Ak � A1) are suppressed at the output, whereas weak in-

terferers (Ak � A1) may lead to performance degradation. If the mismatch is not significant,
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with power control, so that the open eye condition is satisfied (i.e., |ψ1| >
∑K

k=2 |ψk|A1/Ak),

then the performance loss is negligible; otherwise, the effective spreading waveform should

be estimated first. Moreover, since the mismatched spreading waveform s̃1 is first projected

onto the signal subspace, its noise subspace component s̃n
1 is nulled out and does not cause

performance degradation; whereas for the blind adaptive MOE detector discussed in Section

2.3, such a noise subspace component may lead to complete cancellation of both the signal

and MAI if there is no energy constraint on the detector [179].

2.5 Performance of Blind Multiuser Detectors

2.5.1 Performance Measures

In the previous sections, we have discussed two approaches to blind multiuser detection

– namely, the direct method and the subspace method. These two approaches are based

primarily on two equivalent expressions for the linear MMSE detector, i.e., (2.26) and (2.78).

When the autocorrelation Cr of the received signals is known exactly, the two approaches

have the same performance. However, when Cr is replaced by the corresponding sample

autocorrelation, quite interestingly, the performance of these two methods is very different.

This is due to the fact that these two approaches exhibit different estimation errors on the

estimated detector [188, 189, 193]. In this section, we present performance analysis of the

two blind multiuser detectors – the DMI blind detector and the subspace blind detector.

For simplicity, we consider only real-valued signals, i.e., in (2.4) Ak > 0, k = 1, · · · , K, and

n[i] ∼ N (0, σ2IN).

Suppose a linear weight vector w1 ∈ R
N is applied to the received signal r[i] in (2.5). The

output is given by (2.10). Since it is assumed that the user bit streams are independent, and

the noise is independent of the user bits, the signal-to-interference-plus-noise ratio (SINR)

at the output of the linear detector is given by

SINR(w1) =
E

{
wT

1 r[i] | b1[i]
}2

E {Var {wT
1 r[i] | b1[i]}}

=
A2

1

(
wT

1 s1

)2

K∑
k=2

A2
k

(
wT

1 sk

)2
+ σ2‖w1‖2

. (2.115)
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The bit error probability of the linear detector using weight vector w1 is given by

Pe(w1) = P
(
b̂1[i] �= b1[i]

)
=

1

2K−1

∑
[b2 ··· bK ]∈{−1,+1}K−1

Q
(A1w

T
1 s1 +

∑K
k=2Akbkw

T
1 sk

‖w1‖σ
)
. (2.116)

Now suppose that an estimate ŵ1 of the weight vector w1 is obtained from the received

signals {r[i]}M−1
i=0 . Denote

∆w1
�
= ŵ1 − w1. (2.117)

Obviously both ŵ1 and ∆w1 are random vectors and are functions of the random quantities

{b[i],n[i]}M−1
i=0 . In typical adaptive multiuser detection scenarios [179, 540], the estimated

detector ŵ1 is employed to demodulate future received signals, say r[j], j > M . Then the

output is given by

ŵT
1 r[j] = wT

1 r[j] +∆wT
1 r[j], j > M, (2.118)

where the first term in (2.118) represents the output of the true weight vector w1, which

has the same form as (2.10). The second term in (2.118) represents an additional noise term

caused by the estimation error ∆w1. Hence from (2.118) the average SINR at the output of

any unbiased estimated linear detector ŵ1 is given by

SINR(ŵ1) =
A2

1

(
wT

1 s1

)2

K∑
k=2

A2
k

(
wT

1 sk

)2
+ σ2‖w1‖2 + E

{(
∆wT

1 r[j]
)2
} , (2.119)

with

E
{(
∆wT

1 r[j]
)2
}

= tr
(
E

{
∆wT

1 r[j]r[j]T∆w1

})
= tr

(
E

{
∆w1∆wT

1 r[j]r[j]T
})

= tr
(
E

{
∆w1∆wT

1

}︸ ︷︷ ︸
Cw

E
{
r[j]r[j]T

})︸ ︷︷ ︸
Cr=SA2ST

+σ2IN

=
1

M
tr (CwCr) , (2.120)
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where Cw
�
= M ·E {

∆w1∆wT
1

}
and Cr

�
= E

{
r[j]r[j]T

}
. Note that in batch processing, on

the other hand, the estimated detector is used to demodulate signals r[i], 1 ≤ i ≤M . Since

∆w1 is a function of {r[i]}M
i=1, for fixed i, ∆w1 and r[i] are in general correlated. For large

M , such correlation is small. Therefore in this case we still use (2.119) and (2.120) as the

approximate SINR expression.

If we assume further that ∆w1 is actually independent of r[i], then the average bit error

rate of this detector is given by

Pe(ŵ1) =

∫
Pe(ŵ1) f(ŵ1) dŵ1, (2.121)

where Pe(ŵ1) is given by (2.116), and f(ŵ1) denotes the probability density function (pdf)

of the estimated weight vector ŵ1.

From the above discussion, it is seen that in order to obtain the average SINR at the

output of the estimated linear detector ŵ1, it suffices to find its covariance matrix Cw. On

the other hand, the average bit error rate of the estimated linear detector depends on its

distribution through f(ŵ1).

2.5.2 Asymptotic Output SINR

We first present the asymptotic distribution of the two forms of blind linear MMSE detectors,

for large number of signal samples, M . Recall that in the direct-matrix-inversion (DMI)

method, the blind multiuser detector is estimated according to

Ĉr =
1

M

M∑
i=1

r[i]r[i]T , (2.122)

and ŵ1 = Ĉ
−1

r s1. [DMI blind linear MMSE detector] (2.123)

In the subspace method, the estimate of the blind detector is given by

Ĉr =
1

M

M∑
i=1

r[i]r[i]T

= Û sΛ̂sÛ
T

s + ÛnΛ̂nÛ
T

n , (2.124)

and ŵ1 = Û sΛ̂
−1

s Û
T

s s1, [subspace blind linear MMSE detector] (2.125)

where Λ̂s and Û s contain respectively the largest K eigenvalues and the corresponding

eigenvectors of Ĉr; and where Λ̂n and Ûn contain respectively the remaining eigenvalues
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and eigenvectors of Ĉr. The following result gives the asymptotic distribution of the blind

linear MMSE detectors given by (2.123) and (2.125). The proof is found in the Appendix

(Section 2.8.3).

Theorem 2.1 Let w1 be the true weight vector of the linear MMSE detector given by

w1 = C−1
r s1 = U sΛ

−1
s UT

s s1, (2.126)

and let ŵ1 be the weight vector of the estimated blind linear MMSE detector given by (2.123)

or (2.125). Let the eigendecomposition of the autocorrelation matrix Cr of the received signal

be

Cr = U sΛsU
T
s + σ2UnU

T
n . (2.127)

Then

√
M (ŵ1 − w1) → N (0,Cw), in distribution, as M → ∞,

with

Cw =
(
wT

1 s1

)
U sΛ

−1
s UT

s + w1w
T
1 − 2U sΛ

−1
s UT

s SDST U sΛ
−1
s UT

s + τUnUT
n ,

(2.128)

where

D
�
= diag

{
A4

1

(
wT

1 s1

)2
, A4

2

(
wT

1 s2

)2
, · · · , A4

K

(
wT

1 sK

)2
}
, (2.129)

τ
�
=

{
1
σ2 s

T
1 U sΛ

−1
s UT

s s1, DMI blind detector

σ2sT
1 U sΛ

−1
s (Λs − σ2IK)

−2
UT

s s1, subspace blind detector
. (2.130)

Hence for large M , the covariance of the blind linear detector, Cw = M ·E {
∆w1∆wT

1

}
,

can be approximated by (2.128). Define, as before,

R
�
= ST S. (2.131)

The next result gives an expression for the average output SINR, defined by (2.119), of the

blind linear detectors. The proof is given in the Appendix (Section 2.8.3).
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Corollary 2.1 The average output SINR of the estimated blind linear detector is given by

SINR(ŵ1)

=
A2

1

(
wT

1 s1

)2

K∑
k=2

A2
k

(
wT

1 sk

)2
+ σ2‖w1‖2 +

1

M

[
(K + 1)wT

1 s1 − 2
K∑

k=1

A4
k

(
wT

1 sk

)2 (
wT

k sk

)
+ (N −K)τσ2

] ,
(2.132)

where

wT
l sk =

1

A2
l

[
R

(
R + σ2A−2

)−1
]

k,l
, k, l = 1, · · · , K, (2.133)

‖w1‖2 =
1

A4
1

[(
R + σ2A−2

)−1
R

(
R + σ2A−2

)−1
]

1,1
, (2.134)

and τσ2 =

 wT
1 s1, DMI blind detector

σ4

A4
1

[(
R + σ2A−2

)−1
A−2R−1

]
1,1
, subspace blind detector

.(2.135)

It is seen from (2.132) that the performance difference between the DMI blind detector

and the subspace blind detector is caused by the single parameter τ given by (2.130) - the

detector with a smaller τ has a higher output SINR. Let µ1, · · · , µK be the eigenvalues of

the matrix R given by (2.131). Denote µmin = min1≤k≤K{µk}, and µmax = max1≤k≤K{µk}.
Denote also Amin = min1≤k≤K{Ak}, and Amax = max1≤k≤K{Ak}. The next result gives

sufficient conditions under which one blind detector outperforms the other, in terms of the

average output SINR.

Corollary 2.2 If
A2

min

σ2 > µmax, then SINRsubspace > SINRDMI; and if A2
max

σ2 < µmin, then

SINRsubspace < SINRDMI.

Proof: By rewriting (2.130) as

τ =


1
σ2

K∑
k=1

1

λk

(
sT

1 uk

)2
, DMI blind detector

σ2

K∑
k=1

1

λk(λk − σ2)2

(
sT

1 uk

)2
, subspace blind detector

, (2.136)

we obtain the following sufficient condition under which τsubspace < τDMI

λk > 2σ2, k = 1, · · · , K. (2.137)
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On the other hand, note that

Cr = SA2ST + σ2IN � A2
minSST + σ2IN . (2.138)

Since the nonzero eigenvalues of SST are the same of those of R = ST S, it follows from

(2.138) that

λk ≥ A2
minµk + σ2, k = 1, · · · , K. (2.139)

The first part of the corollary then follows by combining (2.137) and (2.139). The second

part of the corollary follows a similar proof. �

The next result gives an upper and a lower bound on the parameter τ , in terms of the

desired user’s amplitude A1, the noise variance σ2, and the two extreme eigenvalues of Cr.

Corollary 2.3 The parameter τ defined in (2.130) satisfies(
1 − σ2

λmin

)
1

A2
1

≤ τσ2 ≤
(

1 − σ2

λmax

)
1

A2
1

, DMI blind detector,

1

λmax

(
λmax

σ2 − 1
) · 1

A2
1

≤ τσ2 ≤ 1

λmin

(
λmin

σ2 − 1
) · 1

A2
1

, subspace blind detector.

Proof: The proof then follows from (2.136) and the following fact found in Chapter 4. [cf.

Proposition 4.2.]

1

A2
1

=
K∑

k=1

(
sT

1 uk

)2

λk − σ2
. (2.140)

�

In order to get some insights from the result (2.132), we next consider two special cases

for which we compare the average output SINR’s of the two blind detectors.

Example 1 - Orthogonal Signals: In this case, we have uk = sk, R = IK , and λk = A2
k +σ2,

k = 1, · · · , K. Substituting these into (2.136), we obtain

τσ2 =


1

A2
1+σ2 , DMI blind detector(
σ2

A2
1

)2
1

A2
1+σ2 , subspace blind detector

. (2.141)
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Substituting (2.141) into (2.132), and using the fact that in this case wk = 1
A2

k+σ2 sk, we

obtain the following expressions of the average output SINR’s

SINR(ŵ1) =


φ1

1+ 1
M

[
(φ1+1)(N+1)− 2φ2

1
1+φ1

] , DMI blind detector

φ1

1+ 1
M

[
(φ1+1)

(
K+1+ N−K

φ2
1

)
− 2φ2

1
1+φ1

] , subspace blind detector
, (2.142)

where φ1
�
=

A2
1

σ2 is the signal-to-noise ratio (SNR) of the desired user. It is easily seen that in

this case, a necessary and sufficient condition for the subspace blind detector to outperform

the DMI blind detector is that φ1 > 1, i.e., SNR1 > 0 dB.

Example 2 - Equicorrelated Signals with Perfect Power Control: In this case, it is assumed

that sT
k sl = ρ, for k �= l, 1 ≤ k, l ≤ K. It is also assumed that A1 = · · · = AK = A. It

is shown in the Appendix (Section 2.8.3) that the average output SINR’s for the two blind

detectors are given by

SINR(ŵ1) =
1

(K − 1)α+ β + 1
M

[
K+1

γ
− 2γ [1 + (K − 1)α] + (N −K)η

] , (2.143)

with

α
�
=

(
ρ σ2

A2

σ2

A2 + (1 − ρ)[1 + (K − 1)ρ]

)2

, (2.144)

β
�
=

σ2

A2
·
[
1 + (K − 1)ρ+ σ2

A2

]2

− ρ[1 + (K − 1)ρ]
[
2 + (K − 2)ρ+ 2 σ2

A2

]
[
(1 − ρ)[1 + (K − 1)ρ] + σ2

A2

]2 , (2.145)

γ
�
=

1

1 − ρ+ σ2

A2

+
1 + (K − 1)ρ

K

[
1

1 + (K − 1)ρ+ σ2

A2

− 1

1 − ρ+ σ2

A2

]
, (2.146)

and

η
�
=


1
γ
, DMI blind detector

1
γ2

(
σ2

A2

)2
(

1

(1−ρ)2
[
1−ρ+ σ2

A2

] + 1+(K−1)ρ
K

[
1

[1+(K−1)ρ]2
[
1+(K−1)ρ+ σ2

A2

] − 1

(1−ρ)2
[
1−ρ+ σ2

A2

]
])

subspace blind detector

.

(2.147)

A necessary and sufficient condition for the subspace blind detector to outperform the DMI

blind detector is ηDMI > ηsubspace, which, after some manipulations, reduces to

(µ1µ2)
3 φ3 + (µ1µ2)

2 φ2 > µ3
1 φ+ µ1

[
µ1 +

µ3
2 − µ3

1

K

]
, (2.148)
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where φ
�
= A2

σ2 , and where µ1
�
= 1+(K−1)ρ and µ2

�
= 1−ρ are the two distinct eigenvalues of

R [cf. Appendix (Section 2.8.3)]. The region on the SNR-ρ plane where the subspace blind

detector outperforms the DMI blind detector is plotted in Fig. 2.2, for different values of K.

It is seen that in general the subspace method performs better in the low cross-correlation

and high SNR region.

The average output SINR as a function of SNR and ρ for both blind detectors is shown

in Fig. 2.3. It is seen that the performance of the subspace blind detector deteriorates in

the high cross-correlation and low SNR region; whereas the performance of the DMI blind

detector is less sensitive to cross-correlation and SNR in this region. This phenomenon is

more clearly seen in Fig. 2.4 and Fig. 2.5, where the performance of the two blind detectors

is compared as a function of ρ and SNR respectively. The performance of the two blind

detectors as a function of the number of signal samples M is plotted in Fig. 2.6, where it

is seen that, for large M , both detectors converge to the true linear MMSE detector, with

the subspace blind detector converging much faster than the DMI blind detector; and the

performance gain offered by the subspace detector is quite significant for small values of M .

Finally, in Fig. 2.7, the performance of the two blind detectors is plotted as a function of the

number of users K. As expected from (2.132), the performance gain offered by the subspace

detector is significant for smaller value of K, and the gain diminishes as K increases to N .

Moreover, it is seen that the performance of the DMI blind detector is insensitive to K.

Simulation Examples

We consider a system with K = 11 users. The users’ spreading sequences are randomly

generated with processing gain N = 13. All users have the same amplitudes. Fig. 2.8 shows

both the analytical and the simulated SINR performance for the DMI blind detector and

the subspace blind detector. For each detector, the SINR is plotted as a function of the

number of signal samples (M) used for estimating the detector, at some fixed SNR. The

simulated and analytical BER performance of these estimated detectors is shown in Fig. 2.9.

The analytical BER performance is evaluated using the the approximation

Pe
∼= Q(

√
SINR), (2.149)

which effectively treats the output interference-plus-noise of the estimated detector as having

a Gaussian distribution. This can be viewed as a generalization of the results in [372], where
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Figure 2.2: Partition of the SNR-ρ plane according to the relative performance of the two

blind detectors. For each K, in the region above the boundary curve, the subspace blind

detector performs better; whereas in the region below the boundary curve, the DMI blind

detector performs better.
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Figure 2.3: The average output SINR versus SNR and ρ for the two blind detectors. N = 16,

K = 6, M = 150. The upper curve in the high SNR region represents the performance of

the subspace blind detector.
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Figure 2.4: The average output SINR versus ρ for the two blind detectors. N = 16, K = 6,

M = 150, SNR = 15dB.
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Figure 2.5: The average output SINR versus SNR for the two blind detectors. N = 16,

K = 6, M = 150, ρ = 0.4.
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Figure 2.6: The average output SINR versus the number of signal samples M for the two

blind detectors. N = 16, K = 6, ρ = 0.4, SNR = 15dB.

2 4 6 8 10 12 14 16
8

9

10

11

12

13

14

Number of users (K)

S
IN

R
 (

dB
)

N=16, M=150, SNR=15dB, ρ=0.4

DMI blind detector
subspace blind detector

Figure 2.7: The average output SINR versus the number of users K for the two blind

detectors. N = 16, M = 150, ρ = 0.4, SNR = 15dB.
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it is shown that the output of an exact linear MMSE detector is well-approximated with a

Gaussian distribution. From Fig. 2.8 and Fig. 2.9, it is seen that the agreement between the

analytical performance assessment and the simulation results is excellent, for both the SINR

and the BER. The mismatch between the analytical and simulation performance occurs for

small values of M , which is not surprising since the analytical performance is based on

asymptotic an analysis.
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Figure 2.8: The output average SINR versus the number of signal samples M for DMI and

subspace detectors. N = 13, K = 11. The solid line is the analytical performance, and the

dashed line is the simulation performance.

Finally we note that although in this section we treated only the performance analysis of

blind multiuser detection algorithms in simple real-valued synchronous CDMA systems, the

analysis for the more realistic complex-valued asynchronous CDMA with multipath channels

and blind channel estimation can be found in [192]. Some upper bounds on the achievable

performance of various blind multiuser detectors are obtained in [190, 191]. Furthermore,

large-system asymptotic performance analysis of blind multiuser detection algorithms is given

in [594].
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Figure 2.9: The BER versus the number of signal samplesM for DMI and subspace detectors.

N = 13, K = 11. The solid line is the analytical performance, and the dashed line is the

simulation performance.

2.6 Subspace Tracking Algorithms

It is seen from the previous section that the linear multiuser detectors are obtained once

the signal subspace components are identified. The classic approach to subspace estimation

is through batch eigenvalue decomposition (ED) of the sample autocorrelation matrix, or

batch singular value decomposition (SVD) of the data matrix, both of which are computa-

tionally too expensive for adaptive applications. Modern subspace tracking algorithms are

recursive in nature and update the subspace in a sample-by-sample fashion. An adaptive

blind multiuser detector can be based on subspace tracking by sequentially estimating the

signal subspace components, and forming the closed-form detector based on these estimates.

Specifically, suppose that at time (i− 1), the estimated signal subspace rank is K[i− 1] and

the components are U s[i− 1], Λs[i− 1] and σ2[i− 1]. Then at time i, the adaptive detector

performs the following steps to update the detector and to detect the data.

Algorithm 2.6 [Blind adaptive linear MMSE detector based on subspace tracking - syn-

chronous CDMA]

• Update the signal subspace: Using a particular signal subspace tracking algorithm, up-



82 CHAPTER 2. BLIND MULTIUSER DETECTION

date the signal subspace rank K[i] and the subspace components U s[i], Λs[i] and σ2[i].

• Form the detector and perform detection:

m1[i] = U s[i]Λs[i]
−1U s[i]

Hs1,

z1[i] = m1[i]
Hr[i],

β̂1[i] = sign {�(z1[i]z1[i− 1]∗)} .

Various subspace tracking algorithms are described in the literature, e.g., [42, 83, 92, 398,

403, 452, 484, 578]. Here we present two low-complexity subspace tracking algorithms, the

PASTd algorithm [578] and the more recently developed NAHJ algorithm [403].

2.6.1 The PASTd Algorithm

Let r[i] ∈ C
N be a random vector with autocorrelation matrix Cr = E

{
r[i] r[i]H

}
. Consider

the scalar function

J (W ) = E
{∥∥r[i] − WW Hr[i]

∥∥2
}

= tr (Cr) − 2 tr
(
W HCrW

)
+ tr

(
W HCrWW HW

)
, (2.150)

with a matrix argument W ∈ C
N×r (r < N). It can be shown that [578]:

• W is a stationary point of J (W ) if and only if W = U rQ, where U r ∈ C
N×r contains

any r distinct eigenvectors of Cr and Q ∈ C
r×r is any unitary matrix; and

• All stationary points of J (W ) are saddle points except when U r contains the r dom-

inant eigenvectors of Cr. In that case, J (W ) attains the global minimum.

Therefore, for r = 1, the solution of minimizing J (W ) is given by the most dominant

eigenvector of Cr. In real applications, only sample vectors r[i] are available. Replacing

(2.150) with the exponentially weighted sums yields

J (W [i]) =
i∑

n=0

βi−n
∥∥r[n] − W [i]W [i]Hr[n]

∥∥2
. (2.151)

The key issue of the PASTd (projection approximation subspace tracking with deflation)

approach is to approximate W [i]Hr[n] in (2.151), the unknown projection of r[n] onto the
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columns of W [i], by y[n] = W [n − 1]Hr[n], which can be calculated for 1 ≤ n ≤ i at time

i. This results in a modified cost function

J̃ (W [i]) =
i∑

n=0

βi−n
∥∥∥r[n] − W [i]y[n]

∥∥∥2

. (2.152)

The recursive least-squares (RLS) algorithm can then be used to solve for the W [i] that

minimizes the exponentially weighted least-squares criterion (2.152).

The PASTd algorithm for tracking the eigenvalues and eigenvectors of the signal subspace

is based on the deflation technique and can be described as follows. For r = 1, the most

dominant eigenvector is updated by minimizing J̃ (W [i]) in (2.152). Then the projection

of the current data vector r[i] onto this eigenvector is removed from r[i] itself. Now the

second most dominant eigenvector becomes the most dominant one in the updated data

vector and it can be extracted similarly. This procedure is applied repeatedly until all the

K eigenvectors are estimated sequentially.

Based on the estimated eigenvalues, using information theoretic criteria such as the

Akaike information criterion (AIC) or the minimum description length (MDL) criterion [548],

the rank of the signal subspace, or equivalently, the number of active users in the channel,

can be estimated adaptively as well [577]. The quantities AIC and MDL are defined as

follows:

AIC(k)
�
= (N − k)M lnα(k) + k(2N − k), (2.153)

MDL(k)
�
= (N − k)M lnα(k) +

k

2
(2N − k)lnM, (2.154)

k = 1, 2, · · · , N,

where M is the number of data samples used in the estimation. When an exponentially

weighted window with forgetting factor β is applied to the data, the equivalent number of

data samples is M = 1/(1 − β). α(k) in the above definitions is defined as

α(k) =

(
N∑

i=k+1

λ̂i

)
/(N − k)

(
N∏

i=k+1

λ̂i

)1/(N−k)
. (2.155)

The AIC (resp. MDL) estimate of subspace rank is given by the value of k that minimizes

the quantity (2.153) (resp. (2.154)). Finally the PASTd algorithm for both rank and signal
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subspace tracking is summarized in Table 1. The computational complexity of this algorithm

is (4K + 3)N + O(K) = O(NK) per update. The convergence dynamics of the PASTd

algorithm are studied in [579]. It is shown there that with a forgetting factor β = 1, under

mild conditions, this algorithm converges globally and almost surely to the signal eigenvectors

and eigenvalues.

Simulation Examples

In what follows we provide two simulation examples to illustrate the performance of the

subspace blind adaptive detector employing the PASTd algorithm.

Example 1: This example compares the performance of the subspace-based blind MMSE

detector with the performance of the minimum-output-energy (MOE) blind adaptive detector

proposed in [179]. It assumes a real-valued synchronous CDMA system with a processing

gainN = 31 and six users (K = 6). The desired user is User 1. There are four 10 dB multiple-

access interferers (MAIs) and one 20 dB MAI, i.e., A2
k/A

2
1 = 10, for k = 2, · · · , 5, and A2

k/A
2
1 =

100, for k = 6. The performance measure is the output signal-to-interference-plus-noise ratio

(SINR), defined as SINR
�
= E2

{
wT r

}
/Var

{
wT r

}
, where the expectation is with respect

to the data bits of the MAIs and the noise. In the simulation, the expectation operation

is replaced by the time averaging operation. For the PASTd subspace tracking algorithm,

we found that with a random initialization, the convergence is fairly slow. Therefore in the

simulations, the initial estimates of the eigencomponents of the signal subspace are obtained

by applying a SVD to the first 50 data vectors. The PASTd algorithm is then employed

thereafter for tracking the signal subspace. The time averaged output SINR versus number

of iterations is plotted in Fig. 2.10.

As a comparison, the simulated performance of the recursive least-squared (RLS) version

of the MOE blind adaptive detector is also shown in Fig. 2.10. It has been shown in [381]

that the steady-state SINR of this algorithm is given by SINR∞ = SINR∗
1+d+d·SINR∗ , where SINR∗

is the output SINR value of the exact linear MMSE detector, and d
�
= 1−β

2β
N (0 < β < 1

is the forgetting factor). Hence the performance of this algorithm is upper bounded by 1
d

when 1
d

� SINR∗, as is seen in Fig. 2.10. Although an analytical expression for the steady

state SINR of the subspace-based blind adaptive detector is very difficult to obtain, as the

dynamics of the subspace tracking algorithms are fairly complicated, it is seen from Fig. 2.10
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Updating the eigenvalues and eigenvectors of signal subspace {λk, uk}K
k=1

x1[i] = r[i]

FOR k = 1:Ki−1 DO

yk[i] = uk[i− 1]Hxk[i]

λk[i] = βλk[i− 1] + |yk[i]|2
uk[i] = uk[i− 1] + (xk[i] − uk[i− 1]yk[i]) yk[i]

∗/λk[i]

xk+1[i] = xk[i] − uk[i]yk[i]

END

σ2[i] = βσ2[i− 1] + ‖xKi−1+1[i]‖2/ (N −Ki−1)

Updating the rank of signal subspace Ki

FOR k = 1:Ki−1 DO

α(k) =
[∑N

j=k+1 λj[i]/N − k
]
/
(∏N

j=k+1 λj[i]
) 1

N−k

AIC(k) = (N − k)ln [α(k)] /(1 − β) + k(2N − k)
END

Ki = arg min0≤k≤N−1 AIC(k) + 1

IF Ki < Ki−1 THEN

remove {λk(t),uk[i]}Ki−1

k=Ki+1

ELSE IF Ki > Ki−1 THEN

uKi
[i] = xKi−1+1(i)/‖xKi−1+1[i]‖

λKi
[i] = σ2[i]

END

Table 2.1: The PASTd (Projection Approximation Subspace Tracking with deflation) algo-

rithm [577, 578] for tracking both the rank and signal subspace components of the received

signal r[i]. The rank estimation is based on the Akaike information criterion (AIC).
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that with the same forgetting factor β, the subspace blind adaptive detector well outperforms

the RLS MOE detector. Moreover, the RLS MOE detector has a computational complexity

of O(N2) per update, whereas the complexity per update of the subspace detector is O(NK).

Example 2: This example illustrates the performance of the subspace blind adaptive de-

tector in a dynamic multiple-access channel, where interferers may enter or exit the channel.

The simulation starts with six 10dB MAIs in the channel; at t = 2000, a 20dB MAI enters

the channel; at t = 4000, the 20dB MAI and three of the 10dB MAIs exit the channel. The

performance of the proposed detector is plotted in Fig. 2.11. It is seen that this subspace-

based blind adaptive multiuser detector can adapt fairly rapidly to the dynamic channel

traffic.
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Figure 2.10: Performance comparison between the subspace-based blind linear MMSE mul-

tiuser detector and the RLS MOE blind adaptive detector. The processing gain N = 31.

There are four 10dB MAI and one 20dB MAI in the channel, all relative to the desired

user’s signal. The signature sequence of the desired user is a m-sequence, while the signa-

ture sequences of the MAI are randomly generated. The signal to ambient noise ratio after

despreading is 20dB. The forgetting factor used in both algorithms is β = 0.995. The data

plotted are the average over 100 simulations.
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Figure 2.11: Performance of the subspace-based blind linear MMSE multiuser detector in a

dynamic multiple-access channel where interferers may enter or exit the channel. At t = 0,

there are six 10dB MAI in the channel; at t = 2000, a 20dB MAI enters the channel; at

t = 4000, the 20dB MAI and three of the 10dB MAI exit the channel. The processing

gain N = 31. The signal-to-noise ratio after despreading is 20dB. The forgetting factor is

β = 0.995. The data plotted are the average over 100 simulations.

2.6.2 QR-Jacobi Methods

QR-Jacobi methods constitute a family of SVD-based subspace tracking algorithms that rely

extensively on Givens rotations during the updating process. This reduces complexity and

has the advantage of maintaining the orthonormality of matrices. Members of this family

include the algorithms presented in [335, 390, 452].

Let

Y [i] =
[√
β

i
r[0] · · ·

√
βr[i− 1] r[i]

]
(2.156)

denote an N × (i + 1) matrix whose columns contain the exponentially windowed first i



88 CHAPTER 2. BLIND MULTIUSER DETECTION

snapshots of the received signal. The sample autocorrelation matrix of Y [i] and its eigende-

composition are given by

C[i] = Y [i]Y [i]H

= U s[i]Λs[i]U s[i]
H + Un[i]Λn[i]Un[i]H . (2.157)

Alternatively, the SVD of the data matrix Y [i] is given by

Y [i] = U [i]Σ[i]V [i]H

= [U s[i] Un[i]]

[
Σs[i] 0

0 Σn[i]

]
V [i]H , (2.158)

where in both (2.157) and (2.158) the columns of U s[i] contain the eigenvectors that span

the signal subspace, and Σs[i] =
√

Λs[i] contains the square roots of the corresponding

eigenvalues. Generally speaking, SVD-based subspace tracking algorithms attempt to track

the SVD of a data matrix of growing dimension, defined recursively as

Y [i] =
[√
βY [i− 1] | r[i]

]
.

The matrix V [i] need not be tracked. Furthermore, since the noise subspace does not need

to be calculated for the blind multiuser detection algorithm, we do not need to track Un[i].

This allows us to reduce complexity using noise averaging [220]. Since calculating the SVD

from scratch at each iteration is time consuming and expensive, the issue then is how best

to use the new measurement vector, r[i+ 1], to update the decomposition in (2.158).

Noise-averaged QR-Jacobi algorithms begin with a Householder transformation that ro-

tates the noise eigenvectors such that the projection of the new measurement vector r[i+ 1]

onto the noise subspace is parallel to the first noise vector, which we denote by un. Specifi-

cally, let

rs = U s[i]
Hr[i+ 1], (2.159)

and un =
r[i+ 1] − U s[i]rs

γ
, (2.160)

where γ = ‖r[i+ 1] − U s[i]rs‖. Then we may write the modified factorization

[√
βY [i] | r[i+ 1]

]
=

[
U s[i] | un | U⊥

n

] 
rs√

βΣ[i] γ

0


[

V [i]H 0

0 1

]
, (2.161)
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where U⊥
n represents the subspace of Un[i] that is orthogonal to un. The second step in

QR-Jacobi methods, sometimes called the QR step, involves the use of Givens rotations to

zero each entry of the measurement vector’s projection onto the signal subspace. We refer

the reader to [172] for details concerning the use of Givens matrices for this purpose. The QR

step replaces the last row in the middle matrix in the decomposition in (2.161) with zeros.

These are row-type transformations involving premultiplication of the middle matrix with

a sequence of orthogonal matrices. We do not need to accumulate these transformations in

V [i] since it does not need to be tracked.

The next step, the diagonalization step, involves at least one set each of column-type and

row-type rotations to further concentrate the energy in the middle matrix along its diagonal.

Sometimes called the refinement step, this is where many of the existing algorithms begin

to diverge. The RO-FST algorithm [390], for example, performs two fixed sets of rotations

in the diagonalization step but leaves the middle matrix in upper triangular form and does

not attempt a true diagonalization. This is particularly efficient for applications that do not

require a full set of eigenvalues, but is not useful here. The NA-CSVD algorithm [390], on the

other hand, attempts to optimize the choice of rotations to achieve the best diagonalization

possible.

2.6.3 NAHJ Subspace Tracking

The algorithm we present here was recently developed in [402, 403]. It is a member of the

QR-Jacobi family in the sense that it uses Givens rotations during the updating process.

However, this algorithm avoids the QR step entirely. Instead of working with the SVD-type

decomposition in (2.158), we work with the eigendecomposition of the form

C[i] = U [i]Σ2[i]U [i]H , (2.162)

where Σ2[i] is Hermitian and almost diagonal. This is simply the eigendecomposition (2.157)

except that we have relaxed the assumption that Λ[i] is perfectly diagonal. At each iteration

we use a Householder transformation and a vector outer product to update Σ2[i] directly.

We then use a single set of two-sided Givens rotations to partially diagonalize the resulting

Hermitian matrix. There is no need for a separate QR-step. Essentially, the diagonalization

process used in this algorithm is a partial implementation of the well known symmetric Jacobi
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SVD algorithm [172] (not to be confused with the family of QR-Jacobi update algorithms).

This algorithm is used to find the eigenstructure of a general fixed symmetric matrix and is

known to generate more accurate eigenvalues and eigenvectors than the symmetric QR SVD

algorithm, but with a higher computational complexity [308]. However, we do not perform

the full sweep of K(K − 1)/2 rotations required for the symmetric Jacobi algorithm, but

only a carefully selected set of about K rotations. This is sufficient because the matrix that

we wish to diagonalize already has much of its energy concentrated along the diagonal. This

is a situation that the Jacobi algorithm can take advantage of but which the QR algorithm

cannot. The Jacobi algorithm also has an inherent parallelism which the QR algorithm does

not. Table 2.2 contains a summary of this algorithm, which we term NAHJ (for Noise-

Averaged Hermitian-Jacobi) subspace tracking.

The Algorithm

The first step in NAHJ subspace tracking is the Householder transformation mentioned

previously. The second step involves generating a modified factorization that maintains the

equality

U [i]Σ2[i]UH [i] = βU [i− 1]Σ2[i− 1]U [i− 1]H + r[i]r[i]H . (2.163)

Step 3 requires that we apply (K + 1) Givens rotations in order to partially diagonalize

Ψ s. Ideally, we would apply these rotations to those off-diagonal elements having the largest

magnitudes. However, since the off-diagonal maxima can be located anywhere in Ψ s, finding

the optimal set of rotations requires an O(K2) search for each rotation. This leads to an

O(K3) complexity algorithm. In order to maintain low complexity we have implemented a

suboptimal alternative that is simple yet effective. Let z = [rH
s | β]H be the vector whose

outer product is used in the modified factorization of step 2. Suppose i0, 1 ≤ i0 ≤ K + 2

is the index of the element in z that has the largest magnitude. The set of elements we

choose to annihilate with the Givens rotations is given by {(Ψ s)i0,j}K+2
j=1 , j �= i0. Of course

if (Ψ s)i0,j is annihilated, so is (Ψ s)j,i0 . This choice of rotations is not optimal; in fact, since

we retain the off-diagonal information from the previous iteration we cannot even be sure

we annihilate the off-diagonal element in Ψ s with the largest magnitude. Nevertheless, we

see that the technique is very simple and is somewhat heuristically pleasing. Ultimately,
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performance is the measure of merit and simulations show that it performs very well. The

total computational complexity of the NAHJ subspace tracking algorithm is O(NK) per

update.

In order to adapt to changes in the size of the signal subspace (number of users) the

tracking algorithm must be rank-adaptive. As before, both the AIC and the MDL criteria

can be used for this purpose. In order to use this algorithm we must track at least one extra

eigenvalue/eigenvector pair. Hence the appearance of (K + 1) in Table 2.2.

Given: Σ2
s[i − 1], σ2[i − 1] and U s[i − 1]

1. Calculate rs, un, and γ according to (2.159) and (2.160).

2. Dropping the indices, generate the modified factorization

[
U s | un | U⊥

n

]



βΣ2
s 0

0 βσ2

0 σ2I

 +


 rs

β

 [rH
s | β] 0

0 0





UH

s

uH
n

U⊥
n

H

 .

3. Let Ψ s be the (K + 2) principal submatrix of the matrix sum

in step 2. Apply a sequence of (r + 1) Givens rotations to Ψ s to

produce Ψa = ΘT
K+1, · · · , ΘT

1 Ψ sΘ1, · · · , ΘT
K+1

4. Set Σ2
s[i] equal to the K + 1 principal submatrix of Y a

5. Let U s[i] be composed of the first (K + 1) columns of

[U s | un] Θ1 · · ·ΘK+1

6. Reaverage the noise power: σ2[i] = (N−K−2)(
√

γσ2[i−1])+|σ̂2|
N−K−1

where σ̂2 = Y a(K + 2, K + 2).

7. Let Λs[i] be the diagonal matrix whose diagonal is equal to

the first K elements of the diagonal of Ψa.

Table 2.2: The NAHJ (Noise-Averaged Hermitian-Jacobi) subspace tracking algorithm.

Simulation Example

This example compares the performance of the subspace blind adaptive multiuser detector

using the NAHJ subspace tracking algorithm, with that of the LMS MOE blind adaptive

multiuser detector. It assumes a synchronous CDMA system with seven users (K = 7),
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each employing a gold sequence of length-15 (N = 15). The desired user is User 1. There

are two 0dB and four 10dB interferers. The performance measure is the output SINR. The

performance is shown in Fig. 2.12. It is seen that the subspace blind detector significantly

outperforms the LMS MOE blind detector, both in terms of convergence rate and in terms of

steady-state SINR. Further applications of the NAHJ subspace tracking algorithm are found

in later chapters [cf. Sections 2.7.4, 3.5.2, 5.5.4, and 5.6.3].
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Figure 2.12: Performance comparison between the subspace blind adaptive multiuser de-

tector using the NAHJ subspace tracking algorithm, and the LMS MOE blind adaptive

multiuser detector.

2.7 Blind Multiuser Detection in Multipath Channels

In the previous sections, we have focused on the synchronous CDMA signal model. In a

practical wireless CDMA system, however, the users’ signals are asynchronous. Moreover,

the physical channel exhibits dispersion due to multipath effects which further distorts the

signals. In this section, we address blind multiuser detection in such channels. As will be

seen, the principal techniques developed in the previous sections can be applied to this more

realistic situation as well.
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2.7.1 Multipath Signal Model

We now consider a more general multiple-access signal model where the users are asyn-

chronous, and the channel exhibits multipath distortion effects. In particular, the multipath

channel impulse response of the kth user is modelled as

gk(t) =
L∑

l=1

αl,kδ(t− τl,k), (2.164)

where L is the total number of paths in the channel; αl,k and τl,k are, respectively, the

complex path gain and the delay of the kth user’s lth path, τ1,k < τ2,k < · · · < τL,k. The

received continuous-time signal in this case is given by

r(t) =
K∑

k=1

M−1∑
i=0

bk[i] {sk(t− iT ) � gk(t)} + n(t)

=
K∑

k=1

M−1∑
i=0

bk[i]
L∑

l=1

αl,ksk(t− iT − τl,k) + n(t), (2.165)

where � denotes convolution, and where sk(t) is the spreading waveform of the kth user given

by (2.2).

At the receiver, the received signal r(t) is filtered by a chip-matched filter and sampled

at a multiple (p) of the chip-rate, i.e., the sampling time interval is ∆ = Tc

p
= T

P
, where

P
�
= pN is the total number of samples per symbol interval. Let

ι
�
= max

1≤k≤K

{⌈
τL,k + Tc

T

⌉}
,

be the maximum delay spread in terms of symbol intervals. Substituting (2.2) into (2.165),

the qth signal sample during the ith symbol interval is given by

rq[i] =

∫ iT+(q+1)∆

iT+q∆

r(t)ψ(t− iT − q∆)dt

=

∫ iT+(q+1)∆

iT+q∆

ψ(t− iT − q∆)
K∑

k=1

M−1∑
m=0

bk[m]
L∑

l=1

αl,k
1√
N

N−1∑
j=0

sj,kψ(t−mT − τl,k − jTc)dt+ nq[i]

=
K∑

k=1

i∑
m=i−ι

bk[m]
L∑

l=1

αl,k
1√
N

N−1∑
j=0

sj,k

∫ iT+(q+1)∆

iT+q∆

ψ(t− iT − q∆)ψ(t−mT − τl,k − jTc)dt+ nq[i]
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=
K∑

k=1

ι∑
m=0

bk[i−m]
N−1∑
j=0

sj,k

fk[mP−jp+q]︷ ︸︸ ︷
1√
N

L∑
l=1

αl,k

∫ ∆

0

ψ(t)ψ(t− τl,k +mT − jTc + q∆)dt︸ ︷︷ ︸
hk[mP+q]

+nq[i], (2.166)

q = 0, · · · , P − 1; i = 0, · · · ,M − 1,

where nq[i] =

∫ iT+(q+1)∆

iT+q∆

n(t)ψ(t− iT − q∆)dt. Denote

r[i]︸︷︷︸
P×1

�
=


r0[i]

...

rP−1[i]

 , b[i]︸︷︷︸
K×1

�
=


b1[i]

...

bK [i]

 , n[i]︸︷︷︸
P×1

�
=


n0[i]

...

nP−1[i]

 ,

and H[j]︸︷︷︸
P×K

�
=


h1[jP ] · · · hK [jP ]

...
...

...

h1[jP + P − 1] · · · hK [jP + P − 1]

 , j = 0, · · · , ι.

Then (2.166) can be written in terms of vector convolution as

r[i] = H[i] � b[i] + n[i]. (2.167)

By stacking m successive sample vectors, we further define the following quantities

r[i]︸︷︷︸
Pm×1

�
=


r[i]
...

r[i+m− 1]

 , n[i]︸︷︷︸
Pm×1

�
=


n[i]
...

n[i+m− 1]

 , b[i]︸︷︷︸
K(m+ι)×1

�
=


b[i− ι]

...

b[i+m− 1]

 ,

and H︸︷︷︸
Pm×K(m+ι)

�
=


H[ι] · · · H[0] · · · 0

...
. . . . . . . . .

...

0 · · · H[ι] · · · H[0]

 ,
where the smoothing factor m is chosen according to m =

⌈
P+K
P−K

⌉
ι; Note that for such m,

the matrix H is a “tall” matrix, i.e., Pm ≥ K(m+ ι). We can then write (2.167) in matrix

form as

r[i] = H b[i] + n[i]. (2.168)
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2.7.2 Linear Multiuser Detectors

Suppose that we are interested in demodulating the data of User 1. Then (2.167) can be

written as

r[i] = H1[0]b1[i] +
ι∑

j=1

H1[j]b1[i− j] +
K∑

k=2

ι∑
j=0

Hk[j]bk[i− j] + n[i], (2.169)

where Hk[m] denotes the kth column of H[m]. In (2.169), the first term contains the data

bit of the desired user at time i; the second term contains the previous data bits of the

desired user, i.e., we have intersymbol interference (ISI); and the last term contains the

signals from other users, i.e., multiple-access interference (MAI). Hence compared with the

synchronous model considered in the previous sections, the multipath channel introduces ISI

which together with MAI, must be contended with at the receiver. Moreover, the augmented

signal model (2.168) is very similar to the synchronous signal model (2.5). We proceed to

develop linear receivers for this system.

A linear receiver for this purpose can be represented by a (Pm)-dimensional complex

vector w1 ∈ C
Pm, which is correlated with the received signal r[i] in (2.168), to obtain

z1[i] = wH
1 r[i]. (2.170)

The coherent detection rule is then given by

b̂1[i] = sign {� (z1[i])} ; (2.171)

and the differential detection rule is given by

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} . (2.172)

As before, two forms of such linear detectors are the linear decorrelating detector and the

linear minimum mean-square error (MMSE) detector, which are described next.

Linear Decorrelating Detector

The linear decorrelating detector for User 1 has the form of (2.170)-(2.172) with the weight

vector w1 = d1, such that both the multiple-access interference (MAI) and the intersymbol

interference (ISI) are completely eliminated at the detector output. 2

2In the context of equalization, this detector is known as a zero-forcing equalizer.



96 CHAPTER 2. BLIND MULTIUSER DETECTION

Denote by 1l the [K(m + ι)]-vector with all-zero entries except for the lth entry, which

is one. Recall that the smoothing factor m is chosen such that the matrix H in (2.168) is a

tall matrix. Assume that H has full column rank, i.e., rank(H) = K(m + ι)
�
= r. Let H†

be the Moore-Penrose generalized inverse of the matrix H , i.e.,

H† =
(
HHH

)−1
HH . (2.173)

The linear decorrelating detector for User 1 is then given by

d1 = H†H1Kι+1 = H
(
HHH

)−1
1Kι+1. (2.174)

Using (2.168) and (2.174), we have

z1[i]
�
= dH

1 r[i] = 1H
Kι+1

(
HHH

)−1
HHHb[i] + dH

1 b[i]

= 1H
Kι+1b[i] + dH

1 n[i]

= b1[i] + dH
1 n[i]. (2.175)

It is seen from (2.175) that both the MAI and the ISI are completely eliminated at the

output of the linear zero-forcing detector. In the absence of noise (i.e., n[i] = 0), the data

bit of the desired user, b1[i], is perfectly recovered.

Linear MMSE Detector

The linear minimum mean-square error (MMSE) detector for User 1 has the form of (2.170)-

(2.172) with the weight vector w1 = m1, where m1 ∈ C
Pm is chosen to minimize the output

mean-square error (MSE), i.e.,

m1 = arg min
w∈CPm

E
{∥∥b1[i] − wHr[i]

∥∥2
}

= C−1
r h̄1, (2.176)

where

Cr = E
{
r[i]r[i]H

}
= HHH + σ2IPm, (2.177)

and h̄1
�
= E {r[i]b1[i]} = H1Km+1 (2.178)

=
[
h1[0], · · · , h1[P − 1], · · · · · · , h1[ιP ], · · · , h1[ιP + P − 1]︸ ︷︷ ︸

hT

k

, 0, · · · , 0︸ ︷︷ ︸
[P (m− ι− 1)] 0’s

]T

.
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Subspace Linear Detectors

Let λ1 ≥ λ2 ≥ · · · ≥ λPm be the eigenvalues of Cr in (2.177). Since the matrix H has full

column rank r
�
= K(m+ ι), the signal component of the covariance matrix Cr, i.e.,

(
HHH

)
has rank r. Therefore we have

λi > σ2, for i = 1, · · · , r,
and λi = σ2, for i = r + 1, · · · , Pm.

By performing an eigendecomposition of the matrix Cr, we obtain

Cr = U sΛsU
H
s + σ2 UnUH

n , (2.179)

where Λs = diag(λ1, · · · , λr) contains the r largest eigenvalues of Cr in descending or-

der and U s = [u1 · · · ur] contains the corresponding orthogonal eigenvectors; and

Un = [ur+1 · · · uPm] contains the (Pm − r) orthogonal eigenvectors that correspond to

the eigenvalue σ2. It is easy to see that range (H) = range (U s). As before, the column

space of U s is called the signal subspace and its orthogonal complement, the noise subspace,

is spanned by the columns of Un.

Following exactly the same line of developement as in the synchronous case, it can be

shown that, the linear decorrelating detector given by (2.174), and the linear MMSE detector

given by (2.176), can be expressed in terms of the above signal subspace components, as [539]

d1 = U s

(
Λs − σ2Ir

)−1
UH

s h̄1, (2.180)

and m1 = U sΛ
−1
s UH

s h̄1. (2.181)

Decimation-Combining Linear Detectors

The linear detectors discussed above operate in a (Pm)-dimensional vector space. As will be

seen in the next section, the major computation in channel estimation involves computing the

singular value decomposition (SVD) of the autocorrelation matrix Cr of dimension (Pm ×
Pm), which has computational complexity O(P 3m3). By down-sampling the received signal

sample vector r[i] by a factor of p, it is possible to construct the linear detectors in an (Nm)-

dimensional space, and to reduce the total computational complexity of channel estimation
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by a factor of O(p2). (Recall that p is the chip over-sampling factor.) This technique is

described next.

For q = 0, · · · , p− 1, denote

rq[i]
�
=


rq[i]

rq+p[i]
...

rq+p(N−1)[i]


N×1

, vq[i]
�
=


nq[i]

nq+p[i]
...

nq+p(N−1)[i]


N×1

,

Hm[j]
�
=


h1[mP + q] · · · hK [mP + q]

h1[mP + q + p] · · · hK [mP + q + p]
...

...
...

h1[mP + q + p(N − 1)] · · · hK [mP + q + p(N − 1)]


N×K

, m = 0, 1, · · · , ι

rq[i]
�
=


rq[i]

...

rq[i+m− 1]


Nm×1

, nq[i]
�
=


nq[i]

...

nq[i+m− 1]


Nm×1

,

and Hq
�
=


Hq[ι] · · · Hq[0] · · · 0

...
. . . . . . . . .

...

0 · · · Hq[ι] · · · Hq[0]


Nm×K(m+ι)

.

Similarly as before, we can write

rq[i] = Hq b[i] + nq[i], q = 0, · · · , p− 1. (2.182)

Assume that Nm ≥ K(m + ι) (i.e., the matrix Hq is a tall matrix), and rank(Hq) =

K(m + ι) (i.e., Hq has full column rank). For each down-sampled received signal rq[i], the

corresponding weight vectors for User 1’s linear decorrelating detector and the linear MMSE

detector are given respectively by

d1,q = Hq

(
HH

q Hq

)−1
1Kι+1, (2.183)

and m1,q = C−1
q h̄1,q =

(
HqH

H
q + σ2Ir

)−1
Hq1Kι+1, (2.184)

where Cq
�
= E

{
rq[i]rq[i]

H
}
. By computing the subspace components of the autocorrelation

matrix Cq, subspace versions of the above linear detectors can be constructed in the similar

forms as (2.180) and (2.181).
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In order to detect User 1’s data bits, each down-sampled signal vector rq[i] is correlated

with the corresponding weight vector to obtain

z1,q[i] = wH
1,qrq[i] [w1,q = d1,q or w1,q = m1,q], (2.185)

q = 0, · · · , p− 1.

The data bits are then demodulated according to

b̂1[i] = sign

{
�
(

p−1∑
q=0

z1,q[i]

)}
, coherent detection, (2.186)

β̂1[i] = sign

{
�
(

p−1∑
q=0

z1,q[i]z1,q[i− 1]∗
)}

, differential detection. (2.187)

In the decimation-combining approach described above, since the signal vectors have di-

mension (Nm), the complexity of estimating each decimated channel response hk,q, q =

0, · · · , p− 1, is O(N3m3). Hence the total complexity of channel estimation is O(pN3m3) =

O(P 3m3/p2), i.e., a reduction of O(p2) is achieved compared with the (Pm)-dimensional

detectors. However, the number of users that can be supported by this receiver structure is

reduced by a factor of p. That is, for a given smoothing factor m, the number of users that

can be accommodated by the (Pm)-dimensional detector is
⌈

m−ι
m+ι

· P⌉
; whereas by forming

p (Nm)-dimensional detectors and then combining their outputs, the number of users that

can be supported reduces to
⌈

m−ι
m+ι

·N⌉
.

2.7.3 Blind Channel Estimation

It is seen from the above discussion that unlike the synchronous case, where the linear

detectors can be written in closed-form once the signal subspace components are identified;

in multipath channels, the composite channel response vector of the desired user, h̄1, is

needed to form the blind detector. This vector can be viewed as the channel-distorted

original spreading waveform s1. The multipath channels can be estimated by transmitting

a training sequence [31, 60, 109, 433, 573, 602]. Alternatively, the channel can also be

estimated blindly by exploiting the orthogonality between the signal and noise subspaces

[30, 270, 475, 539, 542]. We next address the problem of blind channel estimation. From
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(2.166),

hk[n] =
N−1∑
j=0

sj,kfk[n− jp], (2.188)

n = 0, 1, · · · , (ι+ 1)P − 1,

with fk[m]
�
=

1√
N

L∑
l=1

αl,k

∫ ∆

0

ψ(t)ψ(t− τl,k +m∆), (2.189)

m = 0, 1, · · · , ιpµ− 1,

where (pµ) is the length of the channel response {fk[m]}, which satisfies

pµ =

⌈
τL,k

Tc

⌉
=

⌈
τL,k

T
· T
Tc

⌉
≤ ιN. (2.190)

Decimate hk[n] into p sub-sequences as

hk,q[m]
�
= hk[q +mp] =

N−1∑
j=0

sj,k fk[q + (m− j)p]︸ ︷︷ ︸
fk,q[m−j]

, (2.191)

q = 0, · · · , p− 1; m = 0, · · · , (ι+ 1)N − 1,

Note that the sequences fk,q[m] are obtained by down-sampling the sequence {fk[m]} by a

factor of p, i.e.,

fk,q[m]
�
= fk[q +mp], (2.192)

m = 0, · · · , ιN − 1; q = 0, · · · , p− 1.

From (2.191) we have

{hk,q[0], · · · , hk,q[(ι+ 1)N − 1]}
= {s0,k, · · · , sN−1,k} � {fk,q[0], · · · , fk,q[µ− 1]}. (2.193)

Denote

hk,q =


hk,q[0]

...

hk,q[(ι+ 1)N − 1]


(ι+1)N×1

, f k,q =


fk,q[0]

...

fk,q[ιN − 1]


µ×1

,



2.7. BLIND MULTIUSER DETECTION IN MULTIPATH CHANNELS 101

and Ξk =



s0,k

s1,k s0,k

... s1,k
. . .

...
...

. . . s0,k

sN−1,k
... s1,k

sN−1,k
...

. . .
...

sN−1,k


(ι+1)N×µ

.

Then (2.193) can be written in matrix form as

hk,q = Ξk f k,q. (2.194)

Finally, denote

hk =



hk[0]
...

hk[P − 1]
...

hk[ιP ]
...

hk[(ι+ 1)P − 1]


(ι+1)P×1

, fk =


fk[0]

...

fk[pµ− 1]


pµ×1

.

Then we have

hk = Ξ̃k f k, (2.195)
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where Ξ̃k is an [(ι+ 1)P × pµ] matrix formed from the signature waveform of kth user. For

instance, when the over-sampling factor p = 2, we have

hk =



hk,0[0]

hk,1[0]
...

hk,0[N − 1]

hk,1[N − 1]
...

hk,0[(ι+ 1)N − 1]

hk,1[(ι+ 1)N − 1]


2(ι+1)N×1

, fk =



fk,0[0]

fk,1[0]
...

fk,0[µ− 1]

fk,1[µ− 1]


2µ×1

,

and Ξ̃k =



s0,k

0 s0,k

s1,k 0 s0,k

0 s1,k 0 s0,k

...
. . . . . . . . . . . .

...
. . . . . . . . . s0,k

sN−1,k 0 s1,k 0

sN−1,k 0 s1,k

. . . 0
. . .

...
. . .

...

sN−1,k


2(ι+1)N×2µ

.

For other values of p, the matrix Ξ̃k is similarly constructed.

Recall that when the ambient channel noise is white, through an eigendecomposition on

the autocorrelation matrix of the received signal [cf.(2.179)], the signal subspace and the noise

subspace can be identified. The channel response f k can then be estimated by exploiting

the orthogonality between the signal subspace and the noise subspace [30, 270, 475, 539].

Specifically, since Un is orthogonal to the column space of H , and h̄k
�
= H1Kι+k is in the
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column space of H [cf.(2.178)], we have

UH
n h̄k = UH

n Ξkfk = 0, (2.196)

where

h̄k =

[
hk

0(m−ι−1)P×1

]
=

[
Ξ̃k

0(m−ι−1)P×pµ

]
︸ ︷︷ ︸

Ξk

fk. (2.197)

Based on the above relationship, we can obtain an estimate of the channel response f k by

computing the minimum eigenvector of the matrix
(
Ξ

H

k UnU
H
n Ξk

)
. The condition for the

channel estimate obtained in such a way to be unique is that the matrix
(
UH

n Ξk

)
has rank

(pµ−1), which necessitates this matrix to be tall, i.e., [Pm−K(m+ι)] ≥ pµk. Since µ ≤ ιN

[cf.(2.190)], we therefore choose the smoothing factor m to satisfy

Pm−K(m+ ι) ≥ ιP = ιkNp ≥ pµ. (2.198)

That is, m = �P−K
P+K

· ι	. On the other hand, the condition (2.198) implies that for fixed m,

the total number of users that can be accommodated in the system is �m−ι
m+ι

· P 	.
Finally, we summarize the batch algorithm for blind linear multiuser detection in multi-

path CDMA channels, as follows.

Algorithm 2.7 [Subspace blind linear multiuser detector - multipath CDMA]

• Estimate the signal subspace:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H (2.199)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (2.200)

• Estimate the channel and form the detector:

f̂ 1 = min-eigenvector
(
Ξ

H

1 ÛnÛ
H

n Ξ1

)
, (2.201)

ˆ̄h1 = Ξ1f̂ 1, (2.202)

d̂1 = Û s

(
Λ̂s − σ̂2Ir

)
Û

H

s
ˆ̄h1, [linear decorrelating detector] (2.203)

m̂1 = Û sΛ̂sÛ
H

s
ˆ̄h1. [linear MMSE detector] (2.204)
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• Perform differential detection:

z1[i] = ŵH
1 r[i], [ŵ1 = d̂1 or ŵ1 = m̂1], (2.205)

β̂1[i] = sign {� (z1[i]z1[i− 1]∗)} , (2.206)

i = 1, · · · ,M − 1.

Alternatively, if the linear receiver has the decimation-combining structure, the noise

subspace Un,q is computed for each q = 0, · · · , p − 1. The corresponding channel response

fk,q can then be estimated from the orthogonality relationship

UH
n,qhk,q = UH

n,qΞkfk,q = 0, q = 0, · · · , p− 1. (2.207)

Simulation Examples

The simulated system is an asynchronous CDMA system with processing gain N = 15.

The m-sequences of length 15 and their shifted versions are employed as the user spreading

sequences. The chip pulse is a raised cosine pulse with roll-off factor 0.5. Each user’s channel

has L = 3 paths. The delay of each path τl,k is uniformly distributed on [0, 10Tc]. Hence

the maximum delay spread is one symbol interval, i.e., ι = 1. The fading gain of each path

in each user’s channel is generated from a complex Gaussian distribution and is fixed over

the duration of one signal frame. The path gains in each user’s channel are normalized

so that all users’ signals arrive at the receiver with the same power. The over sampling

factor is p = 2. The smoothing factor is m = 2. Hence this system can accommodate up

to �m−ι
m+ι

· P 	 = 10 users. If the decimation-combining receiver structure is employed, then

the maximum number of users is �m−ι
m+ι

· N	 = 5. The length of each user’s signal frame is

M = 200.

We first consider a 5-user system. For the (Pm)-dimensional implementations, the bit

error rates of a particular user incurred by the exact linear MMSE detector, the exact

linear zero-forcing detector and the estimated linear MMSE detector are plotted in Fig. 2.13.

The bit error rates of the same user incurred by the three detectors using the decimation-

combining structure are plotted in Fig. 2.14. It is seen that, for the exact linear zero-forcing

and linear MMSE detectors, the performance under the two structures is identical. For the

blind linear MMSE receiver, the (Pm)-dimensional detector achieves approximately 1dB
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performance gain over the decimation-combining detector, for (Eb/N0) in the range of 4-

12dB. Another observation is that the blind linear MMSE detector tends to exhibit an error

floor at high (Eb/N0). This is due to the finite length of the signal frame, from which

the detector is estimated. Next a 10-user system is simulated using the (Pm)-dimensional

detectors. The performance of the same user by the three detectors is plotted in Fig. 2.15.
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Figure 2.13: Performance of the (Pm)-dimensional linear detectors in a 5-user system with

white noise.

2.7.4 Adaptive Receiver Structures

We next consider adaptive algorithms for sequentially estimating the blind linear detector.

First, we address adaptive implementation of the blind channel estimator discussed above.

Suppose the signal subspace U s is known. Denote by z[i] the projection of the received

signal r[i] onto the noise subspace, i.e.,

z[i]
�
= r[i] − U sU

H
s r[i] (2.208)

= UnUH
n r[i]. (2.209)

Since z[i] lies in the noise subspace, it is orthogonal to any signal in the signal subspace.

In particular, it is orthogonal to h̄1 = Ξ1f 1. Hence f 1 is the solution to the following
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Figure 2.14: Performance of decimation-combining linear detectors in a 5-user system with

white noise.
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Figure 2.15: Performance of the (Pm)-dimensional linear detectors in a 10-user system with

white noise.
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constrained optimization problem

min
f 1∈Cpµ

E

{∥∥∥(Ξ1f 1

)H
z[i]

∥∥∥2
}
, s.t. ‖f 1‖ = 1. (2.210)

In order to obtain a sequential algorithm to solve the above optimization problem, we write

it in the following (trivial) state space form

f 1[i] = f 1[i], state equation

0 =
(
Ξ

H

1 z[i]
)H

f 1[i], observation equation

The standard Kalman filter can then be applied to the above systems, as follows. (We define

x[i]
�
= Ξ

H

1 z[i].)

k[i] = Σ[i− 1]x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
, (2.211)

f 1[i] = f 1[i− 1] − k[i]
(
x[i]Hf 1[i]

)
/
∥∥f 1[i− 1] − k[i]

(
x[i]Hf 1[i]

)∥∥ , (2.212)

Σ[i] = Σ[i− 1] − k[i]x[i]HΣ[i− 1]. (2.213)

Note that (2.212) contains a normalization step to satisfy the constraint ‖f 1[i]‖ = 1.

Since the subspace blind detector may be written in closed-form as a function of the signal

subspace components, one may use a suitable subspace tracking algorithm in conjuction

with this detector and a channel estimator to form an adaptive detector that is able to

track changes in the number of users and their composite signature waveforms. Fig. 2.16

contains a block diagram of such a receiver. The received signal r[i] is fed into a subspace

tracker that sequentially estimates the signal subspace components (U s,Λs). The signal r[i]

is then projected onto the noise subspace to obtain z[i], which is in turn passed through a

linear filter that is determined by the signature sequence of the desired user. The output of

this filter is fed into a channel tracker that estimates the channel state of the desired user.

Finally, the linear MMSE detector is constructed in closed-form based on the estimated signal

subspace components and the channel state. The adaptive receiver algorithm is summarized

as follows. Suppose that at time (i−1), the estimated signal subspace rank is r[i−1] and the

components are U s[i− 1], Λs[i− 1] and σ2[i− 1]. The estimated channel vector is f 1[i− 1].

Then at time i, the adaptive detector performs the following steps to update the detector

and estimate the data.
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Algorithm 2.8 [Adaptive blind linear multiuser detector based on subspace tracking - mul-

tipath CDMA]

• Update the signal subspace: Use a particular signal subspace tracking algorithm to

update the signal subspace rank r[i] and the subspace components U s[i], Λs[i].

• Update the channel: Use (2.211)-(2.213) to update the channel estimate f 1[i].

• Form detector and perform differential detection:

m1[i] = U s[i]Λs[i]
−1U s[i]

Hh̄1[i], (2.214)

z1[i] = m1[i]
Hr[i], (2.215)

β̂1[i] = sign {�(z1[i]z1[i− 1]∗)} . (2.216)

r[i]

I - U Us s
H

U   s Λs
h1

mH
1 r[i]z[i] = 

h1m  = U      U Λ1
-1

s ss
H β 1[i]

subspace

tracker

signal channel

tracker

blind linear detector

Ξ1

filterz[i]projector

Figure 2.16: Blind adaptive multiuser receiver for multipath CDMA systems.

Simulation Example

We next give a simulation example illustrating the performance of the blind adaptive receiver

in an asynchronous CDMA system with multipath channels. The processing gain N = 15

and the spreading codes are Gold codes of length 15. Each user’s channel has L = 3 paths.

The delay of each path τk,l is uniformly distributed on [0, 10Tc]. Hence, as in the preceding

example, the maximum delay spread is one symbol interval, i.e., ι = 1. The fading gain of
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each path in each user’s channel is generated from a complex Gaussian distribution and is

fixed for all simulations. The path gains in each user’s channel are normalized so that all

users’ signals arrive at the receiver with the same power. The smoothing factor is m = 2.

The received signal is sampled at twice the chip-rate (p = 2). Hence the total number of

users this system can accommodate is 10. Fig. 2.17 is shows the performance of subspace

blind adaptive receiver using the NAHJ subspace tracking algorithm [402], in terms of output

SINR. During the first 1000 iterations there are 8 total users. At iteration 1000, 4 new users

are added to the system. At iteration 2000, one additional known user is added and three

existing users vanish. We see that this blind adaptive receiver can closely track the dynamics

of the channel.
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Figure 2.17: Performance of the subspace blind adaptive multiuser detector in an asyn-

chronous CDMA system with multipath.

We note that there are many other approaches to blind multiuser detection in multipath

CDMA channels, such as the constrained optimization methods [58, 57, 76, 183, 296, 300,

301, 418, 476, 478, 481, 489, 575, 576, 595], the auxiliary vector method [360], the subspace

methods [10, 30, 249, 255, 270, 285, 437, 475, 539, 542, 556], the linear prediction methods

[65, 114, 203, 596], the multistage Wiener filtering method [153, 182], the constant modulus

method [75, 214, 574], the spreading code design method [426], the maximum-likelihood
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method [54], the parallel factor method [438], the least-squares smoothing method [474,

600], the method based on cyclostationarity [346], and the more general methods based on

multiple-input multiple-output (MIMO) blind channel identification [74, 210, 259, 294, 453,

485, 486, 487, 488].

2.7.5 Blind Multiuser Detection in Correlated Noise

So far in developing the subspace-based linear detectors and the channel estimation methods,

the ambient channel noise is assumed to be temporally white. In practice such an assump-

tion may be violated due to, for example, the interference from some narrowband sources.

The techniques developed under the white noise assumption are not applicable to channels

with correlated ambient noise. In this subsection, we discuss subspace methods for joint

suppression of MAI and ISI in multipath CDMA channels with unknown correlated ambient

noise, which were first developed in [542]. The key assumption here is that the signal is

received by two antennas well separated so that the noise is spatially uncorrelated.

We start with the received augmented discrete-time signal model given by (2.168). As-

sume that the ambient noise vector n[i] has a covariance matrix Σ
�
= E

{
n[i]n[i]H

}
. Then

the (Pm× Pm) autocorrelation matrix Cr of the received signal r[i] is given by

Cr = HHH + Σ. (2.217)

The linear MMSE detector m1 for User 1 is given by (2.176) with Cr replaced by (2.217).

As before we must first estimate the desired user’s composite signature waveform h̄1 given

by (2.197). Notice, however, that when the ambient noise is correlated, it is not possible

to separate the signal subspace from the noise subspace based solely on the autocorrelation

matrix Cr.

In order to estimate the channel in unknown correlated noise, we make use of two antennas

at the receiver. Then the two augmented received signal vectors at the two antennas can be

written respectively as

r1[i] = H1b[i] + n1[i], (2.218)

and r2[i] = H2b[i] + n2[i], (2.219)

where H1 and H2 contain the channel information corresponding to the respective antennas.

It is assumed that the two antennas are well separated so that the ambient noise is spatially
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uncorrelated. In other words, n1[i] and n2[i] are uncorrelated, and their joint covariance is

given by

E

{[
n1[i]

n2[i]

] [
n1[i]

H n2[i]
H

]}
=

[
Σ1 0

0 Σ2

]
, (2.220)

where Σ1 and Σ2 are unknown covariance matrices of the noise at the two antennas. The

joint autocorrelation matrix of the received signal at the two antennas is then given by

C
�
= E

{[
r1[i]

r2[i]

] [
r1[i]

H r2[i]
H

]}
=

[
C11 C12

C21 C22

]
, (2.221)

where the submatrices are given by

C11
�
= E

{
r1[i]r1[i]

H
}

= H1 HH
1 + Σ1, (2.222)

C22
�
= E

{
r2[i]r2[i]

H
}

= H2 HH
2 + Σ2, (2.223)

and C12 = CH
21

�
= E

{
r1[i]r2[i]

H
}

= H1 HH
2 . (2.224)

We next consider two methods for estimating the noise subspaces from the received signals

at the two antennas.

Singular Value Decomposition (SVD)

Assume that both H1 and H2 have full column rank r
�
= K(m + ι), then the matrix C12

also has rank r. Consider the singular value decomposition (SVD) of the matrix C12,

C12 = H1H
H
2 = U 1 Γ UH

2 . (2.225)

The (Pm × Pm) diagonal matrix Γ has the form Γ = diag(γ1, · · · , γr, 0, · · · , 0), with γ1 ≥
· · · ≥ γr > 0. Now if we partition the matrix U j as U j = [U j,s | U j,n], for j = 1, 2, where

U j,s and U j,n contain the first r columns and the last (Pm− r) columns of U j, respectively,

then the column space of U j,n is orthogonal to the column space of Hj, i.e.,

range(Hj) = range(U j,n), j = 1, 2, (2.226)

where range(Hj) denotes the orthogonal complement space of range(Hj). User 1’s channel

corresponding to antenna j, f j,1, can then be estimated from the orthogonality relationship

UH
j,nh̄j,1 = UH

j,nΞ1f j,1 = 0, j = 1, 2. (2.227)
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Canonical Correlation Decomposition (CCD)

Assume that the matrices C11 and C22 are both positive definite. The canonical correlation

decomposition (CCD) of the matrix C12 is given by [17]

C
−1/2
11 C12 C

−1/2
22 = U 1 Γ UH

2 , (2.228)

or

C−1
11 C12 C−1

22 = C
−1/2
11 U 1 Γ UH

2 C
−1/2
22 . (2.229)

The (Pm×Pm) matrix Γ has the form Γ = diag(γ1, · · · , γr, 0, · · · , 0), with γ1 ≥ · · · ≥ γr > 0.

Let

Lj = C
−1/2
jj U j, j = 1, 2. (2.230)

Partition the matrix Lj such that

Lj = [Lj,s | Lj,n] =
[
C

−1/2
jj U j,s | C

−1/2
jj U j,n

]
(2.231)

where Lj,s and Lj,n are the first r columns and the last (Pm−r) columns of Lj, respectively.

The matrix U j are similarly partitioned into U j,s and U j,n. We have [572]

range(Hj) = range(Lj,n), j = 1, 2. (2.232)

Note that however Lj,s does not necessarily span the signal subspace range(Hj) [572].

Now suppose that we have estimated the composite signature waveform of the desired

user h̄j,1, using the identified noise subspace Lj,n. Since h̄j,1 ∈ range(Hj), we have

mj,1 = C−1
jj h̄j,1 = LjL

H
j h̄j,1 = Lj,sL

H
j,sh̄j,1, (2.233)

where the second equality in (2.233) follows from (2.230) and the fact that U j is a unitary

matrix; and the third equality follows from the fact that LH
j,nh̄j,1 = 0.

Let the estimated weight vectors of the linear MMSE detectors at the two antennas be

m̂j,1, j = 1, 2. In order to make use of the received signal at both antennas, we use the

following equal gain differential combining rule for detecting the differential bit β1[i],

zj,1[i] = m̂H
j,1rj[i], j = 1, 2, (2.234)

β̂1[i] = sign

{
�
(

2∑
j=1

zj,1[i]zj,1[i− 1]∗
)}

. (2.235)
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We next summarize the procedures for computing the linear MMSE detector m̂j,1 in

unknown correlated noise based on the above discussion. Let

Y j =
[
rj[0] rj[1] · · · rj[M − 1]

]
, j = 1, 2, (2.236)

be the matrix of M received augmented signal sample vectors at antenna j corresponding

to one block of data transmission.

Algorithm 2.9 [Blind linear MMSE detector in multipath CDMA with correlated noise -

SVD-based method]

• Compute the auto- and cross-correlation matrices

Ĉij =
1

M
Y iY

H
j , i, j = 1, 2. (2.237)

• Perform an SVD on Ĉ12 to get the noise subspace Û j,n, j = 1, 2.

• Compute the composite signature waveforms ˆ̄hj,1, by solving

Û
H

j,nh̄j,1 = 0 =⇒ Û
H

j,nΞ1f j,1 = 0, j = 1, 2. (2.238)

• Form the linear MMSE detectors

m̂j,1 = Ĉ
−1

jj
ˆ̄hj,1, j = 1, 2. (2.239)

• Perform differential detection according to (2.234)-(2.235).

Algorithm 2.10 [Blind linear MMSE detector in multipath CDMA with correlated noise -

CCD-based method]

• Perform QR decomposition

1√
M

Y H
j = Q̂jΥ̂ j, j = 1, 2. (2.240)

• Perform an SVD on
(
Q̂

H

1 Q̂2

)
Q̂

H

1 Q̂2 = V̂ 1Γ̂ V̂
H

2 . (2.241)
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• Compute

L̂j = Υ̂
−1

j V̂ j, j = 1, 2, (2.242)

where Υ̂ j is an upper triangular matrix.

• Partition L̂j =
[
L̂j,s | L̂j,n

]
. Compute the composite signature waveforms ˆ̄hj,1, j =

1, 2, by solving

L̂
H

j,nh̄j,1 = 0 =⇒ L̂
H

j,nΞ1f j,1 = 0. (2.243)

• Form the linear MMSE detectors

m̂j,1 = L̂j,sL̂
H

j,s
ˆ̄hj,1, j = 1, 2. (2.244)

• Perform differential detection according to (2.234)-(2.235).

The above procedure is based on the fast algorithm for computing CCD given in [572].

Note that the above two methods operate on the (Pm)-dimensional signal vectors

rj[i], j = 1, 2. The exact same procedures can be applied to the decimated received signal

vectors, to operate on the (Nm)-dimensional signal vectors rj,q[i], j = 1, 2, q = 0, · · · , p− 1.

As before, such decimation-combining approach reduces the computational complexity by

a factor of O(p2). It also reduces the number of users that can be accommodated in the

system by a factor of p.

Simulation Examples

We illustrate the performance of the above detectors via simulation examples. The simulated

system is the same as that in Section 2.7.3, except that the ambient noise is temporally

correlated. The noise at each antenna j is modelled by a second order AR model with

coefficients aj = [aj,1, aj,2], i.e., the noise field is generated according to

nj[i] = aj,1nj[i− 1] + aj,2nj[i− 2] + wj[i], j = 1, 2, (2.245)

where nj[i] is the noise at antenna j and sample i, and wj[i] is a complex white Gaussian noise

sample with unit variance. The AR coefficients at the two arrays are chosen as a1 = [1,−0.2]

and a2 = [1.2,−0.3].
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Figure 2.18: Performance of the (Pm)-dimensional blind linear MMSE detectors in a 5-user

system with correlated noise.
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Figure 2.19: Performance of decimation-combining blind linear MMSE detectors in a 5-user

system with correlated noise.
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Figure 2.20: Performance of the (Pm)-dimensional blind linear MMSE detectors in a 10-user

system with correlated noise.

We first consider a 5-user system. In Fig. 2.18 the performance of the (Pm)-dimensional

blind linear MMSE detectors is plotted, for both the SVD-based and the CCD-based meth-

ods. The corresponding performance by the decimation-combining receiver structure is plot-

ted in Fig. 2.19. Next a 10-user system is simulated and the performance of the (Pm)-

dimensional blind linear MMSE detectors is plotted in Fig. 2.20.

It is seen from Fig. 2.18 - Fig. 2.20 that the CCD-based detectors have superior perfor-

mance to the SVD-based detectors. It has been shown that the CCD has the optimality

property of maximizing the correlation between the two sets of linearly transformed data

[17]. Maximizing the correlation of the two data sets can yield the best estimate of the

correlated (i.e., signal) part of the data. CCD makes use of the information of both Ĉ11

and Ĉ22 together with Ĉ12 and creates the maximum correlation between the two data sets.

On the other hand, SVD uses only the information Ĉ12 and does not create the maximum

correlation between the two data sets, and thus yields inferior performance.



2.8. APPENDICES 117

2.8 Appendices

2.8.1 Derivations in Section 2.3.3

Derivation of Equation (2.61)

Recall that the RLS algorithm for updating the blind linear MMSE algorithm is as follows:

k[i]
�
=

Cr[i− 1]−1r[i]

λ+ rH [i]Cr[i− 1]−1r[i]
, (2.246)

h[i]
�
= Cr[i]

−1s1 (2.247)

=
1

λ

(
h[i− 1] − k[i]r[i]Hh[i− 1]

)
, (2.248)

m1[i] =
1

sT
1 h[i]

h[i], (2.249)

and Cr[i]
−1 =

1

λ

(
Cr[i− 1]−1 − k[i]r[i]HCr[i− 1]−1

)
. (2.250)

We first derive an explicit recursive relationship between m1[i] and m1[i− 1]. Define

α[i]
�
= sT

1 Cr[i]
−1s1 = sT

1 h[i]. (2.251)

Premultiplying both sides of (2.248) by sT
1 , we get

α[i] =
1

λ

(
α[i− 1] − sT

1 k[i]r[i]Hh[i− 1]
)
. (2.252)

From (2.252) we obtain

α[i]−1 = λ

(
α[i− 1]−1 +

α[i− 1]−2sT
1 k[i]r[i]Hh[i− 1]

1 − sT
1 k[i]rH [i]h[i− 1]α[i− 1]−1

)
= λ

(
α[i− 1]−1 + α[i− 1]−1β[i]r[i]Hh[i− 1]

)
, (2.253)

where

β[i]
�
=

α[i− 1]−1sT
1 k[i]

1 − sT
1 k[i]r[i]Hh[i− 1]α[i− 1]−1

. (2.254)

Substituting (2.248) and (2.253) into (2.249), we get

m1[i] = α[i]−1h[i]

= λα[i− 1]h[i] + λβ[i]
(
α[i− 1]r[i]Hh[i− 1]

)︸ ︷︷ ︸
ξ[i]∗

h[i]

= α[i− 1]
(
h[i− 1] − k[i]r[i]Hh[i− 1]

)
+ λβ[i]ξ[i]∗h[i]

= m1[i− 1] − ξ[i]∗k[i] + λβ[i]ξ[i]∗h[i], (2.255)
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where

ξ[i]
�
= m1[i− 1]Hr[i]

= α[i− 1]h[i− 1]Hr[i] (2.256)

is the a priori least-squares (LS) estimate at time i. It is shown below that

k[i] = Cr[i]
−1r[i], (2.257)

and λβ[i] = z[i]. (2.258)

Substituting (2.247) and (2.257) into (2.255), we get

m1[i] = m1[i− 1] − Cr[i]
−1r[i]ξ[i]∗ + Cr[i]

−1s1z[i]ξ[i]
∗. (2.259)

Therefore, by (2.259) we have

z[i]
�
= m1[i]

Hr[i] = ξ[i] − (
rH [i]Cr[i]

−1r[i]
)︸ ︷︷ ︸

v[i]Hv[i]

ξ[i] +
(
sT

1 Cr[i]
−1r[i]

)︸ ︷︷ ︸
α[i]z[i]

z[i]∗ξ[i]

= ξ[i] − (
v[i]Hv[i]

)
ξ[i] + α[i]|z[i]|2α[i]ξ[i], (2.260)

where v[i] is defined in (2.56). Therefore from (2.260) we get

ξ[i] =
z[i]

1 − (v[i]Hv[i]) + α[i]|z[i]|2 . (2.261)

Finally, we derive (2.257) and (2.258). Postmultipling both sides of (2.250) by r[i], we

get

Cr[i]
−1r[i] =

1

λ

[
Cr[i− 1]−1 − k[i]r[i]HC[i− 1]−1r[i]

]
. (2.262)

On the other hand, (2.246) can be rewritten as

k[i] =
1

λ

[
Cr[n− 1]−1 − k[i]r[i]HC[i− 1]−1r[i]

]
. (2.263)

Equation (2.257) is obtained by comparing (2.262) and (2.263). Multiplying both sides of

(2.253) by sT
1 k[i], we get

α[i]−1sT
1 k[i] = λ

(
α[i− 1]−1sT

1 k[i] + α[i− 1]−1β[i]r[i]Hh[i− 1]sT
1 k[i]

)
. (2.264)

Equation (2.254) can be rewritten as

β[i] = α[i− 1]−1sT
1 k[i] + α[i− 1]−1β[i]r[i]Hh[i− 1]sT

1 k[i]. (2.265)

Equation (2.258) is obtained comparing (2.264) and (2.265).



2.8. APPENDICES 119

Derivation of Equations (2.62)–(2.69)

Suppose an application of the rotation matrix Q[i] yields the following form

Q[i][A1 A2] = [B1 B2]. (2.266)

Then because of the orthonormal property of Q[i], i.e., QH [i]Q[i] = I, taking the outer prod-

ucts of each side of (2.266) with their respective Hermitians, we get the following identities

AH
1 A1 = BH

1 B1, (2.267)

AH
1 A2 = BH

1 B2, (2.268)

and AH
2 A2 = BH

2 B2. (2.269)

Associating A1 with the first N columns of the partitioned matrix on the left-hand side of

(2.62), and B1 with the first N columns of the partitioned matrix on the right-hand side of

(2.62), then (2.267), (2.268) and (2.269) yield

C[i]HC[i] = λC[i− 1]HC[i− 1] + r[i]r[i]H , (2.270)

C[i]Hu[i] = C[i− 1]Hu[i− 1], (2.271)

C[i]Hv[i] = r[i], (2.272)

λu[i]Hu[i] + λ|η[i]|2 = u[i− 1]Hu[i− 1], (2.273)

u[i]Hv[i] + η[i]∗γ[i] = 0, (2.274)

and v[i]Hv[i] + |γ[i]|2 = 1. (2.275)

A comparison of (2.270)–(2.272) with (2.54)–(2.56) shows that C[i], u[i] and v[i] in (2.62) are

the correct updated quantities at time n. Moreover, (2.67) follows from (2.273) and (2.57);

(2.68) follows from (2.274) and (2.59); and (2.69) follows from (2.275) and (2.261).

2.8.2 Proofs in Section 2.4.4

Proof of Lemma 2.3

Denote

H
�
= SAST ,

and G
�
= WΣ†T V T |A|−2V Σ†W T .
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Note that the eigendecomposition of H is given by

H
�
= SAST = UΛ0U

T . (2.276)

Then the Moore-Penrose generalized inverse [185] of matrix H is given by

H† =
(
SAST

)†
= UΛ†

0U
T . (2.277)

On the other hand, the Moore-Penrose generalized inverse H† of a matrix H is the unique

matrix that satisfies [185] (a) HH† and H†H are symmetric; (b) HH†H = H ; and (c)

H†HH† = H†. Next we show that G = H† by verifying these three conditions. We first

verify condition (a). Using (2.106), we have

HG =
(
WΣV T AV ΣT W T

) (
WΣ†T V T |A|−2V Σ†W T

)
= WΣΣ†W T , (2.278)

where the second equality follows from the facts that W T W = IN and ΣT Σ†T = V T V =

V V T = IK . Since the N ×N diagonal matrix ΣΣ† = diag (IK ,0), it follows from (2.278)

that HG is symmetric. Similarly GH is also symmetric. Next we verify condition (b).

HGH =
(
WΣV T AV ΣT W T

) (
WΣ†T V T |A|−2V Σ†W T

) (
WΣV T AV ΣT W T

)
= WΣΣ†ΣV T AV ΣT W T

= WΣV T AV ΣT W T

= SAST = H , (2.279)

where in the second equality, the following facts are used: W T W = IN , ΣT Σ†T = IK and

V T V = V V T = IK ; the third equality follows from the fact that ΣΣ†Σ = Σ. Condition

(c) can be similarly verified, i.e., GHG = G. Therefore, we have

UΛ†
0U

T = H† = G = WΣ†T V T |A|−2V Σ†W T . (2.280)

Now (2.107) follows immediately from (2.280) and the fact UT U = UUT = IN . �

2.8.3 Proofs in Section 2.5.2

Some Useful Lemmas

We first list some lemmas which will be used in proving the results in Section 2.5.2. A

random matrix is said to be Gaussian distributed, if the joint distribution of all its elements
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is Gaussian. First we have the following vector form of the central limit theorem.

Lemma 2.4 (Theorem 1.9.1B in [434]) Let {xi} be i.i.d. random vectors with mean µ and

covariance matrix Σ. Then

√
M

(
1

M

M∑
i=1

xi − µ

)
→ N (0,Σ), in distribution, as M → ∞.

Next we establish that the sample auto-correlation matrix Ĉr given by (2.122) is asymptot-

ically Gaussian distributed as the sample size M → ∞.

Lemma 2.5 Denote

Cr = E
{
r[i]r[i]T

}
, (2.281)

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]T , (2.282)

and ∆Cr
�
= Ĉr − Cr. (2.283)

Then
√
M∆Cr converges in probability towards a Gaussian matrix with mean 0 and an

(N2 ×N2) covariance matrix whose elements are specified by

M · cov {[∆Cr]i,j, [∆Cr]m,n}

= [Cr]i,m[Cr]j,n + [Cr]i,n[Cr]j,m − 2
K∑

α=1

A4
α[sα]i[sα]j[sα]m[sα]n. (2.284)

Proof: Since Ĉr given by (2.284) has E{Ĉr} = Cr, and it is a sum of i.i.d. terms
(
r[i]r[i]T

)
,

by Lemma 2.4, it is asymptotically Gaussian, with an (N2 × N2) covariance matrix whose

elements are given by the covariance of the zero-mean random matrix
(
r[i]r[i]T

)
. To calculate

this covariance, note that (for notational convenience, in what follows we drop the time index

i.)

[
rrT

]
i,j

=
K∑

α=1

K∑
β=1

AαAβ[sα]i[sβ]jbαbβ

+
K∑

α=1

Aα[sα]ibαnj +
K∑

α=1

Aα[sα]jbαni + ninj. (2.285)
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We have

cov
{[

rrT
]
i,j
,
[
rrT

]
m,n

}
=

K∑
α=1

K∑
β=1

K∑
γ=1

K∑
λ=1

AαAβAγAλ[sα]i[sβ]j[sγ]m[sλ]n cov{bαbβ, bγbλ}︸ ︷︷ ︸
δα=γδβ=λ+δα=λδβ=γ−2 δα=β=γ=λ

+
K∑

α=1

K∑
β=1

AαAβ[sα]i[sβ]m cov{bαni, bβnm}︸ ︷︷ ︸
σ2 δα=βδi=m

+
K∑

α=1

K∑
β=1

AαAβ[sα]i[sβ]n cov{bαni, bβnn}︸ ︷︷ ︸
σ2 δα=βδi=n

+
K∑

α=1

K∑
β=1

AαAβ[sα]j[sβ]m cov{bαnj, bβnm}︸ ︷︷ ︸
σ2 δα=βδj=m

+
K∑

α=1

K∑
β=1

AαAβ[sα]j[sβ]n cov{bαnj, bβnn}︸ ︷︷ ︸
σ2 δα=βδj=n

+ cov{ninj, nmnn}︸ ︷︷ ︸
σ4 (δi=mδj=n+δi=nδj=m)

=
K∑

α=1

K∑
β=1

A2
αA

2
β {[sα]i[sα]m[sβ]j[sβ]n + [sα]i[sα]n[sβ]j[sβ]m}

+σ2

K∑
α=1

A2
α{[sα]i[sα]mδj=n + [sα]i[sα]nδj=m + [sα]j[sα]mδi=n + [sα]j[sα]nδi=m}

−2
K∑

α=1

A4
α[sα]i[sα]j[sα]m[sα]n + σ4 (δi=mδj=n + δi=nδj=m)

= [Cr]i,m[Cr]j,n + [Cr]i,n[Cr]j,m − 2
K∑

α=1

A4
α[sα]i[sα]j[sα]m[sα]n, (2.286)

where the last equality follows from the fact that

[Cr]i,j =

[
K∑

k=1

A2
ksks

T
k + σ2IN

]
i,j

=
K∑

α=1

A2
α[sα]i[sα]j + σ2δi=j. (2.287)

�

Note that the last term of (2.284) is due to the non-normality of the received signal r[i].

If the signal had been Gaussian, the result would have been the first two terms of (2.284)
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only (compare this result with Theorem 3.4.4 in [17]). Using a different modulation scheme

(other than BPSK) will result in a different form for the last term in (2.284).

In what follows, we will make frequent use of the differential of a matrix function (cf.

[412], Chapter 14). Consider a function f : R
n → R

m. Recall that the differential of f at a

point x0 is a linear function Lf (·; x0) : R
n → R

m, such that

∀ε > 0, ∃δ > 0 : ‖x − x0‖ < δ ⇒ ‖f(x) − f(x0) − Lf (x − x0; x0)‖ < ε. (2.288)

If the differential exists, it is given by Lf (x; x0) = T (x0)x, where T (x0)
�
=

∂f
∂x |x=x0 . Let

y = f(x) and consider its differential at x0. Denote ∆x
�
= x − x0 and ∆y

�
= Lf (∆x; x0).

Hence for fixed x0, ∆y is a function of ∆x; and for fixed x0, if x is random, so is ∆y. We

have the following lemma regarding the asymptotic distribution of a function of a sequence

of asymptotically Gaussian vectors.

Lemma 2.6 (Theorem 3.3A in [434]) Suppose that x(M) ∈ R
n is asymptotically Gaussian,

i.e.,

√
M [x(M) − x0] → N (0,Cx), in distribution, as M → ∞.

Let f : R
n → R

m be a function. Denote y(M) = f [x(M)]. Suppose that f has a nonzero

differential Lf (x; x0) = T (x0)x at x0. Denote ∆x(M)
�
= x(M) − x0, and ∆y(M) =

T (x0)∆x(M). Then

√
M [y(M) − f(x0)] → N (0,Cy), in distribution, as M → ∞, (2.289)

where

Cy = T (x0)CxT (x0)
T �

= lim
M→∞

T (x0)E {∆x(M)∆x(M)}T (x0)
T (2.290)

= lim
M→∞

E
{
∆y(M)∆y(M)T

}
. (2.291)

To calculate Cy we can use either (2.290) or (2.291). When dealing with functions of

matrices, however, it is usually easier to use (2.291). In what follows, we will make use of

the following identities of matrix differentials.

C = f(X)
�
= MX =⇒ ∆C = M∆X, (2.292)

C = f(X,Y )
�
= XY =⇒ ∆C = X∆Y +∆XY , (2.293)

C = f(X)
�
= X−1 =⇒ ∆C = −X−1∆XX−1. (2.294)
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Finally, we have the following lemma regarding the differentials of the eigencomponents of

a symmetric matrix. It is a generalization of Theorem 13.5.1 in [17]. Its proof can be found

in [193].

Lemma 2.7 Let the N × N symmetric matrix C0 have an eigendecomposition C0 =

U 0Λ0U
T
0 , where the eigenvalues satisfy λ0

1 > λ
0
2 > · · · > λ0

K > λ0
K+1 = λ0

K+2 = · · · = λ0
N .

Let ∆C be a symmetric variation of C0 and denote C
�
= C0 + ∆C. Let T be a unitary

transformation of C as

T (C)
�
= UT

0 CU 0. (2.295)

Denote the eigendecomposition of T as

T = WΛW T . (2.296)

(Note that if C = C0, then W = IN and Λ = Λ0.) The differential of Λ at Λ0, and the

differential of W at IN , as a function of ∆T = U 0∆CUT
0 , are given respectively by

∆λk = [∆T ]k,k, 1 ≤ k ≤ K, (2.297)

[∆W ]i,k =

 0, i = k
1

λ0
k−λ0

i
[∆T ]i,k, i �= k

, 1 ≤ i ≤ N, 1 ≤ k ≤ K. (2.298)

Proof of Theorem 2.1

DMI Blind Detector - Consider the function Ĉr → ŵ1 = Ĉ
−1

r s1. The differential of ŵ1

at Cr is given by

∆w1 = −C−1
r ∆CrC

−1
r s1, (2.299)

where ∆Cr
�
= Ĉr − Cr. Then according to Lemma 2.6,

√
M (ŵ1 − w1) is asymptotically

Gaussian as M → ∞, with zero-mean and covariance matrix given by (2.291)3

Cw
�
= M · E {

∆w1∆wT
1

}
= M · E {

C−1
r ∆CrC

−1
r s1s

T
1 C−1

r ∆CrC
−1
r

}
= M · C−1

r E
{
∆Crw1w

T
1∆Cr

}
C−1

r . (2.300)

3We do not need the limit here, since the covariance matrix of (
√

M∆Cr) is independent of M .
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Now, by Lemma 2.5, we have

M · E {
∆Crw1w

T
1∆Cr

}
i,j

= M · E
{

N∑
m=1

N∑
n=1

[∆Cr]i,m[w1]m[∆Cr]j,n[w1]n

}

=
N∑

m=1

N∑
n=1

(
[Cr]i,j[Cr]m,n + [Cr]i,n[Cr]m,j − 2

K∑
α=1

A4
α[sα]i[sα]j[sα]l[sα]m

)
[w1]m[w1]n

= [Cr]i,j

(
N∑

m=1

N∑
n=1

[Cr]m,n[w1]m[w1]n

)
︸ ︷︷ ︸

wT
1 Crw1

+

(
N∑

m=1

[Cr]m,j[wj]k

)
︸ ︷︷ ︸

[Crw1]j

(
N∑

n=1

[Cr]i,n[w1]i

)
︸ ︷︷ ︸

[Crw1]i

−2
K∑

α=1

[sα]i[sα]jA
4
α

(
N∑

m=1

[sα]m[w1]m

)
︸ ︷︷ ︸

sT
αw1

2

. (2.301)

Writing (2.301) in a matrix form, we have

M · E {
∆Crw1w

T
1∆Cr

}
= Cr

(
wT

1 Crw1

)
+ Crw1w

T
1 Cr − 2SDST , (2.302)

with

D
�
= diag

{
A4

1(s
T
1 w1)

2, A4
2(s

T
2 w1)

2, · · · , A4
K(sT

Kw1)
2
}
.

The eigendecomposition of Cr is

Cr = U sΛsU
T
s + σ2UnU

T
n . (2.303)

Substituting (2.302) and (2.303) into (2.300), we get

M · Cw = (wT
1 Crw1)C

−1
r + w1w

T
1 − 2C−1

r SDST C−1
r

=
(
wT

1 s1

)(
U sΛ

−1
s UT

s +
1

σ2
UnU

T
n

)
+ w1w

T
1

−2

(
U sΛ

−1
s UT

s +
1

σ2
UnU

T
n

)
SDST

(
U sΛ

−1
s UT

s +
1

σ2
UnU

T
n

)
=

(
wT

1 s1

)
U sΛ

−1
s UT

s + w1w
T
1 − 2U sΛ

−1
s UT

s SDST U sΛ
−1
s UT

s +

[
wT

1 s1

σ2

]
︸ ︷︷ ︸

τ

UnUT
n ,
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where the last equality follows from the fact that UT
nS = 0. �

Subspace Blind Detector - We will prove the following more general proposition, which

will be used in later proofs. The part of Theorem 2.1 for the subspace blind detector follows

with v = s1.

Proposition 2.6 Let w1 = U sΛ
−1
s UT

s v be the weight vector of a detector, v ∈ range(S),

and let ŵ1 = Û sΛ̂
−1

s Û
T

s v be the weight vector of the corresponding estimated detector. Then

√
M (ŵ1 − w1) → N (0,Cw), in distribution, as M → ∞,

with

Cw =
(
wT

1 v1

)
U sΛ

−1
s UT

s + w1w
T
1 − 2U sΛ

−1
s UT

s SDST U sΛ
−1
s UT

s + τUnUT
n , (2.304)

where

D
�
= diag

{
A4

1

(
sT

1 w1

)2
, A4

2

(
sT

2 w1

)2
, · · · , A4

K

(
sT

Kw1

)2
}
, (2.305)

and τ
�
= σ2vT U sΛ

−1
s

(
Λs − σ2IK

)−2
UT

s v. (2.306)

Proof: Consider the function (Û s, Λ̂s) → ŵ1 = Û sΛ̂
−1

s Û
T

s v. By Lemma 2.6,√
M (ŵ1 − w1) is asymptotically Gaussian as M → ∞, with zero-mean and covariance

matrix given by Cw
�
= M ·E {

∆w1∆wT
1

}
, where ∆w1 is the differential of ŵ1 at (U s,Λs).

Denote U = [U s Un]. Define

T
�
= UT ĈrU = UT

(
Û sΛ̂sÛ

T

s + ÛnΛ̂nÛ
T

n

)
U . (2.307)

Since T is a unitary transformation of Ĉr, its eigenvalues are the same as those of Ĉr. Hence

its eigendecomposition can be written as

T = W sΛ̂sW
T
s + W nΛ̂nW

T
n , (2.308)

where W = [W s W n]
�
= UT [Û sÛn]U are eigenvectors of T . From (2.307) and (2.308) we

have

Û sΛ̂
−1

s Û
T

s = UW sΛ̂
−1

s W T
s UT . (2.309)
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Thus we have

∆w1 = ∆
(
Û sΛ̂

−1

s Û
T

s

)
v

= U ∆
(
W sΛ̂

−1

s W T
s

)
UT v︸ ︷︷ ︸

z

. (2.310)

The differential in (2.310) at (IN ,Λ) is given by

∆
(
W sΛ̂

−1

s W T
s

)
= ∆W sΛ

−1
s ET

s + EsΛ
−1
s ∆W T

s − EsΛ
−2
s ∆ΛsE

T
s , (2.311)

where Es is composed of the first K columns of IN . Using Lemma 2.7, after some manipu-

lations, we have

[z]i =
K∑

k=1,k �=i

1

λk(λk − λi)
[∆T ]i,k[U

T v]k

+

(
1

λi

K∑
k=1,k �=i

1

λi − λk

[∆T ]k,i[U
T v]k − 1

λ2
i

[∆T ]i,i[U
T v]i

)
δi≤K

=

[
− 1

λi

K∑
k=1

1

λk

[∆T ]i,k[U
T v]k

]
δi≤K +

[
K∑

k=1

1

λk(λk − λi)
[∆T ]i,k[U

T v]k

]
δi>K

=
K∑

k=1

1

λkγk,i

[∆T ]i,k[U
T v]k, (2.312)

with γk,i
�
= −λi δi≤K +

(
λk − σ2

)
δi>K , (2.313)

where we have used the fact that ∆T is symmetric, i.e., [∆T ]i,j = [∆T ]j,i. Denote

y
�
= UT r. (2.314)

Then Cy = UT CrU = Λ. Moreover, we have ∆T = ∆Cy. Since E{∆T } = 0, by Lemma

2.5, for 1 ≤ i, j ≤ N ,

M · E {[∆T ]i,k, [∆T ]j,l}
= M · cov {[∆Cy]i,k, [∆Cy]j,l}

= [Cy]i,j[Cy]k,l + [Cy]i,l[Cy]k,j − 2
K∑

α=1

A4
α[UT sα]i[U

T sα]k[U
T sα]j[U

T sα]l

= λiλk(δi=jδk=l + δi=lδk=j) − 2
K∑

α=1

A4
α[UT sα]i[U

T sα]k[U
T sα]j[U

T sα]l. (2.315)
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Using (2.312) and (2.315), we have

M · E
{[

zzT
]
i,j

}
=

K∑
k=1

K∑
l=1

M · E {[∆T ]i,k[∆T ]j,l}
λkγk,iλlγl,j

[UT v]k[U
T v]l

= λi δi=j

K∑
k=1

[UT v]2k
λkγk,iγk,j

+
[UT v]i[U

T v]j
γi,jγj,i

−2
K∑

α=1

A4
α[UT sα]i[U

T sα]j

(
K∑

k=1

[UT sα]k[U
T v]k

λkγk,i

)(
K∑

k=1

[UT sα]k[U
T v]k

λkγk,j

)

=

[
δi=j

λi

K∑
k=1

[UT
s v]2k
λk

]
δi≤K +

[
δi=j σ

2

K∑
k=1

[UT
s v]2k

λk (λk − σ2)2

]
δi>K +

[
[UT

s v]i[U
T
s v]j

λiλj

]
δi≤Kδj≤K

−2

 K∑
α=1

A4
α[UT

s sα]i[U
T
s sα]j

λiλj

(
K∑

k=1

1

λk

[UT
s sα]k[U

T
s v]k

)2
 δi≤Kδj≤K (2.316)

where (2.316) follows from the fact that

UT v =

[
UT

s v

UT
nv

]
=

[
UT

s v

0

]
, (2.317)

since it is assumed that v ∈ range(S); a similar relationship holds for UT sα. Writing (2.316)

in matrix form, we obtain

M · E {
zzT

}
= diag(µΛs, τIN−K) +

[
Λ−1

s UT
s v

] [
Λ−1

s UT
s v

]T − 2 Λ−1
s UT

s SDST U sΛ
−1
s

(2.318)

where

µ
�
=

K∑
k=1

[UT
s v]2k
λk

= vT U sΛ
−1
s UT

s v = vT w1, (2.319)

τ
�
= σ2

K∑
k=1

[UT
s v]2k

λk (λk − σ2)2 = σ2vT U sΛ
−1
s

(
Λs − σ2IK

)−2
UT

s v, (2.320)

and

D
�
= diag

A4
α

(
K∑

k=1

1

λk

[UT
s sα]k[U

T
s v]k

)2


K

α=1

= diag
{
A4

α

(
sT

αU sΛ
−1
s U−1

s v
)2
}K

α=1
= diag

{
A4

α

(
sT

αw1

)2
}K

α=1
. (2.321)
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Finally by (2.310), M ·E {
∆w1∆wT

1

}
= M · UE {

zzT
}

UT . Substituting (2.318) into this

expansion, we obtain (2.304). �

Proof of Corollary 2.1

First we compute the term given by (2.120). Using (2.303) and (2.128), and the fact that

UT
s Un = 0, we have

tr(CwCr) = sT
1 w1tr(U sΛ

−1
s UT

s U sΛsU
T
s︸ ︷︷ ︸

U sU
T

s

) + tr(w1s
T
1 U sΛ

−1
s UT

s U sΛsU
T
s︸ ︷︷ ︸

U sU
T

s

)

−2tr(U sΛ
−1
s UT

s SDST U sΛ
−1
s UT

s U sΛsU
T
s︸ ︷︷ ︸

U sU
T

s

) + τσ2tr(UnU
T
nUnU

T
n︸ ︷︷ ︸

UnU
T

n

)

= A+B − 2C +D, (2.322)

with

A = sT
1 w1tr(U

T
s U s) = KsT

1 w1, (2.323)

B = tr(sT
1 U sU

T
s U sΛ

−1
s UT

s s1) = tr(sT
1 U sΛ

−1
s UT

s s1) = sT
1 w1, (2.324)

C = tr(ST U sU
T
s U sΛ

−1
s UT

s SD) = tr(ST U sΛ
−1
s UT

s S︸ ︷︷ ︸
W =[w1 ···wK ]

D) =
K∑

k=1

A4
k(s

T
k w1)

2(sT
k wk),

(2.325)

and

D = τσ2tr(UT
nUn) = (N −K)τσ2. (2.326)

Hence we have

tr(CwCr) = (K + 1)sT
1 w1 − 2

K∑
k=1

A4
k

(
sT

k w1

)2 (
sT

k wk

)
+ (N −K)τσ2. (2.327)

Next note that the linear MMSE detector can also be written in terms of R, as [511]

W = [w1 · · · wK ]
�
= C−1S = S

(
R + σ2A−2

)−1
A−2. (2.328)

Therefore we have

sT
k wl = A−2

l

[
ST S

(
R + σ2A−2

)−1
]

k,l
= A−2

l

[
R

(
R + σ2A−2

)−1
]

k,l
(2.329)

and ‖w1‖2 = A−4
1

[(
R + σ2A−2

)−1
R

(
R + σ2A−2

)−1
]

1,1
(2.330)



130 CHAPTER 2. BLIND MULTIUSER DETECTION

By (2.130), for the DMI blind detector, we have τσ2 = sT
1 w1; and for the subspace blind

detector,

τσ2 = σ4
[
ST U sΛ

−1
s UT

s︸ ︷︷ ︸
W T

U s

(
Λs − σ2IK

)−1
UT

s U s

(
Λs − σ2IK

)−1
UT

s S︸ ︷︷ ︸
SR−1A−2

]
1,1

= σ4
[
A−2

(
R + σ2A−2

)−1
ST U s

(
Λs − σ2IK

)−1
UT

s S︸ ︷︷ ︸
D=SR−1A−2

R−1A−2
]

1,1

=
σ4

A4
1

[(
R + σ2A−2

)−1
A−2R−1

]
1,1
, (2.331)

where we have used the fact that the decorrelating detector can be written as [540]

D = U s

(
Λs − σ2IK

)−1
UT

s S = SR−1A−2. (2.332)

Finally substituting (2.327)-(2.331) into (2.119), we obtain (2.132). �

SINR for Equicorrelated Signals

In this case, R is given by

R
�
= ST S = ρ11T + (1 − ρ)IK , (2.333)

where 1 is an all-1 K-vector. It is straightforward to verify the following eigen-structure of

R,

R =
K∑

k=1

µkvkv
T
k , (2.334)

with

µ1 = 1 + (K − 1)ρ, v1 =
1√
K

1, (2.335)

µk = 1 − ρ, k = 2, · · · , K. (2.336)

Since A2 = A2IK , we have

R
(
R + σ2A−2

)−1
=

(
K∑

i=1

µiviv
T
i

)(
K∑

j=1

1

µj + σ2

A2

vjv
T
j

)
=

K∑
i=1

µi

µi + σ2

A2

viv
T
i
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=
1

µ2 + σ2

A2

K∑
i=1

µiviv
T
i︸ ︷︷ ︸

R

+µ1

(
1

µ1 + σ2

A2

− 1

µ2 + σ2

A2

)
v1v

T
1

=
1

µ2 + σ2

A2︸ ︷︷ ︸
a

R +
µ1

K

(
1

µ1 + σ2

A2

− 1

µ2 + σ2

A2

)
︸ ︷︷ ︸

b

11T . (2.337)

Similarly we obtain

(
R + σ2A−2

)−1
R

(
R + σ2A−2

)−1
=

1(
µ2 + σ2

A2

)2︸ ︷︷ ︸
a′

R +
µ1

K

[
1(

µ1 + σ2

A2

)2 − 1(
µ2 + σ2

A2

)2

]
︸ ︷︷ ︸

b′

11T ,

(2.338)

A2 · (R + σ2A−2
)−1

A−2R−1 =
1(

µ2 + σ2

A2

)
µ2

2︸ ︷︷ ︸
a′′

R +
µ1

K

[
1(

µ1 + σ2

A2

)
µ2

1

− 1(
µ2 + σ2

A2

)
µ2

2

]
︸ ︷︷ ︸

b′′

11T .

(2.339)

Substituting (2.337)-(2.339) into (2.132)-(2.135), and by defining

α
�
=

(
wT

1 s2

wT
1 s1

)2

, (2.340)

β
�
=

σ2

A2

‖w1‖2

(wT
1 s1)

2 , (2.341)

γ
�
= A2 · wT

1 s1, (2.342)

η
�
=

τσ2

A2 (wT
1 s1)

2 . (2.343)

we obtain expression (2.143) for the average output SINR’s of the DMI blind detector and

the subspace blind detector. �



132 CHAPTER 2. BLIND MULTIUSER DETECTION



Chapter 3

Group-Blind Multiuser Detection

3.1 Introduction

The blind multiuser detection techniques discussed in the previous chapter are especially

useful for interference suppression in CDMA downlinks, where a mobile receiver knows only

its own spreading sequence. In CDMA uplinks, however, typically the base station receiver

has the knowledge of the spreading sequences of a group of users, e.g., the users within its own

cell, but not that of the users from other cells. It is natural to expect that some performance

gains can be achieved over the blind methods (which exploit only the spreading sequence of

a single user) in detecting each individual user’s data if the information about the spreading

sequences of the other known users are also exploited [186, 187, 194, 536]. In this chapter, we

discuss group-blind multiuser detection techniques that suppress the intra-cell interference

using the knowledge of the spreading sequences and the estimated multipath channels of a

group of known users, while suppressing the inter-cell interference blindly. Several forms of

linear and nonlinear group-blind detectors are developed based on different criteria. These

group-blind techniques offer significant performance improvement over the blind methods in

a CDMA uplink environment.

The rest of this chapter is organized as follows. In Section 3.2, we introduce various linear

group-blind multiuser detectors for synchronous CDMA systems; In Section 3.3, we present

analytical performance assessment for linear group-blind multiuser detectors; In Section

3.4, we discuss nonlinear group-blind multiuser detection based on local likelihood search;

133
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In Section 3.5, we treat group-blind multiuser detection in general asynchronous CDMA

systems with multipath channels; Finally, Section 3.6 contains the mathematical derivations

and proofs for some results in this chapter.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 3.1: Group-blind linear hybrid detector (form I)- synchronous CDMA;

• Algorithm 3.2: Group-blind linear hybrid detector (form II) - synchronous CDMA;

• Algorithm 3.3: Slowest-descent-search multiuser detector;

• Algorithm 3.4: Nonlinear group-blind multiuser detector - synchronous CDMA;

• Algorithm 3.5: Group-blind linear hybrid detector (form I) - multipath CDMA;

• Algorithm 3.6: Group-blind linear hybrid detector (form II) - multipath CDMA;

• Algorithm 3.7: Adaptive group-blind linear hybrid multiuser detector - multipath

CDMA;

• Algorithm 3.8: Group-blind linear hybrid detector - multipath CDMA and correlated

noise;

• Algorithm 3.9: Nonlinear group-blind detector - multipath CDMA.

3.2 Linear Group-Blind Multiuser Detection for Syn-

chronous CDMA

We start by considering the following discrete-time signal model for a synchronous CDMA

system,

r[i] =
K∑

k=1

Akbk[i]sk + n[i] (3.1)

= SAb[i] + n[i], (3.2)

i = 0, 1, · · · ,M − 1,
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where, as before, K is the total number of users; Ak, bk[i] and sk are respectively the

complex amplitude, the ith transmitted bit and the signature waveform of the kth user; n[i] ∼
Nc(0, σ

2IN) is a complex Gaussian noise vector; S
�
= [s1 · · · sK ]; A

�
= diag(A1, · · · , AK);

and b[i]
�
=

[
b1[i] · · · bK [i]

]T

. In this chapter, it is assumed that the receiver has the

knowledge of the signature waveforms of the first K̃ users (K̃ ≤ K), whose data bits are

to be demodulated; whereas the signature waveforms of the remaining (K − K̃) users are

unknown to the receiver. Denote

S̃
�
= [s1 · · · sK̃ ],

S̄
�
= [sK̃+1 · · · sK ],

Ã
�
= diag(A1, · · · , AK̃),

Ā
�
= diag(AK̃+1, · · · , AK),

b̃[i]
�
=

[
b1[i] · · · bK̃ [i]

]
,

and b̄[i]
�
=

[
bK̃+1[i] · · · bK [i]

]
.

It is assumed that the users’ signature waveforms are linearly independent, i.e., S has full

column rank. Hence both S̃ and S̄ also have full column ranks. Then (3.2) can be written

as

r[i] = S̃Ãb̃[i] + S̄Āb̄[i] + n[i]. (3.3)

The problem of linear group-blind multiuser detection can be stated as follows. Given

the prior knowledge of the signature waveforms S̃ of the K̃ desired users, find a weight vector

wk ∈ C
N for each desired User k, 1 ≤ k ≤ K̃, such that the data bits of these users can be

demodulated according to

zk[i] = wH
k r[i], (3.4)

and b̂k[i] = sign {� (A∗
kzk[i])} , (coherent detection) (3.5)

or β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (differential detection) (3.6)

k = 1, · · · , K̃.

The basic idea behind the solution to the above problem is to suppress the interference

from the known users based on the signature waveforms of these users, and to suppress the
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interference from other unknown users using subspace-based blind methods. We first consider

the linear decorrelating detector, which eliminates the multiple-access interference (MAI)

completely, at the expense of enhancing the noise level. In order to facilitate the derivation

of its group-blind form, we need the following alternative definition of this detector. In this

section, we denote ẽk as a K̃-vector with all elements zeros, except for the kth element, which

is one.

Definition 3.1 [Group-blind linear decorrelating detector - synchronous CDMA] The

weight vector dk of the linear decorrelating detector for User k is given by the solution to the

following constrained optimization problem:

min
w∈range(S)

∥∥wHSA
∥∥2
, s.t. wHS̃ = ẽH

k , (3.7)

k = 1, · · · , K̃.
The above definition is equivalent to the one given in Section 2.2.2. To see this, it suffices

to show that dH
k sk = 1, and dH

k sl = 0, for l �= k. Since S̃ contains the first K̃ columns of S,

then for any w, we have∥∥wHSA
∥∥2

=
∥∥∥wHS̃Ã

∥∥∥2

+
K∑

l=K̃+1

|Al|2
∣∣wHsl

∣∣2 . (3.8)

Under the constraint wHS̃ = ẽH
k , we have

∥∥∥wHS̃Ã
∥∥∥2

= A2
k. It then follows that for

w ∈ range(S),
∥∥wHSA

∥∥2
is minimized subject to wHS̃ = ẽH

k , if and only if wHsl = 0, for

l = K̃ + 1, · · · , K. Since rank(S) = K, such a w ∈ range(S) is unique and is indeed the

linear decorrelating detector.

The second linear group-blind detector considered here is a hybrid detector which zero-

forces the interference caused by the K̃ known users, and suppresses the interference from

unknown users according to the MMSE criterion.

Definition 3.2 [Group-blind linear hybrid detector - synchronous CDMA] The weight

vector wk of the group-blind linear hybrid detector for User k is given by the solution to the

following constrained optimization problem:

min
w∈range(S)

E
{∣∣Akbk[i] − wHr[i]

∣∣2} , s.t. wHS̃ = ẽH
k , (3.9)

k = 1, · · · , K̃.
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Another form of linear group-blind detector is analogous to the linear MMSE detector

introduced in Section 2.2.3. It suppresses the interference from the known users and that

from the unknown users separately, both in the MMSE sense. First define the following

projection matrix

P̄
�
= IN − S̃

(
S̃

H
S̃
)−1

S̃
H
, (3.10)

which projects any signal onto the subspace null(S̃
H

). Recall that the autocorrelation matrix

of the received signal in (3.1) is give by

Cr
�
= E

{
r[i]r[i]H

}
= S|A|2SH + σ2IN , (3.11)

where |A|2 �
= diag (|A1|2, · · · , |AK |2). It is then easily seen that the matrix

(
P̄CrP̄

)
has an

eigen-structure of the form

P̄CrP̄ =
[
Ū s Ūn Ū o

] 
Λ̄s 0 0

0 σ2IN−K 0

0 0 0




Ū
H
s

Ū
H
n

Ū
H
o

 , (3.12)

where Λ̄s = diag
(
λ̄1, · · · , λ̄K−K̃

)
, with λ̄i > σ2, i = 1, · · · , (K − K̃); and the columns

of Ū s form an orthogonal basis of the subspace range(S)
⋂

null(S̃
H

). We next define the

linear group-blind MMSE detector. As noted before in the previous chapter, any linear

detector must lie in the space range(S) = range(S̃) + range(Ū s). The group-blind linear

MMSE detector for the kth user has the form mk = m̃k + m̄k, where m̃k ∈ range(S̃) and

m̄k ∈ range(Ū s), such that m̃k suppresses the interference from the known users in the

MMSE sense, and m̄k suppresses the interference from the unknown users in the MMSE

sense. Formally we have the following definition.

Definition 3.3 [Group-blind linear MMSE detector - synchronous CDMA] Let r̃[i] =

S̃Ãb̃[i] + n[i] be the components of the received signal r[i] in (3.3) consisting of the signals

from the known users plus the noise. The weight vector of the group-blind linear MMSE

detector for User k is given by mk = m̃k +m̄k, where m̃k ∈ range(S̃) and m̄k ∈ range(Ū s),

such that

m̃k = arg min
w∈range(

˜S)

E

{∣∣∣Akbk[i] − wH r̃[i]
∣∣∣2} , (3.13)



138 CHAPTER 3. GROUP-BLIND MULTIUSER DETECTION

and m̄k = arg min
w∈range(

¯U s)

E

{∣∣∣Akbk[i] − (w + m̃k)
H r[i]

∣∣∣2} , (3.14)

k = 1, · · · , K̃.

Note that in general the linear group-blind MMSE detector mk defined above is different

from the linear MMSE detector defined in Section 2.2.3, due to the specific structure that

the former imposes.

We next give expressions for the three linear group-blind detectors defined above in

terms of the known users’ signature waveforms S̃ and the unknown users’ signal subspace

components Λ̄s and Ū s defined in (3.12).

Proposition 3.1 [Group-blind linear decorrelating detector (form I) - synchronous CDMA]

The weight vector of the group-blind linear decorrelating detector for User k is given by

dk =
[
IN − Ū s

(
Λ̄s − σ2IK−K̃

)−1
Ū

H
s Cr

]
S̃
(
S̃

H
S̃
)−1

ẽk, (3.15)

k = 1, · · · , K̃.

Proof: Decompose dk as dk = d̃k + d̄k, where d̃k ∈ range(S̃) and d̄k ∈ range(Ū s). Substi-

tuting this into the constraint wHS̃ = ẽH
k in (3.7), we have

d̃k = S̃
(
S̃

H
S̃
)−1

ẽk. (3.16)

Hence dk has the form of dk = Ū sck + d̃k, for some ck ∈ C
K−K̃ . Substituting this into the

minimization problem in (3.7) we get

ck = arg min
c∈CK−K̃

∥∥∥∥(Ū sc + d̃k

)H

SA

∥∥∥∥2

= arg min
c∈CK−K̃

(
Ū sc + d̃k

)H (
Cr − σ2IN

) (
Ū sc + d̃k

)
(3.17)

= −
[
Ū

H
s

(
Cr − σ2IN

)
Ū s

]−1

Ū
H
s

(
Cr − σ2IN

)
d̃k

= −
[
Ū

H
s P̄

(
Cr − σ2IN

)
P̄ Ū s

]−1

Ū
H
s

(
Cr − σ2IN

)
d̃k (3.18)

= − (
Λ̄s − σ2IK−K̃

)−1
Ū

H
s

(
Cr − σ2IN

)
d̃k (3.19)

= − (
Λ̄s − σ2IK−K̃

)−1
Ū

H
s Crd̃k, (3.20)
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where (3.17) follows from (3.11); (3.18) follows from the facts that and P̄ Ū s = Ū s; (3.19)

follows from (3.12); and (3.20) follows from the fact that Ū
H
s d̃k = 0. Hence

dk = Ū sck + d̃k =
[
IN − (

Λ̄s − σ2IK−K̃

)−1
Ū

H
s Cr

]
S̃
(
S̃

H
S̃
)−1

ẽk. (3.21)

�

Proposition 3.2 [Group-blind linear hybrid detector (form I) - synchronous CDMA] The

weight vector of the group-blind linear hybrid detector for User k is given by

wk =
(
IN − Ū sΛ̄

−1
s Ū

H
s Cr

)
S̃
(
S̃

H
S̃
)−1

ẽk, (3.22)

k = 1, · · · , K̃.

Proof: Decompose wk as wk = w̃k + w̄k, where w̃k ∈ range(S̃) and w̄k ∈ range(Ū s).

Substituting this into the constraint wHS̃ = ẽH
k in (3.9), we have

w̃k = S̃
(
S̃

H
S̃
)−1

ẽk. (3.23)

Hence wk = Ū sck + w̃k, for some ck ∈ C
K−K̃ . Substituting this into the minimization

problem in (3.9) we get

ck = arg min
c∈CK−K̃

E

{∣∣∣Akbk[i] −
(
Ū sc + w̃k

)H
r[i]

∣∣∣2}
= arg min

c∈CK−K̃

{(
Ū sc + w̃k

)H
Cr

(
Ū sc + w̃k

) − 2|Ak|2cHŪ
H
s sk

}
= −

(
Ū

H
s CrŪ s

)−1

Ū
H
s Crw̃k (3.24)

= −Λ̄
−1
s Ū

H
s Crw̃k, (3.25)

where (3.24) follows from the fact that Ū
H
s sk = 0, and (3.25) follows from (3.12). Hence

wk = Ū sck + w̃k =
(
IN − Ū sΛ̄

−1
s Ū

H
s Cr

)
S̃
(
S̃

H
S̃
)−1

ẽk. (3.26)

�

Proposition 3.3 [Group-blind linear MMSE detector (form I) - synchronous CDMA] The

weight vector of the group-blind linear MMSE detector for User k is given by

mk =
(
IN − Ū sΛ̄

−1
s Ū

H
s Cr

)
S̃
(
S̃

H
S̃ + σ2|Ã|−2

)−1

ẽk, (3.27)

k = 1, · · · , K̃.
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Proof: We first solve for m̃k in (3.13). Since m̃k ∈ range(S̃), and S̃ has full column rank

K̃, we can write m̃k = S̃c̃k, for some c̃k ∈ C
K̃ . Substituting this into (3.13) we have

c̃k = arg min
c∈CK̃

E

{∣∣∣Akbk[i] − cHS̃
H

r̃[i]
∣∣∣2}

= arg min
c∈CK̃

{
cH

[
S̃

H
(
S̃|Ã|2S̃H

+ σ2IN

)
S̃
]
c − 2|Ak|2sH

k S̃c
}

= arg min
c∈CK̃

{
cH

[(
S̃

H
S̃
)
|Ã|2

(
S̃

H
S̃
)

+ σ2
(
S̃

H
S̃
)]

c − 2ẽH
k |Ã|2

(
S̃

H
S̃
)

c
}

=
(
S̃

H
S̃ + σ2|Ã|−2

)−1

ẽk. (3.28)

Next we solve m̄k = Ū sc̄k in (3.14) for some c̄k ∈ C
K−K̃ . Following the same derivation as

that of (3.25), we obtain

c̄k = −Λ̄
−1
s Ū

H
s Crm̃k. (3.29)

Therefore we have

mk = Ū sc̄k + S̃c̃k =
(
IN − Ū sΛ̄

−1
s Ū

H
s Cr

)
S̃
(
S̃

H
S̃ + σ2|Ã|−2

)−1

ẽk. (3.30)

�

Based on the above results, we can implement the linear group-blind multiuser detection

algorithms based on the received signals {r[i]}M−1
i=0 and the signature waveforms S̃ of the

desired users. For example, the batch algorithm for the group-blind linear hybrid detector

(form I) is summarized as follows.

Algorithm 3.1 [Group-blind linear hybrid detector (form I)- synchronous CDMA]

• Compute the unknown users’ signal subspace:

Ĉr =
M−1∑
i=0

r[i]r[i]H , (3.31)

P̄ ĈrP̄ = ˆ̄U s
ˆ̄Λs

ˆ̄U
H

s + ˆ̄Un
ˆ̄Λn

ˆ̄U
H

n + ˆ̄U o
ˆ̄Λo

ˆ̄U
H

o , (3.32)

where P̄ is given by (3.10).

• Form the detectors:

ŵk =

(
IN − ˆ̄U s

ˆ̄Λ
−1

s
ˆ̄U

H

s Cr

)
S̃
(
S̃

H
S̃
)−1

ẽk, (3.33)

k = 1, · · · , K̃.
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• Perform differential detection:

zk[i] = ŵH
k r[i], (3.34)

β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (3.35)

i = 1, · · · ,M − 1; k = 1, · · · , K̃.

The group-blind linear decorrelating detector and the group-blind linear MMSE detector can

be similarly implemented. Note that both of them require the estimate of the noise variance

σ2. A simple estimator of σ2 is the average of the (N − K) eigenvalues in ˆ̄Λn. Note also

that the group-blind linear MMSE detector requires the estimate of the inverse of the energy

of the desired users, |Ã|−2, as well. The following result can be found in Section 4.5 [cf.

Proposition 4.2]:

|A|−2 = S̃
H

U s

(
Λs − σ2IK

)−1
UH

s S̃. (3.36)

Hence |Ã|−2 �
= diag(|A1|−2, · · · , |AK̃ |−2) can be estimated by using (3.36) with the signal

subspace parameters replaced by their respective sample estimates.

In the above results, the linear group-blind detectors are expressed in terms of the known

user signature waveforms S̃ and the unknown users’ signal subspace components Λ̄s and Ū s

defined in (3.12). Let the eigendecomposition of the autocorrelation matrix Cr in (3.11) be

Cr = U sΛsU
H
s + σ2UnU

H
n . (3.37)

The linear group-blind detectors can also be expressed in terms of the signal subspace com-

ponents Λs and U s of all users’ signals defined in (3.37), as given by the following three

results.

Proposition 3.4 [Group-blind linear decorrelating detector (form II) - synchronous CDMA]

The weight vector of the group-blind linear decorrelating detector for User k is given by

dk = U s

(
Λs − σ2IK

)−1
UH

s S̃
[
S̃

H
U s

(
Λs − σ2IK

)
UH

s S̃
]−1

ẽk, (3.38)

k = 1, · · · , K̃.
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Proof: Using the method of Lagrange multipliers to solve the constrained optimization

problem (3.7), we obtain

dk = arg min
w∈range(S)

wHS|A|2SHw + λH
(
S̃

H
w − ẽk

)
=

(
S|A|2SH

)†
S̃λ, (3.39)

where λ ∈ C
K̃ . Substituting (3.39) into the constraint that dH

k S̃ = ẽH
k , we obtain

λ =
[
S̃

H (
S|A|2SH

)†
S̃
]−1

ẽk. (3.40)

Hence

dk =
(
S|A|2SH

)†
S̃
[
S̃

H (
S|A|2SH

)†
S̃
]−1

ẽk

= U s

(
Λs − σ2IK

)−1
UH

s S̃
[
S̃U s

(
Λs − σ2IK

)−1
UH

s S̃
]−1

ẽk, (3.41)

where (3.41) follows from (3.11), (3.37) and the fact that UH
n S̃ = 0. �

Proposition 3.5 [Group-blind linear hybrid detector (form II) - synchronous CDMA] The

weight vector of the group-blind linear hybrid detector for User k is given by

wk = U sΛ
−1
s UH

s S̃
(
S̃

H
U sΛ

−1
s UH

s S̃
)−1

ẽk, (3.42)

k = 1, · · · , K̃.

Proof: Using the method of Lagrange multipliers to solve the relaxed optimization problem

(3.9) over w ∈ C
N , we obtain

wk = arg min
w∈CN

[
E

{∣∣Akbk[i] − wHr[i]
∣∣2} + λH

(
S̃

H
w − ek

)]
= arg min

w∈CN

[
wHCrw − 2|A1|2sH

k w + λHS̃
H

w
]

= arg min
w∈CN

[
wHCrw +

(
λ − 2|Ak|2ẽk

)H
S̃

H
w
]

= C−1
r S̃µ, (3.43)

where λ ∈ C
K̃ is the Lagrange multiplier, and µ

�
= λ − 2|Ak|2ẽk. Substituting (3.43) into

the constraint that dH
k S̃ = ẽk we obtain

µ =
(
S̃

H
C−1

r S̃
)−1

ẽk. (3.44)
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Hence

wk = C−1
r S̃

(
S̃

H
C−1

r S̃
)−1

ẽk

= U sΛ
−1
s UH

s S̃
(
S̃

H
U sΛ

−1
s UH

s S̃
)−1

ẽk, (3.45)

where (3.45) follows from (3.11), (3.37) and the fact that UH
n S̃ = 0. It is seen that from

(3.45) that wk ∈ range(U s) = range(S), therefore it is the solution to the constrained

optimization problem (3.9). �

In order to form the group-blind linear MMSE detector in terms of the signal subspace U s,

we need to first find a basis for the subspace range
(
Ū s

)
. Clearly, range

(
P̄U s

)
= range

(
Ū s

)
.

Consider the (rank-deficient) QR factorization of the (N ×K) matrix
(
P̄U s

)
P̄U s =

[
Qs Qo

] [ Rs Ro

0 0

]
Π , (3.46)

where Qs is a (N×K̃) matrix, Rs is a (K̃×K̃) non-singular upper triangular matrix, and Π

is a permutation matrix. Then the columns of Qs forms an orthogonal basis of range
(
Ū s

)
.

Proposition 3.6 [Group-blind linear MMSE detector (form II) - synchronous CDMA] The

weight vector of the group-blind linear MMSE detector for User k is given by

mk =
[
IN − (

QsR
−H
s

) (
ΠΛsΠ

H
)−1 (

QsR
−H
s

)H
Cr

]
S̃
(
S̃

H
S̃ + σ2|Ã|−2

)−1

ẽk,

k = 1, · · · , K̃. (3.47)

Proof: Since the columns of Qs form an orthogonal basis of range
(
Ū s

)
, following the same

derivation as (3.30), we have

mk =
[
IN − Qs

(
QH

s CrQs

)−1
QH

s Cr

]
S̃
(
S̃

H
S̃ + σ2|Ã|−2

)−1

ẽk. (3.48)

Furthermore, we have

QH
s CrQs = QH

s

(
U sΛsU

H
s + σ2UnU

H
n

)
Qs

= QH
s

(
U sΛsU

H
s

)
Qs (3.49)

= QH
s

(
P̄U sΛsU

H
s P̄

)
Qs (3.50)

= QH
s

(
P̄U s

)
Λs

(
P̄U s

)H
Qs
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= QH
s

[
Qs Qo

] [ Rs Ro

0 0

]
ΠΛsΠ

H

[
Rs Ro

0 0

]H [
Qs Qo

]H

Qs (3.51)

= RsΠΛsΠ
HRH

s , (3.52)

where (3.49) follows from UH
n Qs = 0; (3.50) follows from P̄Qs = 0; and (3.51) follows from

(3.46). Substituting (3.52) into (3.48) we obtain (3.47). �

Based on the above results, we can implement the form-II linear group-blind multiuser

detection algorithms based on the received signals {r[i]}M−1
i=0 and the signature waveforms

S̃ of the desired users. For example, the batch algorithm for the linear hybrid group-blind

detector (form II) is as follows. (The group-blind linear decorrelating detector and the

group-blind linear MMSE detector can be similarly implemented.)

Algorithm 3.2 [Group-blind linear hybrid detector (form II) - synchronous CDMA]

• Compute the signal subspace:

Ĉr =
M−1∑
i=0

r[i]r[i]H (3.53)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (3.54)

• Form the detectors:

ŵk = Û sΛ̂
−1

s Û
T

s S̃
(
S̃

H
Û sΛ̂

−1

s Û
H

s S̃
)−1

ẽk, (3.55)

k = 1, · · · , K̃.

• Perform differential detection:

zk[i] = ŵH
k r[i], (3.56)

β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (3.57)

i = 1, · · · ,M − 1; k = 1, · · · , K̃.

In summary, for both the group-blind zero-forcing detector and the group-blind hybrid

detector, the interfering signals from known users are nulled out by a projection of the

received signal onto the orthogonal subspace of these users’ signal subspace. The unknown
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interfering users’ signals are then suppressed by identifying the subspace spanned by these

users, followed by a linear transformation in this subspace based on the zero-forcing or

the MMSE criterion. In the group-blind MMSE detector, the interfering users from the

known and the unknown users are suppressed separately under the MMSE criterion. The

suppression of the unknown users again relies upon the identification of the signal subspace

spanned by these users.

3.3 Performance of Group-Blind Multiuser Detectors

In this section, we consider the performance of group-blind linear multiuser detection. Specif-

ically, we focus on the performance of the group-blind linear hybrid detector defined by (3.9).

As in Section 2.5, for simplicity, we consider only real-valued signals. The analytical frame-

work presented in this section was developed in [193].

3.3.1 Form-II Group-blind Hybrid Detector

The following result gives the asymptotic distribution of the estimated weight vector of the

form-II group-blind hybrid detector. The proof is given in the Appendix (Section 3.6.1).

Theorem 3.1 Let the sample autocorrelation of the received signals and its eigendecompo-

sition be

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]T (3.58)

= Û sΛ̂sÛ
T

s + ÛnΛ̂nÛ
T

n . (3.59)

Let ŵ1 be the estimated weight vector of the form-II group-blind linear hybrid detector, given

by

ŵ1 = Û sΛ̂
−1

s Û
T

s S̃
(
S̃

T
Û sΛ̂

−1

s Û
T

s S̃
)−1

ẽ1. (3.60)

Then

√
M (ŵ1 − w1) → N (0,Cw), in distribution, as M → ∞,
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with

Cw = Q
[(

wT
1 v1

)
U sΛ

−1
s UT

s − 2U sΛ
−1
s UT

s SDST U sΛ
−1
s UT

s

]
QT + τUnU

T
n , (3.61)

where

v1
�
= S̃

(
S̃

T
U sΛ

−1
s UT

s S̃
)−1

ẽ1, (3.62)

D
�
= diag

{
A4

1

(
wT

1 s1

)2
, · · · , A4

K

(
wT

1 sK

)2
}
, (3.63)

τ = σ2vT
1 U sΛ

−1
s

(
Λs − σ2IK

)−2
UT

s v1, (3.64)

and Q
�
= IN − U sΛ

−1
s UT

s S̃
(
S̃

T
U sΛ

−1
s UT

s S̃
)−1

S̃
T
. (3.65)

Define the partition of the following matrix

R
(
R + σ2A−2

)−1
A−2 =

[
Ψ 11 Ψ 12

ΨT
12 Ψ 22

]
, (3.66)

where the dimension of Ψ 11 is K̃ × K̃. Note that the left-hand side of (3.66) is equal to(
ST U sΛ

−1
s UT

s S
)

[cf. Appendix (Section 3.6.1)], and therefore it is indeed symmetric. Define

further

Π
�
=

[
A−2

(
R + σ2A−2

)−1
R

(
R + σ2A−2

)−1
A−2

]
1:K̃,1:K̃

, (3.67)

and Ξ
�
=

[
A−2

(
R + σ2A−2

)−1
A−2R−1A−2

]
1:K̃,1:K̃

. (3.68)

The next result gives an expression for the average output SINR of the form-II group-blind

hybrid detector. The proof is given in the Appendix (Section 3.6.1).

Corollary 3.1 The average output SINR of the estimated form-II group-blind linear hybrid

detector is given by

SINR(ŵ1) =
A2

1

K−K̃∑
k=1

A2
K̃+k

(
wT

1 sK̃+k

)2
+ σ2‖w1‖2 +

1

M
tr(CwCr)

, (3.69)

where

wT
1 sK̃+k =

[
ΨT

12Ψ
−1
11

]
k,1
, (3.70)
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‖w1‖2 =
[
Ψ−1

11 ΠΨ−1
11

]
1,1
, (3.71)

tr(CwCr) = (K − K̃)
[
Ψ−1

11

]
1,1

− 2
K−K̃∑
k=1

A4
K̃+k

[
ΨT

12Ψ
−1
11

]2

k,1

[
Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12

]
k,k

+(N −K)σ4
[
Ψ−1

11 ΞΨ−1
11

]
1,1
. (3.72)

As in Section 2.5, in order to gain insights from the result (3.69), we next compute

the average output SINR of the form-II group-blind hybrid detector for two special cases -

orthogonal signals and equicorrelated signals.

Example 1 - Orthogonal Signals: In this case w1 = s1 and R = IK . After some manipu-

lations, the average output SINR in this case is

SINR (ŵ1) =
φ1

1 + 1
M

(φ1 + 1)
(
K − K̃ + N−K

φ2
1

) , (3.73)

where φ1
�
=

A2
1

σ2 is the SNR of the desired user. Compare (3.73) with (2.142), we obtain the

following necessary and sufficient condition for the group-blind hybrid detector to outperform

the subspace blind detector

K̃ + 1 >
2φ2

1

(1 + φ1)2
. (3.74)

Since K̃ ≥ 1, the above condition is always satisfied. Hence we conclude that in this case the

group-blind hybrid detector always outperforms the subspace blind detector. On the other

hand, based on (3.73) and (2.142), we can also obtain the following necessary and sufficient

condition under which the group-blind hybrid detector outperforms the DMI blind detector:(
1 − 1

φ2
1

)
(N −K) + K̃ + 1 >

2φ2
1

(1 + φ1)2
. (3.75)

It is seen from (3.75) that at very low SNR, e.g., φ1 � 1, the DMI detector will outperform

the group-blind hybrid detector. Moreover, a sufficient condition for the group-blind hybrid

detector to outperform the DMI detector is φ1 ≥ 1(= 0dB).

Example 2 - Equicorrelated Signals with Perfect Power Control: Recall that in this case,

it is assumed that sT
k sl = ρ, for k �= l; and A1 = · · · = AK = A. Denote

a
�
=

1

1 − ρ+ σ2

A2

, (3.76)
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b
�
=

1 + (K − 1)ρ

K

[
1

1 + (K − 1)ρ+ σ2

A2

− 1

1 − ρ+ σ2

A2

]
, (3.77)

a′ �
=

1(
1 − ρ+ σ2

A2

)2 , (3.78)

b′ �
=

1 + (K − 1)ρ

K

[
1(

1 + (K − 1)ρ+ σ2

A2

)2 − 1(
1 − ρ+ σ2

A2

)2

]
, (3.79)

a′′ �
=

1(
1 − ρ+ σ2

A2

)
(1 − ρ)2

, (3.80)

and

b′′ �
=

1 + (K − 1)ρ

K

[
1(

1 + (K − 1)ρ+ σ2

A2

)
[1 + (K − 1)ρ]2

− 1(
1 − ρ+ σ2

A2

)
(1 − ρ)2

]
.

(3.81)

It is shown in the Appendix (Section 3.6.1) that the average output SINR of the form-II

group-blind hybrid detector in this case is given by

SINR (ŵ1) =
1

(K − K̃)α2 + β + 1
M

[
(K − K̃) (γ − 2ηα2) + (N −K)µ

] , (3.82)

where

α
�
=

aρ+ b

a(1 − ρ) + K̃(aρ+ b)
, (3.83)

β
�
=

(
σ2

A2

)
1

a2(1 − ρ)2

{
a′ + b′ − α

[
2(1 − ρ)a′ + (K̃ + 1)(a′ρ+ b′)

]
+α2K̃

[
a′(1 − ρ) + K̃(a′ρ+ b′)

]}
, (3.84)

γ
�
=

1 − α
a(1 − ρ) , (3.85)

η
�
= a+ b− αK̃(aρ+ b), (3.86)

and (3.87)

µ
�
=

(
σ2

A2

)2
1

a2(1 − ρ)2

{
a′′ + b′′ − α

[
2(1 − ρ)a′′ + (K̃ + 1)(a′′ρ+ b′′)

]
+α2K̃

[
a′′(1 − ρ) + K̃(a′′ρ+ b′′)

]}
. (3.88)

The average output SINR as a function of SNR and ρ for the form-II group-blind hybrid

detector and the subspace blind detector is shown in Fig. 3.1. It is seen that the group-

blind hybrid detector outperforms the subspace blind detector. The performance of this
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group-blind detector in the high cross-correlation and low SNR region is more clearly seen

in Fig. 3.2 and Fig. 3.3, where its performance under different number of known users, as

well as the performance of the two blind detectors, is compared as a function of ρ and SNR,

respectively. Interestingly, it is seen from Fig. 3.2 that like the DMI blind detector, the

group-blind detector is insensitive to the signal cross-correlation. Moreover, for the SNR

value considered here, the group-blind detector outperforms both blind detectors for all

ranges of ρ, even for the case that the number of known users K̃ = 1. Note that when

K̃ = 1, the form-II group-blind hybrid detector (3.60) becomes

ŵ1 = Û sΛ̂
−1

s Û
T

s s1

(
sT

1 Û sΛ̂
−1

s Û
T

s s1

)−1

. (3.89)

This is essentially the constrained subspace blind detector, with the constraint being ŵT
1 s1 =

1. It is seen that by imposing such a constraint on the subspace blind detector, the detector

becomes more resistant to high signal cross-correlation. However, from Fig. 3.3, in the low

SNR region, the group-blind detector behaves similarly to the subspace-blind detector, e.g.,

the performance of both detectors deteriorates quickly as SNR drops below 0dB; whereas

the performance degradation of the DMI blind detector in this region is more graceful.

Next, the performance of the group-blind and blind detectors as a function of the number

of signal samples,M , is plotted in Fig. 3.4, where it is seen that as the number of known users

K̃ increases, both the asymptotic SINR (as M → ∞) of the group-blind hybrid detector and

its convergence rate increase. Finally the performance of blind and group-blind detectors as

a function of the number of users K, is plotted in Fig. 3.5, where it is seen that for the values

of SNR and ρ considered here, when the number of known users K̃ > 1, the group-blind

hybrid detector outperforms both the blind detectors, even in a fully-loaded system (i.e.,

K = N). In summary, we have seen that except for the very-low SNR region (e.g., below

0dB), where the DMI blind detector performs the best (however, such a region is not of

practical interest), in general, by incorporating the knowledge of the spreading sequences of

other users, the group-blind detector offers performance improvement over both the DMI

and the subspace blind detectors.
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Figure 3.1: The average output SINR versus SNR and ρ for the subspace blind detector and

the form-II group-blind hybrid detector. N = 32, K = 16, K̃ = 8, M = 200. The upper

curve represents the performance of the form-II group-blind detector.
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and the two blind detectors. N = 32, K = 16, M = 200, SNR = 15dB. (In the figure
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= K̃.)
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Figure 3.3: The average output SINR versus SNR for the form-II group-blind hybrid detector

and the two blind detectors. N = 32, K = 16, M = 200, ρ = 0.4. (In the figure Kt
�
= K̃.)
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3.3.2 Form-I Group-blind Detectors

Define

d̃1
�
= S̃

(
S̃

T
S̃
)−1

ẽ1, (3.90)

m̃1
�
= S̃

(
S̃

T
S̃ + σ2IK̃

)−1

ẽ1, (3.91)

and let S̄
�
= [sK̃+1, · · · , sK ]. The following result gives the asymptotic distribution of the

estimated weight vector of the form-I linear group-blind hybrid detector, and that of the

form-I linear group-blind MMSE detector. The proof is found in the Appendix (Section

3.6.2).

Theorem 3.2 Let

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]T , (3.92)

be the sample autocorrelation matrix of the received signals based on M samples. Define

P̄
�
= IN − S̃

(
S̃

T
S̃
)−1

S̃
T
. (3.93)

Let ˆ̄Λs and ˆ̄U s contain respectively the largest (K − K̃) eigenvalues of
(
P̄ ĈrP̄

)
and the

corresponding eigenvectors. Let ŵ1 be the estimated weight vector of the form-I group-blind

linear detector, given by

ŵ1 =

(
IN − ˆ̄U s

ˆ̄Λ
−1

s
ˆ̄U

T

s Ĉr

)
v, (3.94)

where v
�
= d̃1 for the group-blind linear hybrid detector; and v

�
= m̃1 for the group-blind

linear MMSE detector. Then

√
M (ŵ1 − w1) → N (0,Cw), in distribution, as M → ∞,

with

Cw =
(
wT

1 Crv
)
Ū sΛ̄

−1
s Ū

T
s − 2 Ū sΛ̄

−1
s Ū

T
s S̄D̄

2
S̄Ū sΛ̄

−1
s Ū

T
s + τŪnŪ

T
n , (3.95)

where

τ = σ2 (Crv)T Ū sΛ̄
−1
s

(
Λ̄s − σ2IK−K̃

)−2
Ū

T
s (Crv) , (3.96)

and D̄ = diag
{
A2

K̃+1

(
wT

1 sK̃+1

)
, · · · , A2

K

(
wT

1 sK

)}
. (3.97)
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As before, the SINR’s for the form-I group-blind detectors can be expressed in terms

of R, σ2 and A. However, the closed-form SINR expressions are too complicated for this

case and we therefore do not present them here. Nevertheless, the SINR of the group-blind

linear hybrid detector for orthogonal signals can be obtained explicitly, as in the following

example.

Example 1 - Orthogonal Signals: We consider the form-I linear hybrid detector. In this

case w1 = v = s1, Ū s = [sK̃+1 · · · sK ] and Λ̄s = diag
{
A2

K̃+1
, · · · , A2

K

}
+σ2IK−K̃ . Moreover

Ū
T
s Crv = 0 so that τ = 0, wT

1 Crv = A2
1 + σ2, and D̄ = 0. Hence Cw =

A2
1+σ2

M
Ū sΛ̄

−1
s Ū

T
s .

Substituting these into (2.119), and after some manipulation, we get

SINR (ŵ1) =
φ1

1 + 1
M

(φ1 + 1) (K − K̃)
. (3.98)

Comparing (3.73) and (3.98), we see that for the orthogonal-signal case, the form-I group-

blind hybrid detector always outperforms the form-II group-blind hybrid detector.

In Fig. 3.6 the output SINR of the two blind detectors and that of the two forms of

group-blind hybrid detectors [given respectively by (2.142), (3.73) and (3.98)] are plotted as

functions of the desired user’s SNR, φ1. It is seen that in the high-SNR region, the DMI

blind detector has the worst performance among these detectors. In the low-SNR region,

however, both the form-II group-blind detector and the subspace blind detector performs

worse than the DMI blind detector. The form-I group-blind detector performs the best in

this case.

Example 2 - Equicorrelated Signals with Perfect Power Control: Although we do not

present a closed-form expression for the output SINR for the form-I group-blind detector,

we can still evaluate the SINR for this case as follows. As noted above, the SINR is a function

of the user spreading sequences S only through the correlation matrix R
�
= ST S. In other

words, with the same A and σ2, systems employing different set of spreading sequences S

and S′ will have the same SINR as long as ST S = S′T S′ (even if the spreading sequences

take real values rather than the form 1√
N

[s0,k, · · · , sN−1,k]
T , sj,k ∈ {+1,−1}. ). Hence given

R, A and σ2, we can for example designate S to be of the form

S =

[
0(N−K)×K√

R

]
, (3.99)
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Figure 3.6: The average output SINR versus φ1 of the blind and group-blind detectors for

the orthogonal signal case. N = 32, K = 16, M = 200. (In the figure Kt
�
= K̃.)

(where
√

R denotes the Cholesky factor of R) and then use (2.119) and (3.95) to compute the

SINR. Note that each column of S in (3.99) has a unit norm since the diagonal elements of R

are all ones. Our computation shows that the performance of the form-I group-blind hybrid

detector is similar to that of the form-II group-blind hybrid detector; with the exception

that the form-I detector behaves similarly to the DMI blind detector in the very low-SNR

region - namely, it does not deteriorate as much as do the form-I group-blind detector and

the subspace blind detector. This is shown in Fig. 3.7. (The performance of the form-I

group-blind MMSE detector is indistinguishable from that of the form-I group-blind hybrid

detector in this case.)

In summary, we have seen that the performance of the subspace blind detector deterio-

rates in the low-SNR and high-cross-correlation region; the form-II group-blind detector is

resistant to high cross-correlation, but not to low SNR; and the form-I group-blind detector

is resistant to both high cross-correlation and low SNR. Although the DMI blind detector is

also insensitive to both high cross-correlation and low SNR, its performance in other regions

is inferior to all the subspace-based blind and group-blind detectors. Hence we conclude
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that the form-I group-blind detector achieves the best overall performance among all the

detectors considered here.

Finally, we compare the analytical performance expressions given in this section with

the simulation results. The simulated system is the same as that in Section 2.5, (N = 13,

K = 11.) Both the analytical and the simulated SINR performance of the form-I group-

blind detector and the form-II group-blind detector is shown in Fig. 3.8. For each detector,

the SINR is plotted as a function of the number of signal samples (M) used for estimating

the detector, at some fixed SNR. The simulated and analytical BER performance of these

estimated detectors is shown in Fig. 3.9. As before, the analytical BER performance is based

on an Gaussian approximation on the output of the estimated linear detector. It is seen that

as is that for the DMI blind detector and the subspace detector treated in Section 2.5, the

analytical performance expressions discussed in this section for group-blind detectors match

very well with the simulation results. Performance analysis for the group-blind detectors in

the more realistic complexed-valued asynchronous CDMA with multipath channels and blind

channel estimation can be found in [192]. Some upper bounds on the achievable performance

of various group blind multiuser detectors are obtained in [190, 191]. Moreover, large-system
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asymptotic performance of the group-blind multiuser detectors is given in [594].

3.4 Nonlinear Group-Blind Multiuser Detection

In Section 3.2, we have developed linear receivers for detecting a group of K̃ users’ data bits,

in the presence of unknown interfering users. In this section, we further develop nonlinear

methods for joint detection of the desired users’ data. The basic idea is to construct a

likelihood function for these users’ data, and then to perform a local search over such a

likelihood surface, starting from the estimate closest to the unconstrained maximizer of the

likelihood function, and along mutually orthogonal directions where the likelihood function

drops at the slowest rate. The techniques described in this section were developed in [447].

Consider the signal model (3.2). Since the transmitted symbols b ∈ {+1,−1}K ⊂ R
K ,

for the convenience of the development in this section, we write (3.2) in terms of real-valued

signals. Specifically, denote (Recall that S is real valued.)

y[i]
�
=

[
�{r[i]}
�{r[i]}

]
, Ψ

�
=

[
S�{A}
S�{A}

]
, v[i]

�
=

[
�{n[i]}
�{n[i]}

]
,

where v[i] ∼ N
(
0, σ2

2
I2N

)
is a real-valued noise vector. Then (3.2) can be written as

y[i] = Ψb[i] + v[i]. (3.100)

For notational simplicity in what follows we drop the symbol index i. In this case the

maximum-likelihood estimate of the transmitted symbols (of all users) is given by

b̂ML = arg max
b∈{+1,−1}K

p(y | b)

= arg min
b∈{+1,−1}K

‖y − Ψb‖2︸ ︷︷ ︸
�(b)

= arg min
b∈{+1,−1}K

�(θ) + (b − θ)T ∇2
� (b − θ) , (3.101)

where θ is the stationary point of �(b), i.e.,

∇�(θ) = 0 =⇒ θ =
(
ΨT Ψ

)−1
ΨT y. (3.102)
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In (3.101) the Hessian matrix of the log-likelihood function is given by

∇2
� = ΨT Ψ

= �{A} (ST S
)�{A} + �{A} (ST S

)�{A}. (3.103)

It is well known that the combinatorial optimization problem (3.101) is computationally

hard, i.e., it is NP-complete [510]. We next consider a local search approach to approxi-

mating its solution. The basic idea is to search the optimal solution in a subset Ω of the

discrete parameter set {−1,+1}K that is close to the stationary point θ. More precisely, we

approximate the solution to (3.101) by

b̂ ∼= arg max
b∈Ω⊂{+1,−1}K

p(y | b)

= arg min
b∈Ω

(b − θ)H ∇2
� (b − θ) (3.104)

In the slowest-descent method [444, 445], the candidate set Ω consists of the discrete pa-

rameters chosen such that they are in the neighborhood of Q (Q ≤ K) lines in R
K , which

are defined by the stationary point θ and the Q eigenvectors of ∇2
� corresponding to the Q

smallest eigenvalues. The basic idea of this method is explained next.

3.4.1 Slowest-Descent Search

The basic idea of the slowest-descent search method is to choose the candidate points in Ω

such that they are closest to a line (θ +µg) in R
K , originating from θ and along a direction

g, where the likelihood function p(y|b) drops at the slowest rate. Given any line in R
K ,

there are at most K points where the line intersects the coordinate hyper-planes (e.g., θ1

and θ2 in Fig. 3.10 for K = 2). The set of intersection points corresponding to a line defined

by θ and g can be expressed as{
θi = θ − µig : µi = θi/gi

}K

i=1
, (3.105)

where θi and gi denote the ith elements of the respective vectors θ and g. Each intersection

point θi has only its ith component equal to zero, i.e., θi
i = 0. For simplicity we do not

consider lines that simultaneously intersect more than one coordinate hyper-plane since this

event occurs with probability zero.
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Figure 3.10: One-to-one mapping from {θ,θ1, · · · ,θK} to Ω
�
= {b∗, b1, · · · , bK} for K = 2.

Each intersection point θi is of equal distance from its two neighboring candidate points.

bi is chosen to be one of these two candidate points that is on the opposite side of the ith

coordinate hyper-plane with respect to b∗.

Any point on the line except for an intersection point has a unique closest candidate point

in {+1,−1}K . An intersection point is of equal distance from its two neighboring candidate

points, e.g., θ1 is equi-distant to b1 and b2 in Fig. 3.10(a). Two neighboring intersection

points share a unique closest candidate point, e.g., θ1 and θ2 share the nearest candidate

point b2 in Fig. 3.10(a). Define

b∗ �
= sign(θ) (3.106)

as the candidate point closest to θ, which is also the decision given by the decorrelating

multiuser detector in a coherent channel. By carefully selecting one of the two candidate

points closest to each intersection point to avoid choosing the same point twice, one can

specify K distinct candidate points in {+1,−1}K that are closest to the line (θ + µg). To

that end, consider the following set{
bi ∈ {−1,+1}K : bik =

{
sign (θi

k) , k �= i

−b∗i , k = i

}K

i=1

. (3.107)

It is seen that (3.107) assigns to each intersection point θi a closest candidate point bi that is

on the opposite side of the ith coordinate hyper-plane from b∗ [cf. Fig. 3.10(a) (b)]. We next
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show that the K points in (3.107) are distinct. To see this, we use proof by contradiction.

Suppose otherwise the set in (3.107) contains two identical candidate points, say b1 = b2. It

then follows from the definitions in (3.105) and (3.107) that

sign

(
θ1 − g1

g2
θ2

)
�
= b21 = b11

�
= −b∗1 �

= −sign(θ1), (3.108)

sign

(
θ2 − g2

g1
θ1

)
�
= b12 = b22

�
= −b∗2 �

= −sign(θ2). (3.109)

Consider the case θ1 > 0 and θ2 > 0. By (3.108) and (3.109) we have

θ1 − g1
g2
θ2 < 0 =⇒ θ1

θ2
<
g1
g2
, (3.110)

θ2 − g2
g1
θ1 < 0 =⇒ θ1

θ2
>
g1
g2
. (3.111)

Hence, (3.110) and (3.111) contradict each other. The same contradiction arises for the other

three choices of polarities for θ1 and θ2. �

In general, the slowest-descent search method chooses the candidate set Ω in (3.104) as

follows:

Ω = {b∗} ∪
Q⋃

q=1

{
bq,µ ∈ {−1,+1}K : bq,µ

k =

{
sign (θk − µgq

k) , if θk − µgq
k �= 0

−b∗k, if θk − µgq
k = 0

,

gq is the qth smallest eigenvector of ∇2
� , µ ∈

{
θ1
gq
1

, · · · , θK
gq

K

}}
, (3.112)

where θk and gq
k denote the kth elements of the respective vectors θ and gq. Hence, {bq,µ}µ

contains the K closest neighbors of θ in {−1,+1}K along the direction of gq. Note that

{gq}Q
q=1 represent the Q mutually orthogonal directions where the likelihood function p(y|b)

drops the slowest from the peak point θ. Intuitively, the maximum likelihood solution b̂ML in

(3.101) is most likely found in this neighborhood. The multiuser detection algorithm based

on the slowest-descent-search method is summarized as follows (assuming that the signature

waveforms S and the complex amplitudes A of all users are known).

Algorithm 3.3 [Slowest-descent-search multiuser detector]

• Compute the Hessian matrix ∇2
� given by (3.103), and its Q smallest eigenvectors

g1, · · · , gQ;
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• Compute the stationary point θ given by (3.102);

• Solve the discrete optimization problem defined by (3.104) and (3.112) by an exhaustive

search (over (KQ+ 1) points).

The first step involves calculating the eigenvectors of a K×K symmetric matrix; the second

step involves inverting a K×K matrix; and the third step involves evaluating the likelihood

values at (KQ + 1) points. Note that the first two steps only need to be performed once

if a block of M data bits need to be demodulated. Hence the dominant computational

complexity of the above algorithm is O(KQ) per bit for K users.

Simulation Examples

For simulations, we assume a processing gain N = 15, the number of users K = 8, and

equal amplitudes of user signals, i.e., |Ak| = 1, k = 1, · · · , K. The signature matrix S

and the user phase offsets {∠Ak}K
k=1 are chosen at random and kept fixed throughout the

simulations. Fig. 3.11 demonstrates that the slowest-descent method with only one search

direction (Q = 1) offers a significant performance gain over the linear decorrelator. Searching

one more direction (Q = 2) results in some additional performance improvement. Further

increase in the number of search directions only results in a diminishing improvement in

performance.

3.4.2 Nonlinear Group-Blind Multiuser Detection

In group-blind multiuser detection, only the first K̃ users’ signals need to be demodulated.

As before, denote S̃ and S̄ as matrices containing respectively the first K̃ and the last

(K − K̃) columns of S. Similarly define the quantities Ã, b̃, Ā, and b̄. Then (3.2) can be

rewritten as (again, we drop the symbol index i for convenience)

r = SAb + n (3.113)

= S̃Ãb̃ + S̄Āb̄ + n. (3.114)

Let D̃ denote the decorrelating detectors of the desired users, given by

D̃ = [d1 · · · dK̃ ]

=
[
S
(
ST S

)−1
]

:,1:K̃
, (3.115)
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Figure 3.11: Performance of the slowest-descent-based multiuser detector in a synchronous

CDMA system. N = 15, K = 8. The spreading waveforms S and the complex amplitudes

A of all users are assumed known to the receiver. The bit error rate (BER) curves of the

linear decorrelator and the slowest-descent detector with Q = 1 and Q = 2 are shown.
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where [X]:,n1:n2 denotes columns n1 to n2 of the matrix X. It is easily seen that D̃ satisfies

the following

D̃
T
S̄ = 0, and D̃

T
S̃ = IK̃ . (3.116)

In group-blind multiuser detection, the undesired users’ signals are first nulled out from the

received signal, by the following projection operation,

z
�
= D̃

T
r = Ãb̃ + D̃

T
n, (3.117)

where the second equality in (3.117) follows from (3.114) and (3.116). Denote

y
�
=

[
�{z}
�{z}

]
, Φ

�
=

[
�{Ã}
�{Ã}

]
, and v

�
=

[
D̃

T�{n}
D̃

T�{n}

]
.

Then (3.117) can be written as

y = Φb̃ + v. (3.118)

Note that the covariance matrix of v is given by

Cov{v} =
σ2

2

[
Q 0

0 Q

]
︸ ︷︷ ︸

Σ

, (3.119)

with Q
�
= D̃

T
D̃ (3.120)

=
[(

ST S
)−1

]
1:K̃,1:K̃

.

In what follows we consider nonlinear estimation of b̃ from (3.118) based on the slowest-

descent search. We will also discuss the problem of estimating D̃ and Ã from the received

signals.

The maximum likelihood estimate of b̃ based on y in (3.118) is given bŷ̃bML = arg max
˜b∈{+1,−1}K̃

p(y | b̃)

= arg min
˜b∈{+1,−1}K̃

(
y − Φb̃

)T

Σ−1
(
y − Φb̃

)
︸ ︷︷ ︸

�̃(
˜b)

= arg min
˜b∈{+1,−1}K̃

�̃(θ̃) +
(
b̃ − θ̃

)T

∇2
�̃

(
b̃ − θ̃

)
, (3.121)
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where the Hessian matrix is given by

∇2
�̃

= ΦT Σ−1Φ

= �{Ã}Q−1�{Ã} + �{Ã}Q−1�{Ã}; (3.122)

and θ̃ is the stationary point of �̃(b̃), i.e.,

∇�̃(θ̃) = 0 =⇒ θ̃ =
(
ΦT Σ−1Φ

)−1
ΦT Σ−1y

=
(∇2

�̃

)−1
[
�{Ã}Q−1�{z} + �{Ã}Q−1�{z}

]
. (3.123)

As before, we approximate the solution to (3.121) bŷ̃b ∼= arg max
˜b∈Ω̃⊂{+1,−1}K̃

p(y | b̃)

= arg min
˜b∈Ω̃

(
b̃ − θ̃

)T

∇2
�̃

(
b̃ − θ̃

)
, (3.124)

where Ω̃ contains (K̃Q + 1) closest neighbors of θ̃ in {−1,+1}K̃ along the slowest-descent

directions of the likelihood function p(y|b̃), given by

b̃
∗ �

= sign(θ̃), (3.125)

Ω̃ = {b̃∗} ∪
Q⋃

q=1

b̃
q,µ ∈ {+1,−1}K̃ : b̃q,µ

k =

 sign
(
θ̃k − µgq

k

)
, if θ̃k − µgq

k �= 0

−b̃∗k, if θ̃k − µgq
k = 0

,

gq is the qth smallest eigenvector of ∇2
�̃
, µ ∈

{
θ̃1
gq
1

, · · · , θ̃K̃
gq

K̃

}}
. (3.126)

Estimation of D̃ and Ã

In order to implement the above local-search-based group-blind multiuser detection algo-

rithm, we must first estimate the decorrelator matrix D̃ and the complex amplitudes Ã.

Note that the decorrelating detectors D̃ for the desired users are simply the group-blind

linear decorrelating detectors discussed in Section 3.2. For example, based on the eigende-

composition (3.37) of the autocorrelation matrix of the received signal, D̃ is given in terms

of the signal subspace parameters by (3.38).

We next consider the estimation of the complex amplitudes Ã of the desired users.

Consider the decorrelator output (3.117), we now have [Recall that Ã
�
= (A1, · · · , AK̃).]

zk = Ak bk + ñk, k = 1, · · · , K̃, (3.127)



3.4. NONLINEAR GROUP-BLIND MULTIUSER DETECTION 167

where ñk
�
=

[
D̃

T
n
]

k
. Since bk ∈ {+1,−1}, it follows from (3.127) that the decorrelator

outputs corresponding to the kth user form two clusters centered respectively at Ak and

−Ak. Let Ak = ρke
φk , a simple estimator of Ak is given by Âk = ρ̂ke

φ̂k with

ρ̂k = Ê{|zk|}, (3.128)

φ̂k =

{
Ê {∠ [zksign (�{zk})]} , if Ê {|� {zk}|} > Ê {|� {zk}|}
Ê {∠ [zksign (�{zk})]} , if Ê {|� {zk}|} < Ê {|� {zk}|}

, (3.129)

where Ê{·} denotes the sample average operation. Note that the above estimate of the

phase φk has an ambiguity of π, which necessitates differential encoding and decoding of

data. Finally, we summarize the nonlinear group-blind multiuser detection algorithm for

synchronous CDMA as follows.

Algorithm 3.4 [Nonlinear group-blind multiuser detector - synchronous CDMA]

• Compute the signal subspace:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H (3.130)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (3.131)

• Form the linear group-blind decorrelating detectors:

ˆ̃D = Û s

(
Λ̂s − σ̂2IK̃

)−1

Û
H

s S̃

[
S̃

T
Û s

(
Λ̂s − σ̂2IK̃

)−1

Û
H

s S̃

]−1

,(3.132)

and Q̂ = �
{

D̃
}T

�
{

D̃
}

+ �
{

D̃
}T

�
{

D̃
}
, (3.133)

where σ̂2 is given by the mean of the (N −K) eigenvalues in Λ̂n.

• Estimate the complex amplitudes Ã:

z[i] = ˆ̃D
H

r[i], (3.134)

i = 0, · · · ,M − 1.

ρ̂k =
1

M

M−1∑
i=0

|zk[i]|, (3.135)

Rk =
1

M

M−1∑
i=0

�{zk[i]}, (3.136)
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Ik =
1

M

M−1∑
i=0

�{zk[i]}, (3.137)

φ̂k =


1
M

M−1∑
i=0

∠ [zk[i]sign (�{zk[i]})] , if Rk ≥ Ik

1
M

M−1∑
i=0

∠ [zk[i]sign (�{zk[i]})] , if Rk < Ik

, (3.138)

Âk = ρ̂ke
φ̂k , (3.139)

k = 1, · · · , K̃;

let ˆ̃A
�
= diag(Â1, · · · , ÂK̃). (3.140)

• Compute the Hessian

∇̂2 = �{ ˆ̃A}Q̂−1�{ ˆ̃A} + �{ ˆ̃A}Q̂−1�{ ˆ̃A}, (3.141)

and the Q smallest eigenvectors g1, · · · , gQ of ∇̂2.

• Detect each symbol by solving the following discrete optimization problem using an

exhaustive search (over (K̃Q+ 1) points):

θ[i] =
(
∇̂2

)−1 [
�{ ˆ̃A}Q̂−1�{z[i]} + �{ ˆ̃A}Q̂−1�{z[i]}

]
, (3.142)

ˆ̃b
∗
[i] = sign(θ[i]), (3.143)̂̃b[i] = arg min

˜b∈Ω̃[i]

(
b̃ − θ[i]

)T

∇̂2
(
b̃ − θ[i]

)
, (3.144)

Ω̃[i] = {ˆ̃b
∗
[i]} ∪

Q⋃
q=1

b̃
q,µ ∈ {−1,+1}K̃ : b̃q,µ

k =

 sign (θk[i] − µgq
k) , if θk[i] − µgq

k �= 0

−ˆ̃b
∗
k[i], if θk[i] − µgq

k = 0
,

µ ∈
{
θ1[i]

gq
1

, · · · , θK̃ [i]

gq

K̃

}}
, (3.145)

i = 0, · · · ,M − 1.

• Perform differential decoding:

β̂k[i] = b̂k[i]b̂k[i− 1], (3.146)

k = 1, · · · , K̃; i = 1, · · · ,M − 1.
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It is seen that compared with linear group-blind detectors discussed in Section 3.2, the

additional computation incurred by the nonlinear detector involves a complex amplitude

estimation step for all desired users, and a likelihood search step; both of which have com-

putational complexities linear in K̃.

Simulation Examples

In this simulation, we assume a processing gain N = 15, the number of users K = 8, the

number of desired users K̃ = 4, and equal amplitudes of user signals. The signature matrix

S and the user phase offsets are chosen at random and kept fixed throughout simulations.

Fig. 3.12 demonstrates the considerable performance gain offered by the nonlinear group-

blind multiuser detector developed above over the group-blind linear detector. Again, it is

seen that it suffices for the nonlinear group-blind detector to search along only one (i.e., the

slowest-descent) direction (Q = 1).
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Figure 3.12: Performance of the slowest-descent-based group-blind multiuser detector in a

synchronous CDMA system. N = 15, K = 8, K̃ = 4. Only the spreading waveforms S̃ of the

desired users are assumed known to the receiver. The BER curves of the linear group-blind

detector and the slowest-descent (nonlinear) group-blind detector with Q = 1 and Q = 2 are

shown.
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3.5 Group-Blind Multiuser Detection in Multipath

Channels

In this section, we extend the linear and nonlinear group-blind multiuser detection methods

developed in the previous sections to the general asynchronous CDMA systems with mul-

tipath channel distortion. The signal model for multipath CDMA systems is developed in

Section 2.7.1. At the receiver, the received signal is filtered by a chip-matched filter and

sampled at a multiple (p) of the chip-rate. Denote rq[i] as the qth signal sample during the

ith symbol [cf. (2.166)]. Recall that by denoting

r[i]︸︷︷︸
P×1

�
=


r0[i]

...

rP−1[i]

 , b[i]︸︷︷︸
K×1

�
=


b1[i]

...

bK [i]

 , n[i]︸︷︷︸
P×1

�
=


n0[i]

...

nP−1[i]

 ,

and H[j]︸︷︷︸
P×K

�
=


h1[jP ] · · · hK [jP ]

...
...

...

h1[jP + P − 1] · · · hK [jP + P − 1]

 , j = 0, · · · , ι,

we have the following discrete-time signal model

r[i] = H[i] � b[i] + n[i]. (3.147)

By stacking m successive sample vectors, we further define the following quantities

r[i]︸︷︷︸
Pm×1

�
=


r[i]
...

r[i+m− 1]

 , n[i]︸︷︷︸
Pm×1

�
=


n[i]
...

n[i+m− 1]

 , b[i]︸︷︷︸
K(m+ι)×1

�
=


b[i− ι]

...

b[i+m− 1]

 ,

and H︸︷︷︸
Pm×K(m+ι)

�
=


H[ι] · · · H[0] · · · 0

...
. . . . . . . . .

...

0 · · · H[ι] · · · H[0]

 ,
where the smoothing factor m is chosen according to

m =

⌈
P +K

P −K
⌉
ι,
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such that the matrix H is a “tall” matrix, i.e., Pm ≥ K(m+ ι). We can then write (3.147)

in matrix form as

r[i] = H b[i] + n[i]. (3.148)

Assume that H has full column rank, i.e.,

r
�
= K(m+ ι).

The autocorrelation matrix of the signal r[i] and its eigendecomposition are given respec-

tively by

Cr
�
= E

{
r[i]r[i]H

}
= HHH + σ2IPm (3.149)

= U sΛsU s + σ2 UnUH
n , (3.150)

where Λs = diag(λ1, · · · , λr) contains the r largest eigenvalues of Cr.

In what follows it is assumed that the receiver has knowledge of the first K̃ (K̃ ≤ K)

users’ signature waveforms, S̃, whereas the signature waveforms of the remaining (K − K̃)

users are unknown to the receiver. Denote by H̃[m] and H̃ the submatrics of H[m] and H

respectively corresponding to the desired users, i.e.,

H̃[m]︸ ︷︷ ︸
P×K̃

�
=


h1[mP ] · · · hK̃ [mP ]

...
...

...

h1[mP + P − 1] · · · hK̃ [mP + P − 1]

 , m = 0, · · · , ι,

and H̃︸︷︷︸
Pm×K̃(m+ι)

�
=


H̃[ι] · · · H̃[0] · · · 0

...
. . . . . . . . .

...

0 · · · H̃[ι] · · · H̃[0]

 .
It is assumed that H̃ has full column rank, i.e.,

r̃
�
= K̃(m+ ι).

As in the synchronous case, the following projection matrix is needed in the definition of

the form-I group-blind linear MMSE detector:

P̄
�
= IPm − H̃

(
H̃

H
H̃

)−1

H̃
H
. (3.151)
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Note that P̄ projects any signal onto the subspace null(H̃
H

). It is then easily seen that the

matrix (P̄CrP̄ ) has an eigen-structure of the form

P̄CrP̄ =
[
Ū s Ūn Ū o

] 
Λ̄s 0 0

0 σ2IPm−r 0

0 0 0




Ū
H
s

Ū
H
n

Ū
H
o

 , (3.152)

where Λ̄s = diag(λ̄1, · · · , λ̄r−r̃), with λ̄i > σ
2, i = 1, · · · , (r− r̃); and the columns of Ū s form

an orthogonal basis of the subspace range(H)
⋂

null(H̃
H

).

3.5.1 Linear Group-Blind Detectors

As before, the basic idea behind the group-blind linear detectors is to suppress the interfer-

ence from the known users based on the spreading sequences of these users, and to suppress

the interference from other unknown users using the subspace-based blind methods. Anal-

ogously to the synchronous case, we have the following three types of linear group-blind

detectors. (In this section, ek denotes an r̃-vector with all elements zeros, except for the kth

one, which is 1. )

Definition 3.4 [Group-blind linear decorrelating detector - multipath CDMA] The weight

vector of the group-blind linear decorrelating detector for User k is given by the solution to

the following constrained optimization problem:

dk = arg min
w∈range(H)

∥∥dHH
∥∥2
, s.t. wHH̃ = eT

K̃ι+k
, (3.153)

k = 1, · · · , K̃.

Definition 3.5 [Group-blind linear hybrid detector - multipath channel] The weight vector

of the group-blind linear hybrid detector for User k is given by the solution to the following

constrained optimization problem:

wk = arg min
w∈range(H)

E
{∣∣bk[i] − wHr[i]

∣∣2} , s.t. wHH̃ = eT
K̃ι+k

, (3.154)

k = 1, · · · , K̃.
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Definition 3.6 [Group-blind linear MMSE detector - multipath channel] Let r̃[i] =

H̃b̃[i] + n[i] be the components of the received signal r[i] in (3.148) consisting of the signals

from the known users plus the noise. (b̃[i] is the subvector of b[i] containing the bits of the

desired users.) The weight vector of the group-blind linear MMSE detector for User k is

given by mk = m̃k + m̄k, where m̃k ∈ range(H̃) and m̄k ∈ range(Ū s) (Note that Ū s is

given in (3.152)), such that

m̃k = arg min
w∈range

(
˜H

)E
{∣∣bk[i] − wH r̃[i]

∣∣2} , (3.155)

and m̄k = arg min
w∈range

(
¯U s

)E
{∣∣∣bk[i] − (w + m̃k)

H r[i]
∣∣∣2} , (3.156)

k = 1, · · · , K̃.

The following results give expressions for the three group-blind linear detectors defined

above in terms of the known users’ channel matrix H̃ and the unknown users’ signal subspace

components Λ̄s and Ū s defined in (3.152). The proofs of these results are similar to those

corresponding to the synchronous case.

Proposition 3.7 [Group-blind linear decorrelating detector (form I) - multipath CDMA]

The weight vector of the group-blind linear decorrelating detector for the kth user is given by

dk =
[
IPm − Ū s

(
Λ̄s − σ2Ir−r̃

)−1
Ū

H
s Cr

]
H̃

(
H̃

H
H̃

)−1

eK̃ι+k, (3.157)

k = 1, · · · , K̃.

Proposition 3.8 [Group-blind linear hybrid detector (form I) - multipath CDMA] The

weight vector of the group-blind linear hybrid detector for the kth user is given by

wk =
(
IPm − Ū sΛ̄

−1
s Ū

H
s Cr

)
H̃

(
H̃

H
H̃

)−1

eK̃ι+k, (3.158)

k = 1, · · · , K̃.

Proposition 3.9 [Group-blind linear MMSE detector (form I) - multipath CDMA] The

weight vector of the group-blind linear MMSE detector for the kth user is given by

mk =
(
IPm − Ū sΛ̄

−1
s Ū

H
s Cr

)
H̃

(
H̃

H
H̃ + σ2I r̃

)−1

eK̃ι+k, (3.159)

k = 1, · · · , K̃.
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Note that in order to implement these group-blind linear detectors, the matrix H̃ must be

estimated first. The blind channel estimation procedure is discussed in Section 2.7.3. The

channel estimator discussed there can be used to estimate the channel for each desired user.

Once the desired users’ channels are estimated, the matrix H̃ can then be formed. As before,

the blind channel estimator has an arbitrary phase ambiguity, which necessitates the use of

differential encoding and decoding of the data bits. We next summarize the group-blind

linear hybrid multiuser detection algorithm in multipath channels.

Algorithm 3.5 [Group-blind linear hybrid detector (form I) - multipath CDMA]

• Compute the signal subspace:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H , (3.160)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

s . (3.161)

• Estimate the desired users’ channels: (cf. Section 2.7.3)

f̂ k = min-eigenvector
(
Ξ

H

k ÛnÛ
H

n Ξk

)
, (3.162)

and ĥk = Ξkf̂ k, (3.163)

k = 1, · · · , K̃.

Form ˆ̃H using ĥ1, · · · , ĥK̃.

• Compute the unknown users’ subspace:

ˆ̄P = IPm − ˆ̃H

(
ˆ̃H

H ˆ̃H

)−1
ˆ̃H

H

, (3.164)

and ˆ̄PĈr
ˆ̄P = ˆ̄U s

ˆ̄Λs
ˆ̄U

H

s + ˆ̄Un
ˆ̄Λn

ˆ̄U
H

n + ˆ̄U o
ˆ̄Λo

ˆ̄U
H

o . (3.165)

• Form the detectors:

ŵk =

(
IPm − ˆ̄U s

ˆ̄Λ
−1

s
ˆ̄U

H

s Ĉr

)
ˆ̃H

(
ˆ̃H

H ˆ̃H

)−1

eK̃ι+k, (3.166)

k = 1, · · · , K̃.
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• Perform differential detection:

zk[i] = ŵH
k r[i], (3.167)

β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (3.168)

i = 1, · · · ,M − 1; k = 1, · · · , K̃.

Note that the group-blind linear decorrelating detector and the group-blind linear MMSE

detector can be similarly implemented, both of which require an estimate of σ2, which can

be obtained simply as the mean of the noise subspace eigenvalues Λ̂n.

Alternatively the group-blind linear detectors can be expressed in terms of the signal

subspace components Λs and U s of all users defined in (3.150), as given by the following

three results. The proofs are again similar to their counterparts in the synchronous case.

Proposition 3.10 [Group-blind linear decorrelating detector (form II) - multipath CDMA]

The group-blind linear decorrelating detector for the kth user is given by

dk = U s

(
Λs − σ2IK

)−1
UH

s H̃
[
H̃

H
U s

(
Λs − σ2IK

)
U sH̃

]−1

eK̃ι+k, (3.169)

k = 1, · · · , K̃.

Proposition 3.11 [Group-blind linear hybrid detector (form II) - multipath CDMA] The

group-blind linear hybrid detector for the kth user is given by

wk = U sΛ
−1
s UH

s H̃
(
H̃

H
U sΛ

−1
s UH

s H̃
)−1

eK̃ι+k, (3.170)

k = 1, · · · , K̃.

Proposition 3.12 [Group-blind linear MMSE detector (form II) - multipath CDMA] Let

the (rank-deficient) QR factorization of the (Pm× r) matrix
(
P̄U s

)
be

P̄U s =
[

Qs Qo

] [ Rs Ro

0 0

]
Π , (3.171)



176 CHAPTER 3. GROUP-BLIND MULTIUSER DETECTION

where Qs is a (Pm × r̃) matrix, Rs is a (r̃ × r̃) non-singular upper triangular matrix, and

Π is a permutation matrix. The group-blind linear MMSE detector for the kth user is given

by

mk =
[
IPm − (

QsR
−H
s

) (
ΠΛsΠ

T
)−1 (

QsR
−H
s

)H
Cr

]
H̃

(
H̃

H
H̃ + σ2I r̃

)−1

eK̃ι+k,

(3.172)

k = 1, · · · , K̃.

Finally, we summarize the form-II group-blind linear hybrid multiuser detection algorithm

in multipath channels as follows.

Algorithm 3.6 [Group-blind linear hybrid detector (form II) - multipath CDMA]

• Compute the signal subspace:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H (3.173)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

s . (3.174)

• Estimate the desired users’ channels: (cf. Section 2.7.3)

f̂k = min-eigenvector
(
Ξ

H

k ÛnÛ
H

n Ξk

)
, (3.175)

ĥk = Ξkf̂k, (3.176)

k = 1, · · · , K̃.

Form ˆ̃H using ĥ1, · · · , ĥK̃.

• Form the detectors:

ŵk = Û sΛ̂
−1

s Û
H

s
ˆ̃H

(
ˆ̃H

H

Û sΛ̂
−1

s Û
H

s
ˆ̃H

)−1

eK̃ι+k, (3.177)

k = 1, · · · , K̃.

• Perform differential detection:

zk[i] = ŵH
k r[i], (3.178)

β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (3.179)

i = 1, · · · ,M − 1; k = 1, · · · , K̃.
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It is seen that the form-I group-blind detectors are based on the estimate of the signal

subspace of the matrix
(
P̄CrP̄

)
, whereas the form-II group-blind detectors are based on

the estimate of the signal subspace of the matrix Cr. If the signal subspace dimension

(K − K̃) of
(
P̄CrP̄

)
is less than that of Cr, which is K̃, then the form-I implementations

in general give a more accurate estimation of the group-blind detectors. On the other

hand, for multipath channels, the estimation of the given users’ channels is based on the

eigendecomposition of Cr. Hence the form-II group-blind detectors are more efficient in

terms of implementations, since they do not require the eigendecomposition (3.152), which

is required by the form-I group-blind detectors. If however, the channels are estimated by

some other means not involving the eigendecomposition of Cr, then the form-I detectors

can be computationally less complex than the form-II detectors, since the dimension of the

estimated signal subspace of the former is less than that of the latter. (That is, of course, if

the computationally efficient subspace tracking algorithms [93], instead of the conventional

eigendecomposition, are used.).

Simulation Examples

Next we provide computer simulation results to demonstrate the performance of the proposed

blind and group-blind linear multiuser detectors under a number of channel conditions.

The simulated system is an asynchronous CDMA system with processing gain N = 15.

m-sequences of length 15 and their shifted versions are employed as the user spreading

sequences. The chip pulse is a raised cosine pulse with roll-off factor 0.5. Each user’s channel

has L = 3 paths. The delay of each path is uniform on [0, 10Tc]. Hence the maximum delay

spread is one symbol interval, i.e., ι = 1. The fading gain of each path in each user’s channel

is generated from a complex Gaussian distribution and fixed for all simulations. The path

gains in each user’s channel are normalized so that all users’ signals arrive at the receiver

with the same power. The over-sampling factor is p = 2. The smoothing factor is m = 2.

Hence this system can accommodate up to �m+ι
m−ι

· P 	 = 10 users. The number of users in

the simulation is 10, with 7 known users, i.e., K = 10 and K̃ = 7. The length of each user’s

signal frame is M = 200.

In each simulation, an eigendecomposition is performed on the sample autocorrelation

matrix of the received signals. The signal subspace consists of the eigenvectors corresponding
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to the largest r eigenvalues. (Recall that r
�
= K(m + ι) is the dimension of the signal

subspace.) The remaining eigenvectors constitute the noise subspace. An estimate of the

noise variance σ2 is given by the average of the (Pm− r) smallest eigenvalues.

We first compare the performance of four exact detectors (i.e., assuming that H and σ2

are known), namely,

1. The linear MMSE detector;

2. The linear zero-forcing detector;

3. The group-blind linear hybrid detector; and

4. The group-blind linear MMSE detector.

For each of these detectors, and for each value of (Eb/No), the minimum and the maximum

bit error rate (BER) among the 7 known users is plotted in Fig. 3.13. It is seen from this

figure that, as expected, the closer the detector is to the true linear MMSE detector, the

better its performance is.

Next the performance of the various estimated group-blind detectors (i.e., the detectors

are estimated based on the M received signal vectors.) is shown in Fig. 3.14. It is seen

that at low (Eb/No), the group-blind MMSE detectors perform the best; whereas at high

(Eb/No), the group-blind hybrid detectors perform the best. This is because the hybrid

detector zero-forces the known users’ signals and it enhances the noise level; whereas the

group-blind linear MMSE detector suppresses both the interference and the noise. At high

(Eb/No), the group-blind hybrid and group-blind MMSE detectors tend to become the same.

However, the implementation of the latter requires an estimate of the noise level. When the

noise level is low, this estimate is noisy which consequently deteriorates the performance of

the group-blind MMSE detector. It is also seen that the performance of the form-I detectors

is only slightly better than the corresponding form-II detectors, at the expense of higher

computational complexity.

Comparing Fig. 3.13 with Fig. 3.14, it is seen that the performance of the estimated

detectors is substantially different from that of the corresponding exact detectors, for the

block size considered here (i.e., M = 200). It is known that the subspace detectors converge

to the exact detectors at a rate of O
(√

log logM/M
)
. It is also seen from Fig. 3.14 that
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the form-II hybrid detector performs very well compared with other forms of group-blind

detectors, even though it has the lowest computational complexity. Hence in the subsequent

simulation studies, we will compare the performance of the form-II hybrid detector with

some previously proposed multiuser detectors.

We next compare the performance of the group-blind hybrid detector with that of the

blind detector for the same system. The result is shown in Fig. 3.15, where the BER curves

for the blind linear MMSE detector, the form-II group-blind linear hybrid detector, and a

partial MMSE detector are plotted. The partial MMSE detector ignores the unknown users

and forms the linear MMSE detector for the K̃ known users using the estimated matrix H̃ .

It is seen that the group-blind detector significantly outperform the blind MMSE detector

and the partial MMSE detector. Indeed the blind MMSE detector exhibits an error floor

at high (Eb/No) values. This is due to the finite length of the received signal frame, from

which the detector is estimated. The group-blind hybrid MMSE detector does not show an

error floor in the BER range considered here. Of course, due to the finite frame length, the

group-blind detector also has an error floor. But such a floor is much lower than that of the

blind linear MMSE detector.
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Figure 3.13: Comparison of the performance of four exact linear detectors in white noise.

K = 10, K̃ = 7.
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Figure 3.14: Comparison of the performance of various estimated group-blind detectors in

white noise. K = 10, K̃ = 7. (Left: minimum BER; Right: maximum BER.)
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Figure 3.15: Comparison of the performance of the blind and the group-blind linear detectors

in white noise. K = 10, K̃ = 7.

Theoretically both the blind detector and the group-blind detector converge to the true

linear MMSE detector (at high signal-to-noise ratio) as the signal frame sizeM → ∞. Hence

the asymptotic performance of the two detectors is the same at high signal-to-noise ratio.

However, for a finite frame length M , the group-blind detector performs significantly better

than the blind detector, as seen from the above simulation results. An intuitive explanation

for such performance improvement is that more information about the multiuser environment

is incorporated in forming the group-blind detector. For example, the computation for

subspace decomposition and channel estimation involved in the two detectors are exactly the

same. However, the blind detector is formed based solely on the composite channel of the

desired user; where as the group-blind detector is formed based on the composite channels

of all known users. By incorporating more information about the multiuser channel, the

estimated group-blind detector is more accurate than the estimated blind detector, i.e., the

former is “closer” to the exact detector than the latter.

It is seen from Fig. 3.13 that when the spreading waveforms and the channels of all users

are known, all the three forms of the exact group-blind detectors perform worse than the

linear MMSE detector, which is the exact blind detector. This is because the zero-forcing and
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the hybrid group-blind detectors zero-force all or some users’ signals and enhance the noise

level; whereas the group-blind MMSE detector is defined in terms of a specific constrained

form which in general is different from the true MMSE detector. However, with imperfect

channel information, the roles are reversed and the group-blind detectors outperform the

blind detector. Of course, both the blind and the group-blind detectors are developed based

on the assumption that the multiuser channel is not perfectly known, and the study of

the performance of the exact detectors is only of theoretical interest. Nevertheless, it is

interesting to observe that by changing the assumption on the prior knowledge about the

channel, the relative performance of two detectors can be different.

3.5.2 Adaptive Group-blind Linear Multiuser Detection

As for the blind linear multiuser detector discussed in Chapter 2, the group-blind linear

multiuser detectors can also be implemented adaptively. Specifically, for example, since the

form-II linear hybrid detector can be written in closed-form as a function of the signal sub-

space components, we can use a suitable subspace tracking algorithm in conjunction with

this detector and a channel estimator to form an adaptive detector that is able to track

changes in the number of users and their composite signature waveforms [403]. Fig. 3.16

contains a block diagram of such a receiver. The received signal r[i] is fed into a subspace

tracker which sequentially estimates the signal subspace components (U s,Λs). The received

signal r[i] is then projected onto the noise subspace to obtain z[i], which is in turn passed

through a bank of parallel linear filters, each determined by the signature waveform of a de-

sired user. The output of each filter is fed into a channel tracker which estimates the channel

state of that particular user. Finally, the linear hybrid group-blind detector is constructed

in closed-form based on the estimated signal subspace components and the channel states

of the desired users. This adaptive algorithm is summarized as follows. Suppose at time

(i − 1), the estimated signal subspace rank is r[i − 1], and the signal subspace components

are U s[i− 1], Λs[i− 1] and σ2[i− 1]. The estimated channel states for the desired users are

fk[i− 1], 1 ≤ k ≤ K̃. Then at time i, the adaptive detector performs the following steps to

update the detector and detect the data.

Algorithm 3.7 [Adaptive group-blind linear hybrid multiuser detector - multipath CDMA]
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• Update the signal subspace: Using a particular signal subspace tracking algorithm, up-

date the signal subspace rank r[i] and the signal subspace components U s[i], Λs[i] and

σ2[i].

• Estimate the desired users’ channels: [cf. Section 2.7.4]

xk[i] = Ξ
H

k z[i], (3.180)

kk[i] = Σk[i− 1]xk[i]
(
xk[i]

HΣk[i− 1]xk[i]
)−1

, (3.181)

fk[i] = fk[i− 1] − kk[i]
(
xk[i]

Hf k[i]
)
/
∥∥fk[i− 1] − kk[i]

(
xk[i]

Hfk[i]
)∥∥ ,(3.182)

Σk[i] = Σk[i− 1] − kk[i]xk[i]
HΣk[i− 1], (3.183)

k = 1, · · · , K̃.

Form ˆ̃H [i] using f 1[i], · · · ,f K̃ [i].

• Form the detectors:

ŵk[i] = Û s[i]Λ̂s[i]
−1Û s[i]

H ˆ̃H [i]
(

ˆ̃H [i]HÛ s[i]Λ̂s[i]
−1Û s[i]

H ˆ̃H [i]
)−1

eK̃ι+k

k = 1, · · · , K̃. (3.184)

• Perform differential detection:

zk[i] = ŵk[i]
Hr[i], (3.185)

β̂k[i] = sign {� (zk[i]zk[i− 1]∗)} , (3.186)

k = 1, · · · , K̃.

Simulation Examples

We next illustrate the performance of the adaptive receiver in an asynchronous CDMA

system. The processing gain N = 15 and the spreading codes are Gold codes of length 15.

The chip pulse waveform is a raised cosine pulse with a roll-off factor of 0.5. Each user’s

channel has L = 3 paths. The delay of each path is uniformly distributed on [0, 10Tc].

Hence, the maximum delay spread is one symbol interval, i.e., ι = 1. The channel gain of

each path in each user’s channel is generated from a complex Gaussian distribution and is
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Figure 3.16: Adaptive receiver structure.

fixed for all simulations. The path gains in each user’s channel are normalized so that all

users’ signals arrive at the receiver with the same power. The over-sampling factor is p = 2

and the smoothing factor is m = 2. The performance measures are the SINR and the BER.

Fig. 3.17 is a comparison of the adaptive performance of the MMSE blind detector and

the hybrid group-blind detector using the NAHJ subspace tracking algorithm discussed in

Section 2.6.3. During the first 1000 iterations there are eight total users, six of which are

known by the group-blind detector. At iteration 1000, four new users are added to the

system. At iteration 2000, one additional known user is added and three unknown users

vanish. We see that there is a substantial performance gain using the group-blind detector

at each stage and that convergence occurs in less than 500 iterations.

Fig. 3.18 is created with parameters identical to Fig. 3.17 except that the tracking al-

gorithm used is an exact rank-one SVD update. Again we see a significant improvement in

performance using the group-blind detector. More importantly, when we compare Fig. 3.17

and Fig. 3.18 we see very little difference between the performance we obtain using the NAHJ

subspace tracking and that we obtain using an exact SVD update.

Fig. 3.19 shows the steady-state BER performance of our receiver using NAHJ subspace

tracking and the exact SVD update for both blind and group blind multiuser detection.

The number of users is 8 and the number of known users is 6. At SNR above about 11dB

we see that the group-blind detectors provide a substantial improvement in BER. At lower

SNR, the group-blind detector seem to suffer from the noise enhancement problems that
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often accompany zero-forcing detectors. Recall that the hybrid group-blind detector zero-

forces the interference of the known users and suppresses the interference from the unknown

users via the MMSE criterion. Once again, note the relatively small difference between the

performance of NAHJ and that of exact SVD, especially at high SNR.
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Figure 3.17: Performance of the adaptive receiver employing the NAHJ subspace tracking

algorithm.

3.5.3 Linear Group-Blind Detector in Correlated Noise

The problem of blind linear multiuser detection in unknown correlated noise is discussed

in Section 2.7.5. In this section, we consider the problem of group-blind linear multiuser

detection in the same environment, which was first treated in [542]. Recall that in this case

it is assumed that the signal is received by two well separated antennas so that the noise is

spatially uncorrelated. The two augmented received signal vectors at the two antennas are

given respectively by

r1[i] = H1b[i] + n1[i], (3.187)

r2[i] = H2b[i] + n2[i], (3.188)
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Figure 3.18: Performance of the adaptive receiver employing the exact SVD update.
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where H1 and H2 contain the channel information corresponding to the respective anten-

nas; n1[i] and n2[i] are the Gaussian noise vectors at the two antennas with the following

correlations:

E {n1[i]n1[i]H} = Σ1, (3.189)

E
{
n2[i]n2[i]

H
}

= Σ2, (3.190)

and E
{
n1[i]n2[i]

H
}

= 0. (3.191)

Define

C11 = E
{
r1[i]r1[i]

H
}

= H1H
H
1 + Σ1, (3.192)

C22 = E
{
r2[i]r2[i]

H
}

= H2H
H
2 + Σ2, (3.193)

C12 = E
{
r1[i]r2[i]

H
}

= H1H
H
2 . (3.194)

The canonical correlation decomposition (CCD) of the matrix C12 is given by

C
−1/2
11 C12C

−1/2
22 = U 1ΓUH

2 , (3.195)

=⇒ C−1
11 C12C

−1
22 =

(
C

−1/2
11 U 1

)
︸ ︷︷ ︸

L1

Γ
(
C

−1/2
22 U 2

)H

︸ ︷︷ ︸
L2

. (3.196)

The (Pm×Pm) matrix Γ has the form Γ = diag(γ1, · · · , γr, 0, · · · , 0), with γ1 ≥ · · · ≥ γr > 0.

Define Lj,s and Lj,n as respectively the first r columns and the last (Pm − r) columns of

Lj, j = 1, 2. It is known then that

range (Lj,n) = null
(
HH

j

)
, j = 1, 2. (3.197)

As discussed in Section 2.7.5, the composite signature waveform h̄j,k of the desired User k,

1 ≤ k ≤ K̃, can be estimated based on the orthogonality relationship LH
j,nh̄j,k = 0.

We next consider the group-blind linear detector in correlated ambient noise based on

the CCD method. Since the signal subspace can not be directly identified in the CCD, we

will not consider the group-blind linear zero-forcing or MMSE detectors, which require the

identification of some signal subspace. Nevertheless, the form-II group-blind linear hybrid

detector can be easily constructed for correlated noise, as given by the following result.
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Proposition 3.13 [Group-blind linear hybrid detector in correlated noise (form II) ] The

weight vector of the group-blind linear hybrid detector for the kth user at the jth antenna in

correlated noise is given by

wj,k = Lj,sL
H
j,sH̃j

(
H̃

H

j Lj,sL
H
j,sH̃j

)−1

eK̃ι+k, (3.198)

j = 1, 2; k = 1, · · · , K̃.

Proof: By definition, the group-blind linear hybrid detector is given by the following

constrained optimization problem

wj,k = arg min
w∈CPm

E
{∣∣bk[i] − wHrj[i]

∣∣2} , s.t. wHH̃j = eT
K̃ι+k

. (3.199)

Using the method of Lagrange multipliers to solve (3.199), we obtain

wj,k = arg min
w∈CPm

E
{∣∣bk[i] − wHrj[i]

∣∣2} + λH
(
H̃

H

j w − eK̃ι+k

)
= arg min

w∈CPm
wHCjjw − 2

(
H̃jeK̃ι+k

)H

w + λHH̃
H

j w

= arg min
w∈CPm

wHCjjw +
(
λ − 2eK̃ι+k

)H
H̃

H

j w

= C−1
jj H̃jµ, (3.200)

where λ ∈ C
r̃ is the Lagrange multiplier, and µ

�
= λ− 2eK̃ι+k. Substituting (3.200) into the

constraint that wH
k H̃j = eK̃ι+k we obtain

µ =
(
H̃

H

j C−1
jj H̃j

)−1

eK̃ι+k.

Hence

wj,k = C−1
jj H̃j

(
H̃

H

j C−1
jj H̃j

)−1

eK̃ι+k. (3.201)

Moreover, by definition

Lj = [Lj,s | Lj,n] = C
−1/2
jj U j

=⇒ C−1
jj = LjL

H
j = Lj,sL

H
j,s + Lj,nL

H
j,n. (3.202)

Substituting (3.202) into (3.201), and using the fact that LH
j,nH̃j = 0, we obtain (3.198). �

The group-blind linear multiuser detection algorithm in multipath channels with corre-

lated noise is summarized as follows:
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Algorithm 3.8 [Group-blind linear hybrid detector - multipath CDMA and correlated

noise]

• Compute the CCD: Let Y j
�
=

[
rj[0], · · · , rj[M − 1]

]
, j = 1, 2,

1√
M

XH
j = Q̂jΥ̂ j, (QR decomposition of Xj) (3.203)

j = 1, 2.

Q̂
H

1 Q̂2 = V̂ 1Γ̂ V̂
H

2 . (SVD of Q̂
H

1 Q̂2) (3.204)

L̂j = Υ̂
−1

j V̂ j =
[
L̂j,s | L̂j,n

]
(3.205)

j = 1, 2.

• Estimate the desired users’ channels: (cf. Section 2.7.3)

f̂ j,k = min-eigenvector
(
Ξ

H

k L̂j,nL̂
H

j,nΞk

)
, (3.206)

ĥj,k = Ξkf̂ j,k, (3.207)

j = 1, 2; k = 1, · · · , K̃.

Form ˆ̃Hj using ĥj,1, · · · , ĥj,K̃.

• Form the detector

ŵj,k = L̂j,sL̂
H

j,s
ˆ̃Hj

(
ˆ̃H

H

j L̂j,sL̂
H

j,s
ˆ̃Hj

)−1

eK̃ι+k, (3.208)

j = 1, 2; k = 1, · · · , K̃.

• Perform differential detection:

zj,k[i] = ŵH
j,krj[i],

j = 1, 2.

β̂k[i] = sign

{
�
(

2∑
j=1

zj,k[i]zj,k[i− 1]∗
)}

,

i = 1, · · · ,M − 1; k = 1, · · · , K̃.
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Simulation Example

The simulated system is the same as that described in Section 3.5.1. The noise at each an-

tenna j is modelled by an second order autoregressive (AR) model with coefficients [aj,1, aj,2],

i.e., the noise field is generated according to

vj[n] = aj,1 vj[n− 1] + aj,2 vj[n− 2] + wj[n], j = 1, 2, (3.209)

where vj[n] is the noise at antenna j and sample n, and wj[n] is a complex white Gaussian

noise sample. The AR coefficients at the two antennas are chosen as [a1,1, a1,2] = [1,−0.2]

and [a2,1, a2,2] = [1.2,−0.3]. The performance of the group-blind linear hybrid detector is

compared with that of the blind linear MMSE detector. The result is shown in Fig. 3.5.3.

It is seen that, similarly to the white noise case, the proposed group-blind linear detector

offers substantial performance gain over the blind linear detector.
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Figure 3.20: Comparison of the performance of the blind and group-blind linear detectors

in correlated noise. K = 10, K̃ = 7.

3.5.4 Nonlinear Group-Blind Detector

In this section, we extend the nonlinear multiuser detection methods discussed in Section 3.4

to asynchronous CDMA systems with multipath [447]. The idea is essentially the same as
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in the synchronous case. We first estimate the decorrelating detectors of the desired users,

given by

ˆ̃D = Û s

(
Λ̂s − σ̂2Ir

)−1

Û s

H ˆ̃H

[
ˆ̃H

H

Û s

(
Λ̂s − σ̂2Ir

)−1

Û
H

s
ˆ̃H

]−1

[eK̃ι+1 · · · eK̃ι+K̃ ].

(3.210)

Note that ˆ̃H can be estimated only up to a phase ambiguity. Denote the output of the

decorrelating detector as

z[i]
�
= ˆ̃D

H

r[i] = Ãb̃[i] + ˆ̃D
H

n[i]

=⇒ zk[i] = αkbk[i] + ñk[i], (3.211)

k = 1, · · · , K̃,

where Ã
�
= diag(α1, · · · , αK̃) is the phase ambiguity induced by the channel estimator which

can be estimated using (3.129).

Denote

y[i]
�
=

[
�{θ[i]}
�{θ[i]}

]
, Φ

�
=

 �
{

Ã
}

�
{

Ã
}  , and v[i]

�
=

 �
{

D̃
H

n[i]
}

�
{

D̃
H

n[i]
}  .

Then (3.211) can be written as

y[i] = Φb̃[i] + v[i]. (3.212)

Note that the covariance of v is given by

Cov{v} =
σ2

2

[
Q 0

0 Q

]
, (3.213)

with Q
�
= �

{
ˆ̃D
}T

�
{

ˆ̃D
}

+ �
{

ˆ̃D
}T

�
{

ˆ̃D
}
. (3.214)

Based on (3.212), the slowest-descent search method for estimating b̃[i] is given by the same

procedure as (3.121)-(3.126), with the covariance matrix given by (3.214). The algorithm is

summarized as follows.

Algorithm 3.9 [Nonlinear group-blind detector - multipath CDMA]
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• Compute the signal subspace:

Ĉr =
1

M

M−1∑
i=0

r[i]r[i]H (3.215)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

s . (3.216)

• Estimate the desired users’ channels: (cf. Section 2.7.3)

f̂k = min-eigenvector
(
Ξ

H

k ÛnÛ
H

n Ξk

)
, (3.217)

ĥk = Ξkf̂k, (3.218)

k = 1, · · · , K̃.

Form ˆ̃H using ĥ1, · · · , ĥK̃.

• Form the decorrelating detectors using (3.210).

• Estimate the complex amplitudes Ã:

z[i] = ˆ̃D
H

r[i], (3.219)

i = 0, · · · ,M − 1.

ρ̂k =
1

M

M−1∑
i=0

|zk[i]|, (3.220)

Rk =
1

M

M−1∑
i=0

�{zk[i]}, (3.221)

Ik =
1

M

M−1∑
i=0

�{zk[i]}, (3.222)

φ̂k =


1
M

M−1∑
i=0

∠ [zk[i]sign (�{zk[i]})] , if Rk ≥ Ik

1
M

M−1∑
i=0

∠ [zk[i]sign (�{zk[i]})] , if Rk < Ik

, (3.223)

Âk = ρ̂ke
φ̂k , (3.224)

k = 1, · · · , K̃.

• Compute the Hessian

∇̂2 = �
{

ˆ̃A
}

Q̂
−1�

{
ˆ̃A
}

+ �
{

ˆ̃A
}

Q̂
−1�

{
ˆ̃A
}
, (3.225)
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and the Q smallest eigenvectors g1, · · · , gQ of ∇̂2.

• Detect each symbol by solving the following discrete optimization problem using exhaus-

tive search (over (K̃Q+ 1) points):

ˆ̃θ[i] =
(
∇̂2

)−1 [
�{ ˆ̃A}Q̂−1�{z[i]} + �{ ˆ̃A}Q̂−1�{z[i]}

]
, (3.226)

ˆ̃b
∗
[i] = sign(ˆ̃θ[i]), (3.227)̂̃b[i] = arg min

˜b∈Ω̃[i]

(
b̃ − ˆ̃θ[i]

)T

∇̂2
(
b̃ − ˆ̃θ[i]

)
, (3.228)

Ω̃[i] = {ˆ̃b
∗
[i]} ∪

Q⋃
q=1

b̃
q,µ ∈ {−1,+1}K̃ : b̃q,µ

k =

 sign
(

ˆ̃βk[i] − µgq
k

)
, if ˆ̃βk[i] − µgq

k �= 0

−ˆ̃b
∗
k[i], if ˆ̃βk[i] − µgq

k = 0
,

µ ∈
{

ˆ̃β1[i]

gq
1

, · · · ,
ˆ̃βK̃ [i]

gq

K̃

}}
, (3.229)

i = 0, · · · ,M − 1.

• Perform differential decoding:

β̂k[i] = b̂k[i]b̂k[i− 1], (3.230)

k = 1, · · · , K̃; i = 1, · · · ,M − 1.

Simulation Examples

The simulation set is the same as that in Section 3.5.2. Fig. 3.21 shows that, similarly to

the synchronous case, in multipath channels, the nonlinear group-blind multiuser detector

outperforms the linear group-blind detector by a significant margin. Furthermore, most of

the performance gain offered by the slowest-descent method is obtained by searching along

only one direction.
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Figure 3.21: Performance of the slowest-descent-based group-blind multiuser detector in

multipath channel. N = 15, K = 8, K̃ = 4. Each user’s channel consists of three paths

with randomly generated complex gains and delays. Only the spreading waveforms S̃ of the

desired users are assumed known to the receiver. The BER curves of the linear group-blind

detector and the slowest-descent (nonlinear) group-blind detector with Q = 1 and Q = 2 are

shown.
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3.6 Appendix

3.6.1 Proofs in Section 3.3.1

Proof of Theorem 3.1

Denote Y
�
= U sΛ

−1
s UT

s and Ŷ
�
= Û sΛ̂

−1

s Û
T

s . We have the following differential (at Y )

∆
(
S̃

T
Ŷ S̃

)−1

= −
(
S̃

T
Y S̃

)−1

S̃
T
∆Y S̃

(
S̃

T
Y S̃

)−1

. (3.231)

The differential of the form-II group-blind detector

ŵ1
�
= Ŷ S̃

(
S̃

T
Ŷ S̃

)−1

ẽ1 (3.232)

is then given by

∆w1 = ∆Y S̃
(
S̃

T
Y S̃

)−1

e1 − Y S̃
(
S̃

T
Y S̃

)−1

S̃
T
∆Y S̃

(
S̃

T
Y S̃

)−1

e1

=

[
IN − Y S̃

(
S̃

T
Y S̃

)−1

S̃
T
]

︸ ︷︷ ︸
Q

∆Y S̃
(
S̃

T
Y S̃

)−1

e1︸ ︷︷ ︸
v1

. (3.233)

It then follows from Lemma 2.6 that ŵ1 is asymptotically Gaussian. To find Cw, notice that

v1 ∈ range(U s). Hence by Proposition 2.6 we have

M · cov {∆Y v1} =
(
vT

1 Y v1

)
Y + (Y v1) (Y v1)

T − 2Y SDST Y + τUnU
T
n ,(3.234)

with D
�
= diag

{
A4

1

(
sT

1 Y v1

)2
, · · · , A4

K

(
sT

KY v1

)2
}
, (3.235)

τ = σ2vT
1 U sΛ

−1
s

(
Λs − σ2IK

)−2
UT

s v1. (3.236)

Therefore the asymptotic covariance of ŵ1 is given by

M · Cw = Q (M · cov {∆Y v1}) QT . (3.237)

It is easily verified that QY v1 = 0. Using this and the facts that w1 = Y v1 and QUn = Un,

by substituting (3.234) into (3.237), we obtain (3.61). �

Proof of Corollary 3.1

In this appendix ek denotes the kth unit vector in R
K and ẽk denotes the kth unit vector

in R
K̃ . Denote S̃

�
= [s1 · · · sK̃ ], S̄

�
= [sK̃+1 · · · sK ]. Denote further Y

�
= U sΛ

−1
s UT

s and
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X
�
= U sΛsU

T
s . Note that (Y sk) is the linear MMSE detector for the kth user, given by

Y sk = S
(
R + σ2A−2

)−1
A−2ek. (3.238)

Denote

S̃
T
Y S̃ =

[
R

(
R + σ2A−2

)−1
A−2

]
1:K̃,1:K̃

= Ψ 11, (3.239)

S̃
T
Y S̄ =

[
R

(
R + σ2A−2

)−1
A−2

]
1:K̃,K̃+1:K

= Ψ 12, (3.240)

S̄
T
Y S̃ =

[
R

(
R + σ2A−2

)−1
A−2

]
K̃+1:K,1:K̃

= ΨT
12, (3.241)

and S̄
T
Y S̄ =

[
R

(
R + σ2A−2

)−1
A−2

]
K̃+1:K,K̃+1:K

= Ψ 22. (3.242)

First we compute the term tr(CwCr). Using (3.61), and the facts that Cr = U sΛsU s +

σ2UnUn and UT
s Un = 0, we have

tr(CwCr) = vT
1 w1 tr

(
QY QT X

) − 2tr
(
QY SDST Y QT X

)
+ τσ2 tr(UnU

T
n )︸ ︷︷ ︸

N−K

. (3.243)

The term
(
vT

1 w1

)
in (3.243) can be computed as

vT
1 w1 = tr

(
w1v

T
1

)
= tr

(
Y v1v

T
1

)
= tr

(
Y S̃Ψ−1

11 ẽ1ẽ
T
1 Ψ−1

11 S̃
T
)

=
[
Ψ−1

11

]
1,1
. (3.244)

Using the fact that XY S̃ = U sU
T
s S̃ = S̃, the term tr

(
QY QT X

)
in (3.243) is given by

tr
(
QY QT X

)
= tr

{[
Y − Y S̃Ψ−1

11 S̃
T
Y

] [
X − S̃Ψ−1

11 S̃
T
Y X

]}
= tr

(
UT

s U s

) − tr
(
S̃

T
Y S̃Ψ−1

11

)
= tr(IK) − tr(IK̃) = K − K̃. (3.245)

In order to compute the second term in (3.243), first note that SDST = S̃D̃S̃ + S̄D̄S̄. We

have

tr
(
QY SDST Y QT X

)
= tr

(
QY S̄D̄S̄

T
Y QT X

)
= tr

(
S̄

T
Y QT XQY S̄D̄

)
, (3.246)

where the first equality follows from the fact that QY S̃ = 0. Moreover,

S̄
T
Y QT XQY S̄ =

(
S̄

T
Y − ΨT

12Ψ
−1
11 S̃

T
Y

)
X

(
Y S̄ − Y S̃Ψ−1

11 Ψ 12

)
= Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12, (3.247)
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where we used the fact that Y XY = Y . In (3.246) D̄ is given by

D̄
�
= diag

{
A4

K̃+1

(
sT

K̃+1
w1

)2

, · · · , A4
K

(
sT

Kw1

)2
}
, (3.248)

sT
K̃+k

w1 =
[
S̄

T
Y S̃Ψ−1

11

]
k,1

=
[
ΨT

12Ψ
−1
11

]
k,1
. (3.249)

Substituting (3.247) and (3.249) into (3.246) we obtain the second term in (3.243)

tr
(
QY SDST Y QT X

)
= tr

[(
Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12

)
D̄

]
,

=
K−K̃∑
k=1

A4
K̃+k

[
ΨT

12Ψ
−1
11

]2

k,1

[
Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12

]
k,k
. (3.250)

Finally we compute τ in the last term in (3.243). By definition

τ = σ2vT
1 U sΛ

−1
s

(
Λs − σ2IK

)−2
UT

s v1

= σ2 ẽT
1 Ψ−1

11 S̃
T
U sΛ

−1
s UT

s︸ ︷︷ ︸
˜M

T

U s

(
Λs − σ2IK

)−1
UT

s U s

(
Λs − σ2IK

)−1
UT

s S̃︸ ︷︷ ︸
˜D

Ψ−1
11 ẽ1

= σ2 ẽT
1 Ψ−1

11 Ẽ
T
A−2

(
R + σ2A−2

)−1
ST U s

(
Λs − σ2IK

)−1
UT

s S︸ ︷︷ ︸
D=SR−1A−2

R−1A−2ẼΨ−1
11 ẽ1

= σ2
[
Ψ−1

11 ΞΨ−1
11

]
1,1
, (3.251)

where

M̃
�
= U sΛ

−1
s UT

s S̃ = S
(
R + σ2A−2

)−1
A−2Ẽ, (3.252)

D̃
�
= U s

(
Λs − σ2IK

)−1
UT

s S̃ = SR−1A−2Ẽ, (3.253)

and Ξ
�
=

[
A−2

(
R + σ2A−2

)−1
A−2R−1A−2

]
1:K̃,1:K̃

, (3.254)

with Ẽ
�
= [e1 · · · eK̃ ]. Substituting (3.244), (3.245), (3.250) and (3.251) into (3.243), we

have

tr(CwCr) = (K − K̃)
[
Ψ−1

11

]
1,1

− 2
K−K̃∑
k=1

A4
K̃+k

[
ΨT

12Ψ
−1
11

]2

k,1

[
Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12

]
k,k

+(N −K)σ4
[
Ψ−1

11 ΞΨ−1
11

]
1,1
. (3.255)

Moreover, we have

sT
k w1 =


1, k = 1,

0, 1 < k ≤ K̃,[
ΨT

12Ψ
−1
11

]
k−K̃,1

, K̃ < k ≤ K.

(3.256)
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Next we compute ‖w1‖2. Since

w1 = Y S̃
(
S̃

T
Y S̃

)−1

ẽ1 = M̃Ψ−1
11 ẽ1, (3.257)

and M̃
T
M̃ =

[
A−2

(
R + σ2A−2

)−1
R

(
R + σ2A−2

)−1
A−2

]
1:K̃,1:K̃

�
= Π ,(3.258)

we have

‖w1‖2 =
[
Ψ−1

11 ΠΨ−1
11

]
1,1
. (3.259)

By (3.255)-(3.259) we obtain the corollary. �

SINR Calculation for Example 2

Substituting (2.337)-(2.339) and A2 = A2IK into (3.66)-(3.68), we have

A2 · Ψ 11 = a(1 − ρ)Ĩ + (aρ+ b)1̃1̃T , (3.260)

A2 · Ψ 22 = a(1 − ρ)Ī + (aρ+ b)1̄1̄T , (3.261)

A2 · Ψ 12 = (aρ+ b)1̃1̄T , (3.262)

A4 · Π = a′(1 − ρ)Ĩ + (a′ρ+ b′)1̃1̃T , (3.263)

and A6 · Ξ = a′′(1 − ρ)Ĩ + (a′′ρ+ b′′)1̃1̃T , (3.264)

where Ĩ
�
= IK̃ , Ī

�
= IK−K̃ , 1̃ denotes an all-1 K̃-vector, and 1̄ denotes an all-1 (K − K̃)-

vector. After some manipulations, we obtain the following expressions:

A−2 · Ψ−1
11 =

1

a(1 − ρ)
[
Ĩ − aρ+ b

a(1 − ρ) + K̃(aρ+ b)
1̃1̃T

]
, (3.265)

A−2 · Ψ−1
22 =

1

a(1 − ρ)
[
Ī − aρ+ b

a(1 − ρ) + (K − K̃)(aρ+ b)
1̄1̄T

]
, (3.266)

ΨT
12Ψ

−1
11 =

aρ+ b

a(1 − ρ) + K̃(aρ+ b)
1̄1̃T , (3.267)

A2 · ΨT
12Ψ

−1
11 Ψ 12 =

K̃(aρ+ b)2

a(1 − ρ) + K̃(aρ+ b)
1̄1̄T , (3.268)

Ψ−1
11 ΠΨ−1

11 =
1

a2(1 − ρ)2

{
a′ρ+ b′ − aρ+ b

a(1 − ρ) + K̃(aρ+ b)

[
2(1 − ρ)a′ + (K̃ + 1)(a′ρ+ b′)

]
+

[
aρ+ b

a(1 − ρ) + K̃(aρ+ b)

]2

K̃
[
a′(1 − ρ) + K̃(a′ρ+ b′)

]}
1̃1̃T +

a′

a2(1 − ρ) Ĩ,
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and (3.269)

A2 · Ψ−1
11 ΞΨ−1

11 =
1

a2(1 − ρ)2

{
a′′ρ+ b′′ − aρ+ b

a(1 − ρ) + K̃(aρ+ b)

[
2(1 − ρ)a′′ + (K̃ + 1)(a′′ρ+ b′′)

]
+

[
aρ+ b

a(1 − ρ) + K̃(aρ+ b)

]2

K̃
[
a′′(1 − ρ) + K̃(a′′ρ+ b′′)

]}
1̃1̃T +

a′′

a2(1 − ρ) Ĩ.

(3.270)

Substituting (3.265)-(3.270) into (3.69)-(3.72), and by letting

α
�
=

[
ΨT

12Ψ
−1
11

]
k,1
, (3.271)

β
�
=

σ2

A2

[
Ψ−1

11 ΠΨ−1
11

]
1,1
, (3.272)

γ
�
= A−2

[
Ψ−1

11

]
1,1
, (3.273)

η
�
= A2

[
Ψ 22 − ΨT

12Ψ
−1
11 Ψ 12

]
1,1
, (3.274)

and µ
�
= A2

[
Ψ−1

11 ΞΨ−1
11

]
1,1
, (3.275)

we obtain (3.82). �

3.6.2 Proofs in Section 3.3.2

Proof of Theorem 3.2

We prove this theorem for the case of linear group-blind hybrid detector, i.e., v = d̃1. The

proof for the linear group-blind MMSE detector is essentially the same. Denote ek as the

kth unit vector in R
N . Let Q1 be an orthogonal transformation such that

QT
1 sk = eN−K̃+k, k = 1, · · · , K̃. (3.276)

For any v ∈ R
N , denote vq1

�
= QT

1 v. The corresponding projection matrix in the Q1-rotated

coordinate system is

P̄
q1 �

= IN − S̃
q1
[
(S̃

q1
)T S̃

q1
]−1

(S̃
q1

)T (3.277)

= IN − diag(0, IK̃) (3.278)

= diag(IN−K̃ ,0). (3.279)
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Denote

Cq1
r

�
= E

{
rq1(rq1)T

}
= QT

1 CrQ1 (3.280)

=

[
Cq1

11 Cq1

12

Cq1T
12 Cq1

22

]
, (3.281)

where the dimension of Cq1

11 is (N − K̃) × (N − K̃). Hence

P̄
q1Cq1

r P̄
q1 =

[
Cq1

11 0

0 0

]
. (3.282)

Let the eigendecomposition of Cq1

11 be1

C11 = U 1Λ̄UT
1 = U s,1Λ̄sU

T
s,1 + σ2Un,1U

T
n,1. (3.283)

Define another orthogonal transformation

Q2 =

[
UT

1 0

0 IK̃

]
. (3.284)

For any v ∈ R
N , denote vq �

= QT
2 QT

1 v. In what follows, we compute the asymptotic

covariance matrix of the detector in the Q1Q2-rotated coordinate system. In this new

coordinate system, we have

Cq
r

�
= E

{
rq(rq)T

}
= QT

2 QT
1 CrQ1Q2 (3.285)

=

[
Cq

11 Cq
12

CqT
12 Cq

22

]
=

[
Λ̄ UT

1 Cq1

12(
UT

1 Cq1

12

)T
Cq1

22

]
, (3.286)

P̄
q �

= IN − S̃
q
[
(S̃

q
)T S̃

q
]−1

S̃
qT

= diag(IN−K̃ ,0), (3.287)

P̄
q
Cq

rP̄
q

=

[
Λ̄ 0

0 0

]
. (3.288)

Furthermore, after rotation, d̃
q

1 ∈ R
N has the form

d̃
q

1
�
= S̃

q
[
(S̃

q
)T S̃

]−1

e1 =

[
0

p

]
, (3.289)

1The eigenvalues are unchanged by similarity transformations.
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for some p ∈ R
K̃ . After some manipulations, the form-I group-blind hybrid detector in the

new coordinate system has the following form

wq
1

�
=

(
IN − Ū

q
s

[
Λ̄

q
s

]−1
[Ū

q
s]

T Cq
r

)
d̃

q

1 =

[
−EsΛ̄

−1
s ET

s Cq
12p

p

]
, (3.290)

where Es consists of the first (K − K̃) columns of IN−K̃ , i.e., IN−K̃ = [Es En]. Let the

estimated autocorrelation matrix in the rotated coordinate system be

Ĉ
q

r
�
= QT

2 QT
1 ĈrQ1Q2 =

[
Ĉ

q

11 Ĉ
q

12

Ĉ
qT

12 Ĉ
q

22

]
. (3.291)

Let the corresponding eigendecomposition of Ĉ
q

11 be

Ĉ11 = Û s,1
ˆ̄ΛsÛ

T

s,1 + Ûn,1
ˆ̄ΛsÛ

T

n,1. (3.292)

Then the estimated detector in the same coordinate system is given by

ŵq
1 =

 −Û s,1
ˆ̄Λ
−1

s Û
T

s,1Ĉ
q

12p

p

 .
Note that in such a rotated coordinate system, estimation error occurs only in the first

(K − K̃) elements of ŵq
1. Denote

m
�
= EsΛ̄

−1
s ET

s︸ ︷︷ ︸
Y

Cq
12p, (3.293)

and m̂
�
= Û s,1

ˆ̄Λ
−1

s Û
T

s,1︸ ︷︷ ︸
ˆY

Ĉ
q

12p. (3.294)

Hence m̂ is a function of Ĉ
q

r, and its differential at Cq
r (i.e., at Û s,1 = Es and ˆ̄Λs = Λ̄s) is

given by

∆m̂ = Y ∆Cq
12p +∆Y Cq

12p. (3.295)

By Lemma 2.6 m̂ is then asymptotically Gaussian with a covariance matrix given by

Cm
�
= E

{
∆Y Cq

12ppT [Cq
12]

T∆Y T
}︸ ︷︷ ︸

T 1

+Y E
{
∆Cq

12ppT∆[Cq
12]

T
}︸ ︷︷ ︸

T 2

Y T

+E
{
∆Y Cq

12ppT∆[Cq
12]

T
}︸ ︷︷ ︸

T 3

Y T + Y E
{
∆Cq

12ppT [Cq
12]

T∆Y T
}︸ ︷︷ ︸

T T

3

. (3.296)
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We next compute the three terms T 1, T 2 and T 3 in (3.296).

We first compute T 1. Denote zk and xk as the subvectors of sq
k containing respectively

the first (N − K̃) and the last K̃ elements of sq
k (i.e., sq

k = [zT
k xT

k ]T ), for k = K̃ + 1, · · · , K.

Let Z
�
= [zK̃+1 · · ·zK ]. It is clear that Crd̃1 ∈ range(U s), and therefore P̄Crd̃1 ∈ range(Ū s).

Expressed in the rotated coordinate system, we have Cq
12p ∈ range(Es). We can therefore

apply Proposition 2.6 to T 1 to obtain

T 1 =
(
mT Cq

12p
)
EsΛ̄

−1
s ET

s + mmT ,

−2EsΛ̄
−1
s ET

s ZD1Z
T EsΛ̄

−1
s ET

s + τEnE
T
n (3.297)

with τ
�
= σ2pT CqT

12 EsΛ̄
−1
s

(
Λ̄s − σ2IK−K̃

)−2
ET

s Cq
12p, (3.298)

and D1
�
= diag

{
A4

K̃+1

(
zT

K̃+1
m

)2

, · · · , A4
K

(
zT

Km
)2
}
. (3.299)

The term T 2 can be computed following a similar derivation as in the proof of Theorem 1

for the DMI blind detector. Specifically, we have similarly to (2.301)

[T 2]i,j = E
{
∆Cq

12ppT∆[Cq
12]

T
}

i,j

= E


K̃∑

m=1

K̃∑
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K̃∑
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(
[Cq

r]i,j[C
q
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r]i,n+N−K̃ [Cq
r]m+N−K̃,j

−2
K∑

α=K̃+1

K̃∑
m=1

K̃∑
n=1

A4
α[sq

α]i[s
q
α]j[s

q
α]m+N−K̃ [sq

α]n+N−K̃

 [p]m[p]n

= [Cq
r]i,j

 K̃∑
m=1

K̃∑
n=1

[Cq
r]m+N−K̃,n+N−K̃ [p]m[p]n


︸ ︷︷ ︸

pTCq

22p

+

 K̃∑
m=1

[Cq
r]m+N−K̃,j[p]m


︸ ︷︷ ︸

[Cq

12p]j

 K̃∑
n=1

[Cq
r]i,n+N−K̃ [p]n


︸ ︷︷ ︸

[Cq

12p]i
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−2
K∑

α=K̃+1

[zα]i[zα]jA
4
α

 K̃∑
m=1

[xα]m[p]m

2

︸ ︷︷ ︸
xT

αp

. (3.300)

Writing (3.300) in matrix form, we have

T 2 =
(
pT Cq

22p
)
Λ̄s + (Cq

12p) (Cq
12p)T + ZD2Z

T , (3.301)

with D2 = diag

{
A4

K̃+1

(
xT

K̃+1
p
)2

, · · · , A4
K

(
xT

Kp
)2
}
. (3.302)

Hence the second term in (3.296) is

Y T 2Y
T =

(
EsΛ̄

−1
s ET

s

)
T 2

(
EsΛ̄

−1
s ET

s

)
=

(
pT Cq

22p
)
Es,1Λ̄

−1
s ET

s,1 + mmT − 2EsΛ̄
−1
s ET

s ZD2Z
T EsΛ̄

−1
s ET

s ,

(3.303)

where we have used the fact that ET
s Es = IK−K̃ , and the definition in (3.293).

Finally we calculate T 3. Denote q
�
= Cq

12p. By following the same derivation leading to

(2.312), we get for i ≤ K − K̃

[∆Y Cq
12p]i = − 1

λ̄i

K−K̃∑
k=1

1

λ̄k

[∆Cq
r]i,k[q]k. (3.304)

As before, we only have to consider [T 3]i,j, for i, j ≤ K − K̃ or i, j > K − K̃. However, all

terms corresponding to i, j > K − K̃ will be nulled out because of the multiplication of Y

on T 3. Using Lemma 2.5 we then get (for i, j ≤ K − K̃)

[T 3]i,j = E
{
∆Y Cq

12ppT [∆Cq
12]

T
}
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= −δi=j

K−K̃∑
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. (3.305)

Writing this in matrix form, we have

T 3 = −
(
qT Λ̄

−1
s q

)
EsE

T
s − EsΛ̄

−1
s ET

s qqT + 2EsΛ̄
−1
s ET

s ZD3Z
T , (3.306)

and D3
�
= diag

{
A4
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K̃+1
m

)(
xT

K̃+1
p
)
, . . . , A4

K

(
zT
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) (

xT
Kp

)}
. (3.307)

Hence the third term in (3.296) is given by

T 3Y
T = − (

mT Cq
12p

)
EsΛ̄

−1
s ET

s − mmT + 2EsΛ̄
−1
s ET

s ZD3Z
T EsΛ̄

−1
s ET

s . (3.308)

Substituting (3.297), (3.303) and (3.308) into (3.296), we obtain

Cm =
(
pT Cq

22p − mT Cq
12p

)
EsΛ̄

−1
s ET

s + 2EsΛ̄
−1
s ET

s Z
(√

D1 −
√

D2

)2

ZT EsΛ̄
−1
s ET

s

+τEnE
T
n , (3.309)

where D1 and D2 are given respectively by (3.299) and (3.302), and τ is given by (3.298).

Theorem 3 is now easily obtained by transforming (3.309) back to the original coordinate

system according to the following mappings: Es → Ū s, En → Ūn, Z → S̄, pT Cq
22p →

d̃
T

1 Crd̃1, mT Cq
12p →

[
Ū sΛ̄

−1
s Ū

T
s Crd̃1

]T

Crd̃1 and
(
zT

k m − xT
k p

) → sT
k w1. �



Chapter 4

Robust Multiuser Detection in

Non-Gaussian Channels

4.1 Introduction

As we have seen in the preceding chapters, the use of multiuser detection (or derivative signal

processing techniques) can return performance in multiuser channels to that of corresponding

single-user channels, or at least to a situation in which performance is no longer limited by the

multiple-access interference (MAI). Thus far, our discussions of these problems has focused

on the situation in which the ambient noise is additive white Gaussian noise (AWGN).

This was an appropriate model in the previous chapters, since the focus there was on the

mitigation of the most severe noise source – the MAI. However, as increasingly practical

techniques for multiuser detection become available, the methods discussed in Chapters 2

and 3, the situation in which practical multiple-access channels will be ambient-noise limited

can be realistically envisioned.

In many physical channels, such as urban and indoor radio channels [43, 44, 314, 315, 318]

and underwater acoustic channels [51, 316], the ambient noise is known through experimental

measurements to be decidedly non-Gaussian, due to the impulsive nature of the man-made

electromagnetic interference and of a great deal of natural noise as well. (For measurement

results of impulsive noise in outdoor/indoor mobile and portable radio communications,

see [43, 44] and the references therein.) It is widely known in the single-user context that

205
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non-Gaussian noise can be quite detrimental to the performance of conventional systems

designed on the basis of a Gaussian noise assumption, whereas it can actually be beneficial

to performance if appropriately modelled and ameliorated. Neither of these properties is

surprising. The first is a result of the lack of robustness of linear and quadratic type signal

processing procedures to many types of non-Gaussian statistical behavior [222]. The second

is a manifestation of the well-known least-favorability of Gaussian channels [125].

In view of the lack of realism of an AWGN model for ambient noise arising in many

practical channels in which multiuser detection techniques may be applied, natural ques-

tions arise concerning the applicability, robustness and performance of multiuser detection

techniques for non-Gaussian multiple-access channels. Although performance indices such as

mean-square-error (MSE) and signal-to-interference-plus-noise ratio (SINR) for linear mul-

tiuser detectors are not affected by the amplitude distribution of the noise (only the spec-

trum matters), the more crucial bit-error rate can depend heavily on the shape of the noise

distribution. The results of an early study of error rates in non-Gaussian direct-sequence

code-division multiple-access (DS-CDMA) channels are found in [2, 3, 4], in which the per-

formance of the conventional and modified conventional (linear matched-filter) detectors is

shown to depend significantly on the shape of the ambient noise distribution. In particular,

impulsive noise can severely degrade the error probability for a given level of ambient noise

variance. In the context of multiple-access capability, this implies that fewer users can be

supported with conventional detection in an impulsive channel than in a Gaussian channel.

However, since non-Gaussian noise can, in fact, be beneficial to system performance if prop-

erly treated, the problem of joint mitigation of structured interference and non-Gaussian

ambient noise is of interest [376]. An approach to this problem for narrowband interference

(NBI) suppression in spread-spectrum systems is described in [130]. A further study [378] has

shown that the performance gains afforded by maximum likelihood (ML) multiuser detection

in impulsive noise can be substantial when compared to optimum multiuser detection based

on a Gaussian noise assumption. However, the computational complexity of ML detection

is quite high (even more so with non-Gaussian ambient noise), and therefore effective near-

optimal multiuser detection techniques in non-Gaussian noise are needed. In this chapter,

we address the MAI mitigation problem in DS-CDMA channels with non-Gaussian ambient

noise.
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In the past, considerable research has been conducted to model the non-Gaussian

phenomena encountered in practice which are characterized by sharp spikes, occasional

bursts, and heavy outliers, resulting in a large volume of statistical models, the most com-

mon of which include the statistically and physically derived Middleton mixture models

[314, 315, 316, 317, 318], the empirical Gaussian mixtures, and other heavy-tailed distri-

butions such as the Weibull, the K and the log-normal, as well as the stable models [352].

Particularly accurate are the Middleton models, which are based on a filtered-impulse mech-

anism and can be classified into three classes, namely, A, B and C. Interference in class A

is coherent in narrowband receivers, causing a negligible amount of transients. Interference

in class B is impulsive, consisting of a large number of overlapping transients. Interference

in class C is the sum of the other two interferences. The Middleton model has been shown

to describe actual impulsive interference phenomena with high fidelity; however, it is math-

ematically involved for signal processing applications. In this chapter, we use the widely

adopted two-term Gaussian mixture distribution (which gives a good approximation to the

Middleton models) to model the non-Gaussian noise, and discuss various robust multiuser

detection techniques based on such a model. In the end, we will show that these robust sig-

nal processing techniques are also very effective in ameliorating other types of non-Gaussian

noise, such as symmetric stable noise.

This chapter is organized as follows. In Section 4.2, we discuss robust multiuser detection

techniques bases on M -regression. In Section 4.3, we present asymptotic performance anal-

ysis for the robust multiuser detectors. In Section 4.3, we discuss the implementation issues

of robust multiuser detecion. In Section 4.5, we treat the topic of robust blind multiuser

detection. In Section 4.6, we present improved versions of robust multiuser detectors based

on local likelihood search. In Section 4.7, we discuss robust group-blind multiuser detection.

In Section 4.8, we consider robust multiuser detection in multipath channels. Finally in Sec-

tion 4.9, we briefly introduce α-stable noise and illustrate the performance of various robust

multiuser detectors in such noise. The proofs of some results in this chapter are appended

in Section 4.10.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 4.1: Robust multiuser detector - synchronous CDMA;

• Algorithm 4.2: Robust blind multiuser detector - synchronous CDMA;
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• Algorithm 4.3: Adaptive robust blind multiuser detector - synchronous CDMA;

• Algorithm 4.4: Robust multiuser detector based on slowest-descent-search - syn-

chronous CDMA;

• Algorithm 4.5: Robust group-blind multiuser detector - synchronous CDMA;

• Algorithm 4.6: Robust blind multiuser detector - multipath CDMA;

• Algorithm 4.7: Robust group-blind multiuser detector - multipath CDMA.

4.2 Multiuser Detection via Robust Regression

4.2.1 System Model

For the sake of simplicity, we start the discussion in this chapter by focusing on a real-valued

discrete-time synchronous CDMA signal model. At any time instant (until needed in Section

4.5), we will suppress the symbol index i), the received signal is the superposition of K users’

signals, plus the ambient noise, given by (See Section 2.2.1)

r =
K∑

k=1

Ak bksk + n (4.1)

= SAb + n, (4.2)

where sk = 1√
N

[s0,k · · · sN−1,k]
T , sj,k ∈ {+1,−1}, is the normalized signature waveform of

the kth user; N is the processing gain; bk ∈ {+1,−1} and Ak are respectively the data bit

and the amplitude of the kth user; S
�
= [s1 · · · sK ]; A

�
= diag(A1, · · · , AK); b

�
= [b1 · · · bK ]T ;

and n = [n1 · · · nN ]T is a vector of independent and identically distributed (i.i.d.) ambient

noise samples. As noted above, we adopt the commonly used two-term Gaussian mixture

model for the additive noise samples {nj}. The marginal probability density function (pdf)

of this noise model has the form

f = (1 − ε)N (
0, ν2

)
+ εN (

0, κν2
)
, (4.3)

with ν > 0, 0 ≤ ε < 1, and κ > 1. Here the N (0, ν2) term represents the nominal background

noise, and the N (0, κν2) term represents the impulsive component, with ε representing the
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probability that impulses occur. It is usually of interest to study the effects of variation in

the shape of a distribution on the performance of the system, by varying the parameters ε

and κ with fixed total noise variance

σ2 �
= (1 − ε) ν2 + ε κ ν2. (4.4)

This model serves as an approximation to the more fundamental Middleton Class A noise

model [316, 590], and has been used extensively to model physical noise arising in radar,

acoustic and radio channels. In what follows, we discuss some robust techniques for multiuser

detection in non-Gaussian ambient noise CDMA channels, which are essentially robustified

versions of the linear decorrelating multiuser detector.

4.2.2 Least-Squares Regression and Linear Decorrelator

Consider the synchronous signal model (4.2). Denote θk
�
= Akbk. Then (4.2) can be rewritten

as

rj =
K∑

k=1

sj,kθk + nj, j = 1, · · · , N, (4.5)

or in matrix notation,

r = S θ + n, (4.6)

where θ
�
= [θ1 θ2 · · · θK ]T . Consider the linear regression problem of estimating the K

unknown parameters θ1, θ2, · · · , θK from theN observations r1, r2, · · · , rN in (4.5). Classically

this problem can be solved by minimizing the sum of squared errors (or squared residuals),

i.e., through the least-squares (LS) method:

θ̂LS = arg min
θ

N∑
j=1

(
rj −

K∑
k=1

sj,kθk

)2

= arg min
θ

‖r − S θ‖2 . (4.7)

If nj ∼ N (0, σ2), then the pdf of the received signal r under the true parameters θ is given

by

fθ(r) =
(
2πσ2

)−N
2 exp

(
−‖r − S θ‖2

2σ2

)
. (4.8)
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It is easily seen from (4.8) that the maximum likelihood estimate of θ under the i.i.d. Gaus-

sian noise samples is given by the LS solution θ̂LS in (4.7). Upon differentiating (4.7), θ̂LS

is then the solution to the following linear system equations

N∑
j=1

(
rj −

K∑
l=1

sj,l θl

)
sj,k = 0, k = 1, · · · , K, (4.9)

or in matrix form

ST S θ = ST r. (4.10)

Define the cross-correlation matrix of the signature waveforms of all users as R
�
= ST S.

Assuming that the user signature waveforms are linearly independent, i.e., S has a full

column rank K, then R is invertible, and the LS solution to (4.9) or (4.10) is given by

θ̂LS =
(
ST S

)−1
ST r

= R−1ST r. (4.11)

We observe from (4.11) that the LS estimate θ̂LS is exactly the output of the linear decorre-

lating multiuser detector for the K users (cf. Proposition 2.1). This is not surprising, since

the linear decorrelating detector gives the maximum likelihood estimate of the product of

the amplitude and the data bit θk = Akbk in Gaussian noise [292]. Given the estimate θ̂k,

the estimated amplitude and the data bit are then determined by

Âk =
∣∣∣θ̂k∣∣∣ , (4.12)

b̂k = sign
(
θ̂k

)
. (4.13)

4.2.3 Robust Multiuser Detection via M-Regression

It is well known that the LS estimate is very sensitive to the tail behavior of the noise

density [490]. Its performance depends significantly on the Gaussian assumption and even

a slight deviation of the noise density from the Gaussian distribution can, in principle,

cause a substantial degradation of the LS estimate. Since the linear decorrelating multiuser

detector is in the form of the LS solution to a linear regression problem, it can be concluded

that its performance is also sensitive to the tail behavior of the noise distribution. As
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will be demonstrated later, the performance of the linear decorrelating detector degrades

substantially if the ambient noise deviates even slightly from a Gaussian distribution. In

this section, we consider some robust versions of the decorrelating multiuser detector, first

developed in [544], which are nonlinear in nature. Robustness of an estimator refers to its

performance insensitivity to small deviations in actual statistical behavior from the assumed

underlying statistical model.

The LS estimate corresponding to (4.7) and (4.9) can be robustified by using the class of

M -estimators proposed by Huber [199]. Instead of minimizing a sum of squared residuals as

in (4.7), Huber proposed to minimize a sum of a less rapidly increasing function, ρ, of the

residuals:

θ̂ = arg min
θ∈RK

N∑
j=1

ρ

(
rj −

K∑
k=1

sj,k θk

)
. (4.14)

Suppose that ρ has a derivative ψ
�
= ρ′, then the solution to (4.14) satisfies the implicit

equation

N∑
j=1

ψ

(
rj −

K∑
l=1

sj,l θl

)
sj,k = 0, k = 1, · · · , K, (4.15)

or in vector form

ST ψ (r − S θ) = 0, (4.16)

where ψ(x)
�
= [ψ(x1), · · · , ψ(xK)]T for any x ∈ R

K ; and 0 denotes an all-zero vector. An

estimator defined by (4.14) or (4.15) is called an M-estimator. The name “M -estimator”

comes from “maximum-likelihood-type estimator” [199], since the choice of ρ(x) = − log f(x)

gives the ordinary maximum likelihood estimates. If ρ is convex, then (4.14) and (4.15) are

equivalent; otherwise (4.15) is still very useful in searching for the solution to (4.14). To

achieve robustness, it is necessary that ψ be bounded and continuous. Usually to achieve

high efficiency when the noise is actually Gaussian, we require that ψ(x) ≈ x for x small.

Consistency of the estimate requires that E{ψ(nj)} = 0. Hence for symmetric noise densities,

ψ is usually odd-symmetric. We next consider some specific choices of the penalty function

ρ and the corresponding derivative ψ.
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Linear Decorrelating Detector

The linear decorrelating detector, which is simply the LS estimator, corresponds to choosing

the penalty function and its derivative, respectively, as

ρLS(x) =
x2

2α
, (4.17)

and ψLS(x) =
x

α
, (4.18)

where α is any positive constant. Notice that the linear decorrelating detector is scale

invariant.

Maximum Likelihood Decorrelating Detector

Assume that the i.i.d. noise samples have a pdf f . Then the likelihood function of the

received signal r under the true parameters θ is given by

Lθ(r; f)
�
= − log

N∏
j=1

f

(
rj −

K∑
k=1

sj,kθk

)

= −
N∑

j=1

log f

(
rj −

K∑
k=1

sj,kθk

)
. (4.19)

Therefore the maximum likelihood decorrelating detector in non-Gaussian noise with pdf f

(in the sense that it gives the maximum likelihood estimate of the product of the amplitude

and data bit θk
�
= Akbk) is given by the M -estimator with the penalty function and its

derivative, respectively, chosen as

ρML(x) = − log f(x), (4.20)

and ψML(x) = −f
′(x)
f(x)

. (4.21)

Minimax Decorrelating Detector

We next consider a robust decorrelating detector in a minimax sense based on Huber’s mini-

max M -estimator [199]. Huber considered the robust location estimation problem. Suppose

we have one-dimensional i.i.d. observations X1, · · · , Xn. The observations belong to some

subset X of the real line R. A parametric model consists of a family of probability distribu-

tions Fθ on X , where the unknown parameter θ belongs to some parameter space Θ. When
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estimating location in the model X = R, Θ = R, the parametric model is Fθ(x) = F (x− θ),
and the M -estimator is determined by a ψ-function of the type ψ(x, θ) = ψ(x− θ), i.e., the

M -estimate of the location parameter θ is given by the solution to the equation

n∑
i=1

ψ(xi − θ) = 0. (4.22)

Assuming that the noise distribution function belongs to the set of ε-contaminated Gaussian

models, given by

Pε
�
=

{
(1 − ε)N (0, ν2) + εH;H is a symmetric distribution

}
, (4.23)

where 0 < ε < 1 is fixed, and ν2 is the variance of the nominal Gaussian distribution. It

can be shown that, within mild regularity, the asymptotic variance of an M -estimator of the

location parameter θ defined by (4.22) at a distribution function F ∈ Pε is given by [199]

V (ψ; F ) =

∫
ψ2 dF(∫
ψ′ dF

)2 . (4.24)

Huber’s idea was to minimize the maximal asymptotic variance over Pε; that is, to find the

M -estimator ψ0 that satisfies

sup
F∈Pε

V (ψ0; F ) = inf
ψ

sup
F∈Pε

V (ψ; F ). (4.25)

This is achieved by finding the least favorable distribution F0, i.e., the distribution function

that minimizes the Fisher information

I(F ) =

∫ (
F ′′

F ′

)2

dF, (4.26)

over all F ∈ Pε. Then ψ0 = −F ′′
0

F ′
0

is the maximum likelihood estimator for this least

favorable distribution. Huber showed that the Fisher information (4.26) is minimized over

Pε the distribution with pdf

f0(x) =


1−ε√
2πν

exp
(

x2

2ν2

)
, for |x| ≤ γν2,

1−ε√
2πν

exp
(

γ2ν2

2
− γ|x|

)
, for |x| > γν2,

(4.27)



214CHAPTER 4. ROBUST MULTIUSER DETECTION IN NON-GAUSSIAN CHANNELS

where k, ε and ν are connected through

φ(γν)

γν
−Q(γν) =

ε

2(1 − ε) , (4.28)

with φ(x)
�
= 1√

2π
exp

(
−x2

2

)
, and Q(x)

�
= 1√

2π

∫∞
x

exp
(
−x2

2

)
dx. The corresponding minimax

M -estimator is then determined by the Huber penalty function and its derivative, given

respectively by

ρH(x) =

{
x2

2ν2 , for |x| ≤ γν2,
γ2ν2

2
− γ|x|, for |x| > γν2,

(4.29)

and ψH(x) =

{
x
ν2 , for |x| ≤ γν2,

γ sign(x), for |x| > γν2.
(4.30)

The minimax robust decorrelating detector is obtained by substituting ρH and ψH into (4.14)

and (4.15).

Assuming that the noise distribution has the ε-mixture density (4.3), in Fig. 4.1 we plot

the ψ functions for the three types of decorrelating detectors discussed above for the cases

ε = 0.1 and ε = 0.01 respectively. Note that for small measurement x, both ψML(x) and

ψH(x) are essentially linear, and they coincide with ψLS(x); for large measurement x, ψML(x)

approximates a blanker, whereas ψH(x) acts as a clipper. Thus the action of the nonlinear

function ψ in the nonlinear decorrelators defined by (4.15) relative to the linear decorrelator

defined by (4.9) is clear in this case. Namely, the linear decorrelator incorporates the residuals

linearly into the signal estimate; whereas the nonlinear decorrelators incorporates small

residuals linearly, but blank or clip larger residuals that are likely to be the result of noise

impulses.

4.3 Asymptotic Performance of Robust Multiuser De-

tector

4.3.1 The Influence Function

The influence function (IF) introduced by Hampel [167, 199], is an important tool used to

study robust estimators. It measures the influence of a vanishingly small contamination of
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Figure 4.1: The ψ functions for the linear decorrelator, the maximum likelihood decorrelator

and the minimax decorrelator, under the Gaussian mixture noise model. The variance of

the nominal Gaussian distribution is ν2 = 0.01. (a) ε = 0.1. The cut-off point for the

Huber estimator is obtained by solving equation (4.28), resulting in γ = 11.40. (b) ε = 0.01,

γ = 19.45.
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the underlying distribution on the estimator. It is assumed that the estimator can be defined

as a functional T , operating on the empirical distribution function of the observation Fn,

i.e., T = T (Fn), and that the estimator is consistent as n → ∞, i.e., T (F ) = lim
n→∞

T (Fn),

where F is the underlying distribution. The IF is defined as

IF(x;T, F )
�
= lim

t→0

T [(1 − t)F + t∆x] − T (F )

t
, (4.31)

where ∆x is the distribution that puts a unit mass at x. Roughly speaking, the influence

function IF(x;T, F ) is the first derivative of the statistic T at an underlying distribution F

and at the coordinate x. We next compute the influence function of the nonlinear decorre-

lating multiuser detectors defined by (4.15).

Denote the jth row of the matrix S by ξT
j , i.e., ξj

�
= [sj,1 · · · sj,K ]T . Assume that the

signature waveforms of all users are random and let q(ξ) be the probability density function

of ξj. Assume further that the noise distribution has density f . Denote the joint distribution

of the received signal rj and the chip samples of the K users ξj under the true parameter θ

by Gθ(r, ξ), with density

gθ(r, ξ) = f
(
r − ξT θ

)
q(ξ). (4.32)

If Gn is the empirical distribution function generated by the signal samples {rj, ξj}n
j=1,

then the solution θ̂n to (4.15) can also be written as θ̂(Gn), where θ̂ is the K-dimensional

functional determined by ∫
ψ
(
r − ξT θ̂(G)

)
ξ dG(r, ξ) = 0, (4.33)

for all distributions G for which the integral is defined. Let the distribution be

G = (1 − t)Gθ + t∆r,ξ. (4.34)

Substituting this distribution into (4.33), differentiating with respect to t, and evaluating

the derivative at t = 0, we get

0 =

∫
ψ
[
r − ξT θ̂(Gθ)

]
ξ d(∆r,ξ −Gθ)

−
∫
ψ′

[
r − ξT θ̂(Gθ)

]
ξ ξT f(r − ξT θ) q(ξ) dξ dr · ∂

∂t

[
θ̂(G)

]
|t=0

= ψ
[
r − ξT θ̂(Gθ)

]
ξ −

∫
ψ
[
r − ξT θ̂(Gθ)

]
ξ dGθ

−
∫
ψ′

[
r − ξT θ̂(Gθ)

]
f(r − ξT θ) ξ ξT q(ξ) dξ dr · IF(r, ξ;ψ,Gθ), (4.35)
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where by definition,

∂

∂t

[
θ̂(G)

]
|t=0

�
= lim

t→0

θ̂[(1 − t)Gθ + t∆r,ξ] − θ̂(Gθ)

t
�
= IF(r, ξ; θ̂, Gθ). (4.36)

Note that by (4.33) the second term on the right-hand side of (4.35) equals zero; i.e.,∫
ψ
(
r − ξT θ̂(Gθ)

)
ξ dGθ = 0. (4.37)

Now assume that the functional θ̂ is Fisher consistent [167], i.e., θ̂(Gθ) = θ, which means

that at the model the estimator θ̂n : n ≥ 1 asymptotically measures the right quantity when

applied to the model distribution. We proceed with (4.35) to obtain

0 = ψ
(
r − ξT θ

)
ξ −

∫
ψ′ (r − ξT θ

)
f
(
r − ξT θ

)
ξ ξT q(ξ) dξ dr · IF(r, ξ;ψ,Gθ)

= ψ
(
r − ξT θ

)
ξ −

∫
ψ′(u)f(u)du · R∗ · IF(r, ξ; θ̂, Gθ), (4.38)

where

R∗ �
=

∫
ξ ξT q(ξ) dξ, (4.39)

is the cross-correlation matrix of the random infinite-length signature waveforms of the K

users. From (4.38) we obtain the influence function of the nonlinear decorrelating multiuser

detectors determined by (4.15) as

IF(r, ξ; θ̂, Gθ) =
ψ
(
r − ξT θ

)∫
ψ′(u) f(u) du

R∗−1 ξ. (4.40)

The above influence function is instrumental to deriving the asymptotic performance of the

robust multiuser detectors, as explained below.

4.3.2 Asymptotic Probability of Error

Under certain regularity conditions, the M -estimators defined by (4.14) or (4.15) are consis-

tent and asymptotically Gaussian [167], i.e., (here we denote θ̂N as the estimate of θ based

on N chip samples)

√
N

(
θ̂N − θ

)
∼ N

(
0, V

(
θ̂, Gθ

))
, as n→ ∞, (4.41)
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where the asymptotic covariance matrix is given by

V
(
θ̂, Gθ

)
=

∫
IF(r, ξ; θ̂, Gθ) · IF(r, ξ; θ̂, Gθ)T dGθ(r, ξ)

=

∫
ψ2(u)f(u)du[∫
ψ′(u)f(u)du

]2 R∗−1, (4.42)

and where (4.42) follows from (4.32) and (4.40).

We can also compute the Fisher information matrix for the parameters θ at the underlying

noise distribution. Define the likelihood score vector as

s (r, ξ; θ)
�
=

∂

∂θ
ln gθ (r, ξ)

=
∂

∂θ
ln f

(
r − ξT θ

)
=

f ′
(
r − ξT θ

)
f
(
r − ξT θ

) ξ. (4.43)

The Fisher information matrix is then given by

J(θ)
�
=

∫
s (r, ξ; θ) s (r, ξ; θ)T gθ (r, ξ) dr dξ

= R∗
∫
f ′(u)2

f(u)
du. (4.44)

It is known that the maximum likelihood estimate based on i.i.d. samples is asymptotically

unbiased and the asymptotic covariance matrix is J(θ)−1 [375]. As discussed earlier, the

maximum likelihood estimate of θ corresponds to having ψ(x) = −f ′(x)
f(x)

. Hence we can

deduce that the asymptotic covariance matrix V (θ̂, Gθ) = J(θ)−1 when ψ(x) = −f ′(x)
f(x)

. To

verify this, substitute ψ(x) = −f ′(x)
f(x)

into (4.42), we obtain

V (θ̂, Gθ) = R∗−1

∫
f ′(u)2

f(u)
du[∫

f ′(u)2

f(u)
du−

∫
f ′′(u)du

]2

= R∗−1

[∫
f ′(u)2

f(u)
du

]−1

= J(θ)−1, (4.45)
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where we have assumed sufficient regularity so that the differentiation and integration can

be interchanged, which yields

∫
f ′′(u)du =

(∫
f(u)du

)′′
= 1′′ = 0.

Next we consider the asymptotic probability of error for the class of decorrelating detec-

tors defined by (4.15), for large processing gain N → ∞. Using the asymptotic normality

condition (4.41), θ̂N ∼ N (θ, V ). The asymptotic probability of error for the kth user is

then given by

P k
e

�
= P

(
θ̂k < 0 | θk > 0

)
= Q

 Ak

υ
√

[R∗−1]k,k

 , (4.46)

where υ is the asymptotic variance given by

υ2 �
=

∫
ψ2(u)f(u)du[∫
ψ′(u)f(u)du

]2 . (4.47)

Hence for the class of M -decorrelators defined by (4.15), their asymptotic probabilities of

detection error are determined by the parameter υ. We next compute υ for the three decor-

relating detectors discussed in Section 4.2.3, under the Gaussian mixture noise model (4.3).

Linear Decorrelating Detector

The asymptotic variance for the linear decorrelator is given by

υ2
LS =

∫
u2f(u)du = Var(nj)

= (1 − ε) ν2 + ε κ ν2. (4.48)

That is, asymptotically, the performance of the linear decorrelating detector is completely

determined by the noise variance, independent of the noise distribution. However, as will be

seen later, the noise distribution does affect substantially the finite sample performance of

the linear decorrelating detector.
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Maximum Likelihood Decorrelating Detector

The maximum likelihood decorrelating detector achieves the Fisher information covariance

matrix, and we have

υ2
ML =

[∫
f ′(u)2

f(u)
du

]−1

. (4.49)

In fact, (4.49) gives the minimum achievable υ2. To see this, we use the Cauchy-Schwarz

inequality, to yield∫
ψ(u)2 f(u) du ·

∫
f ′(u)2

f(u)
du ≥

(∫
|ψ(u) f ′(u)| du

)2

≥
(∫

ψ(u) f ′(u) du

)2

=

(
ψ(u)f(u)|+∞

−∞ −
∫
ψ′(u) f(u) du

)2

=

(∫
ψ′(u) f(u) du

)2

, (4.50)

where the last equality follows from the fact that ψ(u)f(u) → 0, as |u| → ∞; To see this,

we use (4.3) and (4.21) to obtain

f(u)ψ(u)
�
= −f(u) f

′(u)
f(u)

= −f ′(u)

=
u

ν2
√

2πν2

[
(1 − ε) exp

(
− u2

2ν2

)
+

ε

κ
√
κ

exp

(
− u2

2κν2

)]
→ 0, as |u| → ∞. (4.51)

Hence it follows from (4.50) that∫
ψ2(u)f(u)du[∫
ψ′(u)f(u)du

]2 ≥
[∫

f ′(u)2

f(u)
du

]−1

. (4.52)

Minimax Decorrelating Detector

For the minimax decorrelating detector, we have

ψ(x) =
x

ν2
· 1{|x|≤γν2} + γ sign(x) · 1{|x|>γν2}, (4.53)

and ψ′(x) =
1

ν2
· 1{|x|≤γν2} + γ δ−γν2 − γ δγν2 , (4.54)
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where 1Ω(x) denotes the indicator function of the set Ω, and δx denotes the Dirac delta

function at x. After some algebra, we obtain∫
ψ2(u)f(u)du =

2

ν2

[
1 + (κ− 1)ε

2
+ (1 − ε) (γ2ν2 − 1

)
Q (γν) + ε

(
γ2ν2 − κ) Q(

γν√
κ

)
−(1 − ε)γν√

2π
exp

(
−γ

2ν2

2

)
−

√
κ

2π
εγν exp

(
−γ

2ν2

2κ

)]
, (4.55)

and∫
ψ′(u)f(u)du =

2

ν2

[
1

2
− (1 − ε)Q (γν) − εQ

(
γν√
κ

)]
. (4.56)

The asymptotic variance υ2
H of the minimax decorrelating detector is obtained by substituting

(4.55) and (4.56) into (4.47).

In Fig. 4.2 we plot the asymptotic variance υ2 of the maximum likelihood decorrelator

and the minimax robust decorrelator as a function of ε and κ, under the Gaussian mixture

noise model (4.3). The total noise variance is kept constant as ε and κ vary, i.e., σ2 �
=

(1 − ε)ν2 + εκν2 = (0.1)2. From the two plots we see that the two nonlinear detectors have

very similar asymptotic performance. Moreover, in this case the asymptotic variance υ2 is

a decreasing function of either ε or κ when one of them is fixed. The asymptotic variances

of both nonlinear decorrelators are strictly less than that of the linear decorrelator, which

corresponds to a plane at υ2 = σ2 = (0.1)2. In Fig. 4.3 we plot the asymptotic variance υ2 of

the three decorrelating detectors as a function of κ with fixed ε; and in Fig. 4.4 we plot the

asymptotic variance υ2 of the three decorrelating detectors as a function of ε with fixed κ.

As before the total variance of the noise for both figures is fixed at σ2 = (0.1)2. From these

figures we see that the asymptotic variance of the minimax decorrelator is very close to that

of the maximum likelihood decorrelator for the cases of small contamination (e.g., ε ≤ 0.1),

while both of the detectors can outperform the linear detector by a substantial margin.

4.4 Implementation of Robust Multiuser Detectors

In this section we discuss computational procedures for obtaining the output of the nonlin-

ear decorrelating multiuser detectors, i.e., the solution to (4.15). Assume that the penalty

function ρ(x) in (4.14) has a bounded second-order derivative, i.e.,

|ρ′′(x)| = |ψ′(x)| ≤ α, (4.57)
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Figure 4.2: The asymptotic variance υ2 of (a) the minimax robust decorrelating detector,

and (b) the maximum likelihood decorrelating detector, as a function of ε and κ, under the

Gaussian mixture noise model, with variance of the noise fixed at σ2 �
= (1 − ε)ν2 + εκν2 =

(0.1)2.
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Figure 4.3: The asymptotic variance υ2 of the three decorrelating detectors as a function of

κ with fixed parameter ε. The variance of the noise is fixed σ2 �
= (1 − ε)ν2 + εκν2 = (0.1)2.

maximum likelihood decorrelator

minimax robust decorrelator    

linear decorrelator            

−3 −2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

kappa=50

kappa=250

kappa=1000

log(epsilon)

lo
g(

up
si

lo
n^

2)

Figure 4.4: The asymptotic variance υ2 of the three decorrelating detectors as a function of

ε with fixed parameter κ. The variance of the noise is fixed at σ2 �
= (1− ε)ν2 + εκν2 = (0.1)2.
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for some α > 0. Then equation (4.15) can be solved iteratively by the following modified

residual method [199]. Let θl be the estimate at the lth step of the iteration, then it is

updated according to

zl �
= ψ

(
r − Sθl

)
, (4.58)

θl+1 = θl +
1

µ

(
ST S

)−1
ST zl, (4.59)

l = 0, 1, 2, · · ·

where µ ≥ α is a step-size parameter. Denote the cost function in (4.14) by

C (θ)
�
=

N∑
j=1

ρ
(
rj − ξT

j θ
)
. (4.60)

We have the following result regarding the convergence behavior of the above iterative pro-

cedure. The proof is found in the Appendix (Section 4.10.1).

Proposition 4.1 If |ψ′(x)| ≤ α ≤ µ, then the iterative procedure defined by (4.58) and

(4.59) satisfies

C (
θl
) − C (

θl+1
) ≥ µ

2

(
θl − θl+1

)T
R

(
θl − θl+1

)
=

1

2µ
z
(
θl
)T

S R−1ST z
(
θl
)
, (4.61)

where R
�
= ST S, is assumed to be positive definite; and z(θ)

�
= ψ (r − Sθ). Furthermore, if

ρ(x) is convex and bounded from below, then with probability 1, θl → θ∗ as l → ∞, where θ∗

is the unique minimum point of the cost function C (θ) (i.e., the unique solution to (4.15)).

Notice that for the minimax robust decorrelating detector, the Huber penalty function

ρH(x) does not have second-order derivatives at the two “corner” points, i.e., x = ±γν2. In

principle, this can be resolved by defining a smoothed version of the Huber penalty function,

for example, as follows:

ρ̃H =


x2

2ν2 , if |x| ≤ (γ − η)ν2,

(γ − η)x+ η2ν2 ln cosh
[

x−(γ−η)ν2

ην2

]
, if x > (γ − η)ν2,

−(γ − η)x+ η2ν2 ln cosh
[

x+(γ−η)ν2

ην2

]
, if x < −(γ − η)ν2,

(4.62)
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where η is a small number. The first- and second-order derivatives of this smoothed Huber

penalty function are given respectively by

ψ̃H
�
= ρ̃′H =


x
ν2 , if |x| ≤ (γ − η)ν2,

γ − η + η tanh
[

x−(γ−η)ν2

ην2

]
, if x > (γ − η)ν2,

−(γ − η) + η tanh
[

x+(γ−η)ν2

ην2

]
, if x < −(γ − η)ν2,

(4.63)

ψ̃′
H = ρ̃′′H =


1
ν2 , if |x| ≤ (γ − η)ν2,
1
ν2

{
1 − tanh2

[
x−(γ−η)ν2

ην2

]}
, if x > (γ − η)ν2,

1
ν2

{
1 − tanh2

[
x+(γ−η)ν2

ην2

]}
, if x < −(γ − η)ν2,

≤ 1

ν2
. (4.64)

We can then apply the iterative procedure (4.58)–(4.59) using this smoothed penalty function

and the step size 1
µ

= ν2. In practice, however, convergence can always be achieved even if

the non-smooth nonlinearity ψH(x) is used.

Notice that matrix 1
µ

(
ST S

)−1
ST in (4.59) can be computed offline, and the major

computation involved at each iteration is the product of this (K × K) matrix with a K-

vector zl. For the initial estimate θ0 we can take the least-squares solution, i.e.,

θ0 =
(
ST S

)−1
ST r. (4.65)

The iteration is stopped if ‖θl − θl−1‖ ≤ δ, for some small number δ. Simulations show

that on average it takes less than 10 iterations for the algorithm to converge. Finally we

summarize the robust multiuser detection algorithm as follows.

Algorithm 4.1 [Robust multiuser detector - synchronous CDMA]

• Compute the decorrelating detector output (as before R
�
= ST S):

θ0 = R−1ST r. (4.66)

• Compute the robust detector output:

Do

zl = ψ
(
r − Sθl

)
, (4.67)

θl+1 = θl +
1

µ
R−1ST zl, (4.68)

While
∥∥θl+1 − θl

∥∥ > δ
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Let θ̂ = θl.

• Perform detection:

b̂ = sign
(
θ̂
)
. (4.69)
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TT -1
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delay

z l

z l < ε ?

z l
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linear 
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nonlinearity
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Sθl

r
θ0

no
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Figure 4.5: Diagram of the M -decorrelating multiuser detector, which is a robust version of

the linear decorrelating multiuser detector.

The operations of the M -decorrelating multiuser detector are depicted in Fig. 4.5. It is

evident that it is essentially a robust version of the linear decorrelating detector. At each

iteration, the residual signal, which is the difference between the received signal r and the

remodulated signal S θl, is passed through the nonlinearity ψ(·). Then the modified residual

zl is passed through the linear decorrelating filter to get the modification on the previous

estimate.

Simulation Examples

In this section, we provide some simulation examples to demonstrate the performance of the

nonlinear robust multiuser detectors against multiple-access interference and non-Gaussian

additive noise. We consider a synchronous system withK = 6 users. The spreading sequence

of each user is a shifted version of an m-sequence of length N = 31.
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Figure 4.6: BER performance of the linear decorrelating detector for User 1 in a synchronous

CDMA channel with Gaussian and ε-mixture ambient noise. N = 31, K = 6. All users have

the same amplitudes.

We first demonstrate the performance degradation of the linear multiuser detectors in

non-Gaussian ambient noise. Two popular linear multiuser detectors are the linear decorre-

lating detector and the linear MMSE detector. The performance of the linear decorrelating

detector in several different ε-mixture channels is depicted in Fig. 4.6. In this figure we plot

the BER versus the SNR (defined as
A2

1

σ2 ) corresponding to User 1, assuming all users have the

same amplitudes. The performance of the linear MMSE multiuser detector is indistinguish-

able in this case from that of the linear decorrelating detector. It is seen that the impulsive

character of the ambient noise can substantially degrade the performance of both linear mul-

tiuser detectors. Similar situations have been observed for the conventional matched filter

receiver in [2]. In [378] it is observed that non-Gaussian-based optimal detection can achieve

significant performance gain (more than 10dB in some cases) over Gaussian-based optimal

detection in multiple-access channels when the ambient noise is impulsive. However, this gain

is obtained with a significant penalty on complexity. The robust techniques discussed in this

chapter constitute some low-complexity multiuser detectors that account for non-Gaussian

ambient noise. We next demonstrate the performance gain afforded by this non-Gaussian-

based suboptimal detection technique over its Gaussian-based counterpart, i.e., the linear
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Figure 4.7: BER performance of User 1 for the exact minimax decorrelating detector, an

approximate minimax decorrelating detector and the linear decorrelating detector, in a syn-

chronous CDMA channel with impulsive noise. N = 31, K = 6, ε = 0.01, κ = 100. The

powers of the interferers are 10dB above the power of User 1, i.e., A2
k/A

2
1 = 10, for k �= 1.

The next example demonstrates the performance gains achieved by the minimax robust

decorrelating detector over the linear decorrelator in impulsive noise. The noise distribution

parameters are ε = 0.01 and κ = 100. The BER performance of the two detectors is plotted

in Fig. 4.7. Also shown in this figure is the performance of an “approximate” minimax

decorrelating detector, in which the nonlinearity ψ(·) is taken as

ψ(x) =

{
x
σ2 , for |x| ≤ γσ2,

γ sign(x), for |x| > γσ2,
(4.70)

where the parameter γ is taken as

γ =
3

2σ
, (4.71)

and the step-size parameter µ in the modified residual method (4.59) is set as

µ = σ2. (4.72)
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Figure 4.8: BER performance of User 1 for the approximate minimax decorrelating detector

and the linear decorrelating detector, in a synchronous CDMA channel with impulsive noise.

N = 31, K = 20, ε = 0.01, κ = 100. All users have the same amplitudes.

The reason for studying such an approximate robust detector is that in practice, it is unlikely

that the exact parameters ε and ν in the noise model (4.3) are known to the receiver.

However, the total noise variance σ2 can be estimated from the received signal (as will be

discussed in the next section). Hence if we could set some simple rule for choosing the

nonlinearity ψ(·) and µ, then this approximate robust detector is much easier to implement

than the exact one. It is seen from Fig. 4.7 that the robust decorrelating multiuser detector

offers significant performance gains over the linear decorrelating detector. Moreover this

performance gain increases as the SNR increases. Another important observation is that the

performance of the robust multiuser detector is insensitive to the parameters ε and κ in the

noise model, which is evidenced by the fact that the performance of the approximate robust

detector is very close to that of the exact robust detector. We next consider a synchronous

system with 20 users (K = 20). The spreading sequence of each user is still a shifted

version of the m-sequence of length N = 31. The performance of the approximate robust

decorrelator and that of the linear decorrelator is shown in Fig. 4.8. Again it is seen that

the robust detector offers a substantial performance gain over the linear detector.

In the third example we consider the performance of the approximate robust decorrelator
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Figure 4.9: BER performance of User 1 for the robust decorrelating detector and the linear

decorrelating detector, in a synchronous CDMA channel with Gaussian noise. N = 31, K =

6. The powers of the interferers are 10dB above the power of User 1.

in Gaussian noise. Shown in Fig. 4.9 are the BER curves for the robust decorrelator and

the linear decorrelator in a 6-user system (K = 6). It is seen that there is only a very

slight performance degradation by the robust decorrelator in Gaussian channels, relative to

the linear decorrelator, which is the optimal decorrelating detector in Gaussian noise. By

comparing the BER curves of the robust decorrelator in Fig. 4.7 and Fig. 4.9, it is seen

that the robust detector performs better in impulsive noise than in Gaussian noise with the

same noise variance. This is because in an impulsive environment, a portion of the total

noise variance is due to impulses, which have large amplitudes. Such impulses are clipped

by the nonlinearity in the detector. Therefore the effective noise variance at the output of

the robust detector is smaller than the input total noise variance. In fact, the asymptotic

performance gain by the robust detector in impulsive noise over Gaussian noise is quantified

by the asymptotic variance υ2 in (4.47) [cf. Fig. 4.2, Fig. 4.3 and Fig. 4.4].

In summary, we have seen that the performance of the linear decorrelating detector

degrades substantially when the distribution of the ambient channel noise deviates even

slightly from Gaussian. By using the robust decorrelating detector, such performance loss is

prevented and this detector thus offers significant performance gains over the linear detectors,
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which translates into channel capacity increase in multiple-access channels. On the other

hand, even when the ambient noise distribution is indeed Gaussian, the robust detector

incurs only negligible performance loss relative to the linear detectors.

A number of other techniques have been proposed in the literature to combat impulsive

ambient noise in multiple-access channels. These include adaptive receivers with certain

nonlinearities [26, 27], a neural network approach [77], maximum-likelihood methods based

on the expectation-maximization (EM) algorithm [46, 233, 597], and a Bayesian approach

based on the Markov chain Monte Carlo technique [531].

4.5 Robust Blind Multiuser Detection

The robust multiuser detection procedure developed in the previous sections offers substan-

tial performance gain over linear multiuser detectors when the ambient noise becomes im-

pulsive. So far in this chapter, we have assumed that the signature waveforms of all users, as

well as the distribution of the ambient noise, are known to the receiver in order to implement

the robust multiuser detectors. The requirement of knowledge of the exact noise distribution

can be alleviated, since as demonstrated in the previous section, little performance degra-

dation is incurred if we simply adopt in the robust multiuser detector some nonlinearity ψ,

which depends only on the total noise variance, but not on the shape of the distribution. In

this section, we develop a technique to alleviate the requirement of knowledge of all users’

signatures. As discussed in Chapter 2, one remarkable feature of linear multiuser detectors is

that there exist blind techniques that can be used to adapt these detectors, which allow one

to use a linear multiuser detector for a given user with no knowledge beyond that required

for implementation of the conventional matched-filter detector for that user. In this section,

we show that the robust multiuser detector can also be implemented blindly, i.e., with the

prior knowledge of the signature waveform of only one user of interest.

As discussed in Chapter 2, there are two major approaches to blind adaptive multiuser

detection. In the first approach the received signal is passed through a linear filter, which is

chosen to minimize, within a constraint, the mean-square value of its output [179]. Adap-

tation algorithms such as least-mean-squares (LMS) or recursive-least-squares (RLS) can be

applied to update the filter weights. Ideally the adaptation will lead the filter to converge
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to the linear MMSE multiuser detector, irrespective of the noise distribution. (In practice

the impulsiveness of the noise will slow down the convergence.) Therefore this approach can

not be used to adapt the robust multiuser detector.

Another approach to blind multiuser detection is the subspace-based method proposed

in [540], through which both the linear decorrelating detector and the linear MMSE detector

can be obtained blindly. As will be discussed in this section, this approach is more fruitful in

leading to a blind adaptive robust multiuser detection method. The blind robust multiuser

detection method discussed in this section was first proposed in [544] in a CDMA context,

and was subsequently generalized to develop robust adaptive antenna array in a TDMA

context in [541].

The autocorrelation matrix of the received signal r in (4.2) is given by

Cr
�
= E

{
r rT

}
= SA2ST + σ2IN . (4.73)

By performing an eigendecomposition of the matrix Cr, we can write

Cr = U sΛsU
T
s + σ2UnU

T
n , (4.74)

where Λs = diag(λ1, · · · , λK) contains the K largest eigenvalues of Cr in descending order

and U s = [u1 · · · uK ] contains the corresponding orthogonal eigenvectors; and Un =

[uK+1 · · · uN ] contains the (N−K) orthogonal eigenvectors that correspond to the smallest

eigenvalue σ2. The following result is instrumental to developing the subspace-based blind

robust multiuser detector. The proof is found in the Appendix (Section 4.10.2).

Proposition 4.2 Given the eigendecomposition (4.74) of the autocorrelation matrix Cr,

suppose that

K∑
k=1

θk sk =
K∑

j=1

ζj uj, θk ∈ R, ζj ∈ R. (4.75)

Then we have

θk = αk

K∑
j=1

uT
j sk

λj − σ2
ζj, k = 1, · · · , K, (4.76)

where αk is a positive constant, given by

αk =

[
K∑

j=1

(
uT

j sk

)2

λj − σ2

]−1

= A2
k. (4.77)
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Or in matrix form

θ =
[
ST U s

(
Λs − σ2IK

)−1
UT

s S
]−1

︸ ︷︷ ︸
A2

ST U s

(
Λs − σ2IK

)
ζ. (4.78)

The above result leads to a subspace-based blind robust multiuser detection technique

as follows. From the received signals, we can estimate the signal subspace components,

i.e., Λ̂s = diag(λ̂1, · · · , λ̂K), and Û s = [û1 · · · ûK ]. The received signal r in (4.6) can be

expressed as

r = S θ + n (4.79)

= U s ζ + n, (4.80)

for some ζ
�
= [ζ1, · · · , ζK ]T ∈ R

K . Now instead of robustly estimating the parameters θ using

the signature waveforms S of all users, as is done in the previous section, we can robustly

estimate the parameters ζ using the estimated signal subspace coordinates Û s. Denote such

a robust estimate as ζ̂
�
= [ζ̂1, · · · , ζ̂K ]T . Suppose that User 1 is the user of interest. Finally,

we compute the estimate of the parameter θ1 of this user (up to a positive scaling factor)

according to

θ̂1 =
K∑

j=1

ûT
j s1

λ̂j − σ̂2
ζ̂j. (4.81)

Note that using this method, to demodulate the desired user’s data bit b1, the only prior

knowledge required at the receiver is the signature waveform s1 of this user, and thus the

term blind robust multiuser detector. Note also that since the columns of Û s are orthogonal,

the modified residual method for updating the robust estimate of ζ is given by

zl = ψ
(
r − Û s ζl

)
, (4.82)

ζl+1 = ζl +
1

µ
Û

T

s zl, l = 0, 1, 2, · · · . (4.83)

The following is a summary of the robust blind multiuser detection algorithm. (We re-

introduce the symbol index i into the model (4.2).)

Algorithm 4.2 [Robust blind multiuser detector - synchronous CDMA]
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• Estimate the signal subspace:

Ĉr
�
=

1

M

M−1∑
i=0

r[i]r[i]T (4.84)

= Û sΛ̂sÛ
T

s + ÛnΛ̂nÛ
T

n . (4.85)

Set σ̂2 be the mean of the diagonal elements of Λ̂n.

• Compute the robust estimate of ζ[i]:

ζ0[i] = ST Û s

(
Λ̂s − σ̂2IK

)−1

Û
T

s r[i], (4.86)

Do

zl[i]
�
= ψ

(
r[i] − Û s ζl[i]

)
, (4.87)

ζl+1[i] = ζl[i] +
1

µ
Û

T

s zl[i], (4.88)

While
∥∥ζl+1[i] − ζl[i]

∥∥ > δ
i = 0, · · · ,M − 1.

Set ζ̂[i] = ζl[i].

• Compute the robust estimate of θ1[i]:

θ̂1[i] =
K∑

j=1

ûT
j s1

λ̂j − σ̂2
ζ̂j[i], (4.89)

b̂1[i] = sign
(
θ̂1[i]

)
, (4.90)

i = 0, · · · ,M − 1.

Alternatively, robust blind multiuser detection can also be implemented adaptively based

on sequential signal subspace tracking. For instance, suppose that at time (i − 1), the

estimated signal subspace rank is K[i− 1] and the components are U s[i− 1], Λs[i− 1] and

σ2[i− 1]. Then at time i, the adaptive detector performs the following steps to update the

detector and to estimate the data bit of the desired user.

Algorithm 4.3 [Adaptive robust blind multiuser detector - synchronous CDMA]
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• Update the signal subspace: Using a particular signal subspace tracking algorithm, up-

date the signal subspace rank K[i] and the subspace components U s[i], Λs[i], and σ2[i].

• Compute the robust estimate of ζ[i]:

ζ0[i] = U s[i]
(
Λs[i] − σ2[i]IK

)−1
U s[i]

T r[i], (4.91)

Do

zl[i]
�
= ψ

(
r[i] − U s[i] ζ

l[i]
)
, (4.92)

ζl+1[i] = ζl[i] +
1

µ
U s[i]

T zl[i], (4.93)

While
∥∥ζl+1[i] − ζl[i]

∥∥ > δ.
Set ζ̂[i] = ζl[i].

• Compute the robust estimate of θ1[i] and perform detection:

θ̂1[i] =
K∑

j=1

uj[i]
T s1

λj[i] − σ2[i]
ζ̂j[i], (4.94)

b̂1[i] = sign
(
θ̂1[i]

)
. (4.95)

Simulation Examples

As before we consider a synchronous system with K = 6 users and spreading gain N =

31. First we illustrate the performance of the blind robust multiuser detector based on

batch eigendecomposition. The size of the data block is M = 200. The noise distribution

parameters are ε = 0.01 and κ = 100. The BER performance of User 1 is plotted in Fig. 4.10

for both the blind linear MMSE detector and the blind robust detector. The powers of all

interferers are 10dB above User 1. The performance of the blind adaptive robust multiuser

detector based on subspace tracking is shown in Fig. 4.11, where the PASTd algorithm

from [578] is used for tracking the signal subspace parameters (see Sections 2.6.1). The

forgetting factor used in this algorithm is 0.999. It is seen from these two figures that as in

the nonadaptive case, the robust multiuser detector offers significant performance gain over

the linear multiuser detector in impulsive noise. Furthermore, in this example, the adaptive

version of the blind robust detector based on subspace tracking outperforms the batch SVD-

based approach, (This is because with a forgetting factor 0.999, the effective data window
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Figure 4.10: BER performance of User 1 for the blind robust detector and the blind linear de-

tector, using batch eigendecomposition, in a synchronous CDMA channel with non-Gaussian

noise. N = 31, K = 6. The powers of all interferers are 10dB above the power of User 1.
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Figure 4.11: BER performance of User 1 for the blind robust detector and the blind linear

detector, using subspace tracking, in a synchronous CDMA channel with non-Gaussian noise.

N = 31, K = 6. The powers of the interferers are 10dB above the power of User 1.
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size is 1/(1 − 0.999) = 1000; whereas the window size in the batch method is M = 200.)

while it has a practical computational complexity and incurs no delay in data demodulation.

4.6 Robust Multiuser Detection based on Local Like-

lihood Search

Recall that in Section 3.4, we introduced a nonlinear multiuser detection method based on

local likelihood search, which offers significant performance improvement over linear mul-

tiuser detection methods with comparable computational complexity. This method, when

combined with the subspace technique, also leads to a nonlinear group-blind multiuser de-

tector. In this section, we discuss the application of such a local likelihood search method

in robust multiuser detection and group-blind robust multiuser detection. The materials in

this section were developed in [446, 447].

4.6.1 Exhaustive-Search Detection and Decorrelative Detection

Consider the following complex-valued discrete-time synchronous CDMA signal model. At

any time instant, the received signal is the superposition ofK users’ signals, plus the ambient

noise, given by

r =
K∑

k=1

αkbksk + n (4.96)

= SAb + n, (4.97)

where sk = 1√
N

[s0,k · · · sN−1,k]
T , sj,k ∈ {+1,−1}, is the normalized signature sequence of the

kth user; N is the processing gain; bk ∈ {+1,−1} and αk are respectively the data bit and the

complex amplitude of the kth user; S
�
= [s1 · · · sK ]; A

�
= diag(α1, · · · , αK); b

�
= [b1 · · · bK ]T ;

and n
�
= [n1 · · · nN ]T is a complex vector of independent and identically distributed (i.i.d.)

ambient noise samples with independent real and imaginary components. Denote

y
�
=

[
�{r}
�{r}

]
, Ψ

�
=

[
S�{A}
S�{A}

]
, and v

�
=

[
�{n}
�{n}

]
,

where v is a real noise vector consisting of 2N i.i.d. samples. Then (4.97) can be written as

y = Ψb + v. (4.98)
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It is assumed that each element vj of v follows a two-term Gaussian mixture distribution,

i.e.,

vj ∼ (1 − ε)N (
0, ν2

)
+ εN (

0, κν2
)
, (4.99)

with 0 ≤ ε < 1 and κ > 1. Note that the overall variance of the noise sample vj is

σ2

2

�
= (1 − ε)ν2 + εκν2. (4.100)

We have Cov(v) = σ2

2
I2N ; and Cov(n) = σ2IN .

Recall from the preceding sections that there are primarily two categories of multiuser

detectors for estimating b from y in (4.98), all based on minimizing the sum of a certain

function ρ(·) of the chip residuals

C(b; y)
�
=

2N∑
j=1

ρ
(
yj − ξT

j b
)
, (4.101)

where ξT
j denotes the jth row of the matrix Ψ . These are as follows.

• Exhaustive-search detectors:

be = arg min
b∈{+1,−1}K

C(b; y). (4.102)

• Decorrelative detectors:

β = arg min
b∈RK

C(b; y), (4.103)

b∗ = sign(β). (4.104)

Note that exhaustive-search detection is based on the discrete minimization of the cost

function C(b; y), over 2K candidate points; whereas decorrelative detection is based on the

continuous minimization of the same cost function. As before let ψ = ρ′ be the derivative of

the penalty function ρ. In general, the optimization problem (4.103) can be solved iteratively

according to the following steps [544]

zl = ψ
(
y − Ψβl

)
, (4.105)

βl+1 = βl +
1

µ

(
ΨT Ψ

)−1
ΨT zl, l = 0, 1, · · · . (4.106)

Recall further from Section 4.2 the following three choices of the penalty function ρ(·) in

(4.101), corresponding to different forms of detectors:
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• Log-likelihood penalty function:

ρML(x)
�
= − log f(x), (4.107)

and ψML(x) = −f
′(x)
f(x)

, (4.108)

where f(·) denotes the pdf of the noise sample vj. In this case, the exhaustive-search

detector (4.102) corresponds to the ML detector; and the decorrelative detector (4.104)

corresponds to the ML decorrelator.

• Least-squares penalty function:

ρLS(x)
�
=

1

2
x2, (4.109)

and ψLS(x) = x. (4.110)

In this case, the exhaustive-search detector (4.102) corresponds to the ML detector

based on a Gaussian noise assumption; and the decorrelative detector (4.104) corre-

sponds to the linear decorrelator.

• Huber penalty function:

ρH(x) =

{
x2

σ2 , if |x| ≤ cσ2

2
,

c|x| − c2σ2

4
, if |x| > cσ2

2
,

(4.111)

and ψH(x) =

{
x
σ2 , if |x| ≤ cσ2

2
,

c sign(x) if |x| > cσ2

2
.

(4.112)

where σ2

2
is the noise variance given by (4.100), and

c =
3√
2σ

(4.113)

is a constant. In this case, the exhaustive-search detector (4.102) corresponds to the

discrete minimizer of the Huber cost function; and the decorrelative detector (4.104)

corresponds to the robust decorrelator.

4.6.2 Local-Search Detection

Clearly the optimal performance is achieved by the exhaustive-search detector with the log-

likelihood penalty function, i.e., the ML detector. As will be seen later, the performance of
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the exhaustive search detector with the Huber penalty function is close to that of the ML

detector, while this detector does not require knowledge of the exact noise pdf. However the

computational complexity of the exhaustive-search detector (4.102) is on the order of O(2K).

We next discuss a local search approach to approximating the solution to (4.102), based on

the slowest-descent search method discussed in Section 3.4. The basic idea is to minimize

the cost function C(b; y) over a subset Ω of the discrete parameter set {+1,−1}K that is

close to the continuous stationary point β given by (4.103). More precisely, we approximate

the solution to (4.102) by a local one

bl �
= arg min

b∈Ω

C(b; y). (4.114)

In the slowest-descent-search method [444], the candidate set Ω consists of the discrete

parameters chosen such that they are in the neighborhood of Q (Q ≤ K) lines in R
K , which

are defined by the stationary point β and the Q eigenvectors of the Hessian matrix ∇2
C(β)

of C(b; y) at β corresponding to the Q smallest eigenvalues.

For the three types of penalty functions, the Hessian matrix at the stationary points are

given respectively by

ρML : ∇2
C(β) = ΨT diag

{
ρ

′′
ML

(
yj − ξT

j β
)
, j = 1, · · · , 2N.

}
Ψ , (4.115)

ρLS : ∇2
C(β) = ΨT Ψ , (4.116)

ρH : ∇2
C(β) = ΨT diag

{
I

(∣∣yj − ξT
j β

∣∣ ≤ cσ2

2

)
, j = 1, · · · , 2N.

}
Ψ , (4.117)

where in (4.115)

ρ
′′
ML(x) = ψ2

ML(x) − f ′′
(x)/f(x), (4.118)

and in (4.117) the indicator function I(y ≤ a) = 1 if y ≤ a and 0 otherwise; hence in this

case those rows of Ψ with large residual signals as a possible result of impulsive noise are

nullified, whereas other rows of Ψ are not affected.

Denote b∗ �
= sign(β). In general, the slowest-descent-search method chooses the candi-

date set Ω in (4.114) as follows:

Ω = {b∗} ∪
Q⋃

q=1

{
bq,µ ∈ {−1,+1}K : bq,µ

k =

{
sign (βk − µgq

k) , if βk − µgq
k �= 0

−b∗k, if βk − µgq
k = 0

,

gq is the qth smallest eigenvector of ∇2
C , µ ∈

{
β1

gq
1

, · · · , βK

gq
K

}}
. (4.119)
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Hence, {bq,µ}µ contains the K closest neighbors of β in {−1,+1}K along the direction of gq.

Note that {gq}Q
q=1 represent the Q mutually orthogonal directions where the cost function

C(b; y) grows the slowest from the minimum point β.

Finally we summarize the slowest-descent-search algorithm for robust multiuser detection

in non-Gaussian noise. Given a penalty function ρ(·), this algorithm solves the discrete

optimization problem (4.114) according to the following steps.

Algorithm 4.4 [Robust multiuser detector based on slowest-descent-search - synchronous

CDMA]

• Compute the continuous stationary point β in (4.103):

β0 =
(
ΨT Ψ

)−1
ΨT y, (4.120)

Do

zl = ψ
(
y − Ψ βl

)
, (4.121)

βl+1 = βl +
1

µ

(
ΨT Ψ

)−1
ΨT zl, (4.122)

While
∥∥βl+1 − βl

∥∥ > δ.
Set β̂ = βl and b∗ = sign

(
β̂
)
.

• Compute the Hessian matrix ∇2
C(β̂) given by (4.115) or (4.116) or (4.117), and its Q

smallest eigenvectors g1, · · · , gQ.

• Solve the discrete optimization problem defined by (4.114) and (4.119) by an exhaustive

search (over (KQ+ 1) points).

Simulation Results

For simulations, we consider a synchronous CDMA system with a processing gain N = 15,

the number of users K = 6, and no phase offset and equal amplitudes of user signals, i.e.,

αk = 1, k = 1, · · · , K. The signature sequence s1 of User 1 is generated randomly and

kept fixed throughout simulations. The signature sequences of other users are generated by

circularly shifting the sequence of User 1.

For each of the three penalty functions, Fig. 4.12 presents the BER performance of the

decorrelative detector, the slowest-descent-search detector with two search directions, and
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the exhaustive-search detector. Searching further slowest-descent directions does not improve

the performance in this case. We observe that for all three criteria, the performance of the

slowest-descent-search detector is close to that of its respective exhaustive-search version.

Moreover, the LS based detectors have the worst performance. Note that the detector based

on the Huber penalty function and the slowest-descent search offers significant performance

gain over the robust decorrelator developed in Sections 4.2 (Algorithm 4.1). For example,

at the BER of 10−3, it is only less than 1dB from the ML detector; whereas the robust

decorrelator is about 3dB from the ML detector.
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LS slowest descent: 2 directions   
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Huber slowest descent: 2 directions
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ML decorrelator                    
ML slowest descent: 2 directions   
ML exhaustive                      

Figure 4.12: BER performance of various detectors in a DS-CDMA system with non-

Gaussian ambient noise. N = 15, K = 8, ε = 0.01, κ = 100.

4.7 Robust Group-blind Multiuser Detection

Consider the received signal of (4.97). As noted in Chapter 3, in group-blind multiuser

detection, only a subset of the K users’ signals need to be demodulated. Specifically, suppose

that the first K̃ (K̃ ≤ K) users are the users of interest. Denote S̃ and S̄ as matrices
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containing respectively the first K̃ and the last (K − K̃) columns of S. Similarly define the

quantities Ã, b̃, Ā, and b̄. Then (4.97) can be rewritten as

r = SAb + n (4.123)

= S̃Ãb̃ + S̄Āb̄ + n. (4.124)

Let the autocorrelation matrix of the received signal and its eigendecomposition be

Cr
�
= E

{
rrH

}
= U sΛsU

H
s + σ2UnUH

n . (4.125)

We next consider the problem of nonlinear group-blind multiuser detection in non-Gaussian

noise. Denote θ̃
�
= Ãb̃ and θ̄

�
= Āb̄. Then (4.124) can be written as

r = S̃θ̃ + S̄θ̄ + n (4.126)

= U sζ + n, (4.127)

for some ζ ∈ C
K . The basic idea here is to get an estimate of the sum of the undesired

users’ signals, S̄θ̄, and to subtract it from r. This effectively reduces the problem to the

form treated in the previous section. To that end, denote[
�{r}
�{r}

]
︸ ︷︷ ︸

y

=

[
S̃�{Ã}
S̃�{Ã}

]
︸ ︷︷ ︸

˜Ψ

b̃ +

[
S̄�{Ā}
S̄�{Ā}

]
︸ ︷︷ ︸

¯Ψ

b̄ +

[
�{n}
�{n}

]
︸ ︷︷ ︸

v

(4.128)

=

[
�{U s} −�{U s}
�{U s} �{U s}

]
︸ ︷︷ ︸

Ξ

[
�{ζ}
�{ζ}

]
︸ ︷︷ ︸

φ

+

[
�{n}
�{n}

]
︸ ︷︷ ︸

v

. (4.129)

Next, we outline the method for estimating the signal S̄θ̄ in (4.127). Denote

φ0 �
=

(
ΞT Ξ

)−1
ΞT y. (4.130)

In what follows we assume that the Huber penalty function is used. We first obtain a robust

estimate of φ by the following iterative procedure.

zl = ψ
(
y − Ξφl

)
, (4.131)

and φl+1 = φl +
1

µ

(
ΞT Ξ

)−1
ΞT zl, l = 0, 1, 2, · · · . (4.132)
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The robust estimate of φ translates into a robust estimate of ζ, which by Proposition 4.2,

in turn translates into a robust estimate of θ̃, as

θ̃ =
[
S̃

T
U s

(
Λs − σ2IK

)−1
UH

s S̃
]−1

S̃
T
U s

(
Λs − σ2IK

)−1
ζ. (4.133)

Using the above estimated θ̃, the desired users’ signals are then subtracted from the received

signal to obtain

r̄
�
= r − S̃θ̃. (4.134)

Next, the subspace components of the undesired users’ signals are identified as follows. Let

C̄
�
= E

{
r̄r̄H

}
= Ū sΛ̄sŪ

H
s + σ2ŪnŪ

H
n , (4.135)

where the dimension of the signal subspace in (4.135) is (K − K̃). We then have

r̄ = S̄θ̄ + n (4.136)

= Ū sζ̄ + n, (4.137)

for some ζ̄ ∈ C
K−K̃ ; or in its real-valued form,[
�{r̄}
�{r̄}

]
︸ ︷︷ ︸

ȳ

=

[
S̄�{Ā}
S̄�{Ā}

]
︸ ︷︷ ︸

¯Ψ

b̄ +

[
�{n}
�{n}

]
︸ ︷︷ ︸

v

(4.138)

=

[
�{Ū s} −�{Ū s}
�{Ū s} �{Ū s}

]
︸ ︷︷ ︸

¯Ξ

[
�{ζ̄}
�{ζ̄}

]
︸ ︷︷ ︸

¯φ

+

[
�{n}
�{n}

]
︸ ︷︷ ︸

v

. (4.139)

A robust estimate of φ̄ is then obtained from (4.139) using an iterative procedure similar

to (4.131)-(4.132). Finally, the estimated undesired users’ signals are subtracted from the

received signal to obtain

ỹ = y − Ξ̄φ̄ (4.140)

= Ψ̃ b̃ + v. (4.141)

Note that in order to form Ψ̃ , the complex amplitudes of the desired users, Ã, must be

estimated, which can be done based on θ̃, as discussed in Section 3.4. Note also that such an
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estimate has a phase ambiguity of π, which necessitates differential encoding and decoding

of data. The signal model (4.141) is the same as the one treated in the previous section.

Accordingly define the following cost function based on the Huber penalty function

�̃
(
b̃
)

�
=

2N∑
j=1

ρH

(
ỹj − ηT

j b̃
)
, (4.142)

where ηT
j denotes the jth row of the matrix Ψ̃ . Let β̃ be the stationary point of �̃(·), which

can also be solved using an iterative method similar to (4.105)-(4.106). The Hessian of �̃(·)
at the stationary point is given by

∇2
�̃

(
β̃
)

= Ψ̃
T
P

(
β̃
)

Ψ̃ , (4.143)

with P
(
β̃
)

= diag
{
I
(∣∣∣ỹj − ηT

j β̃
∣∣∣ ≤ cσ2/2

)
, j = 1, · · · , 2N

}
. (4.144)

The estimate of the desired users’ bits b̃ based on the slowest-descent search is now given by

[Let b̃
∗ �

= sign
(
β̃
)
.]

ˆ̃b ∼= arg min
˜b∈Ω̃⊂{+1,−1}K̃

�̃
(
b̃
)
, (4.145)

with

Ω̃ =
{

b̃
∗} ∪

Q⋃
q=1

b̃
q,µ ∈ {+1,−1}K̃ : b̃q,µ

k =

 sign
(
β̃k − µgq

k

)
if β̃k − µgq

k �= 0

−b̃∗k if β̃k − µgq
k = 0

,

gq is the qth smallest eigenvector of ∇2
�̃

(
β̃
)
, µ ∈

{
β̃1

gq
1

, · · · , β̃K

gq
K

}}
, (4.146)

The robust group-blind multiuser detection algorithm for synchronous CDMA with non-

Gaussian noise is summarized below.

Algorithm 4.5 [Robust group-blind multiuser detector - synchronous CDMA]

• Compute the sample autocorrelation matrix of the received signal and its eigen-

decomposition.

• Compute the robust estimate of φ using (4.130)–(4.132); compute the robust estimate

of θ̃ using (4.133).
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• Compute the estimate of the complex amplitudes Ã based on the robust estimate of θ̃

using (3.127) - (3.129) [cf. (3.134) - (3.140)].

• Obtain the robust estimate of the undesired users’ signals according to (4.134)-(4.139),

by applying the similar iterative procedure as (4.130)-(4.132); subtract the undesired

users’ signals from the received signal to obtain ỹ in (4.141).

• Compute the stationary point β̃ from ỹ using an iterative procedure similar to (4.105)-

(4.106); compute the Hessian ∇2
�̃
(β̃) using (4.143) and (4.144).

• Solve the discrete optimization problem defined by (4.145) and (4.146) using an ex-

haustive search (over (K̃Q+ 1) points); perform differential decoding.

Simulation Examples
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Figure 4.13: BER performance of the slowest-descent-based group-blind multiuser detector

in non-Gaussian noise – synchronous case. N = 15, K = 8, K̃ = 4, ε = 0.01, κ = 100.

We consider a synchronous CDMA system with a processing gain N = 15, the number

of users K = 8, and random phase offset and equal amplitudes of user signals. The number



248CHAPTER 4. ROBUST MULTIUSER DETECTION IN NON-GAUSSIAN CHANNELS

of desired users is K̃ = 4. Only the spreading waveforms S̃ of the desired users are assumed

to be known to the receiver. The noise parameters are ε = 0.01, κ = 100. The BER curves

of the robust blind detector of Section 4.5 (Algorithm 4.2) and the slowest-descent-search

robust group-blind detector with Q = 1 and Q = 2 are shown in Fig. 4.13. It is seen that

significant performance improvement is offered by the robust group-blind local-search-based

multiuser detector in non-Gaussian noise channels over the (nonlinear) blind robust detector

discussed in Section 4.5.

4.8 Extension to Multipath Channels

In this section, we extend the robust group-blind multiuser detection techniques developed

in the previous sections to general asynchronous CDMA channels with multipath distortion.

Let the impulse response of the kth user’s multipath channel be given by

gk(t) =
L∑

l=1

αklδ(t− τkl), (4.147)

where L is the total number of paths in the channel, and where αkl and τkl are, respectively,

the complex path gain and the delay of the kth user’s lth path. It is assumed that τk1 <

τk2 < · · · < τkL. The received continuous-time signal is then given by

r(t) =
K∑

k=1

M−1∑
i=0

bk[i] [sk(t− iT ) � gk(t)]︸ ︷︷ ︸
hk(t−iT )

+n(t), (4.148)

where � denotes convolution.

As discussed in Section 2.7.1, at the receiver, the received signal is filtered by a chip-

matched filter and sampled at a multiple (p) of the chip-rate. Denote rq[i] as the qth signal

sample during the ith symbol [cf. (2.166)]. Recall that by denoting

r[i]︸︷︷︸
P×1

�
=


r0[i]

...

rP−1[i]

 , b[i]︸︷︷︸
K×1

�
=


b1[i]

...

bK [i]

 , n[i]︸︷︷︸
P×1

�
=


n0[i]

...

nP−1[i]

 ,

and H[j]︸︷︷︸
P×K

�
=


h1[jP ] · · · hK [jP ]

...
...

...

h1[jP + P − 1] · · · hK [jP + P − 1]

 , j = 0, · · · , ι,
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we have the following discrete-time signal model

r[i] = H[i] � b[i] + n[i]. (4.149)

By stacking m successive sample vectors, we further define the following quantities

r[i]︸︷︷︸
Pm×1

�
=


r[i]
...

r[i+m− 1]

 , n[i]︸︷︷︸
Pm×1

�
=


n[i]
...

n[i+m− 1]

 , b[i]︸︷︷︸
K(m+ι)×1

�
=


b[i− ι]

...

b[i+m− 1]

 ,

and H︸︷︷︸
Pm×K(m+ι)

�
=


H[ι] · · · H[0] · · · 0

...
. . . . . . . . .

...

0 · · · H[ι] · · · H[0]

 ,
where m =

⌈
P+K
P−K

⌉
ι; r

�
= K(m + ι), and where ι is the maximum delay spread in terms of

symbol intervals. We can then have the following matrix form of the discrete-time signal

model

r[i] = H b[i] + n[i]; (4.150)

and as before we write the eigendecomposition of the autocorrelation matrix of the received

signal as

Cr
�
= E

{
r[i]r[i]H

}
= HHH + σ2IPm (4.151)

= U sΛsU
H
s + σ2UnU

H
n , (4.152)

where the signal subspace U s has r columns.

We next discuss robust blind multiuser detection and robust group-blind multiuser de-

tection in multipath channels.

4.8.1 Robust Blind Multiuser Detection in Multipath Channels

Suppose that User 1 is the user of interest. Then we can rewrite (4.150) as

r[i] = h̄1b1[i] + H0b0[i] + n[i] (4.153)

= U sζ[i] + n[i], (4.154)
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where h̄1 denotes the (Kι + 1)th column of H (corresponding to the bit b1[i]); H0 denotes

the submatrix of H obtained by striking out the (Kι + 1)th column; and b0[i] denotes the

subvector of b[i] obtained by striking out the (Kι + 1)th element. As before, the basic idea

behind robust blind multiuser detection is to first obtain a robust estimate of ζ[i] using

the identified signal subspace U s. On the other hand, as discussed in Section 2.7.3, given

the spreading waveform s1 of the desired user, by exploiting the orthogonality between the

signal subspace and noise subspace, the composite signature waveform h̄1 of this user can be

estimated (up to a complex scaling factor). Once an estimate of h̄1 is available, the robust

estimate of ζ[i] can then be translated into an robust estimate of b1[i] (up to a complex

scaling factor) by Proposition 4.2, as

θ1[i]
�
= h̄

H
1 U s

(
Λs − σ2Ir

)−1
ζ[i]. (4.155)

Finally differential detection is performed according to

β̂1[i] = sign (�{θ1[i]θ1[i− 1]∗}) . (4.156)

The algorithm is summarized as follows.

Algorithm 4.6 [Robust blind multiuser detector - multipath CDMA]

• Compute the sample autocorrelation matrix of the received augmented signal r[i] and

its eigendecomposition.

• Compute the robust estimate of ζ[i] following a procedure similar to (4.128)-(4.132).

• Compute an blind estimate of h̄1 according to (2.201) - (2.202).

• Compute the output of the robust blind detector according to (4.155).

• Perform differential detection according to (4.156).

4.8.2 Robust Group-Blind Multiuser Detection in Multipath

Channels

We now turn to the group-blind version of the robust multiuser detector for the multipath

channel. As before, we can rewrite (4.150) as

r[i] = H̃b̃[i] + H̄b̄[i] + n[i] (4.157)
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= U sζ[i] + n[i], (4.158)

where b̃[i] and b̄[i] contain the data bits in b[i] corresponding to sets of desired users and

the undesired users, respectively; H̃ and H̄ contain columns of H corresponding to the

desired users and undesired users, respectively. As discussed in Section 2.7.3, based on the

knowledge of the spreading waveforms S̃ of the desired users, by exploiting the orthogonality

between the signal subspace and the noise subspace, we can blindly estimate H̃ up to a scale

and phase ambiguity for each user. With such an estimate, we can write

H̃b[i] = H̃0Ã b̃[i] + H̃IθI [i], (4.159)

where the term H̃0Ãb̃[i] contains the signal carrying the current bits b̃[i]
�
= [b1[i] · · · bK̃ [i]]T

of the desired users; and the term H̃IθI [i] contains the signal carrying the previous and

future bits {b̃[l]}l �=i, i.e., the intersymbol interference. Note that in (4.159) the term H̃0

represents the estimated channel for the desired users’ current bits, and Ã is a diagonal

matrix containing the complex scalars of ambiguities; the term H̃I represents the estimated

channel for the desired users’ past and future bits, and θI [i] contains the products of those

bits and the complex ambiguities of the corresponding channels. Following the method

outlined in Section 4.7, we first obtain a robust estimate of ζ[i], and then translate it into

the estimate of θ̃[i] by again applying Proposition 4.2,

θ̃[i]
�
= H̃

H
U s

(
Λs − σ2Ir

)−1
ζ[i]. (4.160)

Next, we obtain a robust estimate of the sum of the undesired users’ signals based on the

following relationship

r̄[i] = r[i] − H̃θ̃[i] (4.161)

= Ū sζ̄[i] + n[i], (4.162)

where Ū s represents the signal subspace obtained from the eigendecomposition of the au-

tocorrelation matrix of r̄[i]. Finally, we subtract the estimated undesired users’ signals and

the intersymbol interference from r[i] to obtain

r̃[i]
�
= r[i] − Ū sζ̄[i] − H̃I θ̃I [i] (4.163)

= H̃0Ã b̃[i] + n[i]. (4.164)
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Note that the complex ambiguities in Ã can be estimated based on the estimate of θ̃[i], as

discussed in Section 4.7. Note also that (4.164) has the same form as (4.141), and hence

similarly to (4.143)-(4.146), the slowest-descent search method can then be employed to

obtain a robust estimate of b̃[i] from (4.164). The algorithm is summarized below.

Algorithm 4.7 [Robust group-blind multiuser detector - multipath CDMA]

• Compute the sample autocorrelation matrix of the received augmented signal r[i] and

its eigendecomposition.

• Compute the robust estimate of ζ[i] following a procedure similar to (4.128)-(4.132).

• Compute a blind estimate of H̃ according to (3.162) - (3.163).

• Compute the output of the robust blind detector according to (4.160).

• Compute the sum of the undesired users’ signals r̄[i] according to (4.161); compute the

sample autocorrelation matrix of the signal r̄[i] and its eigendecomposition.

• Compute the robust estimate of ζ̄[i] in (4.162) following a procedure similar to (4.128)-

(4.132).

• Compute the sum of the desired users’ signals r̃[i] according to (4.163).

• Estimate the complex amplitudes of ambiguities Ã introduced by the blind estimator

based on the robust estimate of θ̃[i] using (3.127) - (3.129) [cf. (3.134) - (3.140)].

• Form the Huber penalty function and apply the slowest-descent search of b̃[i], similarly

to (4.143)-(4.146).

• Perform differential decoding.

Simulation Examples

In the following simulation, the number of users is K = 8 and the spreading gain is N = 15.

Each user’s channel is assumed to have L = 3 paths and a delay spread of up to one symbol.

The complex gains and the delays of each user’s channel are generated randomly. The chip

pulse is a raised cosine pulse with roll-off factor 0.5. The path gains are normalized so that
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Figure 4.14: BER performance of the group-blind robust multiuser detector in non-Gaussian

noise – multipath channel. N = 15, K = 8, K̃ = 4, ε = 0.01 and κ = 100. Each user’s

channel consists of three paths with randomly generated complex gains and delays. Only

the spreading waveforms S̃ of the desired users are assumed known to the receiver. The

BER curves of the robust blind detector (Algorithm 4.2) and the robust group-blind detector

(Algorithm 4.7) with one and two search directions are shown.
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each user’s signal arrives at the receiver with unit power. The channel is normalized in such

a way that the composite of the multipath channel and the spreading waveform has unit

power. The noise parameters are ε = 0.01 and κ = 100. The smoothing factor is m = 2 and

the over-sampling factor is p = 2. Shown in Fig. 4.14 is the BER performance of the robust

blind multiuser detector and that of the robust group-blind multiuser detector (K̃ = 4). It

is seen that, in the presence of both non-Gaussian noise and multipath channel distortion,

the group-blind robust detector substantially improves the performance of the blind robust

detector. Furthermore, most of the performance gain offered by the slowest-descent search

is obtained by searching along only one direction.

4.9 Robust Multiuser Detection in Stable Noise

So far in this chapter, we have modelled the non-Gaussian ambient noise using a mixture

Gaussian distribution. Recently, the stable noise model has been proposed as a statistical

model for the impulsive noise in several applications, including wireless communications

[352, 482]. In this section, we first give a brief description of the stable distribution. We

then demonstrate that the various robust multiuser detection techniques discussed in this

chapter are also very effective in combating impulsive noise modelled by a stable distribution.

4.9.1 The Symmetric Stable Distribution

A symmetric stable distribution is defined through its characteristic function as follows.

Definition 4.1 [Symmetric stable distribution] A random variable X has a symmetric

stable distribution if and only if its characteristic function has the form

φ(t;α, γ, θ) = E {exp(tX)}
= exp (θt− γ|t|α) , (4.165)

where

γ > 0, 0 < α ≤ 2, −∞ < θ <∞.

Thus, a symmetric stable random variable is completely characterized by three parameters,

α, γ and θ, where,
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• α is called the characteristic exponent, which indicates the “heaviness” of the tails of

the distribution - a small value of α implies a heavier tail. The case α = 2 corresponds

to a Gaussian distribution; whereas α = 1 corresponds to a Cauchy distribution.

• γ is called the dispersion. For the Gaussian case, i.e., α = 2, γ = 1
2
Var(X).

• θ is a location parameter, which is the mean when 1 < α ≤ 2 and the median when

0 < α < 1.

By taking the Fourier transform of the characteristic function, we can obtain the proba-

bility density function (pdf) of the symmetric stable random variable X

f(x;α, γ, θ) =
1

2π

∫ ∞

−∞
φ(t;α, γ, θ) exp(−xt)dt. (4.166)

No closed-form expressions exist for general stable pdf’s, except for the Gaussian (α = 2)

and Cauchy (α = 1) pdf’s. For these two pdf’s, closed-form expression exist, namely

f(x;α = 2, γ, θ) =
1√
4πγ

exp

[
−(x− θ)2

4γ

]
, (4.167)

and f(x;α = 1, γ, θ) =
1

π

γ

γ2 + (x− θ)2
. (4.168)

It is known that for a non-Gaussian (α < 2) symmetric stable random variable X with

location parameter θ = 0 and dispersion γ, we have the asymptote

lim
x→∞

xαP (|X| > x) = γC(α), (4.169)

where C(α) is a positive constant depending on α. Thus, stable distributions have inverse

power tails; whereas Gaussian distributions have exponential tails. Hence the tails of the

stable distributions are significantly heavier than those of the Gaussian distributions. In fact,

the smaller is α, the slower does its tail drops to zero, as shown in Fig. 4.15 and Fig. 4.16

As a consequence of (4.169), stable distributions do not have second-order moments,

except for the limiting case of α = 2. More specifically, let X be a symmetric stable random

variable with characteristic exponent α. If 0 < α < 2, then

E {|X|m}
{

= ∞, m ≥ α

<∞, 0 ≤ m < α.
(4.170)
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Figure 4.15: The symmetric stable pdf’s for different values of α.
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Figure 4.16: The tails of the symmetric stable pdf’s for different values of α.
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If α = 2, then

E {|X|m} <∞ (4.171)

for all m ≥ 0. Hence for 0 < α ≤ 1, stable distributions have no finite first- or higher-order

moments; for 1 < α < 2, they have the first moments; and for α = 2, all moments exist. In

particular, all non-Gaussian stable distributions have infinite variance. The reader is referred

to [352] for further details of these properties of α-stable distribution.

Generation of Symmetric Stable Random Variables

The following procedure generates a standard symmetric stable random variable X with

characteristic exponent α, dispersion γ = 1 and location parameter θ = 0. (See [352].)

Φ ∼ uniform
(
−π

2
,
π

2

)
(4.172)

W ∼ exp(1) (4.173)

ε = 1 − α (4.174)

a = tan

(
Φ

2

)
(4.175)

b = tan

(
εΦ

2

)
(4.176)

B =
2b

εΦ
(4.177)

z =
cos(εΦ)

W cos(Φ)
(4.178)

X =
2(a− b)(1 + ab)

(1 − a2) (1 + b2)
z

ε
α (4.179)

Now in order to generate a symmetric stable random variable Y with parameters (α, γ, θ),

we first generate a standard symmetric stable random variable X with parameters (α, 1, 0),

using the above procedure. Then Y can be generated from X according to the following

transformation

Y = γ
1
αX + θ. (4.180)
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4.9.2 Performance of Robust Multiuser Detectors in Stable Noise

We consider the performance of the robust multiuser detection techniques discussed in the

previous sections in symmetric stable noise. In particular, we consider the performance of

the linear decorrelator, the maximum-likelihood decorrelator, and the Huber decorrelator,

as well as their improved versions based on local likelihood search. First, the ψ functions

for these three deocrrelative detectors are plotted in Fig. 4.17. For the Huber decorrelator,

the variance σ2 is the original definition of ψH(·) in (4.112) is replaced by the dispersion

parameter γ. Note that since the pdf of the symmetric stable distribution does not have a

closed-form, we have to resort to numerical method to compute ψML(x) given by (4.108). In

particular, we can use discrete Fourier transform (DFT) to calculate samples of f(x) and

f ′(x), as follows. Recall that the characteristic function is given by

φ(t) = exp{−γ|t|α}. (4.181)

The pdf and its derivative are related to the characteristic function through

f(x) =
1

2π

∫ +∞

−∞
φ(t)e−xtdt

= F−1{φ(−t)} = F−1{φ(t)}, (4.182)

f ′(x) =  xF−1{φ(t)}. (4.183)

Hence by sampling the characteristic function φ(t) and then perform (inverse) DFT, we can

get samples of f(t) and f ′(t), which in turns give ψML(x).

First we demonstrate the performance degradation of the linear decorrelator in symmet-

ric stable noise. The BER performance of the linear decorrelator in several symmetric stable

noise channels is depicted in Fig. 4.18. Here the SNR is defined as A2
1/γ. It is seen that

the smaller is α (i.e., the more impulsive is the noise), the more severe is the performance

degradation incurred by the the linear decorrelator. We next demonstrate the performance

gain achieved by the Huber decorrelator. Fig. 4.19 shows the BER performance of the Huber

decorrelator. It is seen that as the noise becomes more impulsive (i.e., α becomes smaller),

the Huber deccorrelator offers more performance improvement over the linear decorrelator.

Finally, we depict the BER performance of the linear decorrelator, the Huber decorrelator

and the ML decorrelator, as well as their their improved versions based on the slowest-descent
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Figure 4.17: The ψ functions for the linear decorrelator, the Huber decorrelator, and the

maximum-likelihood decorrelator under symmetric stable noise. γ = 0.0792.
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search, in Fig. 4.20. It is seen that the performance of the improved/unimproved linear decor-

relator is substantially worse than that of the Huber decorrelator and the ML decorrelator.

The improved Huber decorrelator performs more closely to the ML decorrelator.
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Figure 4.18: BER performance of the linear decorrelator in α-stable noise. N = 31, K = 6.

The powers of the interferers are 10dB above the power of User 1.

4.10 Appendix

4.10.1 Proof of Proposition 4.1 in Section 4.4

We follow the technique used in [199] by defining the following function

d (τ ) =
1

µ

[
C

(
θl
) − C (

θl + τ
)]

+
1

2

[
τ T

(
ST S

)
τ − 2

µ
τ T ST z

(
θl
)]
, τ ∈ R

K .

(4.184)

Notice that

d (0) = 0, (4.185)
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Figure 4.19: BER performance of the Huber decorrelator in α-stable noise. N = 31, K = 6.

The powers of the interfers are 10dB above the power of User 1.
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∂

∂τ
d (0) =

1

µ

N∑
j=1

ψ
[
rj − ξT

j

(
θl + τ

)]
ξj + ST S τ − 1

µ
ST z

(
θl
) |τ=0 (4.186)

=
1

µ
ST z

(
θl + τ

)
+ ST S τ − 1

µ
ST z

(
θl
) |τ=0 = 0, (4.187)

∂2

∂2τ
d (τ ) = − 1

µ

N∑
j=1

ψ′ [rj − ξT
j

(
θl + τ

)]
ξjξ

T
j + ST S

� −
N∑

j=1

ξjξ
T
j + ST S = 0, (4.188)

where (4.188) follows from the assumption that ψ′(x) ≤ µ. In (4.188) A � B denotes that

the matrix (A−B) is positive semidefinite. It then follows from (4.185), (4.187) and (4.188)

that d (τ ) ≥ 0, for any τ ∈ R
K . Now on setting

τ = θl+1 − θl

=
1

µ

(
ST S

)−1
ST z(θl), (4.189)

we obtain

0 ≤ d (τ ) =
1

µ

[C (
θl
) − C (

θl+1
)] − 1

2µ2
z(θl)T S

(
ST S

)−1
ST z(θl)

=
1

µ

[C (
θl
) − C (

θl+1
)] − 1

2
τ T

(
ST S

)
τ . (4.190)

Assume that the penalty function ρ(x) is convex and bounded from below, then the cost

function C(θ) is convex and has a unique minimum C(θ∗). Therefore θ∗ is the unique solution

to (4.15), such that z (θ∗) = 0. Since the sequence C (
θl
)

is decreasing and bounded from

below, it converges. Therefore from (4.190) we have

z
(
θl
)T [

S R−1ST
]
z
(
θl
) ≤ 2µ

[C (
θl
) − C (

θl+1
)] → 0, as l → ∞. (4.191)

Since for any realization of r, the probability that z
(
θl
)

falls in the null space of the matrix(
SR−1ST

)
is zero, then (4.191) implies that z

(
θl
) → 0 with probability 1. Since z (θ) is a

continuous function of θ and has a unique minimum point θ∗, we then have θl → θ∗ with

probability 1, as l → ∞.
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4.10.2 Proof of Proposition 4.2 in Section 4.5

Denote ζ
�
= [ζ1 · · · ζK ]T . Then (4.75) can be written in matrix form as

Sθ = U sζ. (4.192)

Denote Λ0
�
= Λs − σ2IK . Then from (4.73) and (4.74) we obtain

SA2ST = U sΛ0U
T
s . (4.193)

Using (4.192) and (4.193) we obtain

ST
(
SAST

)†
Sθ = ST

(
U sΛ

−1
0 UT

s

)
U sζ (4.194)

=⇒
(
ST ST †)

A−2
(
S†S

)
θ = ST U s Λ−1

0

(
UT

s U s

)
ζ (4.195)

=⇒ θ = A2ST U sΛ
−1
0 ζ, (4.196)

where in (4.194) † denotes the Moore-Penrose generalized matrix inverse [185]; in (4.195) we

have used the fact that (SA2ST )† = ST †
A−2S†, which can be easily verified by using the

definition of the Moore-Penrose generalized matrix inverse [185]; in (4.196) we have used the

facts that (ST ST †
) = (S† S) = (UT

s U s) = IK . (4.196) is the matrix form of (4.76). Finally

we notice that

A−2 = ST
(
SA2ST

)†
S

= ST
(
U sΛ

−1
0 UT

s

)
S. (4.197)

It follows from (4.197) that the kth diagonal element A−2
k of the diagonal matrix A−2 satisfies

A−2
k =

K∑
j=1

(
uT

j sk

)2

λj − σ2
. (4.198)
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Chapter 5

Space-Time Multiuser Detection

5.1 Introduction

It is anticipated that receive antenna arrays together with adaptive space-time processing

techniques will be used in future high capacity cellular communication systems, to combat

interference, time dispersion and multipath fading. There has been a significant amount

of recent interest in developing adaptive array techniques for wireless communications, e.g.,

[47, 151, 351, 562, 563]. These studies have shown that substantial performance gains and

capacity increases can be achieved by employing antenna arrays and space-time signal pro-

cessing to suppress multiple-access interference, co-channel interference and intersymbol in-

terference, and at the same time to provide spatial diversity to combat multipath fading.

In this chapter, we discuss a number of signal processing techniques for space-time process-

ing in wireless communication systems. We first discuss adaptive antenna array processing

technques for TDMA systems. We then discuss space-time multiuser detection for CDMA

systems.

Due to multipath propagation effects and the movement of mobile units, the array steer-

ing vector in a multiple-antenna system changes with time, and it is of interest to estimate

and track it during communication sessions. One attractive approach to steering vector es-

timation is to exploit a known portion of the data stream, e.g., the synchronization data

stream. For instance, the TDMA mobile radio systems IS-54/136 use 14 known synchro-

nization symbols in each time slot of 162 symbols. These known symbols are very useful for

267
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estimating the steering vector and computing the optimal array combining weights. We will

discuss a number of approaches to adaptive array processing in such systems.

Many advanced signal processing techniques have been proposed for combating inter-

ference and multipath channel distortion in CDMA systems, and these techniques fall

largely into two categories: multiuser detection (cf. Chapters 1-4) and space-time pro-

cessing [366]. Recall that multiuser detection techniques exploit the underlying structure

induced by the spreading waveforms of the DS-CDMA user signals for interference sup-

pression. In antenna array processing, on the other hand, the signal structure induced by

multiple receiving antennas, i.e., the spatial signatures, is exploited for interference suppres-

sion [33, 458, 228, 271, 343, 496, 566]. Combined multiuser detection and array processing

has also been addressed in a number of works. [86, 118, 139, 198, 342, 495, 496]. In this

chapter, we will provide a comprehensive treatment of space-time multiuser detection in mul-

tipath CDMA channels with both transmitter and receive antenna arrays. We derive several

space-time multiuser detection structures, including the maximum likelihood multiuser se-

quence detector, linear space-time multiuser detectors, and adaptive space-time multiuser

detectors.

The rest of this paper is organized as follows. In Section 5.2, we discuss adaptive antenna

array techniques for interference suppression in TDMA systems. In Section 5.3, we treat

the problem of optimal space-time processing in CDMA systems employing multiple receive

antennas. In Section 5.4, we discuss linear space-time receiver techniques for CDMA systems

with multiple receive antennas. In Section 5.5, we discuss space-time processing methods in

synchronous CDMA systems that employ multiple transmit and receive antennas, and their

adaptive implementations. Finally in Section 5.6, we present adaptive space-time receiver

structures in multipath CDMA channels with multiple transmit and receive antennas.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 5.1: LMS adaptive array;

• Algorithm 5.2: DMI adaptive array;

• Algorithm 5.3: Subspace-based adaptive array for TDMA;

• Algorithm 5.4: Batch blind linear space-time multiuser detector – synchronous CDMA,

two transmit antennas and two receive antennas;
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• Algorithm 5.5: Blind adaptive linear space-time multiuser detector – synchronous

CDMA, two transmit antennas and two receive antennas;

• Algorithm 5.6: Blind adaptive linear space-time multiuser detector – asynchronous

multipath CDMA, two transmit antennas and two receive antennas.

5.2 Adaptive Array Processing in TDMA Systems
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Figure 5.1: A wireless communication system employing adaptive arrays at the base station.

An array of P antenna elements at the base receives signals from K co-channel users, one of

which is the desired user’s signal, and the rest are interfering signals.

5.2.1 Signal Model

A wireless cellular communication system employing adaptive antenna arrays at the base

station is shown in Fig. 5.1, where a base with P antenna elements receives signals from K

users. The K users operate in the same bandwidth at the same time. One of the signal is

destinated to the base. The other signals are destinated to other bases, and they interfere

with the desired signal; that is, they constitute co-channel interference. Note that although

here we consider the uplink scenario (mobile to base), where antenna arrays are most likely

to be employed, the adaptive array techniques discussed in this section apply to the downlink
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(base to mobile) as well, provided that an mobile receiver is equipped with multiple antennas.

The general structure can be applied to other systems as well.

The received signal at the antenna array is the superposition of K co-channel signals

from the desired user and the interferers, plus the ambient channel noise. Assume that the

signal bandwidth of the desired user and the interferers is smaller than the channel coherence

bandwidth, so that the signals are subject to flat fading. Assume also that the fading is slow

such that the channel remains constant during one time slot containing M data symbol

intervals. To focus on the spatial processing, we assume for the time being that all users

employ the same modulation waveform 1 so that, after matched filtering with this waveform,

the P -vector of received complex signal at the antenna array during the ith symbol interval

within a time slot can be expressed as

r[i] =
K∑

k=1

pk bk[i] + n[i], i = 0, . . . ,M − 1, (5.1)

where bk[i] is the ith symbol transmitted by the kth user, pk = [p1,k . . . pP,k]
T is a complex

vector (the steering vector) representing the response of the channel and array to the kth

user’s signal, and n[i] ∼ Nc(0, σ
2IP ) is a vector of complex Gaussian noise samples. It is

assumed that all users employ phase-shift-keying (PSK) modulation with all symbol values

being equiprobable. Thus, we have

E {bk[i]} = 0, and E
{|bk[i]|2} = 1.

The nth element of the steering vector pk, can be expressed as

pn,k = Ak gn,k an,k, n = 1, . . . , P, (5.2)

where Ak is the transmitted complex amplitude of the kth user’s signal; gn,k is the complex

fading gain between the kth user’s transmitter and the nth antenna at the receiver; and an,k

is the response of the nth antenna to the kth user’s signal. It is also assumed that the data

symbols of all users {bk[i]} are mutually independent and that they are independent of the

ambient noise n[i]. The noise vectors {n[i]} are assumed to be i.i.d. with independent

real and imaginary components. Note that, mathematically, the model (5.1) is identical to

1In Section 5.3, where we consider both spatial and temporal processing, we will drop the assumption.
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the synchronous CDMA model of (2.1). However, the different physical interpretation of

the various quantities in (5.1) leads to somewhat different algorithms than those discussed

previously. Nevertheless, this mathematical equivalence will be exploited in the sequel.

5.2.2 Linear MMSE Combining

Throughout of this section, we assume that User 1 is the desired user. In adaptive array

processing, the received signal r[i] is linearly combined through a complex weight vector

w ∈ C
P , to yield the array output signal z[i], i.e.,

z[i] = wH r[i].

In linear MMSE combining [562], the weight vector w is chosen such that the mean-square

error between the transmitted symbol b1[i] and the array output z[i] is minimized, i.e.,

w = arg min
w∈CP

E

{∣∣∣b1[i] − z[i]∣∣∣2}
= E

{
r[i]r[i]H

}−1︸ ︷︷ ︸
C−1

E
{

r[i]b1[i]
∗
}

︸ ︷︷ ︸
p1

. (5.3)

where the expectation is taken with respect to the symbols of interfering users {bk[i] : k �= 1}
and the ambient noise n[i].

In practice, the autocorrelation matrix C and the steering vector of the desired user p1 are

not known a priori to the receiver and therefore they must be estimated in order to compute

the optimal combining weight w in (5.3). In several TDMA-based wireless communication

systems (e.g., GSM, IS-54 and IS-136), the information symbols in each slot are preceded by

a preamble of known synchronization symbols, which can be used for training the optimal

weight vector. The trained weight vector is then used for combining during the demodulation

of the information symbols in the same slot.

Assume that in each time slot there are mt training symbols and (M −mt) information

symbols. Two popular methods for training the combining weights are the least-mean-

squares (LMS) algorithm and the direct matrix inversion (DMI) algorithm [562]. The LMS

training algorithm is as follows.

Algorithm 5.1 [LMS adaptive array]
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• Compute the combining weight:

ε[i] = b1[i] − ŵ[i− 1]Hr[i], (5.4)

ŵ[i+ 1] = ŵ[i] + µ ε[i]∗ r[i], (5.5)

i = 0, 1, . . . ,mt − 1,

where µ is a step-size parameter. Set ŵ
�
= ŵ[mt].

• Perform data detection: Obtain b̂1[i] by quantizing ŵHr[i], for i = mt, . . . ,M − 1.

Although the LMS algorithm has a very low computational complexity, it also has a slow

convergence rate. Given that the number of training symbols in each time slot is usually

small, it is unlikely for the LMS algorithm to converge to the optimum weight vector within

the training period.

The DMI algorithm for training the optimum weight vector essentially forms the sample

estimates of the autocorrelation matrix C and the steering vector p1 using the signal received

during the training period and the known training symbols, and then computes the combining

weight vector according to (5.3) using these estimates. Specifically, it proceeds as follows.

Algorithm 5.2 [DMI adaptive array]

• Compute the combining weight:

Ĉ
�
=

1

m t

mt−1∑
i=0

r[i] r[i]H , (5.6)

p̂1
�
=

1

m t

mt−1∑
i=0

r[i] b1[i]
∗, (5.7)

ŵ = Ĉ
−1

p̂1. (5.8)

• Perform data detection: Obtain b̂1[i] by quantizing ŵHr[i], for i = mt, . . . ,M − 1.

It is easily seen that the sample estimates Ĉ and p̂1 are unbiased, i.e., E{Ĉ} = C

and E{p̂1} = p1. They are also strongly consistent, i.e., they converge respectively to the

true autocorrelation matrix C and the true steering vector p1 almost surely as mt → ∞.

Notice that the both the LMS algorithm and the DMI algorithm compute the combining
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weights based only on the received signal during the training period. Since in practice the

training period is short compared with the slot length, i.e., mt � M , the weight vector ŵ

obtained by such an algorithm can be very “noisy”. In what follows, we consider a more

powerful technique for computing the steering vector and the combining weights that exploit

the received signal corresponding to the unknown (M −mt) information symbols as well.

5.2.3 A Subspace-based Training Algorithm

Notice that the sample correlation matrix Ĉ in (5.6) does not depend on the training symbols

of the desired user {b1[i] : i = 0, . . . ,mt − 1}, and therefore, we can use the received signals

during the entire user time slot to get a better sample estimate of C, i.e.,

C̃
�
=

1

M

M−1∑
i=0

r[i] r[i]H . (5.9)

However, the sample estimate p̂1 of the steering vector given by (5.7) does depend on the

training symbols, and therefore this estimator can not make use of the received signals

corresponding to the unknown information symbols. In this section, we present a more

powerful subspace-based technique for computing the steering vector and the array combining

weight vector, which was developed in [541].

Steering Vector Estimation

In what follows it is assumed that the number of antennas is greater that the number of

interferers, i.e., P ≥ K. A typical way to treat the case of P < K is to over-sample the

received signal in order to increase the dimensionality of the signal for processing [337]. For

convenience and without loss of generality, we assume that the steering vectors {pk, k =

1, . . . , K} are linearly independent. The autocorrelation matrix C of the receive signal in

(5.1) is given by

C
�
= E

{
r[i]r[i]H

}
=

K∑
k=1

pkp
H
k + σ2IP . (5.10)

The eigendecomposition of C is give by

C = UΛUH
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= U s Λs UH
s + σ2 Un UH

n , (5.11)

where as in previous chapters, U = [U s Un], Λ = diag {Λs, σ
2IP−K}; Λs =

diag{λ1, . . . , λK} contains the K largest eigenvalues of C in descending order and U s =

[u1 . . . uK ] contains the corresponding orthogonal eigenvectors; and Un = [uK+1 . . . uP ]

contains the (N − K) orthogonal eigenvectors that correspond to the smallest eigenvalue

σ2. Denote P
�
= [p1 . . . pK ]. It is easy to see that range (P ) = range (U s). Thus the

range space of U s is a signal subspace and its orthogonal complement, the noise subspace,

is spanned by Un. Note that in contrast with the signal and noise subspaces discussed in

preceding chapters, which are based on temporal structure, here the subspaces describe the

spatial structure of the received signals. The following result is instrumental to developing

the alternative steering vector estimator for the desired user.

Proposition 5.1 Given the eigendecomposition (5.11) of the autocorrelation matrix C, sup-

pose that a received noise-free signal is given by

y[i]
�
=

K∑
k=1

pk bk[i] =
K∑

j=1

uj qj[i]. (5.12)

Then the kth user’s transmitted symbol can be expressed as

bk[i] =
K∑

j=1

uH
j pk

λj − σ2
qj[i], k = 1, . . . , K. (5.13)

Proof: Denote b[i]
�
=

[
b1[i] . . . bK [i]

]T

and q[i]
�
=

[
q1[i] . . . qK [i]

]T

. Then (5.12) can be

written in matrix form as

y[i] = Ps[i] = U sq[i]. (5.14)

Denote further

Λ0
�
= Λs − σ2IK = diag{λ1 − σ2, . . . , λK − σ2}. (5.15)

Then from (5.10) and (5.11) we have

PP H = U sΛ0U
H
s . (5.16)
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Taking the Moore-Penrose generalized matrix inverse [185] on both sides of (5.16) we obtain(
PP H

)†
=

(
U sΛ0U

H
s

)†
=⇒ P H†

P † = U sΛ
−1
0 UH

s . (5.17)

From (5.14) and (5.17) we then have

P H
(
P H†

P †
)

P b[i] = P H
(
U sΛ

−1
0 UH

s

)
U sq[i]

=⇒
(
P HP H†) (

P †P
)
b[i] = P HU sΛ

−1
0

(
UH

s U s

)
q[i],

=⇒ b[i] = P HU sΛ
−1
0 q[i], (5.18)

where the last equality follows from the fact that P HP H†
= P †P = UH

s U s = IK . Note

that (5.18) is the matrix form of (5.13). �.

Suppose now that the signal subspace parameters U s, Λs and σ2 are known. We next

consider the problem of estimating the steering vector p1 of the desired user, given mt

training symbols {b1[i], i = 0, . . . ,mt − 1} where mt ≥ K. The next result shows that in the

absence of ambient noise, K linearly independent received signals suffice to determine the

steering vector exactly.

Proposition 5.2 Let β1
�
=

[
b1[0] . . . b1[mt − 1]

]T

be the vector of training symbols of the

desired user, and Y
�
=

[
y[0] . . . y[mt − 1]

]
be the matrix of mt noise-free received signals

during the training stage. Assume that rank(Y ) = K. Then the steering vector of the desired

user can be expressed as

p1 = U s Λ0

(
Y H U s

)†
β1, (5.19)

where U s and Λ0 are defined in (5.11) and (5.15) respectively.

Proof: The ith received noise-free array output vector can be expressed as

y[i] =
K∑

k=1

pk bk[i] =
K∑

j=1

uj qj[i], i = 0, . . . ,mt − 1. (5.20)

Denote q[i]
�
=

[
q1[i] . . . qK [i]

]T

. It then follows from (5.20) that

y[i] = U s q[i]

=⇒ q[i] = UH
s y[i], i = 0, . . . ,mt − 1, (5.21)
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since UH
s U s = IK . On substituting (5.21) into (5.13), we obtain

b1[i] =
(
UH

s p1

)H
Λ−1

0 q[i] (5.22)

=
(
U s

H p1

)H
Λ−1

0 UH
s y[i], i = 0, . . . ,mt − 1. (5.23)

Equation (5.23) can be written in matrix form as

Y H U sΛ
−1
0

(
UH

s p1

)
= β1. (5.24)

Since rank(Y ) = K and rank(U s) = K, we have rank(Y H U s) = K. Therefore p1 can be

obtained uniquely from (5.24) by

UH
s p1 = Λ0

(
Y H U s

)†
β1

=⇒ p1 = U s Λ0

(
Y H U s

)†
β1,

where the last equality follows from the fact that p1 = U sU
H
s p1, since p1 ∈ range(U s). �

We can interpret the above result as follows. If the length of the data frame tends to infin-

ity, i.e., M → ∞, then the sample estimate C̃ in (5.9) converges to the true autocorrelation

matrix C almost surely, and an eigendecomposition of the corresponding C̃ will give the true

signal subspace parameters U s and Λ0. The above result then indicates that in the absence

of background noise, a perfect estimate of the steering vector of the desired user p1 can be

obtained by using K linearly independent received signals and the corresponding training

symbols for the desired user. The steering vector estimator p̂1 in the DMI method, given

by (5.7), however, can not achieve perfect steering vector estimation even in the absence of

noise (i.e., σ = 0), unless the number of training symbols tends to infinity, i.e., mt → ∞. In

fact, it is easily seen that the covariance matrix of that estimator is given by

E
{

(p̂1 − p1) (p̂1 − p1)
H
}

=
1

mt

(
K∑

k=2

pk pH
k + σ2 IP

)
σ=0→ 1

mt

K∑
k=2

pk pH
k .

In practice, the received signals are corrupted by ambient noise, i.e.,

r[i] = y[i] + n[i] =
K∑

k=1

pkbk[i] + n[i]

=
K∑

j=1

ujqj[i] + n[i], i = 0, . . . ,mt − 1. (5.25)
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Since n[i] ∼ Nc(0, σ
2 IP ), the log-likelihood function of the received signal r[i] conditioned

on q[i] is given by

L
(
r[i] | q[i]

)
= − 1

σ2

∥∥∥r[i] − U s q[i]
∥∥∥2

.

Hence the maximum-likelihood estimate of q[i] from r[i] is given by

q̃[i] =
(
UH

s U s

)−1
UH

s r[i]

= UH
s r[i], (5.26)

where the last equality follows from the fact that UH
s U s = IK . Similarly to (5.23), we can

set up the following equations for estimating the steering vector p1 from the noisy signal,

b1[i] ∼= (
UH

s p1

)H
Λ−1

0 q̃[i]

=
(
U s

Hp1

)H
Λ−1

0 UH
s r[i], i = 0, . . . ,mt − 1. (5.27)

Denote Γ
�
=

[
r[0] . . . r[mt − 1]

]
, then (5.27) can be written in matrix form as

β1
∼= Γ HU sΛ

−1
0

(
UH

s p1

)
. (5.28)

Solving p1 from (5.28) we obtain,

p1
∼= U sΛ0

(
Γ HU s

)†
β1

= U s Λ0

(
UH

s ΓΓ HU s

)−1
UH

s Γβ1. (5.29)

To implement an estimator of p1 based on (5.29), we first compute the sample autocorrelation

matrix C̃ of the received signal according to (5.9). An eigendecomposition on C̃ is then

performed to get

C̃ = Ũ s Λ̃sŨ
H

s + ŨnΛ̃nŨ
H

n . (5.30)

The steering vector estimator for the desired user is then given by

p̃1 = Ũ sΛ̃s

(
Ũ

H

s Γ Γ HŨ s

)−1

Ũ
H

s Γ β1. (5.31)

Note that Λ̃s is used in (5.31) instead of Λ̃0 as in (5.29). The reason for this is to make this

estimator strongly consistent. That is, if we let mt = M → ∞, then we have Û s
a.s.→ U s,
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Λ̂s
a.s.→ Λs,

1
mt

Γ Γ H a.s→ C and 1
mt

Γ β1
a.s.→ p1. Hence from (5.31) we have

p̃1
a.s.→ U sΛs

(
UH

s CU s

)−1
UH

s p1

= U sΛsΛ
−1
s UH

s p1

= U sU
H
s p1

= p1.

Interestingly, if on the other hand, we replace Ũ s and Λ̃s in (5.31) by the corresponding

sample estimates obtained from an eigendecomposition of Ĉ in (5.6), then in the absence of

noise, we obtain the same steering vector estimate p̂1 as in (5.7); while with noise, we obtain

a less noisy estimate of p1 than (5.7). Formally, we have the following result.

Proposition 5.3 Let the eigendecomposition of the sample autocorrelation matrix Ĉ in

(5.6) of the received training signals be

Ĉ = Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (5.32)

If we form the following estimator for the steering vector p1,

˜̂p1 = Û sΛ̂s

(
Û

H

s ΓΓ H Û s

)−1

Û
H

s Γβ1, (5.33)

then ˜̂p1 is related to p̂1 in (5.8) by

˜̂p1 = Û s Û
H

s p̂1. (5.34)

Proof: Using (5.33) we have

˜̂p1 = Û sΛ̂s

(
Û

H

s Γ Γ HÛ s

)−1

Û
H

s Γβ1

= Û sΛ̂s

[
Û

H

s

(
1

mt

ΓΓ H

)
Û s

]−1

Û
H

s

(
1

mt

Γβ1

)
= Û sΛ̂s

[
Û

H

s ĈÛ s

]−1

Û
H

s p̂1

= Û sΛ̂sΛ̂
−1

s Û
H

s p̂1

= Û sÛ
H

s p̂1,

where in the third equality we have used (5.6) and (5.7), and where the fourth equality

follows from (5.32). Therefore, in the absence of noise, ˜̂p1 = p̂1; whereas with noise, ˜̂p1 is

the projection of p̂1 onto the estimated signal subspace, and therefore is a less noisy estimate

of p1. �
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Weight Vector Calculation

The linear MMSE array combining weight vector in (5.3) can be expressed in terms of the

signal subspace components, as stated by the following result.

Proposition 5.4 Let U s and Λs be the signal subspace parameters defined in (5.11), then

the linear MMSE combining weight vector for the desired User 1 is given by

w = U sΛ
−1
s UH

s p1. (5.35)

Proof: The linear MMSE weight vector is given in (5.3). Substituting (5.11) into (5.3), we

have

w = C−1p1

=

(
U sΛ

−1
s UH

s +
1

σ2
UnU

H
n

)
p1

= U s Λ−1
s UH

s p1,

where the last equality follows from the fact that the steering vector is orthogonal to the

noise subspace, i.e., UH
n p1 = 0. �

By replacing U s, Λs and p1 in (5.35) by the corresponding estimates, i.e., Ũ s and Λ̃s

in (5.30) and p̃1 in (5.31), we can compute the linear MMSE combining weight vector as

follows

w̃ = Ũ sΛ̃
−1

s Ũ
H

s p̃1

= Ũ sΛ̃
−1

s Ũ
H

s Ũ sΛ̃s

(
Ũ

H

s ΓΓ HŨ s

)−1

Ũ
H

s Γβ1

= Ũ s

(
Ũ

H

s Γ Γ HŨ s

)−1

Ũ
H

s Γ β1. (5.36)

Finally we summarize the subspace-based adaptive array algorithm discussed in this section

as follows.

Algorithm 5.3 [Subspace-based adaptive array for TDMA] Denote β1
�
=

[
b1[0] . . . b1[mt −

1]
]T

as the training symbols; and Γ
�
=

[
r[0] . . . r[mt − 1]

]
as the corresponding received

signals during the training period.
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• Compute the signal subspace:

C̃ =
1

M

M−1∑
i=0

r[i]r[i]H (5.37)

= Ũ sΛ̃sŨ
H

s + ŨnΛ̃nŨ
H

n . (5.38)

• Compute the combining weight vector:

w̃ = Ũ s

(
Ũ

H

s ΓΓ HŨ s

)−1

Ũ
H

s Γβ1. (5.39)

• Perform data detection: Obtain b̂1[i] by quantizing ŵHr[i], for i = mt, . . . ,M − 1.

5.2.4 Extension to Dispersive Channels

So far we have assumed that the channels are non-dispersive, i.e. there is no intersymbol

interference (ISI). We next extend the techniques considered in the previous subsections

to dispersive channels and develop space-time processing techniques for suppressing both

co-channel interference and intersymbol interference.

Let ∆ be the delay spread of the channel (in units of symbol intervals). Then the received

signal at the antenna array during the ith symbol interval can be expressed as

r[i] =
∆−1∑
l=0

K∑
k=1

p
l,k
bk[i− l] + n[i], (5.40)

where p
l,k

is the array steering vector for the kth user’s lth symbol delay; n[i] ∼ Nc(0, σ
2IP ).

Denote b[i]
�
=

[
b1[i] . . . bK [i]

]T

. By stacking m successive data samples we define the follow-

ing quantities

r[i]
�
=


r[i]
...

r[i+m− 1]


Pm×1

, n[i]
�
=


n[i]
...

n[i+m− 1]


Pm×1

,

and b[i]
�
=


b[i−∆+ 1]

...

b[i+m− 1]


K(m+∆−1)×1

.
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Then from (5.40) we can write

r[i] = P b[i] + n[i], (5.41)

where P is a matrix of the form

P
�
=


P∆−1 . . . P 0 0 0

0 P∆−1 . . . P 0 0
...

. . . . . . . . .
...

0 0 P∆−1 . . . P 0


Pm×K(m+∆−1)

,

with P l
�
=

[
p

l,1
. . . p

l,K

]
P×K

.

Here as before m is the smoothing factor and is chosen such that the matrix P is a “tall”

matrix, i.e., Pm ≥ K(m + ∆ − 1). Hence m
�
=

⌈
K(∆−1)

P−K

⌉
. We assume that P has full

column rank. From the signal model (5.41), it is evident that the techniques discussed in

the previous subsections can be applied straightforwardly to dispersive channels, with signal

processing carried out on signal vectors of higher dimension. For example, the linear MMSE

combining method for estimating the transmitted symbol b1[i] is based on quantizing the

correlator output wHr[i], where w = C−1p1, with

C
�
= E

{
r[i] r[i]H

}
= PP H + σ2IPm,

with p1
�
=

[
pT

0,1
. . . pT

∆−1,1
0 . . . 0

]T

.

In order to apply the subspace-based adaptive array algorithm, we first estimate the signal

subspace (U s,Λs) of C, by forming the sample autocorrelation matrix of r[i], and then

performing an eigendecomposition. Notice that the rank of the signal subspace is K × (m+

∆− 1). Once the signal subspace is estimated, it is straightforward to apply the algorithms

listed in the previous subsection to estimate the data symbols.

Simulation Examples

In what follows, we provide some simulation examples to demonstrate the performance of

the subspace-based adaptive array algorithm discussed above. In the following simulations,

it is assumed that an array of P = 10 antenna elements are employed at the base station.
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The number of symbols in each time slot isM = 162 withmt = 14 training symbols, as in IS-

54/136 systems. The modulation scheme is binary PSK (BPSK). The channel is subject to

Rayleigh fading, so that the steering vectors {pk, k = 1, . . . , K} are i.i.d. complex Gaussian

vectors, pk ∼ Nc(0, A
2
k IP ), where A2

k is the received power of the kth user. The desired user

is User 1. The interfering signal powers are assumed to be 6dB below the desired signal

power, i.e., Ak = A1/2, for k = 2, . . . , K. The ambient noise process {n[i]} is a sequence of

i.i.d. complex Gaussian vectors, n[i] ∼ Nc(0, σ
2 IP ).

In the first example, we compare the performance of the two steering vector estimators

p̃1 in (5.31) and p̂1 in (5.7). The number of users is six, i.e., K = 6; and the channels have no

dispersion. For each SNR value, the normalized root mean-square error (MSE) is computed

for each estimator. For the subspace estimator, we consider its performance under both the

exact signal subspace parameters (U s, Λs) and the estimated signal subspace parameters

(Ũ s, Λ̃s). The results are plotted in Fig. 5.2. It is seen that the subspace-based steering

vector estimator offers significant performance improvement over the conventional correlation

estimator, especially in the high SNR region. Notice that although both estimators tend to

exhibit error floors at high SNR values, their causes are different. The floor of the sample

correlation estimator is due to the finite length of the training preamble mt, whereas the

floor of the subspace estimator is due to the finite length of the time slot M . It is also seen

that the performance loss due to the inexact signal subspace parameters is not significant in

this case.

In the next example, we compare the BER performance of the subspace training method

and that of the DMI training method. The simulated system is the same as in the previous

example. The BER curves of the three array combining methods, namely, the exact MMSE

combining (5.3), the subspace algorithm, and the DMI method (5.6) – (5.8), are plotted in

Fig. 5.3. It is evident from this figure that the subspace training method offers substantial

performance gain over the DMI method.

Finally we illustrate the performance of the subspace-based spatial-temporal technique

for jointly suppressing co-channel interference (CCI) and intersymbol interference (ISI). The

simulated system is the same as above, except now the channel is dispersive with ∆=1. It is

assumed that p
0,k

∼ Nc(0, A
2
k IP ), and p

1,k
∼ Nc(0,

A2
k

4
IP ), for k = 1, . . . , K, where A2

k is the

received power of the kth user. As before, it is assumed that Ak = A1/2, for k = 2, . . . , K.
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The smoothing factor is taken to be m = 2. In Fig. 5.4 the BER performance is plotted for

the DMI algorithm, the subspace algorithm and the exact linear MMSE algorithm. (Note

here for the DMI method, the number of training symbols must satisfy mt ≥ Km in order

to get an invertible autocorrelation matrix C.) It is seen again that the subspace method

achieves considerable performance gain over the DMI method.

Sample correlation estimator          

Subspace estimator, estimated subspace

Subspace estimator, exact subspace    
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Figure 5.2: Comparison of the normalized root MSE’s of the subspace steering vector esti-

mator and the sample correlation steering vector estimator.

5.3 Optimal Space-Time Multiuser Detection

In the preceding section, we considered (linear) spatial processing as a mechanism for sepa-

rating multiple users sharing identical temporal signatures. In the remaining of this chapter,

we examine the situation in which both temporal and spatial signatures of the users differ,

and consider the joint exploitation of these differences to separate users. Such joint pro-

cessing is known as space-time processing. In this and the following section, we discuss such

processing in the context of multiuser detection in a CDMA system with multipath channel

distortion and multiple receive antennas. We begin, in this section, with the consideration of
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Figure 5.3: BER performance of the subspace training algorithm, the DMI algorithm and

the exact MMSE algorithm in a non-dispersive channel.

optimal (nonlinear) processing, turning in subsequenct sections to linear and adaptive linear

methods. The materials in this and the next section first appeared in [545].

5.3.1 Signal Model

Consider a DS-CDMA mobile radio network with K users, employing normalized spreading

waveforms s1, s2, . . . , sK , and transmitting sequences of binary phase-shift keying (BPSK)

symbols through their respective multipath channels. The transmitted baseband signal due

to the kth user is given by

xk(t) = Ak

M−1∑
i=0

bk[i] sk(t− iT ), k = 1, . . . , K, (5.42)

where M is the number of data symbols per user per frame; T is the symbol interval;

bk[i] ∈ {+1,−1} is the ith symbol transmitted by the kth user; and Ak and sk(t) denote

respectively the amplitude and normalized signaling waveform of the kth user. It is assumed

that sk(t) is supported only on the interval [0, T ] and has unit energy. (Here for simplicity,
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Figure 5.4: BER performance of the subspace training algorithm, the DMI algorithm and

the exact MMSE algorithm in a dispersive channel.

we assume periodic spreading sequences are employed in the system. The generalization to

the aperiodic spreading case is straightforward.) It is also assumed that each user trans-

mits independent equiprobable symbols and the symbol sequences from different users are

independent. Recall that in the direct-sequence spread-spectrum multiple-access format, the

user signaling waveforms are of the form

sk(t) =
N−1∑
j=0

sj,k ψ(t− jTc), 0 ≤ t ≤ T, (5.43)

where N is the processing gain; {sj,k : j = 0, . . . , N − 1} is a signature sequence of ±1’s

assigned to the kth user, and ψ is a normalized chip waveform of duration Tc = T/N .

At the receiver an antenna array of P elements is employed. Assuming that each trans-

mitter is equipped with a single antenna, then the baseband multipath channel between

the kth user’s transmitter and the base station receiver can be modelled as a single-input
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multiple-output channel with the following vector impulse response

hk(t) =
L∑

l=1

al,k gl,k δ(t− τl,k), (5.44)

where L is the number of paths in each user’s channel, gl,k and τl,k are respectively the

complex gain and delay of the lth path of the kth user’s signal, and al,k = [al,k,1 . . . al,k,P ]T

is the array response vector corresponding to the lth path of the kth user’s signal. The total

received signal at the receiver is then the superposition of the signals from the K users plus

the additive ambient noise, given by

r(t) =
K∑

k=1

xk(t) � hk(t) + n(t)

=
M−1∑
i=0

K∑
k=1

Ak bk[i]
L∑

l=1

al,k gl,k sk(t− iT − τl,k) + n(t), (5.45)

where � denotes convolution; n(t) = [n1(t) . . . nP (t)]T is a vector of independent zero-mean

complex white Gaussian noise processes, each with power spectrum density σ2.

5.3.2 A Sufficient Statistic

We next derive a sufficient statistic for demodulating the multiuser symbols from the space-

time signal model (5.45). To do so we first denote the useful signal in (5.45) by

S(t; b)
�
=

M−1∑
i=0

K∑
k=1

Ak bk[i]
L∑

l=1

al,k gl,k sk(t− iT − τl,k), (5.46)

where b
�
=

[
b[0]T . . . b[M − 1]T

]T

and b[i]
�
=

[
b1[i] . . . bK [i]

]T

. Using the Cameron-Martin

formula [375], the likelihood function of the received waveform r(t) in (5.45) conditioned on

all the transmitted symbols b of all users can be written as

�
(
{r(t) : −∞ < t <∞} | b

)
∝ exp

[
Ω(b)/σ2

]
, (5.47)

where

Ω(b)
�
= 2�

{∫ ∞

−∞
S(t; b)H r(t) dt

}
−

∫ ∞

−∞
| S(t; b) |2 dt. (5.48)
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The first integral in (5.48) can be expressed as

∫ ∞

−∞
S(t; b)H r(t) dt

�
=

M−1∑
i=0

K∑
k=1

Ak bk[i]

yk[i]︷ ︸︸ ︷
L∑

l=1

g∗l,k a
H
l,k

∫ ∞

−∞
r(t) sk(t− iT − τl,k) dt︸ ︷︷ ︸

zl,k[i]

.(5.49)

Since the second integral in (5.48) does not depend on the received signal r(t), by (5.49) we

see that {yk[i]} is a sufficient statistic for detecting the multiuser symbols b. From (5.49)

it is seen that this sufficient statistic is obtained by passing the received signal vector r(t)

through (KL) beamformers directed at each path of each user’s signal, followed by a bank

of K maximum-ratio multipath combiners (i.e., RAKE receivers). Since this beamformer is

a spatial matched-filter for the array antenna receiver, and a RAKE receiver is a temporal

matched-filter for multipath channels, thus the sufficient statistic {yk[i]}i;k is simply the

output of a space-time matched-filter. Next we derive an explicit expression for this sufficient

statistic in terms of the multiuser channel parameters and transmitted symbols, which is

instrumental to developing various space-time multiuser receivers in the subsequent sections.

Assume that the multipath delay spread of any user signal is limited to at most ∆ symbol

intervals, where ∆ is a positive integer. That is,

τl,k ≤ ∆T, 1 ≤ k ≤ K, 1 ≤ l ≤ L. (5.50)

Define the following cross-correlations of the delayed user signaling waveforms

ρ
[j]
(k,l)(k′,l′)

�
=

∫ ∞

−∞
sk(t− τl,k) sk′(t− jT − τl′,k′) dt, (5.51)

−∆ ≤ j ≤ ∆, 1 ≤ k, k′ ≤ K, 1 ≤ l, l′ ≤ L.

Since τl,k ≤ ∆T and sk(t) is non-zero only for t ∈ [0, T ], it then follows that ρ
[j]
(k,l)(k′,l′) = 0,

for |j| > ∆. Now substituting (5.45) into (5.49), we have

aH
l,kzl,k[i] =

M−1∑
i′=0

K∑
k′=1

Ak′bk′ [i′]
L∑

l′=1

aH
l,kal′,k′ gl′,k′

∫ ∞

−∞
sk′(t− i′T − τl′,k′)sk(t− iT − τl,k)dt

+ aH
l,k

∫ ∞

−∞
n(t)sk(t− iT − τl,k)dt︸ ︷︷ ︸

ul,k[i]

=
∆∑

j=−∆

K∑
k′=1

Ak′bk′ [i+ j]
L∑

l′=1

aH
l,kal′,k′ gl′,k′ ρ

[j]
(k,l)(k′,l′) + ul,k[i], (5.52)
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where {ul,k[i]} are zero-mean complex Gaussian random sequences with the following covari-

ance

E {ul,k[i]ul′,k′ [i′]∗}
= E

{[
aH

l,k

∫ ∞

−∞
n(t)sk(t− iT − τl,k)dt

] [
aT

l′,k′

∫ ∞

−∞
n∗(t′)sk′(t′ − i′T − τl′,k′)dt′

]}
= aH

l,k

[∫ ∞

−∞

∫ ∞

−∞
E

{
n(t)nH(t′)

}
sk(t− iT − τl,k) sk′(t′ − i′T − τl′,k′) dt dt′

]
al′,k′

= aH
l,k

[∫ ∞

−∞

∫ ∞

−∞
Ip δ(t− t′) sk(t− iT − τl,k) sk′(t′ − i′T − τl′,k′) dt dt′

]
al′,k′

= aH
l,k al′,k′

∫ ∞

−∞
sk(t− iT − τl,k) sk′(t− i′T − τl′,k′) dt

= ρ
[i′−i]
(k,l)(k′l′) a

H
l,k al′,k′ , (5.53)

where Ip denotes a p × p identity matrix, and δ(t) is the Dirac delta function. Define the

following quantities

R[j] �
=


ρ

[j]
(1,1)(1,1) . . . ρ

[j]
(1,1)(1,L) . . . ρ

[j]
(1,1)(K,1) . . . ρ

[j]
(1,1)(K,L)

ρ
[j]
(2,1)(1,1) . . . ρ

[j]
(2,1)(1,L) . . . ρ

[j]
(2,1)(K,1) . . . ρ

[j]
(2,1)(K,L)

...
...

...
...

...
...

...

ρ
[j]
(K,L)(1,1) . . . ρ

[j]
(K,L)(1,L) . . . ρ

[j]
(K,L)(K,1) . . . ρ

[j]
(K,L)(K,L)

 [ (KL×KL) matrix ]

Φ
�
=

[
a1,1 . . . aL,1 . . . . . . a1,K . . . aL,K

]
[ (P ×KL) matrix ]

ζ[i]
�
=

[
aH

1,1z1,1[i] . . . a
H
L,1zL,1[i] . . . . . . a

H
1,Kz1,K [i] . . . aH

L,KzL,K [i]
]T

[ (KL)-vector]

u[i]
�
=

[
u1,1[i] . . . uL,1[i] . . . . . . u1,K [i] . . . uL,K [i]

]T

[ (KL)-vector]

g
k

�
= [g1,k . . . gL,k]

T [ L-vector ]

G
�
= diag

(
g

1
, . . . , g

K

)
[ (KL×K) matrix]

A
�
= diag {A1, . . . , AK} [ (K ×K) matrix]

and y[i]
�
=

[
y1[i] . . . yK [i]

]T

[ K-vector]

We can then write (5.52) in the following vector form

ζ[i] =
∆∑

j=−∆

[
R[j] ◦ (

ΦHΦ
)]
GAb[i+ j] + u[i], (5.54)
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where ◦ denotes the Schur matrix product (i.e., element-wise product), and from (5.53), the

covariance matrix of the complex Gaussian vector sequence {u[i]} is

E
{
u[i]u[i+ j]H

}
= R[j] ◦ (

ΦHΦ
)
. (5.55)

Substituting (5.54) into (5.49) we obtain a useful expression for the sufficient statistic y[i],

given by

y[i]
�
= GH ζ[i] =

∆∑
j=−∆

GH
[
R[j] ◦ (

ΦHΦ
)]
G︸ ︷︷ ︸

H[j]

Ab[i+ j] +GH u[i]︸ ︷︷ ︸
v[i]

, (5.56)

where {v[i]} is a sequence of zero-mean complex Gaussian vectors with covariance matrix

E
{
v[i] v[i+ j]H

}
= GH

[
R[j] ◦ (

ΦHΦ
)]
G

�
= H [j]. (5.57)

Note that by definition (5.51) we have ρ
[j]
(k,l)(k′,l′) = ρ

[−j]
(k′,l′)(k,l). From this it follows that

R[−j] = R[j]T , and therefore H [−j] = H [j]H .

5.3.3 Maximum Likelihood Multiuser Sequence Detector

We now use the above sufficient statistic to derive the maximum-likelihood detector for

symbols in b. The maximum likelihood sequence decision rule chooses b that maximizes the

log-likelihood function (5.48). Using (5.46), the second integral in (5.48) can be computed

as ∫ ∞

−∞
|S(t; b)|2 dt =

M−1∑
i=0

M−1∑
i′=0

K∑
k=1

K∑
k′=1

AkAk′bk[i]bk′ [i′]
L∑

l=1

L∑
l′=1

aH
l,k al′,k′ g∗l,kgl′,k′ ρ

[i′−i]
(k,l)(k′,l′)

= bT AH Ab, (5.58)

where H denotes the following (MK ×MK) block Jacobi matrix

H
�
=



H [0] H [1] . . . H [∆]

H [−1] H [0] H [1] . . . H [∆]

H [−∆] . . . H [0] . . . H [∆]

H [−∆] . . . H [−1] H [0] H [1]

H [−∆] . . . H [−1] H [0]


, (5.59)
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A
�
= IM ⊗ A (⊗ denotes the Kronecker matrix product), y

�
=

[
y(0)T . . . y(M − 1)T

]T
, and

recall that b
�
=

[
b(0)T . . . b(M − 1)T

]T
.

Substituting (5.49) and (5.58) into (5.48), the log-likelihood function Ω(b) can then be

written as

Ω(b) = 2�{
bT Ay

} − bT AHAb. (5.60)

For any integer n satisfying 1 ≤ n ≤ MK, denote its modulo-K decomposition with

remainder κ(n) = 1, . . . , K, by n = η(n)K + κ(n) [509]. Then we can write 2

bT A y =
MK∑
n=1

A[n, n] b[n] y[n]

=
MK∑
n=1

Aκ(n) bκ(n)[η(n)] yκ(n)[η(n)], (5.61)

bT AH Ab =
MK∑
n=1

A[n, n] b[n]

(
H [n, n] A[n, n] b[n] + 2�

{
n−1∑
j=1

H [n, j] A[j, j] b[j]

})

=
MK∑
n=1

Aκ(n) bκ(n)[η(n)]
[
Aκ(n) h

[0]
κ(n),κ(n) bκ(n)[η(n)] + 2�{

fH
n xn

}]
, (5.62)

where in (5.62) the vectors xn and fn have dimension (∆K +K − 1), given respectively by

xn
�
=

[K−κ(n)︷ ︸︸ ︷
0 . . . 0 b[η(n) −∆]T . . . b[η(n) − 1]T b1[η(n)] . . . bκ(n)−1[η(n)]

]T

,

fn
�
=

[K−κ(n)︷ ︸︸ ︷
0 . . . 0

(
Ah

[−∆]
κ(n)

)T

. . .
(
Ah

[−1]
κ(n)

)T (
A1h

[0]
κ(n),1

)
. . .

(
Aκ(n)−1h

[0]
κ(n),κ(n)−1

) ]T

,

where h
[j]
k denotes the kth column of matrix H [j], and h

[j]
k,k′ denotes the (k, k′)th entry of

H [j]. Substituting (5.61) and (5.62) into (5.60), the log-likelihood function can then be

decomposed as follows

Ω(b) =
MK∑
n=1

λn (ξn,xn) , (5.63)

where ξn
�
= bκ(n)[η(n)], and

λn (ξ,x) = ξ · Aκ(n) · �
{

2 yκ(n)[η(n)] − 2 fH
n x − Aκ(n) h

[0]
κ(n),κ(n) ξ

}
, (5.64)

2Notation: A[i, j] denotes the (i, j)th element of matrix A; b[i] denotes the ith element of vector b.
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with the state vector recursively defined according to xn+1 =
[
xn[2], . . . xn[∆K + K −

1], ξn

]T

, and x1 = 0(∆K+K−1), where 0m denotes a zero vector of dimension m.

Given the additive decomposition (5.63) of the log-likelihood function, it is straightfor-

ward to apply the dynamic programming to compute the sequence b̂ that maximizes Ω(b),

i.e., the maximum-likelihood estimate of the transmitted multiuser symbol sequences. Since

the dimensionality of the state vector is (∆K + K − 1), the computational complexity of

the maximum-likelihood sequence detector is on the order of O (
2(∆+1)K

)
. Note that in the

absence of multipath (i.e., L = 1 and ∆ = 1), if the users are numbered according to their

relative delays in an ascending order (i.e., 0 ≤ τ1,1 ≤ . . . ≤ τ1,K < T ), then the matrix

H [−1] becomes strictly upper triangular. In this case, the dimension of the state vector

is reduced to (K − 1) and the computational complexity of the corresponding maximum

likelihood sequence detection algorithm is O (
2K

)
[319, 509]. However, in the presence of

multipath, even if the multipath delays are still within one symbol interval (i.e., ∆ = 1), the

matrix H [−1] no longer has an upper triangular structure in general. Hence the dimension of

the state vector in this case is (2K − 1) and the complexity of the dynamic programming is

O (
22K

)
. Even though the O (

2(∆+1)K
)

complexity is generally much lower than the O(2KM)

complexity of brute-force maximization of (5.60) (∆ is typically only a few symbols, while

the frame length M can be hundreds or even thousands of symbols), this complexity is still

prohibitively high if the number of users is even moderate (say a dozen). Thus, it is of

interest to find low-complexity alternatives.

5.4 Linear Space-Time Multiuser Detection

As seen from the previous section, the optimal space-time multiuser detection algorithm

typically has a prohibitive computational complexity. In this section, we discuss linear space-

time multiuser detection techniques that mitigate this complexity significantly. To consider

such detectors we will assume for now that the receiver has knowledge of the spreading

waveforms and the channel parameters of all users. The method discussed here is based on

iterative interference cancellation and has a low computational complexity. For comparison,

we also discuss single-user-based linear space-time processing methods.
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5.4.1 Linear Multiuser Detection via Iterative Interference Can-

cellation

From (5.56) we can write the expression for the sufficient statistic vector y in a matrix form

as

y = H A b + v, (5.65)

where by (5.57) v ∼ Nc (0, σ2H). Recall that in linear multiuser detection, a linear trans-

formation is applied to the sufficient statistic vector y, followed by local decisions for each

user. That is, the multiuser data bits are demodulated according to

b̂ = sign
[
�{W y}

]
, (5.66)

where W is an (MK×MK) complex matrix. As discussed in Chapter 2, two popular linear

multiuser detectors are the linear decorrelating (i.e., zero-forcing) detector, which chooses

the weight matrix W to completely eliminate the interference (at the expense of enhancing

the noise); and the linear MMSE detector, which chooses the weight matrix W to minimize

the mean-square error (MSE) between the transmitted symbols and the outputs of the linear

transformation, i.e., E {‖A b − W y‖2}. The corresponding weight matrices for these two

linear multiuser detectors are given respectively by

W d = H−1, [ linear decorrelating detector ] (5.67)

W m =
(
H + σ2A−2

)−1
. [ linear MMSE detector ] (5.68)

Since the frame length M is typically large, direct inversion of the above (MK ×MK)

matrices is too costly for practical purposes. Moreover, the complexity cannot generally

be mitigated over multiple frames, since the matrices H and A may vary from frame to

frame due to mobility, aperiodic spreading codes, etc. This complexity can be mitigated,

however, by using iterative methods of equation solving, which we now do. We first con-

sider Gauss-Seidel iteration to obtain the linear multiuser detector output. This method

effectively performs serial interference cancellation on the sufficient statistic vector y and

recursively refines the estimates of the multiuser signals {xk[i]
�
= Akbk[i]}. Denote such

an estimate at the mth iteration as xm
k [i]. Also denote xm[i]

�
=

[
xm

1 [i] . . . xm
K [i]

]T

, and

xm �
=

[
xm[0]T . . . xm[M − 1]T

]T

. The algorithm is listed in Table 5.1.
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xk[i] = yk[i], k = 1, . . . , K; i = 0, . . . ,M − 1

for m = 1, 2, . . .

for i = 0, . . . ,M − 1

for k = 1, . . . , K

xm
k [i] = 1

γk

(
yk[i] −

∑−1
j=−∆

∑K
k′=1 h

[j]
k,k′ xm

k′ [i+ j] − ∑k−1
k′=1 h

[0]
k,k′ xm

k′ [i]

−∑K
k′=k+1 h

[0]
k,k′ x

m−1
k′ [i] − ∑∆

j=1

∑K
k′=1 h

[j]
k,k′ x

m−1
k′ [i+ j]

)
end

end

end

linear decorrelating detector: γk = h
[0]
kk

linear MMSE detector: γk = h
[0]
kk + σ2/A2

k

Table 5.1: Iterative implementation of linear space-time multiuser detection using serial

interference cancellation.

The convergence properties of this serial interference cancellation algorithm are charac-

terized by the following result.

Proposition 5.5 (1) If γk = h
[0]
kk, and if H is positive definite, then xm → W d y, as

m→ ∞; (2) If γk = h
[0]
kk + σ2/A2

k, then xm → W m y, as m→ ∞.

Proof: Consider the following system of linear equations

H x = y. (5.69)

The Gauss-Seidel procedure [588] for iteratively solving x from (5.69) is given by

xm[i′] =
1

H [i′, i′]

(
y[i′] −

∑
j′<i′

H [i′, j′] xm[j′] −
∑
j′>i′

H [i′, j′] xm−1[j′]

)
, (5.70)

i′ = 1, . . . ,MK, m = 1, 2, . . .

Substituting in (5.70) the notations xm[Ki+ k] = xm
k [i], y[Ki+ k] = yk[i], for k = 1, . . . , K,

i = 0, . . . ,M − 1, and the elements of the matrix H given in (5.59), it then follows that

the serial interference cancellation procedure in Table 5.1 is the same as the Gauss-Seidel

iteration (5.70), if we choose γk = h
[0]
kk. Then by the Ostrowski-Reich Theorem [588], a
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sufficient condition for the Gauss-Seidel iteration (5.70) to converge to the solution of (5.69),

i.e., the output of the linear decorrelating detector, xm → H−1y
�
= W d y, is that H be

positive definite.

Similarly, consider the system of linear equations(
H + σ2A−2

)
x = y. (5.71)

The corresponding Gauss-Seidel iteration is given by

xm[i′] =
1

H [i′, i′] + σ2/A[i′, i′]2

(
y[i′] −

∑
j′<i′

H [i′, j′] xm[j′] −
∑
j′>i′

H [i′, j′] xm−1[j′]

)
,

i′ = 1, . . . ,MK, m = 1, 2, . . . , (5.72)

which is the same as the serial interference cancellation procedure in Table 5.1 with γk = h
[0]
kk+

σ2/A2
k. It is seen from (5.58) that the matrix H is positive semidefinite, as

∫∞
−∞ |S(t; b)|2 dt =

xH H x ≥ 0, where x
�
= A b. Therefore

(
H + σ2 A−2

)
is positive definite, and by the

Ostrowski-Reich Theorem, iteration (5.72) converges to the solution to (5.71), i.e., the output

of the linear MMSE detector, xm → (
H + σ2 A−2

)−1
y

�
= W m y. �

The computational complexity of the above iterative serial interference cancellation algo-

rithm per user per bit is [m̄M(2∆+ 1)K2] /KM = O (m̄∆K) where m̄ is the total number

of iterations. The complexity per user per bit of direct inversion of the matrices in (5.67) or

(5.68) is O (K3M3/KM) = O (K2M2). By exploiting the Hermitian (2∆+1)-block Toeplitz

structure of the matrix H , this complexity can be reduced to O (K2M∆) [319]. Since in

practice the number of iterations is a small number, e.g., m̄ ≤ 5, the above iterative method

for linear multiuser detection achieves significant complexity reduction over the direct matrix

inversion method.

A natural alternative to the serial interference cancellation method is the following parallel

interference cancellation method,

xm
k [i] =

1

γk

yk[i] −
∆∑

j=−∆

K∑
k′=1

(k′,j) �=(k,0)

h
[j]
k,k′ x

m−1
k′ [i+ j]

 , (5.73)

k = 1, . . . , K, i = 0, . . . ,M − 1, m = 1, 2, . . .
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Unlike the serial method, in which the new estimate xm
k [i] is used to update the subsequent

estimates as soon as it is available; in the parallel method, at the mth iteration, xm
k [i] is up-

dated using the estimates only from the previous iteration. Parallel interference cancellation

corresponds to Jacobi’s method [588] for solving the linear system (5.69) or (5.71), i.e.,

xm[i′] =
1

γ[i′]

(
y[i′] −

∑
j′ �=i′

H [i′, j′] xm−1[j′]

)
, (5.74)

i′ = 1, . . . ,MK, m = 1, 2, . . .

with γ[i′] = H [i′, i′] or γ[i′] = H [i′, i′] + σ2/A[i′, i′]2. However, the convergence of Jacobi’s

method (5.74) and hence that of the parallel interference cancellation method (5.73), is not

guaranteed in general. To see this, for example, let D be the diagonal matrix containing

the diagonal elements of H and let H = D + B be the splitting of H into its diagonal and

off-diagonal elements. Suppose that H = D + B is positive definite, then a necessary and

sufficient condition for the convergence of Jacobi’s iteration is that D−B be positive definite

[588]. In general this condition may not be satisfied, and hence the parallel interference

cancellation method (5.74) is not guaranteed to produce the linear multiuser detector output.

5.4.2 Single-User Linear Space-Time Detection

In what follows we consider several single-user-based linear space-time processing meth-

ods. These methods have been advocated in the recent literature as they lead to several

space-time adaptive receiver structures [33, 271, 343, 566]. We derive the exact forms of

these single-user detectors in terms of multiuser channel parameters. We then compare the

performance of these single-user space-time receivers with that of the multiuser space-time

receivers discussed in the previous subsection.

Denote rp(t) as the received signal at the pth antenna element, i.e., the pth element of the

received vector signal r(t) in (5.45),

rp(t) =
M−1∑
i=0

K∑
k=1

Ak bk[i]
L∑

l=1

al,k,p gl,k sk(t− iT − τl,k) + np(t), p = 1, . . . , P. (5.75)

Suppose that the user of interest is the kth user. In the single-user approach, in order to

demodulate the ith symbol of the kth user, that user’s matched-filter output corresponding
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to each path at each antenna element is first computed, i.e.,

zl,k,p[i]
�
=

∫ ∞

−∞
rp(t)sk(t− iT − τl,k)dt

=
∆∑

j=−∆

K∑
k′=1

Ak′ bk′ [i+ j]
L∑

l′=1

al′,k′,p gl′,k′ ρ
[j]
(k,l)(k′,l′) + nl,k,p[i],

l = 1, 2, . . . , L, p = 1, 2, . . . , P, (5.76)

where {nl,k,p[i]} are zero-mean complex Gaussian random sequences with covariance

E
{
nl,k,p[i]nl′,k,p′ [i

′]∗
}

=

{
0, if p �= p′ or |i− i′| > ∆,
ρ

[i′−i]
(k,l),(k,l′), otherwise.

(5.77)

Note that zl,k,p[i] is the pth element of the vector zl,k[i] defined in (5.49). Denote 3

z̃kp[i]
�
=

[
z1,1,p[i] . . . zL,1,p[i]

]T

[L-vector]

ñkp[i]
�
=

[
n1,1,p[i] . . . nL,1,p[i]

]T

[L-vector]

θkp
�
= [a1,k,p . . . aL,k,p]

T [L-vector]

Θp
�
= diag{θ1p, . . . θKp} [(KL×K) matrix]

R
[j]
k

�
= R[j][kL− L : kL, 1 : KL] [(L×KL) matrix]

and R̃
[j]

k
�
= R[j][kL− L : kL, kL− L : kL] [(L× L) matrix]

Then we can write (5.76) in the following matrix form

z̃kp[i] =
∆∑

j=−∆

R
[j]
k

(
Θp ◦G)

Ab[i+ j] + ñkp[i], p = 1, . . . , P, (5.78)

where by (5.77) the complex Gaussian vector sequence {ñkp[i]} has the following covariance

matrix

E
{
ñkp[i] ñkp′ [i

′]H
}

=

{
0, if p �= p′ or |i− i′| > ∆,

R̃
[i′−i]

k , otherwise.
(5.79)

From (5.78) we then have
z̃k1[i]

...

z̃kP [i]


︸ ︷︷ ︸

zk[i]

=
∆∑

j=−∆


R

[j]
k (Θ1 ◦G)

...

R
[j]
k (ΘP ◦G)


︸ ︷︷ ︸

Ξ [j]

k

Ab[i+ j] +


nk1[i]

...

nkP [i]


︸ ︷︷ ︸

nk[i]

, (5.80)

3Notation: R[i0 : i1, j0 : j1] denotes the submatrix of R consisting of rows i0 to i1 and columns j0 to j1.



5.4. LINEAR SPACE-TIME MULTIUSER DETECTION 297

where, by (5.79), nk[i] ∼ Nc

(
0p, Ip ⊗ R̃[0]

k

)
.

In the single-user-based linear space-time processing methods, the kth user’s ith bit is

demodulated according the following rule

b̂k[i] = sign
[�{

wH
k zk[i]

}]
, (5.81)

where wk ∈ C
LP . We next consider three choices of the weight vector wk according to

different criteria.

Space-Time Matched-Filter (MF)

The simplest linear combining strategy is the space-time matched-filter, which chooses the

weight vector as

wk = hk
�
=

[
(θk1 ◦ gk)

T . . . (θkP ◦ gk)
T
]T

. (5.82)

Note that the output of this space-time matched filter is yk[i] = hH
k zk[i], a quantity that

first appeared in (5.49).

Linear Minimum Mean-Squared Error (LMMSE) Combiner

In linear MMSE combining, the weight vector is chosen to minimize the mean-squared error

between the kth user’s transmitted signal and the output of the linear combiner, i.e.,

wk = arg min
w∈CLP

E
{∣∣bk[i] − wH zk[i]

∣∣2} = Σ−1
k pk, (5.83)

where using (5.80) we have

Σk
�
= E

{
zk[i] zk[i]

H
}

=
∆∑

j=−∆

Ξ
[j]
k A

2 Ξ
[j]H
k + σ2 Ip ⊗ R̃[0]

k , (5.84)

and pk
�
= E {zk[i] bk[i]} = Ξ

[0]
k ek, (5.85)

with ek a K-vector of all zeros except for the kth entry, which is 1.
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Maximum Signal-to-Interference Ratio (MSIR) Combiner

In MSIR combining the weight vector wk is chosen to maximize the signal-to-interference

ratio,

wk = arg max
w∈CLP

∥∥E {
wHzk

}∥∥2

E
{‖wHzk‖2} − ‖E {wHzk}‖2

= arg max
w∈CLP

wH pk pH
k w

wH (Σk − pk pH
k ) w

= arg max
w∈CLP

wH pk pH
k w

wH Σk w
. (5.86)

The solution to (5.86) is then given by the generalized eigenvector associated with the largest

generalized eigenvalue of the matrix pencil
(
pk pH

k , Σk

)
, i.e.,

pk pH
k w = λΣk w. (5.87)

From (5.87) it is immediate that the largest generalized eigenvalue is pH
k Σ−1

k pk, and the

corresponding generalized eigenvector is wk = αΣ−1
k pk, with some scalar constant α. Since

scaling the combining weight by a positive constant does not affect the decision (5.81), the

MSIR weight vector is the same as the MMSE weight vector (5.83).

The space-time matched-filter is data independent (assuming that the array responses

and the multipath gains are known) and the single-user MMSE (MSIR) method is data

dependent. Hence in general, the latter outperforms the former. In essence the single-user

MMSE method exploits the “spatial signatures” introduced into the different user signals

by the array responses and the multipath gains to suppress the interference. For example,

such a “spatial signature” for the kth user is given by (5.82). The kth user’s MMSE receiver

then correlates the signal vector zk[i] along a direction in the space spanned by such “spatial

signatures” of all users, such that the SIR of the kth user is maximized. Moreover, this

approach admits several interesting blind adaptive implementations, even for systems that

employ aperiodic spreading sequences [271, 566].

However, the interference suppression capability of such a single-user approach is limited,

since it does not exploit the inherent signal structure induced by the multiuser spreading

waveforms. This method can still suffer from the near-far problem, as in matched-filter
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detection, because the degree of freedom provided by the spatial signature is limited. Fur-

thermore, since the users’ signals are originally designed to separate from each other by their

spreading waveforms, the multiuser space-time approach, which exploits the structure of the

users’ signals in terms of both spreading waveforms and spatial signatures, can significantly

outperform the single-user approach. This is illustrated later by simulation examples.

5.4.3 Combined Single-user/Multiuser Linear Detection

The linear space-time multiuser detection methods discussed in Section 5.4.1 are based on

the assumption that the receiver has knowledge of the spreading signatures and channel

parameters (multipath delays and gains, array responses) of all users. In a practical cellular

system, however, there might be a few external interfering signals (e.g., signals from other

cells), whose spreading waveforms and channel parameters are not known to the receiver. In

this subsection, we consider space-time processing in such a scenario by combining the single-

user and multiuser approaches. The basic strategy is to first suppress the known interferers’

signals through the iterative interference cancellation technique discussed in Section 5.4.1,

and then apply the single-user MMSE method discussed in Section 5.4.2 to the residual

signal to further suppress the unknown interfering signals.

Consider the received signal model (5.45). Assume that the users of interest are Users

k = 1, . . . , K̃ < K, and the spreading waveforms as well as the channel parameters of these

users are known to the receiver. Users k = K̃ + 1, . . . , K are unknown external interferers

whose data are not to be demodulated. For each user of interest, the receiver first computes

the (LP )-vectors of matched-filter outputs, zk[i], 1 ≤ k ≤ K̃, i = 0, . . . ,M − 1, [cf.(5.80)].

The space-time matched-filter outputs yk[i] [cf.(5.49)] are then computed by correlating zk[i]

with the space-time matched-filter given in (5.82).

Next the iterative serial interference cancellation algorithm discussed in Section 4.1 (Here

the total number of users K is replaced by the total number of users of interest K̃) is applied

to the data {yk[i] : 1 ≤ k ≤ K̃, i = 0, . . . ,M − 1} to suppress the interference from the

known users. This is equivalent to implementing a linear multiuser detector assuming only

K̃ (instead ofK) users present. As a result, only the known interferers’ signals are suppressed

at the detector output. Denote by x̂k[i] the converged estimate of the kth user’s signal, i.e.,

x̂k[i]
�
= lim

m→∞
xm

k [i], 1 ≤ k ≤ K̃, i = 0, . . . ,M − 1. Note that x̂k[i] contains the desired user’s
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signal, the unknown interferers’ signals and the ambient noise. Using these estimates and

based on the signal model (5.80), we next cancel the known interferers’ signals from the

vector zk[i] to obtain

ẑk[i]
�
= zk[i] −

∆∑
j=−∆

K0∑
k′=1

(j,k′) �=(0,k)

Ξ
[j]
k ek′ x̂k′ [i+ j], (5.88)

k = 1, . . . , K0, i = 0, . . . ,M − 1.

Finally, a single-user combining weight wk is applied to the vector ẑk[i] and the decision rule

is given by

b̂k[i] = sign
[�{

wH
k ẑk[i]

}]
. (5.89)

If the weight vector wk is chosen to be a scaled version of the matched filter (5.82), i.e.,

wk = 1
γk

hk, then the output of this matched filter is simply x̂k[i], i.e., 1
γk

hH
k ẑk[i] = x̂k[i].

To see this, first using (5.80) and (5.82), we have the following identity

wH
k Ξ

[j]
k ek′ =

1

γk

P∑
p=1

L∑
l=1

(
a∗l,k,p g

∗
l,k

)( L∑
l′=1

ρ
[j]
(k,l)(k′,l′) gl′,k′ al′,k′,p

)

=
1

γk

L∑
l=1

L∑
l′=1

(
P∑

p=1

a∗l,k,p al′,k′,p

)
g∗l,k gl′,k′ ρ

[j]
(k,l)(k′,l′)

=
1

γk

L∑
l=1

L∑
l′=1

aH
l,k al′,k′ g∗l,k gl′,k′ ρ

[j]
(k,l)(k′,l′) =

1

γk

h
[j]
k,k′ . (5.90)

Now apply the matched-filter (5.82) to both side of (5.89), we have

wH
k ẑk[i]

�
=

1

γk

(
yk[i] −

∆∑
j=−∆

K0∑
k′=1

(j,k′) �=(0,k)

h
[j]
k,k′ x̂k′ [i+ j]

)
(5.91)

= x̂k[i], i = 0, . . . ,M − 1, k = 1, . . . , K̃, (5.92)

where (5.91) follows from (5.90) and yk[i] = γk hH
k ẑk[i]; and (5.92) follows from the fact that

{x̂k[i]} are the converged outputs of the iterative serial interference cancellation algorithm.

On the other hand, if the combining weight is chosen according to the MMSE criterion,

then it is given by

wk = arg min
w∈CLP

E
{∣∣bk[i] − wH

k zk[i]
∣∣2}
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= E
{
ẑk[i] ẑk[i]

H
}−1 · E {ẑk[i] bk[i]}

∼=
(

M−1∑
i=0

ẑk[i] ẑk[i]
H

)−1

pk. (5.93)

It is clear from the above discussion that in this combined approach, the interference due

to the known users are suppressed by serial multiuser interference cancellation, whereas the

the residual interference due to the unknown users is suppressed by the single-user MMSE

combiner.

# Signature Delay (Tc) DOA (◦) Multipath gain

k {ck(j)} τk1 τk2 τk3 αk1 αk2 αk3 gk1 gk2 gk3 ‖g
k
‖

1 0011011100000011 0 2 3 34 −16 −14 0.193 − j 0.714 0.131 − j 0.189 0.353 − j 0.079 .85

2 1101011100011101 1 4 5 2 42 −9 0.508 − j 0.113 −0.103 + j 0.807 0.143 + j 0.013 .98

3 1110110000110001 2 3 6 −33 −13 35 0.125 − j 0.064 0.187 − j 0.249 −0.196 + j 0.092 .41

4 0100001101111100 2 4 5 58 13 61 0.354 − j 0.121 0.141 − j 0.455 −0.618 + j 0.004 .87

5 0011101101100000 4 6 7 −72 69 1 0.597 + j 0.395 0.470 + j 0.115 −0.069 + j 0.255 .90

6 1111111001100001 5 7 8 3 18 −55 0.084 + j 1.205 0.106 − j 0.181 0.167 + j 0.007 1.24

7 1110010000010010 6 8 9 −79 −53 70 −0.428 + j 0.188 −0.711 + j 0.064 0.562 − j 0.111 1.03

8 1101101001011000 8 9 12 53 25 −20 −0.575 + j 0.018 −0.320 + j 0.081 −0.139 + j 0.199 0.70

Table 5.2: The simulated multipath CDMA system for Examples 1, 2, 3, 6, and 8.

Simulation Examples

In what follows, we assess the performance of the various multiuser and single-user space-

time processing methods discussed in this section by computer simulations. We first outline

the simulated system in Examples 1, 2 and 3. It consists of 8 users (K = 8) with a spreading

gain 16 (N = 16). Each user’s propagation channel consists of three paths (L = 3). The

receiver employs a linear antenna array with three elements (P = 3) and half-wavelength

spacing. Let the direction of arrival (DOA) of the kth user’s signal along the lth path with

respect to the antenna array be φl,k, then the array response is given by

al,k,p = exp
{
(p− 1)π sin (φl,k)

}
, (5.94)

The spreading sequences, multipath delays and complex gains, and the DOA’s of all user

signals in the simulated system are tabulated in Table 5.2. These parameters are randomly

generated and kept fixed for all the simulations. All users have equal transmitted power,

i.e., A1 = . . . = AK . However, the received signal powers are unequal due to the unequal
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strength of the multipath gain for each user. The total strength of each user’s multipath

channel, measured by the norm of the channel gain vector ‖g
k
‖ is also listed in Table 5.2.

Note that this system has a near-far situation, i.e., User 3 is the weakest user and User 6 is

the strongest.

Example 1: Performance comparison: multiuser vs. single-user space-time processing.

We first compare the BER performance of the multiuser linear space-time detector and

that of the single-user linear space-time detector. Three receivers are considered: the single-

user space-time matched-filter given by (5.82), the single-user space-time MMSE receiver

given by (5.83), and the multiuser MMSE receiver implemented by the iterative interference

cancellation algorithm (5.70) (5 iterations are used.). Fig. 5.5 shows the performance of the

weak users (Users 1, 3, 4, and 8). It is seen that in general, the single-user MMSE receiver

outperforms the matched-filter receiver. (Interestingly though, for User 1 the matched-filter

actually slightly outperforms the single-user MMSE receiver. This is not surprising, since

due to the interference, the detector output distribution is not Gaussian, and minimizing

the mean-square error does not necessarily lead to minimum bit error probability.) It is also

evident that the multiuser approach offers substantial performance improvement over the

single-user methods.

Example 2: Convergence of the iterative interference cancellation method.

This example serves to illustrate the convergence behavior of the iterative interference

cancellation method (5.70). The BER performance corresponding to the first 4 iterations

for Users 4 and 8 are shown in Fig. 5.6. It is seen that the algorithm converges within 4-5

iterations. It is also seen that the most significant performance improvement occurs at the

second iteration.

Example 3: Performance of the combined multiuser/single-user space-time processing.

In this example, it is assumed that Users 7 and 8 are external interferers, and their

signature waveforms and channel parameters are not known to the receiver. Therefore the

combined multiuser/single-user space-time processing method discussed in Section 5.4.3 is

employed at the receiver. Fig. 5.7 illustrates the BER performance of Users 3 and 4. Four

methods are considered here: the single-user matched-filter (5.82), the single-user MMSE

receiver (5.83), the partial interference cancellation followed by a matched-filter or a single-

user MMSE receiver. It is seen that the combined multiuser/single-user space-time processing
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Figure 5.5: Comparisons of the BER performance of three receivers: single-user space-

time matched-filter, single-user space-time MMSE receiver and multiuser space-time MMSE

receiver.
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Figure 5.6: BER performance of the iterative interference cancellation method (first 4 iter-

ations).

achieves the best performance among the four methods.

Example 4: Performance vs. number of antennas/number of users.

In the next example, we illustrate how performance varies with the number of users

and receive antennas for both the multiuser space-time detector and the single-user space-

time detector. The simulated system has K = 16 users and processing gain N = 16. The

number of paths for each user is L = 3. The performance of User 5 in this system using

the single-user MMSE receiver and that using the multiuser MMSE receiver are plotted in

Fig. 5.8, with the number of antennas P = 2, 4 and 6. It is seen that while in the single-user

approach, the performance improvement due to the increasing number of receive antennas

is only marginal, such performance improvement in the multiuser approach is of orders of

magnitude. Next we fix the number of antennas as P = 4 and vary the number of users in

the system. The processing gain is still N = 16 and the number of paths for each user is

L = 3. The performance of the single-user MMSE receiver and the multiuser receiver for

User 2 is plotted in Fig. 5.9, with the number of users N = 10, 20 and 30. Again we see that

in all these cases the multiuser method significantly outperforms the single-user method.

Example 5: Performance vs. spreading gain /number of antennas.

In this example, we consider the performance of single-user method and multiuser method

by varying the processing gain N and the number of receive antennas P , while keeping their
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Figure 5.7: BER performance of four receivers in the presence of unknown interferers.
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Figure 5.8: Single-user and multiuser receiver performance under different number of

antennas.(K = 16, N = 16). Left: single-user MMSE receiver; Right: multiuser MMSE

receiver.
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Figure 5.9: Single-user and multiuser receiver performance under different number of users.

(N = 16, P = 4). Left: single-user MMSE receiver; Right: multiuser MMSE receiver.

product (NP ) fixed. The simulated system has K = 16 users, and the number of paths

for each user is L = 3. Three cases are simulated: N = 64, P = 1; N = 32, P = 2 and

N = 16, P = 4. The performance for User 2 is shown in Fig. 5.10. It is seen that in this

case, this user’s signal is best separated from others when N = 16, P = 4 for both the single-

user and multiuser methods. Moreover, the multiuser approach offers orders of magnitude

performance improvement over the single-user method.

In summary, in this and the previous section we have discussed multiuser space-time

receiver structures based on the sufficient statistic, which is illustrated in Fig. 5.11. It is

seen that the front-end of the receiver consists of a bank of matched-filters, followed by

a bank of array combiners and then followed by a bank of multipath combiners, which

produces the sufficient statistic. The maximum likelihood multiuser sequence detector and

the linear multiuser detectors based on serial iterative interference cancellation, are derived.

Note that since the detection algorithms in Fig. 5.11 operate on the sufficient statistic, their

complexities are functions of only the number of users (K) and the length of the data block

(M), but not of the number of antennas (P ).
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Figure 5.10: Single-user and multiuser receiver performance under different space-time gains.

(K = 16). Left: single-user MMSE receiver; Right: multiuser MMSE receiver.

5.5 Adaptive Space-Time Multiuser Detection in Syn-

chronous CDMA

Generally speaking, space-time processing involves the exploitation of spatial diversity using

multiple transmit and/or receive antennas and, perhaps, some form of coding. In the previous

sections, we have focused on systems that employ one transmit antenna and multiple receive

antennas. Recently, however, much of the work in this area has focused on transmit diversity

schemes that use multiple transmit antennas. They include delay schemes [435, 564, 565]

in which copies of the same symbol are transmitted through multiple antennas at different

times, the space-time trellis coding algorithm in [468], and the simple space-time block coding

(STBC) scheme developed in [12], which has been adopted in a number of 3G WCDMA

standards [211, 469]. A generalization of this simple space-time block coding concept is

developed in [466, 467]. It has been shown that these techniques can significantly improve

capacity [119, 470].

In this section, we discuss adaptive receiver structures for synchronous CDMA systems

with multiple transmit antennas and multiple receive antennas. Specifically, we focus on

three configurations, namely, (1) one transmit antenna, two receive antennas; (2) two trans-

mit antennas, one receive antenna; and (3) two transmit antennas and two receive antennas.
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Figure 5.11: Space-time multiuser receiver structure.
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It is assumed that the orthogonal space-time block code [12] is employed in systems with two

transmit antennas. For each of these configurations, we discuss two possible linear receiver

structures and compare their performance in terms of diversity gain and signal separation

capability. We also describe blind adaptive receiver structures for such multiple-antenna

CDMA systems. The methods discussed in this section are generalized to mutipath CDMA

systems in the next section. The materials discussed in this section and in the next section

were developed in [406].

5.5.1 One Transmit Antenna, Two Receive Antennas

Consider the following discrete-time K-user synchronous CDMA channel with one transmit

antenna and two receive antennas. The received baseband signal at the pth antenna can be

modelled as

rp =
K∑

k=1

hp,k bk sk + np, p = 1, 2. (5.95)

where sk is the N -vector of the discrete-time signature waveform of the kth user with unit

norm, i.e., ‖sk‖ = 1; bk ∈ {+1,−1} is the data bit of the kth user; hp,k is the complex channel

response of the pth receive antenna element to the kth user’s signal; and np ∼ Nc(0, σ
2IN)

is the ambient noise vector at antenna p. It is assumed that n1 and n2 are independent.

Linear Diversity Multiuser Detector

Denote

hk
�
= [h1,k h2,k]

T

S
�
= [s1 . . . sK ]

and R
�
= ST S.

Suppose that User 1 is the user of interest. We first consider the linear diversity multiuser

detection scheme, which first applies a linear multiuser detector to the received signal rp in

(5.95) at each antenna p = 1, 2, and then combines the outputs of these linear detectors to

make a decision. For example, a linear decorrelating detector for User 1 based on the signal
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in (5.95) is simply

w1 = SR−1e1, (5.96)

where e1 denotes the first unit vector in R
K . This detector is applied to the received signal

at each antenna p = 1, 2, to obtain z = [z1 z2]
T , where

zp
�
= wT

1 rp = hp,1 b1 + up, (5.97)

with up
�
= wT

1 np ∼ Nc

(
0, σ2‖w1‖2

)
, p = 1, 2 (5.98)

where ‖w1‖2 =
[
R−1

]
1,1

. Denote

η1
�
=

1√[
R−1

]
1,1

, (5.99)

and hk
�
= [h1,k h2,k]

T . Since the noise vectors from different antennas are independent, we

can write

z = b1h1 + u, (5.100)

with u ∼ Nc

(
0,
σ2

η2
1

· I2

)
. (5.101)

The maximum-likelihood (ML) decision rule for b1 based on z in (5.100) is then

b̂1 = sign
(�{

hH
1 z

})
. (5.102)

Let E1
�
= hH

1 h1 be the total received desired user’s signal energy. The decision statistic in

(5.102) can be expressed as

ξ
�
= hH

1 z = E1b1 + v, (5.103)

with v
�
= hH

1 u ∼ Nc

(
0, E1σ

2/η2
1

)
. (5.104)

The probability of detection error is computed as

PDC
1 (e) = P

(
�{ξ} < 0 | b1 = 1

)
= P

(
�{v} < −E1

)
= Q

(√
2E1

σ
· η1

)
. (5.105)
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Linear Space-Time Multiuser Detector

Denote

b
�
= [b1 . . . bK ]T

H
�
= [h1 . . .hK ]

s̃k
�
= hk ⊗ sk

S̃
�
= [s̃1 . . . s̃K ]

R̃
�
= S̃

T
S̃

r̃
�
=

[
rT

1 rT
2

]T

and ñ
�
=

[
nT

1 nT
2

]T
.

Then, by augmenting the received signals at two antennas, (5.95) can be written as

r̃ =
K∑

k=1

bks̃ + ñ

= S̃b + ñ, (5.106)

with ñ ∼ Nc(0, σ
2I2N). A linear space-time multiuser detector operates on the augmented

received signal r̃ directly. For example, the linear detecorrelating detector for User 1 in this

case is given by

w̃1 = S̃R̃
−1

e1. (5.107)

This detector is applied to the augmented received signal r̃ to obtain

z̃
�
= w̃H

1 r̃ = b1 + ũ, (5.108)

with ũ
�
= w̃H

1 ñ ∼ Nc

(
0, σ2‖w̃1‖2

)
, (5.109)

where ‖w̃1‖2 =
[
R̃

−1
]

1,1
. Denote

η̃1
�
=

1√
E1

· 1√[
R̃

−1
]

1,1

. (5.110)
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An expression for R̃ can be found as follows. Note that

[R̃]i,j
�
=

[
S̃

H
S̃
]

i,j
= s̃H

i s̃j

= (hi ⊗ si)
H (hj ⊗ sj)

=
(
hH

i ⊗ sH
i

)
(hj ⊗ sj)

=
(
hH

i hj

) ⊗ (
sH

i sj

)
=

[
HHH

]
i,j

· [R]i,j,

where (5.111) and (5.111) follow respectively from the following two matrix indentities:

(A ⊗ B)H = AH ⊗ BH , (5.111)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). (5.112)

Hence

R̃
�
= S̃

H
S̃ = R ◦ (

HHH
)
, (5.113)

where ◦ denotes the Schur matrix product (i.e., element-wise product).

The ML decision rule for b1 based on z̃ in (5.108) is then

b̂1 = sign (�{z̃}) . (5.114)

The probability of detection error is computed as

P ST
1 (e) = P

(
�{z̃} < 0 | b1 = 1

)
= P

(
�{ũ} < −1

)
= Q

(√
2E1

σ
· η̃1

)
. (5.115)

Performance Comparison

From the above discussion it is seen that the linear space-time multiuser detector exploits

the signal structure in both the time domain (i.e., induced by the signature waveform sk)

and the spatial domain (i.e., induced by the channel response hk) for interference rejection;

whereas for the linear diversity multiuser detector, interference rejection is performed only
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in the time domain, and the spatial domain is only used for diversity combining. The next

result, first appeared in [319], shows that the linear space-time multiuser detector always

outperforms the linear diversity multiuser detector.

Proposition 5.6 Let PDC
1 (e) given by (5.105) and P ST

k (e) given by (5.115) be respectively

the probability of detection error of the linear diversity detector and the linear space-time

detector. Then

P ST
1 (e) ≤ PDC

1 (e).

Proof: By (5.105) and (5.115) it suffices to show that[
R̃

−1
]

1,1
≤ 1

E1

[
R−1

]
1,1
.

We make use of the following facts. Denote Ai,j as the submatrix of A obtained by striking

out the ith row and the jth column. Then it is known that

A � 0 =⇒ A − 1[
A−1

]
k,k

eke
T
k � 0. (5.116)

It is also known that

A � 0, B � 0 =⇒ A ◦ B � 0. (5.117)

Assuming R � 0 and Q
�
= HHH � 0, and using the above two results, we have

0 ≤ det

[(
R − 1[

R−1
]
1,1

e1e
T
1

)
◦ Q

]

= det

[
R̃ − E1[

R−1
]
1,1

e1e
T
1

]
(5.118)

= det R̃

(
1 − E1[

R−1
]
k,k

eT
k R̃

−1
e1

)
(5.119)

= det R̃ − E1[
R−1

]
1,1

det R̃1,1, (5.120)

where (5.118) follows from the fact that R̃
�
= R ◦ Q and

(
e1e

T
1

) ◦ Q = E1e1e
T
1 ; (5.119)

follows from the matrix indentity

det (A + BCD) = det A det C det
(
C−1 + DA−1B

)
; (5.121)
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and (5.120) follows from

eT
1 R̃

−1
e1 =

[
R̃

−1
]

1,1
=

det R̃1,1

det R̃
. (5.122)

Hence we have

1[
R̃

−1
]

1,1

=
det R̃

det R̃1,1

≥ E1[
R−1

]
1,1

. (5.123)

�

We next consider a simple example to demonstrate the performance difference between

the two receivers discussed above. Consider a 2-user system with

R =

[
1 ρ

ρ 1

]
, H =

[
1 1

eθ1 eθ2

]
,

where ρ is the correlation of the signature waveforms of the two users’; and θ1 and θ2 are the

directions of arrival of the two users’ signals. Denote α
�
= θ2−θ1. Then we have E1 = E2 = 1,

and

Q
�
= ΦHΦ =

[
2 1 + eα

1 + e−α 2

]
, (5.124)

R̃
�
= R ◦ Q =

[
2 ρ (1 + eα)

ρ (1 + e−α) 2

]
, (5.125)

η1
�
=

1√[
R−1

]
1,1

=
√

1 − ρ2, (5.126)

η̃1
�
=

1√
2

· 1√[
R̃

−1
]

1,1

=

√
1 − ρ2 cos2

α

2
. (5.127)

These are plotted in Fig. 5.12. It is seen that while the multiuser space-time receiver can

exploit both the temporal signal separation (along ρ-axis) and the spatial signal separation

(along α-axis), the multiuser diversity receiver can only exploit the temporal signal separa-

tion. For example, for large ρ, the performance of the multiuser diversity receiver is poor,

no matter what value α takes; but the performance of the multiuser space-time receiver can

be quite good as long as α is large.
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Figure 5.12: Performance comparison between the multiuser diversity receiver and the mul-

tiuser space-time receiver.
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5.5.2 Two Transmit Antennas, One Receive Antenna

When two antennas are employed at the transmitter, we must first specify how the informa-

tion bits are transmitted across the two antennas. Here we adopt the well known orthogonal

space-time block coding scheme [12, 466]. Specifically, for each User k, two information sym-

bols bk,1 and bk,2 are transmitted over two symbol intervals. At the first time interval, the

symbol pair (bk,1, bk,2) is transmitted across the two transmit antennas; and at the second

time interval, the symbol pair (−bk,2, bk,1) is transmitted. The received signal corresponding

to these two time intervals are given by

r1 =
K∑

k=1

(
h1,k b1,k + h2,k b2,k

)
sk + n1, (5.128)

r2 =
K∑

k=1

(
− h1,k b2,k + h2,k b1,k

)
sk + n2, (5.129)

where h1,k (h2,k) is the complex channel response between the first (second) transmit antenna

and the receive antenna; n1 and n2 are independent received Nc(0, IN) noise vectors at the

two time intervals.

Linear Diversity Multiuser Detector

We first consider the linear diversity multiuser detection scheme, which first applies the

linear multiuser detector w1 in (5.96) to the received signals r1 and r2 during the two time

intervals, and then performs a space-time decoding. Specifically, denote

z1
�
= wH

1 r1 = h1,k b1,k + h2,k b2,k + u1, (5.130)

z2
�
=

(
wH

1 r2

)∗
= −h∗1,k b2,k + h∗2,k b1,k + u∗2, (5.131)

with up
�
= wH

1 np ∼ Nc

(
0, σ2‖w1‖2

)
, p = 1, 2. (5.132)

where ‖w1‖2 =
[
R−1

]
1,1

.

Denote z
�
= [z1 z2]

T , u
�
= [u1 u

∗
2]

T ,

hk
�
= [h1,k h

∗
2,k]

T ,

and h̄k
�
= [h2,k − h∗1,k]

T .
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It is easily seen that hH
k h̄k = 0. Then (5.130)-(5.132) can be written as

z =
[
h1 h̄1

] [ b1,1

b2,1

]
+ u, (5.133)

with u ∼ Nc

(
0,
σ2

η2
1

· I2

)
. (5.134)

As before, denote E1
�
= hH

1 h1 = h̄
H
1 h̄1. Note that

[
h1 h̄1

]H [
h1 h̄1

]
=

[
E1 0

0 E1

]
. (5.135)

The ML decision rule for b1,1 and b2,1 based on z in (5.133) is then given by[
b̂1,1

b̂2,1

]
= sign

(
�
{[

h1 h̄1

]H
z
})

= sign

(
�
{[

hH
1 z

h̄
H
1 z

]})
. (5.136)

Using (5.133), it is easily seen that the decision statistic in (5.136) is distributed according

to

1√
E1

hH
1 z ∼ Nc

(√
E1b1,1,

σ2

η2
1

)
, (5.137)

1√
E1

h̄
H
1 z ∼ Nc

(√
E1b2,1,

σ2

η2
1

)
. (5.138)

Hence the probability of error is given by

PDC
1 (e) = Q

(√
2E1

σ
· η1

)
. (5.139)

This is the same expression as (5.115) for the linear diversity receiver with one transmit

antenna and two receive antennas.

Linear Space-Time Multiuser Detector

Denote r̃
�
=

[
rT

1 rH
2

]T
, ñ

�
=

[
nT

1 nH
2

]T
. Then (5.128) and (5.129) can be written as

r̃ =
K∑

k=1

(
b1,khk ⊗ sk + b2,kh̄k ⊗ sk

)
+ ñ. (5.140)
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Denote

S̃ =
[
h1 ⊗ s1, h̄1 ⊗ s1, . . . , hK ⊗ sK , h̄K ⊗ sK

]
N×2K

,

and R̃ = S̃
H

S̃.

Then the decorrelating detector for detecting the bit b1,1 based on r̃ in (5.140) is given by

w̃1,1 = S̃R̃
−1

ẽ1, (5.141)

where ẽ1 is the first unit vector in R
2K .

Proposition 5.7 The decorrelating detector in (5.141) is given by

w̃1,1 =
h1 ⊗ w1

‖h1‖2
, (5.142)

where w1 is given by (5.96).

Proof: We need to verify that (
h1 ⊗ w1

‖h1‖2

)H

S̃ = ẽ1. (5.143)

We have

1

‖h1‖2
(h1 ⊗ w1)

H (h1 ⊗ s1) =
1

‖h1‖2

(
hH

1 h1

) (
wH

1 s1

)︸ ︷︷ ︸
1

= 1, (5.144)

1

‖h1‖2
(h1 ⊗ w1)

H (
h̄1 ⊗ s1

)
=

1

‖h1‖2

1

‖h1‖2

(
hH

1 h̄1

)︸ ︷︷ ︸
0

(
wH

1 s1

)︸ ︷︷ ︸
1

= 0, (5.145)

1

‖h1‖2
(h1 ⊗ w1)

H (hk ⊗ sk) =
1

‖h1‖2

(
hH

1 hk

) (
wH

1 sk

)︸ ︷︷ ︸
0

= 0, k = 2, . . . , K,(5.146)

1

‖h1‖2
(h1 ⊗ w1)

H (
h̄k ⊗ sk

)
=

1

‖h1‖2

(
hH

1 h̄k

) (
wH

1 sk

)︸ ︷︷ ︸
0

= 0, k = 2, . . . , K.(5.147)

This verifies (5.143) so that (5.142) is indeed the decorrelating detector given by (5.141). �

Hence the output of the linear space-time detector in this case is given by

z̃1 = w̃H
1,1r̃ = b1,1 + u1, (5.148)

with u1
�
= w̃H

1,1ñ ∼ N (
0, σ2‖w̃1,1‖2

)
, (5.149)
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where using (5.99) and (5.142), we have

‖w̃1,1‖2 =
‖h1 ⊗ w1‖2

‖h1‖4

=
‖w1‖2

‖h1‖2
=

1

E1η2
1

. (5.150)

Therefore the probability of detection error is given by

P ST
1 (e) = P

(
�{z̃1} < 0 | b1,1 = 1

)
= P

(
�{u1} < −1

)
= Q

(√
2E1

σ
· η1

)
. (5.151)

On comparing (5.139) with (5.151) we see that for the case of two transmit antennas and

one receive antenna, the linear diversity receiver and the linear space-time receiver have the

same performance. Hence the multiple transmit antennas with space-time block coding only

provide diversity gain, but no signal separation capability.

5.5.3 Two Transmitter and Two Receive Antennas

We combine the results from the previous two sections to investigate an environment in

which we use two transmit antennas and two receive antennas. We adopt the space-time

block coding scheme used in the previous section. The received signals at antenna 1 during

the two symbol intervals are

r
(1)
1 =

K∑
k=1

[
h

(1,1)
k b1,k + h

(2,1)
k b2,k

]
sk + n

(1)
1 , (5.152)

r
(1)
2 =

K∑
k=1

[
−h(1,1)

k b2,k + h
(2,1)
k b1,k

]
sk + n

(1)
2 , (5.153)

and the corresponding signals received at antenna 2 are

r
(2)
1 =

K∑
k=1

[
h

(1,2)
k b1,k + h

(2,2)
k b2,k

]
sk + n

(2)
1 , (5.154)

r
(2)
2 =

K∑
k=1

[
−h(1,2)

k b2,k + h
(2,2)
k b1,k

]
sk + n

(2)
2 , (5.155)
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where h
(i,j)
k , i, j ∈ {1, 2} is the complex channel response between transmit antenna i and

receive antenna j for User k. The noise vectors n
(1)
1 ,n

(2)
1 ,n

(1)
2 , and n

(2)
2 are independent and

identically distributed with distribution Nc(0, σ
2IN).

Linear Diversity Multiuser Detector

As before, we first consider the linear diversity multiuser detection scheme for User 1,

which applies the linear multiuser detector w1 in (5.96) to each of the four received sig-

nals r
(1)
1 , r

(2)
1 , r

(1)
2 , and r

(2)
2 , and then performs a space-time decoding. Specifically, denote

the filter outputs as

z
(1)
1

�
= wT

1 r
(1)
1

= h
(1,1)
1 b1,1 + h

(2,1)
1 b2,1 + u

(1)
1 , (5.156)

z
(1)
2

�
=

(
wT

1 r
(1)
2

)∗

= −
(
h

(1,1)
1

)∗
b2,1 +

(
h

(2,1)
1

)∗
b1,1 +

(
u

(1)
2

)∗
, (5.157)

z
(2)
1

�
= wT

1 r
(2)
1

= h
(1,2)
1 b1,1 + h

(2,2)
1 b2,1 + u

(2)
1 , (5.158)

z
(2)
2

�
=

(
wT

1 r
(2)
2

)∗

= −
(
h

(1,2)
1

)∗
b2,1 +

(
h

(2,2)
1

)∗
b1,1 +

(
u

(2)
2

)∗
, (5.159)

with u
(j)
i

�
= wT

1 n
(j)
i

∼ Nc

(
0,
σ2

η2
1

)
, i, j = 1, 2 (5.160)

where, as before, η2
1

�
= 1/

[
R−1

]
1,1

.

We define the following quantities:

z
�
=

[
z

(1)
1 z

(1)
2 z

(2)
1 z

(2)
2

]T

u
�
=

[
u

(1)
1

(
u

(1)
2

)∗
u

(2)
1

(
u

(2)
2

)∗]T

h
(1)
1

�
=

[
h

(1,1)
1 h

(2,1)
1

]H

h̄
(1)
1

�
=

[
h

(2,1)
1 − h(1,1)

1

]T

h
(2)
1

�
=

[
h

(1,2)
1 h

(2,2)
1

]H
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and h̄
(2)
1

�
=

[
h

(2,2)
1 − h(1,2)

1

]T

.

Then (5.156) - (5.160) can be written as

z =
[
h

(1)
1 h̄

(1)
1 h

(2)
1 h̄

(2)
1

]H

︸ ︷︷ ︸
HH

1

[
b1,1

b2,1

]
+ u, (5.161)

with u ∼ Nc

(
0,
σ2

η2
1

· I4

)
. (5.162)

It is readily verified that

H1H
H
1 =

[
E1 0

0 E1

]
, (5.163)

with E1
�
=

∣∣∣h(1,1)
1

∣∣∣2 +
∣∣∣h(1,2)

1

∣∣∣2 +
∣∣∣h(2,1)

1

∣∣∣2 +
∣∣∣h(2,2)

1

∣∣∣2 . (5.164)

To form the ML decision statistic, we premultiply z by H1 and obtain[
d1,1

d2,1

]
�
= H1z = E1

[
b1,1

b2,1

]
+ v, (5.165)

with v ∼ Nc

(
0,
E1 σ

2

η2
1

· I2

)
. (5.166)

The corresponding bit estimates are given by[
b̂1,1

b̂2,1

]
= sign

(
�
{[

d1,1

d2,1

]})
. (5.167)

The bit error probability is then given by

PDC
1 (e) = P

(
�{d1,1} < 0 | b1,1 = +1

)
= P

[
E1 + N

(
0,
E1σ

2

2η2
1

)
< 0

]
= Q

(√
2E1

σ
· η1

)
. (5.168)
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Linear Space-Time Multiuser Detector

We denote

r̃
�
=


r

(1)
1(

r
(1)
2

)∗

r
(2)
1(

r
(2)
2

)∗

 , ñ
�
=


n

(1)
1(

n
(1)
2

)∗

n
(2)
1(

n
(2)
2

)∗

 , hk
�
=


h

(1,1)
k(
h

(2,1)
k

)∗

h
(1,2)
k(
h

(2,2)
k

)∗

 , h̄k
�
=


h

(2,1)
k(

−h(1,1)
k

)∗

h
(2,2)
k(

−h(1,2)
k

)∗

 .

Then (5.152)-(5.155) may be written as

r̃ =
K∑

k=1

(
b1,khk ⊗ sk + b2,kh̄k ⊗ sk

)
+ ñ (5.169)

= S̃b + ñ, (5.170)

where

S̃
�
=

[
h1 ⊗ s1, h̄1 ⊗ s1, . . . , hK ⊗ sK , h̄K ⊗ sK

]
4N×2K

and b
�
= [b1,1 b2,1 b1,2 b2,2 . . . b1,K b2,K ]T .

Since hH
k h̄k = 0 and (5.169) has the same form as (5.140), it is easy to show that the

decorrelating detector for detecting the bit b1,1 based on r̃ is given by

w̃1,1 =
h1 ⊗ w1

‖h1‖2
. (5.171)

Hence the output of the linear space-time detector in this case is given by

z̃1 = w̃H
1,1r̃ = b1,1 + u1, (5.172)

with u1
�
= w̃H

1,1ñ ∼ Nc

(
0, σ2‖w̃1,1‖2

)
, (5.173)

where

‖w̃1,1‖2 =
‖w1‖2

‖h1‖2
=

1

E1η2
1

. (5.174)

Therefore the probability of detector error is given by

P ST
1 (e) = P

(
�{z̃1} < 0 | b1,1 = +1

)
= P

[
1 + N

(
0,

1

2E1η2
1

)
< 0

]
= Q

(√
2E1

σ
· η1

)
. (5.175)
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Comparing (5.175) with (5.168) it is seen that when two transmit antennas and two receive

antennas are employed and the signals are transmitted in the form of space-time block

code, then the linear diversity receiver and the linear space-time receiver have identical

performance.

Remarks

We have seen that the performance of space-time multiuser detection (STMUD) and linear

diversity multiuser detection (LDMUD) are similar for two transmit/one receive and two

transmit/two receive antenna configurations. What, then, are the benefits of the space-time

detection technique? They are as follows:

1. Although LDMUD and STMUD perform similarly for the 2 × 1 and 2 × 2 cases, the

performance of STMUD is superior for configurations with one transmit antenna and

P ≥ 2 receive antennas.

2. User capacity for CDMA systems is limited by correlations among composite signature

waveforms. This multiple-access interference will tend to decrease as the dimension

of the vector space in which the signature waveforms reside increases. The signature

waveforms for linear diversity detection are of length N , i.e., they reside in C
N . Since

the received signals are stacked for space-time detection, these signature waveforms

reside in C
2N for two transmit and one receive antenna or C

4N for two transmit and

two receive antennas. As a result, the space-time structure can support more users

than linear diversity detection for a given performance threshold.

3. For adaptive configurations (Section 5.5.4 and Section 5.6.2), LDMUD requires four

independent subspace trackers operating simultaneously since the receiver performs

detection on each of the four received signals, and each has a different signal subspace.

The space-time structure requires only one subspace tracker.

5.5.4 Blind Adaptive Implementations

We next develop both batch and sequential blind adaptive implementations of the linear

space-time receiver. These implementations are blind in the sense that they require only
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knowledge of the signature waveform of the user of interest. Instead of the decorrelating

detector used in previous sections, we will use a linear MMSE detector for the adaptive

implementations because the MMSE detector is more suitable for adaptation and its perfor-

mance is comparable to that of the decorrelating detector. We consider only the environment

in which we have two transmit antennas and two receive antennas. The other cases can be

derived in a similar manner. Note that inherent to any blind receiver in multiple transmit

antenna systems is an ambiguity issue. That is, if the same spreading waveform is used for

a user at both transmit antennas, the blind receiver can not distinguish which bit is from

which antenna. To resolve such an ambiguity, here we use two different spreading waveforms

for each user, i.e. sj,k, j ∈ {1, 2} is the spreading code for User k for the transmission of bit

bj,k.

There are two bits, b1,k[i] and b2,k[i], associated with each user at each time slot i and the

difference in time between slots is 2T where T is the symbol interval. The received signal at

antenna 1 during the two symbol periods for time slot i is

r
(1)
1 [i] =

K∑
k=1

(
h

(1,1)
k b1,k[i]s1,k + h

(2,1)
k b2,k[i]s2,k

)
+ n

(1)
1 [i], (5.176)

r
(1)
2 [i] =

K∑
k=1

(
−h(1,1)

k b2,k[i]s2,k + h
(2,1)
k b1,k[i]s1,k

)
+ n

(1)
2 [i], (5.177)

and the corresponding signals received at antenna 2 are

r
(2)
1 [i] =

K∑
k=1

(
h

(1,2)
k b1,k[i]s1,k + h

(2,2)
k b2,k[i]s2,k

)
+ n

(2)
1 [i], (5.178)

r
(2)
2 [i] =

K∑
k=1

(
−h(1,2)

k b2,k[i]s2,k + h
(2,2)
k b1,k[i]s1,k

)
+ n

(2)
2 [i]. (5.179)

We stack these received signal vectors and denote

r̃[i]
�
=


r

(1)
1 [i](

r
(1)
2 [i]

)∗

r
(2)
1 [i](

r
(2)
2 [i]

)∗

 , ñ[i]
�
=


n

(1)
1 [i](

n
(1)
2 [i]

)∗

n
(2)
1 [i](

n
(2)
2 [i]

)∗

 , hk
�
=


h

(1,1)
k(
h

(2,1)
k

)∗

h
(1,2)
k(
h

(2,2)
k

)∗

 , h̄k
�
=


h

(2,1)
k(

−h(1,1)
k

)∗

h
(2,2)
k(

−h(1,2)
k

)∗

 .
Then we may write

r̃[i] =
K∑

k=1

(
b1,k[i]hk ⊗ s1,k + b2,k[i]h̄k ⊗ s2,k

)
+ ñ[i]
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= S̃b[i] + ñ[i], (5.180)

where

S̃
�
=

[
h1 ⊗ s1,1, h̄1 ⊗ s2,1, . . .hK ⊗ s1,K , h̄K ⊗ s2,K

]
4N×2K

,

and b[i]
�
=

[
b1,1[i] b2,1[i] b1,2[i] b2,2[i] . . . b1,K [i] b2,K [i]

]T

2K×1
.

The autocorrelation matrix of the stacked signal r̃[i], C, and its eigendecomposition are

given by

C = E
{
r̃[i]r̃[i]H

}
= S̃S̃

H
+ σ2I4N (5.181)

= U sΛsU
H
s + σ2UnU

H
n , (5.182)

where Λs = diag{λ1, λ2, . . . , λ2K} contains the largest (2K) eigenvalues of C, the columns of

U s are the corresponding eigenvectors; and the columns of Un are the (4N−2K) eigenvectors

corresponding to the smallest eigenvalue σ2.

The blind linear MMSE detector for detecting
[
b[i]

]
1

= b1,1[i] is given by the solution to

the optimization problem

w1,1
�
= arg min

w∈C4N
E

{∣∣b1,1[i] − wH r̃[i]
∣∣2} . (5.183)

From Chapter 2, a scaled version of the solution can be written in terms of the signal subspace

components as

w1,1 = U sΛ
−1
s UH

s (h1 ⊗ s1,1) , (5.184)

and the decision is made according to

z1,1[i] = wH
1,1r̃[i], (5.185)

b̂1,1[i] = sign
[
�
(
z1,1[i]

)]
, (coherent detection) (5.186)

or β̂1,1[i] = sign
[
�
(
z1,1[i− 1]∗z1,1[i]

)]
. (differential detection) (5.187)

Before we address specific batch and sequential adaptive algorithms, we note that these

algorithms can be also be implemented using linear group-blind multiuser detectors instead

of blind MMSE detectors. This would be appropriate, for example, in uplink environments
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in which the base station has knowledge of the signature waveforms of all of the users in the

cell, but not those of users outside the cell. Specifically, we may rewrite (5.180) as

r̃[i] = S̆b̆[i] + S̄b̄[i] + ñ[i], (5.188)

where we have separated the users into two groups. The composite signature sequences of

the known users are the columns of S̆. The unknown users’ composite sequences are the

columns of S̄. Then from Chapter 3, the group-blind linear hybrid detector for bit b1,1[i] is

given by

wGB
1,1 = U sΛ

−1
s UH

s S̆
[
S̆

H
U sΛ

−1
s UH

s S̆
]−1

(h1 ⊗ s1,1) . (5.189)

This detector offers a significant performance improvement over (5.184) for environments in

which the signature sequences of some of the interfering users are known.

Batch Blind Linear Space-time Multiuser Detection

In order to obtain an estimate of h1 we make use of the orthogonality between the signal

and noise subspaces, i.e., the fact that UH
n (h1 ⊗ s1,1) = 0. In particular, we have

ĥ1 = arg min
h∈C4

∥∥UH
n (h ⊗ s1,1)

∥∥2

= arg max
h∈C4

∥∥UH
s (h ⊗ s1,1)

∥∥2

= arg max
h∈C4

(
hH ⊗ sH

1,1

)
U sU

H
s

(
h ⊗ s11

)
= arg max

h∈C4

hH
[(

I4 ⊗ sH
1,1

)
U sU

H
s (I4 ⊗ s1,1)

]︸ ︷︷ ︸
Q

h (5.190)

= principal eigenvector of Q, (5.191)

In (5.191) ĥ1 specifies h1 up to an arbitrary complex scale factor α, i.e. ĥ1 = αh1. The

following is the summary of a batch blind space-time multiuser detection algorithm for the

two transmit antenna/two receive antenna configuration.

Algorithm 5.4 [Batch blind linear space-time multiuser detector – synchronous CDMA,

two transmit antennas and two receive antennas]



5.5. ADAPTIVE SPACE-TIME MULTIUSER DETECTION IN SYNCHRONOUS CDMA327

• Estimate the signal subspace:

Ĉ =
1

M

M−1∑
i=0

r̃[i]r̃[i]H , (5.192)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (5.193)

• Estimate the channels:

Q̂1 =
(
I4 ⊗ sH

1,1

)
Û sÛ

H

s (I4 ⊗ s1,1) , (5.194)

Q̂2 =
(
I4 ⊗ sH

2,1

)
Û sÛ

H

s (I4 ⊗ s2,1) , (5.195)

ĥ1 = principal eigenvector of Q̂1, (5.196)

ˆ̄h1 = principal eigenvector of Q̂2. (5.197)

• Form the detectors

ŵ1,1 = Û sΛ̂
−1

s Û
H

s

(
ĥ1 ⊗ s1,1

)
, (5.198)

ŵ2,1 = Û sΛ̂
−1

s Û
H

s

(
ˆ̄h1 ⊗ s2,1

)
. (5.199)

• Perform differential detection:

z1,1[i] = ŵH
1,1r̃[i], (5.200)

z2,1[i] = ŵH
2,1r̃[i], (5.201)

β̂1,1[i] = sign
(
�
{
z1,1[i]z1,1[i− 1]∗

})
, (5.202)

β̂2,1[i] = sign
(
�
{
z2,1[i]z2,1[i− 1]∗

})
, (5.203)

i = 0, . . . ,M − 1.

A batch group-blind space-time multiuser detector algorithm can be implemented with sim-

ple modifications to (5.198) and (5.199).

Adaptive Blind Linear Space-time Multiuser Detection

To form a sequential blind adaptive receiver, we need adaptive algorithms for sequentially

estimating the channel and the signal subspace components U s and Λs. First, we address
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sequential adaptive channel estimation. Denote by z[i] the projection of the stacked signal

r̃[i] onto the noise subspace, i.e.,

z[i] = r̃[i] − U sU
H
s r̃[i] (5.204)

= UnUH
n r̃[i]. (5.205)

Since z[i] lies in the noise subspace, it is orthogonal to any signal in the signal subspace,

and in particular, it is orthogonal to (h1 ⊗ s1,1). Hence h1 is the solution to the following

constrained optimization problem:

min
h1∈C4

E
{∥∥z[i]H(h1 ⊗ s1,1)

∥∥2
}

= min
h1∈C4

E
{∥∥z[i]H(I4 ⊗ s1,1) h1

∥∥2
}

= min
h1∈C4

E

{∥∥∥∥[ (I4 ⊗ sH
1,1

)
z[i]

]H

h1

∥∥∥∥2
}

s.t. ‖h1‖ = 1. (5.206)

In order to obtain a sequential algorithm to solve the above optimization problem, we write

it in the following (trivial) state space form

h1[i] = h1[i], state equation

0 =
[ (

I4 ⊗ sH
1,1

)
z[i]

]H

h1[i], observation equation.

The standard Kalman filter can then be applied to the above system as follows. Denote

x[i]
�
=

(
I4 ⊗ sT

1,1

)
z[i]. We have

k[i] = Σ[i− 1] x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
, (5.207)

h1[i] = h1[i− 1] − k[i]
(
x[i]Hh1[i− 1]

)
/
∥∥h1[i− 1] − k[i]

(
x[i]Hh1[i− 1]

)∥∥ ,(5.208)

Σ[i] = Σ[i− 1] − k[i] x[i]HΣ[i− 1]. (5.209)

Once we have obtained channel estimates at time slot i, we can combine them with

estimates of the signal subspace components to form the detector in (5.184). Since we are

stacking received signal vectors and subspace tracking complexity increases at least linearly

with signal subspace dimension, it is imperative that we choose an algorithm with minimal

complexity. The best existing low-complexity algorithm for this purpose appears to be NAHJ

subspace tracking algorithm discussed in Chapter 2 [cf. Section 2.6.3]. This algorithm has
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the lowest complexity of any algorithm used for similar purposes and has performed well

when used for signal subspace tracking in multipath fading environments. Since the size of

U s is 4N ×2K, the complexity is 40 ·4N ·2K+3 ·4N +7.5(2K)2 +7 ·2K floating operations

per iteration.

Algorithm 5.5 [Blind adaptive linear space-time multiuser detector – synchronous CDMA,

two transmit antennas and two receive antennas]

• Using a suitable signal subspace tracking algorithm, e.g. NAHJ, update the signal

subspace components U s[i] and Λs[i] at each time slot i.

• Track the channel h1[i] and h̄1[i] according to the following

z[i] = r̃[i] − U s[i]U s[i]
H r̃[i], (5.210)

x[i] =
(
I4 ⊗ sH

1,1

)
z[i], (5.211)

x̄[i] =
(
I4 ⊗ sH

2,1

)
z[i], (5.212)

k[i] = Σ[i− 1] x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
, (5.213)

k̄[i] = Σ̄[i− 1] x̄[i]
(
x̄[i]HΣ̄[i− 1]x̄[i]

)−1
, (5.214)

h1[i] = h1[i− 1] − k[i]
(
x[i]Hh1[i− 1]

)
/
∥∥h1[i− 1] − k[i]

(
x[i]Hh1[i− 1]

)∥∥ ,
(5.215)

h̄1[i] = h̄1[i− 1] − k̄[i]
(
x̄[i]Hh̄1[i− 1]

)
/
∥∥h̄1[i− 1] − k̄[i]

(
x̄[i]Hh̄1[i− 1]

)∥∥ ,
(5.216)

Σ[i] = Σ[i− 1] − k[i] x[i]HΣ[i− 1], (5.217)

Σ̄[i] = Σ̄[i− 1] − k̄[i] x̄[i]HΣ̄[i− 1]. (5.218)

• Form the detectors

ŵ1,1[i] = U s[i]Λ
−1
s [i]U s[i]

H
(
h1[i] ⊗ s1,1

)
, (5.219)

ŵ2,1[i] = U s[i]Λ
−1
s [i]U s[i]

H
(
h̄1[i] ⊗ s2,1

)
. (5.220)

• Perform differential detection:

z1,1[i] = ŵ1,1[i]
H r̃[i], (5.221)
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z2,1[i] = ŵ2,1[i]
H r̃[i], (5.222)

β̂1,1[i] = sign
(
�
{
z1,1[i] z1,1[i− 1]∗

})
, (5.223)

β̂2,1[i] = sign
(
�
{
z2,1[i] z2,1[i− 1]∗

})
. (5.224)

A group-blind sequential adaptive space-time multiuser detector can be implemented simi-

larly. The adaptive receiver structure is illustrated in Fig. 5.13.
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Figure 5.13: Adaptive receiver structure for linear space-time multiuser detectors.

5.6 Adaptive Space-Time Multiuser Detection in Mul-

tipath CDMA

5.6.1 Signal Model

In this section, we develop adaptive space-time multiuser detectors for asynchronous CDMA

systems with two transmitter and two receive antennas. The continuous-time signal trans-

mitted from antennas 1 and 2 due to the kth user for time interval i ∈ {0, 1, . . .} is given

by

x
(1)
k (t) =

M−1∑
i=0

[
b1,k[i]s1,k(t− 2iT ) − b2,k[i]s2,k(t− (2i+ 1)T )

]
, (5.225)

x
(2)
k (t) =

M−1∑
i=0

[
b2,k[i]s2,k(t− 2iT ) + b1,k[i]s1,k(t− (2i+ 1)T )

]
, (5.226)
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where M denotes the length of the data frame, T denotes the information symbol interval,

and {bk[i]}i is the symbol stream of User k. Although this is an asynchronous system, we

have, for notational simplicity, suppressed the delay associated with each users’ signal and

incorporated it into the path delays in (5.228) . We assume that for each k the symbol

stream, {bk[i]}i, is a collection of independent random variables that take on values of +1

and −1 with equal probability. Furthermore, we assume that the symbol streams of different

users are independent. As discussed in Chapter 2, for the direct-sequence spread-spectrum

(DS-SS) format, the user signaling waveforms have the form

sq,k(t) =
N−1∑
j=0

cq,k[j]ψ(t− jTc), 0 ≤ t ≤ T, (5.227)

where N is the processing gain, {cq,k[j]}, q ∈ {1, 2} is a signature sequence of ±1’s assigned

to the kth user for bit bq,k[i], and ψ(t) is a normalized chip waveform of duration Tc = T/N .

The kth user’s signals, x
(1)
k (t) and x

(2)
k (t), propagate from transmit antenna a to receive

antenna b through a multipath fading channel whose impulse response is given by

g
(a,b)
k (t) =

L∑
l=1

α
(a,b)
l,k δ

(
t− τ (a,b)

l,k

)
, (5.228)

where α
(a,b)
l,k is the complex path gain from from antenna a to antenna b associated with the

lth path for the kth user, and τ
(a,b)
l,k , τ

(a,b)
1,k < τ

(a,b)
2,k < . . . < τ

(a,b)
L,k is the sum of the corresponding

path delay and the initial transmission delay of User k. It is assumed that the channel is

slowly varying, so that the path gains and delays remain constant over the duration of one

signal frame (MT ).

The received signal component due to the transmission of x
(1)
k (t) and x

(2)
k (t) through the

channel at receive antennas 1 and 2 is given by

y
(1)
k (t) = x

(1)
k (t) � g

(1,1)
k (t) + x

(2)
k (t) � g

(2,1)
k (t), (5.229)

y
(2)
k (t) = x

(1)
k (t) � g

(1,2)
k (t) + x

(2)
k (t) � g

(2,2)
k (t). (5.230)

Substituting (5.226) and (5.228) into (5.230) we have for receive antenna b ∈ {1, 2}

y
(b)
k (t) =

M−1∑
i=0

[
b1,k[i]s1,k(t− 2iT ) � g

(1,b)
k (t) − b2,k[i]s2,k(t− (2i+ 1)T ) � g

(1,b)
k (t)

]
+

M−1∑
i=0

[
b2,k[i]s2,k(t− 2iT ) � g

(2,b)
k (t) + b1,k[i]s1,k(t− (2i+ 1)T ) � g

(2,b)
k (t)

]
.(5.231)
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For a, b, q ∈ {1, 2} we define

h
(a,b)
q,k (t)

�
= sq,k(t) � g

(a,b)
k (t)

=
N−1∑
j=0

cq,k[j]

[
L∑

l=1

α
(a,b)
l,k ψ

(
t− jTc − τ (a,b)

l,k

)]
︸ ︷︷ ︸

g
(a,b)
k (t−jTc)

. (5.232)

In (5.232), g
(a,b)
k (t) is the composite channel response for the channel between transmit

antenna a and receive antenna b, taking into account the effects of the chip pulse waveform

and the multipath channel. Then we have

y
(b)
k (t) =

M−1∑
i=0

[
b1,k[i]h

(1,b)
1,k (t− 2iT ) − b2,k[i]h

(1,b)
2,k (t− (2i+ 1)T )

]
+

M−1∑
i=0

[
b2,k[i]h

(2,b)
2,k (t− 2iT ) + b1,k[i]h

(2,b)
1,k (t− (2i+ 1)T )

]
. (5.233)

The total received signal at receive antenna b ∈ {1, 2} is given by

r(b)(t) =
K∑

k=1

y
(b)
k (t) + v(b)(t). (5.234)

At the receiver, the received signal is match-filtered to the chip waveform and sampled at

the chip rate, i.e., the sampling interval is Tc, N is the total number of samples per symbol

interval, and 2N is the total number of samples per time slot. The nth matched-filter output

during the ith time slot is given by

r(b)[i, n]
�
=

∫ 2iT+(n+1)Tc

2iT+nTc

r(b)(t)ψ(t− 2iT − nTc)dt

=
K∑

k=1

{∫ 2iT+(n+1)Tc

2iT+nTc

ψ(t− 2iT − nTc)y
(b)
k (t)dt

}
︸ ︷︷ ︸

y
(b)
k [i,n]

+

∫ 2iT+(n+1)Tc

2iT+nTc

v(b)(t)ψ(t− 2iT − nTc)dt︸ ︷︷ ︸
v(b)[i,n].

(5.235)

Denote the maximum delay (in symbol intervals) as

ι
(a,b)
k

�
=

⌈
τ

(a,b)
L,k + Tc

T

⌉
and ι

�
= max

k,a,b
ι
(a,b)
k . (5.236)
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Substituting (5.233) into (5.235) we obtain

y
(b)
k [i, n] =

M−1∑
p=0

{
b1,k[p]

∫ 2iT+(n+1)Tc

2iT+nTc

h
(1,b)
1,k (t− 2pT )ψ(t− 2iT − nTc)dt−

b2,k[p]

∫ 2iT+(n+1)Tc

2iT+nTc

h
(1,b)
2,k (t− (2p+ 1)T )ψ(t− 2iT − nTc)dt+

b2,k[p]

∫ 2iT+(n+1)Tc

2iT+nTc

h
(2,b)
2,k (t− 2pT )ψ(t− 2iT − nTc)dt+

b1,k[p]

∫ 2iT+(n+1)Tc

2iT+nTc

h
(2,b)
1,k (t− (2p− 1)T )ψ(t− 2iT − nTc)dt

}
. (5.237)

Further substitution of (5.232) into (5.237) shows that

y
(b)
k [i, n] =

M−1∑
p=0

{
b1,k[p]

N−1∑
j=0

c1,k[j]
L∑

l=1

α
(1,b)
l,k

∫ 2iT+(n+1)Tc

2iT+nTc

ψ(t − 2iTs − nTc)ψ(t − 2pT − jTc − τ
(1,b)
l,k )dt −

b2,k[p]
N−1∑
j=0

c2,k[j]
L∑

l=1

α
(1,b)
l,k

∫ 2iT+(n+1)Tc

2iT+nTc

ψ(t − 2iT − nTc)ψ(t − (2p + 1)T − jTc − τ
(1,b)
l,k )dt +

b2,k[p]
N−1∑
j=0

c2,k[j]
L∑

l=1

α
(2,b)
l,k

∫ 2iT+(n+1)Tc

2iT+nTc

ψ(t − 2iT − nTc)ψ(t − 2pT − jTc − τ
(2,b)
l,k )dt +

b1,k[p]
N−1∑
j=0

c1,k[j]
L∑

l=1

α
(2,b)
l,k

∫ 2iT+(n+1)Tc

2iT+nTc

ψ(t − 2iT − nTc)ψ(t − (2p + 1)T − jTc − τ
(2,b)
l,k )dt

}

=
ι/2�∑
p=0

{
b1,k[i − p]

N−1∑
j=0

c1,k[j]

f
(1,b)
k [n+2pN−j]︷ ︸︸ ︷

L∑
l=1

α
(1,b)
l,k

∫ Tc

0
ψ(t)ψ(t − jTc − τ

(1,b)
l,k + 2pT + nTc)dt]︸ ︷︷ ︸

h
(1,b)
1,k [p,n]

−

b2,k[i − p]
N−1∑
j=0

c2,k[j]

f
(1,b)
k [n+2pN−N−j]︷ ︸︸ ︷

L∑
l=1

α
(1,b)
l,k

∫ Tc

0
ψ(t)ψ(t − jTc − τ

(1,b)
l,k + 2pT − T + nTc)dt︸ ︷︷ ︸

h
(1,b)
2,k [p,n]

+

b2,k[i − p]
N−1∑
j=0

c2,k[j]

f
(2,b)
k [n+2pN−j]︷ ︸︸ ︷

L∑
l=1

α
(2,b)
l,k

∫ Tc

0
ψ(t)ψ(t − jTc − τ

(2,b)
l,k + 2pT + nTc)dt︸ ︷︷ ︸

h
(2,b)
2,k [p,n]

+
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b1,k[i − p]
N−1∑
j=0

c1,k[j]

f
(2,b)
k [n+2pN−N−j]︷ ︸︸ ︷

L∑
l=1

α
(2,b)
l,k

∫ Tc

0
ψ(t)ψ(t − jTc − τ

(2,b)
l,k + 2pT − T + nTc)dt︸ ︷︷ ︸

h
(2,b)
1,k [p,n]

}
. (5.238)

We may write y
(b)
k [i, n] more compactly as

y
(b)
k [i, n] =

ι/2�∑
j=0

(
h

(1,b)
1,k [j, n]b1,k[i− j] − h(1,b)

2,k [j, n]b2,k[i− j]+

h
(2,b)
2,k [j, n]b2,k[i− j] + h

(2,b)
1,k [j, n]b1,k[i− j]

)
=

ι/2�∑
j=0

b1,k[i− j]g(b)
1,k[j, n] +

ι/2�∑
j=0

b2,k[i− j]g(b)
2,k[j, n], (5.239)

where

g
(b)
1,k[j, n]

�
= h

(1,b)
1,k [j, n] + h

(2,b)
1,k [j, n], (5.240)

g
(b)
2,k[j, n]

�
= h

(2,b)
2,k [j, n] − h(1,b)

2,k [j, n]. (5.241)

For j = 0, 1, . . . , �ι/2	 denote

H(b)[j]
�
=


g

(b)
1,1[j, 0] . . . g

(b)
1,K [j, 0] g

(b)
2,1[j, 0] . . . g

(b)
2,K [j, 0]

...
...

...
...

...
...

g
(b)
1,1[j, 2N − 1] . . . g

(b)
1,K [j, 2N − 1] g

(b)
2,1[j, 2N − 1] . . . g

(b)
2,K [j, 2N − 1]


2N×2K

.

r(b)[i]
�
=


r(b)[i, 0]

...

r(b)[i, 2N − 1]


2N×1

, v(b)[i]
�
=


v(b)[i, 0]

...

v(b)[i, 2N − 1]


2N×1

, b[i]
�
=



b1,1[i]
...

b1,K [i]

b2,1[i]
...

b2,K [i]


2K×1

.

Then we have

r(b)[i] =

ι/2�∑
j=0

H(b)[j]b[i− j]︸ ︷︷ ︸
H(b)[i]�b[i]

+v(b)[i]. (5.242)
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To exploit both time and spatial diversity, we stack the vectors received from both receive

antennas,

r[i]
�
=

[
r(1)[i]

r(2)[i]

]
4N×1

,

and observe that

r[i] = H[i] � b[i] + v[i], (5.243)

where

H[j]
�
=

[
H(1)[j]

H(2)[j]

]
4N×2K

, j = 0, 1, . . . , �ι/2	 and v[i]
�
=

[
v(1)[i]

v(2)[i]

]
4N×1

.

By stacking m successive received sample vectors, we create the following quantities:

r[i]
�
=


r[i]
...

r[i+m− 1]


4Nm×1

,v[i]
�
=


v[i]
...

v[i+m− 1]


4Nm×1

, b[i]
�
=


b[i− �ι/2	]

...

b[i+m− 1]


r×1

,

and H
�
=


H[�ι/2	] . . . H[0] . . . 0

...
. . . . . . . . .

...

0 . . . H[�ι/2	] . . . H[0]


4Nm×r

,

where r
�
= 2K(m+ �ι/2	). We can write (5.243) in matrix form as

r[i] = Hb[i] + v[i]. (5.244)

We will see in Section 5.6.3 that the smoothing factor, m, is chosen such that

m ≥
⌈
N(ι+ 1) +K�ι/2	 + 1

2N −K
⌉
. (5.245)

for channel identifiability. Note that the columns of H (the composite signature vectors)

contain information about both the timings and the complex path gains of the multipath

channel of each user. Hence an estimate of these waveforms eliminates the need for separate

estimates of the timing information
{
τ

(a,b)
l,k

}L

l=1
.
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5.6.2 Blind MMSE Space-Time Multiuser Detection

Since the ambient noise is white, i.e., E{v[i]v[i]H} = σ2I4Nm, the autocorrelation matrix of

the received signal in (5.244) is

R
�
= E{r[i]r[i]H} = HHH + σ2I4Nm (5.246)

= U sΛsU
H
s + σ2UnUH

n , (5.247)

where (5.247) is the eigendecomposition of R. The matrix U s has dimension 4Nm× r and

Un has dimension 4Nm× (4Nm− r).
The linear MMSE space-time multiuser detector and corresponding bit estimate for

ba,k[i], a ∈ {1, 2} are given respectively by

wa,k
�
= arg min

w∈C4Pm
E

{∣∣ba,k[i] − wHr[i]
∣∣2} , (5.248)

and b̂a,k[i] = sign
(�{

wH
a,kr[i]

})
. (5.249)

The solution to (5.248) can be written in terms of the signal subspace components as

wa,k = U sΛ
−1
s UH

s ha,k, (5.250)

where ha,k
�
= HeK(2ι/2�+a−1)+k is the composite signature waveform of User k for bit

a ∈ {1, 2}. This detector is termed blind since it requires knowledge only of the signa-

ture sequence of the user of interest. Of course, we also require estimates of the signal

subspace components and of the channel. We address the issue of channel estimation next.

5.6.3 Blind Adaptive Channel Estimation

In this section we extend the blind adaptive channel estimation technique described in the

previous section to the asynchronous multipath case. First, however, we describe the discrete-

time channel model in order to formulate an analog to the optimization problem in (5.206).
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Discrete-time Channel Model

Using (5.242) and (5.244) it is easy to see that

ha,k =



g
(1)
a,k[0, 0]

...

g
(1)
a,k[0, 2N − 1]

g
(2)
a,k[0, 0]

...

g
(2)
a,k[0, 2N − 1]

...

g
(1)
a,k[�ι/2	, 0]

...

g
(1)
a,k[�ι/2	, 2N − 1]

g
(2)
a,k[�ι/2	, 0]

...

g
(2)
a,k[�ι/2	, 2N − 1]


4N(ι/2�+1)×1

. (5.251)

From (5.239) we have for j = 0, . . . , �ι/2	;n = 0, . . . , 2N − 1; b = 1, 2

g
(b)
1,k[j, n] = h

(1,b)
1,k [j, n] + h

(2,b)
1,k [j, n], (5.252)

and g
(b)
2,k[j, n] = h

(2,b)
2,k [j, n] − h(1,b)

2,k [j, n]. (5.253)

We will develop the discrete-time channel model for gb
1,k[j, n]. The development for gb

2,k[j, n]

follows similarly. From (5.238) we see that

gb
1,k[j, n] =

N−1∑
q=0

c1,k[q]f
(1,b)
k [n+ 2jN − q] +

N−1∑
q=0

c1,k[q]f
(2,b)
k [n+ 2jN −N − q]. (5.254)

From (5.238) we can also see that the sequences f 1,b
k [i] and f 2,b

k [i] are zero whenever i < 0 or

i > ιN . With this in mind we define the following vectors,

g
(b)
1,k

�
=

[
g

(b)
1,k[0, 0] . . . g

(b)
1,k[0, 2N − 1] . . . g

(b)
1,k[�ι/2	, 0] . . . g

(b)
1,k[�ι/2	, 2N − 1]

]T

f
(1,b)
1,k

�
=

[
f

(1,b)
k [0] . . . f

(1,b)
k [ιN ] 0 . . . 0︸ ︷︷ ︸

Nzeros

]T

and f
(2,b)
1,k

�
=

[
0 . . . 0︸ ︷︷ ︸
Nzeros

f
(2,b)
k [0] . . . f

(2,b)
k [ιN ]

]T

.
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Then (5.255) can be written as

g
(b)
1,k = C1,k ·

[
f

(1,b)
1,k + f

(2,b)
1,k

]
︸ ︷︷ ︸

f (b)

1,k

, (5.255)

where

C1,k
�
=



c1,k[0]

c1,k[0]
. . .

...
. . . c1,k[0]

... c1,k[1]

c1,k[N − 1]
...

. . .
...

c1,k[N − 1]


(2N(ι/2�+1))×(N(ι+1)+1)

.

A similar development for gb
2,k[j, n] produces the result

g
(b)
2,k = C2,k ·

[
f

(2,b)
2,k − f

(1,b)
2,k

]
︸ ︷︷ ︸

f (b)

2,k

, (5.256)

where

f
(2,b)
2,k

�
=

[
f

(2,b)
k [0] . . . f

(2,b)
k [ιN ] 0 . . . 0︸ ︷︷ ︸

Nzeros

]T

and f
(1,b)
2,k

�
=

[
0 . . . 0︸ ︷︷ ︸
Nzeros

f
(1,b)
k [0] . . . f

(1,b)
k [ιN ]

]T

.

The final task in the section is to form expressions for the composite signature wave-

forms h1,k and h2,k in terms of the signature matrices C1,k,C2,k and the channel response

vectors f
(b)
1,k and f

(b)
2,k. Denote by Ca,k[j], j = 0, 1, . . . , �ι/2	, a ∈ {1, 2} the submatrix of Ca,k

consisting of rows 2Nj + 1 through 2(j + 1)N . Then it is easy to show that

ha,k = Ca,kfa,k, (5.257)
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where

Ca,k
�
=



Ca,k[0] 0

0 Ca,k[0]

Ca,k[1] 0

0 Ca,k[1]
...

...

Ca,k[�ι/2	] 0

0 Ca,k[�ι/2	]


4N(ι/2�+1)×(2N(ι+1)+2)

and fa,k
�
=

[
f

(1)
a,k

f
(2)
a,k

]
(2N(ι+1)+2)×1

.

Blind Adaptive Channel Estimation

The blind channel estimation problem for the asynchronous multipath case involves the

estimation of fa,k from the received signal r[i]. As we did for the synchronous case, we will

exploit the orthogonality between the signal subspace and noise subspace. Specifically, since

Un is orthogonal to the columnspace of H , we have

UH
n ha,k = UH

n Ca,kfa,k = 0. (5.258)

Denote by z[i] the projection of the received signal r[i] onto the noise subspace, i.e.,

z[i] = r[i] − U sU
H
s r[i] (5.259)

= UnUH
n r[i]. (5.260)

Using (5.258) we have

fH
a,kC

H

a,kz[i] = 0. (5.261)

Our channel estimation problem, then, involves the solution of the optimization problem

f̂a,k = arg min
f
E

{∣∣∣fHC
H

a,kz[i]
∣∣∣2} (5.262)

subject to the constraint ‖f‖ = 1. If we denote x[i]
�
= C

H

a,kz[i] then we can use the Kalman-

type algorithm described in (5.207)-(5.209) where h1[i] is replaced with fa,k[i].

Note that a necessary condition for the channel estimate to be unique is that the matrix

UH
n Ca,k is tall, i.e. 4Nm − 2K(m + �ι/2	) ≥ 2N(ι + 1) + 2. Therefore we choose the

smoothing factor, m, such that

m ≥
⌈
N(ι+ 1) +K�ι/2	 + 1

2N −K
⌉
. (5.263)
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Using the same constraint, we find that for a fixed m, the maximum number of users that

can be supported is

min

{⌊
N(2m− ι− 1) − 1

m+ �ι/2	
⌋
,
N

2

}
(5.264)

Equation (5.264) illustrates one of the benefits of the proposed space-time receiver struc-

ture over the linear diversity structure. Notice that for reasonable choices of m and ι, (5.264)

is larger than the maximum number of users for the linear diversity receiver structure, given

by ⌊
N(m− ι)
2(m+ ι)

⌋
. (5.265)

Another significant benefit of the space-time receiver is reduced complexity. The diversity

structure requires four independent subspace trackers operating simultaneously since the

receiver performs detection on each of the four received signals, and each has a different

signal subspace. Since we stack received signal vectors before detection, the space-time

structure only requires one subspace tracker.

Once an estimate of the channel state, f̂a,k, is obtained, the composite signature vector

of the kth user for bit a is given by (5.257). Note that there is an arbitrary phase ambiguity

in the estimated channel state, which necessitates differential encoding and decoding of the

transmitted data. Finally, we summarize the blind adaptive linear space-time multiuser

detection algorithm in multipath CDMA as follows.

Algorithm 5.6 [Blind adaptive linear space-time multiuser detector – asynchronous multi-

path CDMA, two transmit antennas and two receive antennas]

• Stack matched filter outputs in (5.235) according to (5.242), (5.243), and (5.244) to

form r[i].

• Form Ca,k according to (5.258).

• Using a suitable signal subspace tracking algorithm, e.g., NAHJ, update the signal

subspace components U s[i] and Λs[i] at each time slot i.
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• Track the channel fa,k according to the following

z[i] = r[i] − U s[i]U s[i]
Hr[i], (5.266)

x[i] = C
H

a,kz[i], (5.267)

k[i] = Σ[i− 1] x[i]
(
x[i]HΣ[i− 1]x[i]

)−1
, (5.268)

fa,k[i] = fa,k[i− 1] − k[i]
(
x[i]Hfa,k[i− 1]

)
/
∥∥fa,k[i− 1] − k[i]

(
x[i]Hfa,k[i− 1]

)∥∥ ,
(5.269)

Σ[i] = Σ[i− 1] − k[i] x[i]HΣ[i− 1], (5.270)

• Form the detectors

wa,k[i] = U s[i]Λ
−1
s [i]U s[i]

HCa,kfa,k[i]. (5.271)

• Perform differential detection:

za,k[i] = wa,k[i]
Hr[i], (5.272)

β̂a,k[i] = sign
(
�
{
za,k[i] za,k[i− 1]∗

})
. (5.273)

Simulation Results

In what follows, we present simulation results to illustrate the performance of blind adaptive

space-time multiuser detection. We first look at the synchronous flat-fading case; then we

consider the asynchronous multipath-fading scenario. For all simulations we use the two

transmit/two receive antenna configuration. Gold codes of length 15 are used for each user.

The chip pulse is a raised cosine with roll-off factor .5. For the multipath case, each user

has L = 3 paths. The delay of each path is uniform on [0, T ]. Hence, the maximum delay

spread is one symbol interval, i.e. ι = 1. The fading gain for each users’ channel is generated

from a complex Gaussian distribution and is fixed for all simulations. The path gains in

each users’s channel are normalized so that each users’s signal arrives at the receiver with

the same power. The smoothing factor is m = 2. For SIR plots, the number of users for

the first 1500 iterations is 4. At iteration 1501, 3 users are added so that the system is fully

loaded. At iteration 3001, 5 users are removed. For the steady state bit-error-probability
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Figure 5.14: Adaptation performance of space-time multiuser detection for synchronous

CDMA. The labelled horizontal lines represent bit-error-probability thresholds.
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plots, the frame size is 200 bits and the system is allowed 1000 bits to reach steady state

before errors are checked. The forgetting factor for the subspace tracking algorithm for all

simulations is .995.
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Figure 5.15: Steady state performance of space-time multiuser detection for synchronous

CDMA.

The performance measures are bit-error probability and the signal-to-interference-plus-

noise ratio, defined by SINR
�
= E2{wHr}/Var{wHr}, where the expectation is with respect

to the data bits of interfering users, the ISI bits, and the ambient noise. In the simulations,

the expectation operation is replaced by the time averaging operation. SINR is a particularly

appropriate figure of merit for MMSE detectors since it has been shown [372] that the

output of an MMSE detector is approximately Gaussian distributed. Hence, the SINR

values translate directly and simply to bit-error probabilities, i.e. Pr(e) ≈ Q
(√

SINR
)
. The

labeled horizontal lines on the SINR plots (Fig. 5.14 and Fig. 5.16) represent BER thresholds.

Fig. 5.14 illustrates the adaptation performance for the synchronous case. The SNR is

8dB. Notice that the BER does not drop below 10−3 even when users enter or leave the

system.
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Figure 5.16: Adaptation performance of space-time multiuser detection for asynchronous

multipath CDMA. The labelled horizontal lines represent BER thresholds.
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Fig. 5.15 shows the steady state performance for the synchronous case for different system

loads. We see that the performance changes little as the system load changes.

Fig. 5.16 shows the adaptation performance for the asynchronous multipath case. The

SNR for this simulation is 11dB. Again, notice that the BER does not drop significantly as

users enter and leave the system.

Fig. 5.17 shows the steady state performance for the asynchronous multipath case for

different system loads. It is seen that system loading has a more significant effect on perfor-

mance for the asynchronous multipath case that it does for the synchronous case.
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Figure 5.17: Steady state performance of space-time multiuser detection for asynchronous

multipath CDMA.
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Chapter 6

Turbo Multiuser Detection

6.1 Introduction - The Principle of Turbo Processing

In recent years, iterative (“turbo”) processing techniques have received considerable attention

followed by the discovery of the powerful turbo codes [34, 35]. The so called “turbo principle”

can be successfully applied to many detection/decoding problems such as serial concatenated

decoding, equalization, coded modulation, multiuser detection and joint source and channel

decoding [166, 439]. We start the discussion of this chapter by illustrating the general concept

of turbo processing for concatenated systems using a simple example.

A typical communications system in general consists of a cascade of subsystems with

different signal processing functionalities. Consider, for example, the simple communication

system employing channel coding and signaling over an intersymbol interference (ISI) chan-

nel, as shown in Fig. 6.1. In a “conventional” receiver, the demodulator makes hard decisions

about the transmitted bits {b[i]} based on the received signal r(t), which are then passed to

the channel decoder to decode the transmitted information. The problem with this approach

is that by making hard decisions of the bits, information loss is incurred in each subsystem

(i.e., demodulator and decoder). This is because while the subsystem only indicates whether

it believes that a given bit is a “0” or a “1”, it usually has sufficient information to estimate

the degree of confidence in its decisions. One straightforward way to reduce the loss of in-

formation, and the resulting loss in performance, is to pass the confidence level along with

the decision, i.e., to render soft decisions. This is often done when passing information from

347
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a demodulator to a channel decoder, which is known to result in approximately a 2dB per-

formance gain in the additive white Gaussian noise (AWGN) channel [388]. However, even

if optimal bit-by-bit soft decisions are passed between all the subsystems in the receiver,

the overall performance can still be far from optimal. This is due to the fact that, while

later stages (e.g., the channel decoder) can use the information gleaned from previous stages

(e.g., the demodulator), the reverse is not generally true. While the optimal performance

can be achieved by performing a joint detection, taking all receiver processing into account

simultaneously (e.g., maximum likelihood detection based on the super-trellis of both the

channel code and the ISI channel), the complexity of such a joint approach is usually pro-

hibitive. This motivates an iterative (turbo) processing approach which allows earlier stages

(e.g., the demodulator) to refine their processing based on information obtained from later

stages (e.g., the channel decoder).

deinterleaver

interleaverchannel 
encoder

channel
decoder

modulator

demodulator

ISI channel

r(t)

{ b[i] }

Figure 6.1: A coded communication system signaling through an intersymbol interference

(ISI) channel.

In order to employ turbo processing in the system shown in Fig. 6.1, both the demodulator

and the channel decoder are of the maximum a posteriori probability (MAP) type. The

function of the MAP demodulator is to produce soft decisions which reflect the probability

that a given bit is a “0” or a “1”. At the lth iteration, the information available to the

MAP demodulator consists of the received signal r(t) and the a priori probabilities of the

input bits, the later of which are applied by the MAP channel decoder based on its output

from the (l − 1)th iteration. The MAP demodulator uses this information, combined with

knowledge of the chosen modulation and of the channel structure, to produce the a posteriori
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probabilities (APPs) of the channel bits

P l(b[i] = 1 | r(t)) =
p(r(t) | b[i] = 1)P l−1(b[i] = 1)

p(r(t))
, (6.1)

and P l(b[i] = 0 | r(t)) =
p(r(t) | b[i] = 0)P l−1(b[i] = 0)

p(r(t))
, (6.2)

for all {b[i]}i. Consider the log-likelihood ratio (LLR) formed from the a posteriori proba-

bilities of (6.1) and (6.2):

Λl
1(b[i])

�
= log

P l(b[i] = 1 | r(t))
P l(b[i] = 0 | r(t))

= log
p(r(t) | b[i] = 1)

p(r(t) | b[i] = 0)︸ ︷︷ ︸
λl
1(b[i])

+ log
P l−1(b[i] = 1)

P l−1(b[i] = 0)︸ ︷︷ ︸
λl−1
2 (b[i])

. (6.3)

It is seen from (6.3) that the LLR is the sum of two distinct quantities. The first term,

λl
1(b[i]), is the so-called extrinsic information produced by the first stage subsystem in the

receiver (i.e., the MAP demodulator), which is information that the MAP demodulator gleans

about b[i] from the received signal r(t) and the a priori probabilities of the other transmitted

bits, without utilizing the a priori probability of b[i]. The second term, λl−1
2 (b[i]), contains

the a priori probability of b[i]. Note that typically, for the first iteration (l = 1), we set

P 0(b[i] = 1) = P 0(b[i] = 0) = 1
2
, i.e., λ0

2(b[i]) = 0 for all i. The extrinsic information

{λl
1(b[i])} produced by the MAP demodulator, is sent to the second stage subsystem, i.e.,

the MAP channel decoder, as the a priori information for channel decoding.

Based on the a priori information provided by the MAP demodulator, and the channel

code constraints, the MAP channel decoder computes the a posteriori LLR of each code bit

Λl
2(b[i])

�
= log

P (b[i] = 1 | {λl
1(b[i])}; code structure)

P (b[i] = 0 | {λl
2(b[i])}; code structure)

= λl
2(b[i]) + λl

1(b[i]). (6.4)

The factorization (6.4) will be shown in Section 6.2. Here again we see that the output

of the channel decoder is the sum of the extrinsic information λl
2(b[i]) obtained by the

second stage subsystem (i.e., the MAP channel decoder), and the prior information λl
1(b[i])

delivered by the previous stage (i.e., the MAP demodulator). The extrinsic information

λl
2(b[i]) is then fed back to the MAP demodulator as the a priori information in the next
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(i.e., (l+ 1)th ) iteration. It is important to note that (6.3) and (6.4) hold only if the inputs

to the demodulator or the decoder are independent. Since both the ISI channel and the

channel encoder have memories, this independence assumption will not be valid; therefore,

interleaving (i.e., permutation of time order) must be present between the demodulator

and the decoder in order to provide approximate independence. Finally, the turbo receiver

structure for the coded ISI system is illustrated in Fig. 6.2. This scheme was first introduced

in [100], and is termed “turbo equalizer”. The name “turbo” is justified because both the

demodulator and the decoder use their processed output values as a priori input for the next

iteration, similar to a turbo engine. The application of the turbo processing principle for

joint demodulation and decoding in fading channels can be found in [136, 177].

In this chapter, we discuss the applications of turbo processing techniques in a variety of

multiple-access communication systems with different coding schemes (convolutional codes,

turbo codes, space-time codes), signaling structures (CDMA, TDMA, SDMA) and channel

conditions (AWGN, fading, multipath).

MAP

demodulator
deinterleaver + interleaver

Λ 2 λ 2λ 1Λ1 MAP

decoder
+

r(t)

-

-

Figure 6.2: A turbo receiver for coded communication over ISI channel.

The rest of this chapter is organized as follows. In Section 6.2, we present the maximum

a posteriori (MAP) decoding algorithm for convolutional codes. In Section 6.3, we discuss

turbo multiuser detectors in synchronous CDMA systems. In Section 6.4, we treat the

problem of turbo multiuser detection in the presence of unknown interferers. In Section

6.5, we discuss turbo multiuser detection in general asynchronous CDMA systems with

multipath fading channels. In Section 6.6, we discuss turbo multiuser detection for turbo-

coded CDMA systems. In Section 6.7 and Section 6.8, we discuss the applications of turbo

multiuser detection in space-time block coded systems and space-time trellis coded systems,

respectively. Some mathematical proofs and derivations are given in Section 6.9.

The following is a list of the algorithms appeared in this chapter.
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• Algorithm 6.1: MAP decoding algorithm for convolutional codes;

• Algorithm 6.2: Low-complexity SISO multiuser detector - synchronous CDMA;

• Algorithm 6.3: Group-blind SISO multiuser detector - synchronous CDMA;

• Algorithm 6.4: SISO multiuser detector in multipath fading channel.

6.2 The MAP Decoding Algorithm for Convolutional

Codes

The input-output relationship of the MAP channel decoder is illustrated in Fig. 6.3. The

MAP decoder takes as input the a priori LLR’s (or equivalently, probability distributions) of

the code (i.e., channel) bits. It delivers as output an update of the LLR’s of the code bits, as

well as the LLR’s of the information bits, based on the code constraints. In this section, we

outline a recursive algorithm for computing the LLR’s of the code bits and the information

bits, which is essentially a slight modification of the celebrated BCJR algorithm [24].

{ }P[d t =1 ]j

{ }P[ t =1 ]b kchannel decoder 

{ }P[ t
i =1 ]b

a  priori prob’s

prob’sSISO a posteriori

Figure 6.3: The input-output relationship of an MAP channel decoder.

Consider a binary rate- k0

n0
convolutional encoder of overall constraint length k0ν. The

input to the encoder at time t is a block of k0 information bits

dt =
(
d1

t , . . . , d
k0
t

)
,

and the corresponding output is a block of n0 code bits

bt =
(
b1t , . . . , b

n0
t

)
.

The state of the trellis at time t can be represented by a [k0(ν − 1)]-tuple, as

St =
(
s1t , . . . , s

k0(ν−1)
t

)
=

(
dt−1, . . . , dt−ν+1

)
.
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The dynamics of a convolutional code is completely specified by its trellis representation,

which describes the transitions between the states at time instants t and (t + 1). A path

segment in the trellis from t = a to t = b > a is determined by the states it traverses at each

time a ≤ t ≤ b, and is denoted by

Lb
a

�
= (Sa, Sa+1, . . . , Sb).

Denote the input information bits that cause the state transition from St−1 = s′ to St = s

by d(s′, s) and the corresponding output code bits by b(s′, s). Assuming that the systematic

code is used, then the pair (s′, b) uniquely determines the state transition (s′, s). We next

consider computing the probability P (St−1 = s′, St = s) based on the a priori probabilities

of the code bits {P (bt)}, and the constraints imposed by the trellis structure of the code.

Suppose that the encoder starts in state S0 = 0. An information bit stream {dt}T
t=1, is the

input to the encoder, followed by ν blocks of all zero inputs, causing the encoder to end in

state Sτ = 0, where τ = T + ν. Let bt denote the output of the channel encoder at time t.

We use the notation

P [bt(s
′, s)] �

= P [bt = b(s′, s)] . (6.5)

Then we have

P (St−1 = s′, St = s) =
∑

Lτ
0 : St−1=s′,St=s

P (Lτ
0)

=
∑

Lt
0: St−1=s′

∑
Lτ

t+1: St=s

P
(Lt

0

)
P [bt(s

′, s)] P
(Lτ

t+1

)

=

 ∑
Lt

0: St−1=s′
P

(Lt
0

)
︸ ︷︷ ︸

αt−1(s′)

P [bt(s
′, s)]

 ∑
Lτ

t+1: St=s

P
(Lτ

t+1

)
︸ ︷︷ ︸

βt(s)

= αt−1(s
′) βt(s)

n0∏
i=1

P
[
bit(s

′, s)
]
, (6.6)

where αt(s) denotes the total probability of all path segments starting from the origin of the

trellis which terminate in state s at time t; and where βt(s) denotes the total probability of

all path segments terminating at the end of the trellis which originate from state s at time
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t. In (6.6) we have assumed that the interleaving is ideal and therefore the joint distribution

of bt factors into the product of its marginals:

P [bt(s
′, s)] =

n0∏
i=1

P
[
bit(s

′, s)
]
. (6.7)

The quantities αt(s) and βt(s) in (6.6) can be computed through the following forward and

backward recursions [24]:

αt(s) =
∑

s′
αt−1(s

′)P [bt(s
′, s)] , (6.8)

t = 1, 2, . . . , τ,

βt(s) =
∑

s′
βt+1(s

′)P
[
bt+1(s, s

′)
]
, (6.9)

t = τ − 1, τ − 2, . . . , 0,

with boundary conditions α0(0) = 1, α0(s) = 0 for s �= 0; and βτ (0) = 1, βτ (s) = 0 for s �= 0.

In (6.8) the summation is taken over all the states s′ where the transition (s′, s) is possible,

and similarly for the summation in (6.9).

Let S+
j be the set of state pairs (s′, s) such that the jth bit of the code symbol b(s′, s) is

+1. Similarly define S−
j . Using (6.6), the a posteriori LLR of the code bit bjt at the output

of the channel decoder is given by

Λ2

(
bjt
) �

= log
P

(
bjt = +1 | {P (bt)}t ; code structure

)
P

(
bjt = −1 | {P (bt)}t ; code structure

)

= log

∑
(s′,s)∈S+

j

αt−1(s
′) · βt(s) ·

n0∏
i=1

P
[
bit(s

′, s)
]

∑
(s′,s)∈S−

j

αt−1(s
′) · βt(s) ·

n0∏
i=1

P
[
bit(s

′, s)
]

= log

∑
(s′,s)∈S+

j

αt−1(s
′) · βt(s) ·

∏
i�=j

P
[
bit(s

′, s)
]

∑
(s′,s)∈S−

j

αt−1(s
′) · βt(s) ·

∏
i�=j

P
[
bit(s

′, s)
]

︸ ︷︷ ︸
λ2(bj

t)

+ log
P

(
bjt = +1

)
P

(
bjt = −1

)︸ ︷︷ ︸
λ1(bj

t)

. (6.10)

It is seen from (6.10) that the output of the MAP channel decoder is the sum of the prior

information λ1

(
bjt
)

of the code bit bjt , and the extrinsic information λ2

(
bjt
)
. The extrinsic
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information is the information about the code bit bjt gleaned from the prior information

about the other code bits based on the trellis structure of the code.

A direct implementation of the recursions (6.8) and (6.9) is numerically unstable, since

both αt(s) and βt(s) drop toward zero exponentially. For sufficiently large τ , the dynamic

range of these quantities will exceed the range of any machine. In order to obtain a numer-

ically stable algorithm, these quantities must be scaled as the computation proceeds. Let

α̃t(s) denote the scaled version of αt(s). Initially, α1(s) is computed according to (6.8), and

we set

α̂1(s) = α1(s), (6.11)

α̃1 = c1 α̂1(s), (6.12)

with c1
�
=

1∑
s

α̂1(s)
. (6.13)

For each t ≥ 2, we compute α̃t(s) according to

α̂t(s) =
∑

s′
α̃t−1(s

′)P [bt(s
′, s)] , (6.14)

α̃t(s) = ct α̂t(s), (6.15)

with ct =
1∑

s

α̂t(s)
. (6.16)

t = 2, . . . , τ.

Now by a simple induction we obtain

α̃t−1(s) =

(
t−1∏
i=1

ci

)
︸ ︷︷ ︸

Ct−1

αt−1(s). (6.17)

Thus we can write α̃t(s) as

α̃t(s) =

∑
s′
Ct−1αt−1(s

′)P [bt(s
′, s)]∑

s

∑
s′
Ct−1αt−1(s

′)P [bt(s
′, s)]

=
αt(s)∑

s

αt(s)
. (6.18)
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That is, each αt(s) is effectively scaled by the sum over all states of αt(s).

Let β̃t(s) denote the scaled version of βt(s). Initially, βτ−1(s) is computed according to

(6.9), and we set β̂τ−1(s) = βτ−1(s). For each t < τ − 1, we compute β̃t(s) according to

β̂t(s) =
∑

s′
β̃t+1(s

′)P
[
bt+1(s, s

′)
]
, (6.19)

β̃t(s) = ct β̂t(s). (6.20)

t = τ − 2, . . . , 0.

Because the scale factor ct effectively restores the sum of αt(s) over all states to 1, and

because the magnitude of αt(s) and βt(s) are comparable, using the same scaling factor is an

effective way to keep the computation within reasonable range. Furthermore, by induction,

we can write

β̃t(s) =

(
τ∏

i=t

ci

)
︸ ︷︷ ︸

Dt

βt(s). (6.21)

Using the fact that

Ct−1Dt =
t−1∏
i=1

ci ·
τ∏

i=t

ci =
τ∏

i=1

ci (6.22)

is a constant which is independent of t, we can then rewrite (6.10) in terms of the scaled

variables as

Λ2

(
bjt
)

= log

∑
(s′,s)∈S+

j

Ct−1 αt−1(s
′)Dt βt(s) ·

∏
i�=j

P
[
bit(s

′, s)
]

∑
(s′,s)∈S−

j

Ct−1 αt−1(s
′)Dt βt(s) ·

∏
i�=j

P
[
bit(s

′, s)
] + λ1

(
bjt
)

= log

∑
(s′,s)∈S+

j

α̃t−1(s
′) · β̃t(s) ·

∏
i�=j

P
[
bit(s

′, s)
]

∑
(s′,s)∈S−

j

α̃t−1(s
′) · β̃t(s) ·

∏
i�=j

P
[
bit(s

′, s)
]

︸ ︷︷ ︸
λ2(bj

t)

+λ1

(
bjt
)
. (6.23)

We can also compute the a posteriori LLR of the information symbol bit. Let U+
j be

the set of state pairs (s′, s) such that the jth bit of the information symbol d(s′, s) is +1.
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Similarly define U−
j . Then we have

Λ2

(
dj

t

)
= log

∑
(s′,s)∈U+

j

α̃t−1(s
′) · β̃t(s) ·

n0∏
i=1

P
[
bit(s

′, s)
]

∑
(s′,s)∈U−

j

α̃t−1(s
′) · β̃t(s) ·

n0∏
i=1

P
[
bit(s

′, s)
] . (6.24)

Note that the LLR’s of the information bits are only computed at the last iteration. The

information bit dj
t is then decoded according to

d̂j
t = sign

[
Λ2

(
dj

t

)]
. (6.25)

Finally, since the input to the MAP channel decoder is the LLR of the code bits, {λ1 (bit)},
as will be shown in the next section, the code bit distribution P [bit(s

′, s)] can be expressed

in terms of its LLR as [cf.(6.39)]

P
[
bit(s

′, s)
]

=
1

2

{
1 + bi(s′, s) tanh

[
1

2
λ1

(
bit
)]}

. (6.26)

The following is a summary of the MAP decoding algorithm for convolutional codes.

Algorithm 6.1 [MAP decoding algorithm for convolutional codes]

• Compute the code bit probabilities from the corresponding LLR’s using (6.26).

• Initialize the forward and backward recursions:

α0(0) = 1, α0(s) = 0, for s �= 0;

βτ (0) = 1, βτ (s) = 0, for s �= 0.

• Compute the forward recursion using (6.8), (6.11) - (6.16).

• Compute the backward recursion using (6.9), (6.19) - (6.20).

• Compute the LLR’s of the code bits and the information bits using (6.23) and (6.24).
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6.3 Turbo Multiuser Detection for Synchronous

CDMA

6.3.1 Turbo Multiuser Receiver

We consider a convolutionally coded synchronous real-valued CDMA system with K users,

employing normalized modulation waveforms s1, s2, . . . , sK , and signaling through an ad-

ditive white Gaussian noise channel. The block diagram of the transmitter-end of such a

system is shown Fig. 6.4. The binary information symbols {dk[m]}m for User k, k = 1, . . . , K,

are convolutionally encoded with code rate Rk. A code bit interleaver is used to reduce the

influence of the error bursts at the input of each channel decoder. The interleaved code bits

of the kth user are BPSK modulated, yielding data symbols of duration T . Each data symbol

bk[i] is then spread by a signature waveform sk(t), and transmitted through the channel.

As seen from the preceding chapters, the received continuous-time signal can be written

as

r(t) =
K∑

k=1

Ak

M−1∑
i=0

bk[i]sk(t− iT ) + n(t), (6.27)

where n(t) is a zero-mean white Gaussian noise process with power spectral density σ2, and

Ak is the amplitude of the kth user.
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Figure 6.4: A coded CDMA system.

The turbo receiver structure is shown in Fig. 6.5. It consists of two stages: a soft-input

soft-output (SISO) multiuser detector, followed by K parallel single-user MAP channel de-

coders. The two stages are separated by deinterleavers and interleavers. The SISO multiuser



358 CHAPTER 6. TURBO MULTIUSER DETECTION

Λ 1 1(b [i])

Λ (b [i])1 2

Λ (b [i])K1

+

+

+

λ (b [i])11

(b [i])21λ 

λ (b [i])1 K

λ (b [i]])2 1

λ (b [i])2 2

λ (b [i])

(b [n])λ 2 1

(b [n])λ 22

(b [n])λ 2 K

.

.

.

(b [n])Λ2 1

(b [n])Λ 22

(b [n])Λ K2

+

+

+

(b [n])λ 11

(b [n])λ 1 2

(b [n])λ K1

.

.

.

.

.

.

∆:decoded information bits

.

.

.

+

+

+

-

-

-

. . . 

2 K

-

-

-

r(t) multiuser +

+

+

deinterleaver

deinterleaver

deinterleaver

interleaver

interleaver

interleaver

Π

Π

Π

Π

Π

Π

1

K

2 2

K

1

-1

-1

-1

∆

∆

∆

channel  decoder

channel  decoder

channel  decoder

SISO

SISO

SISO

SISO

detector

Figure 6.5: A turbo multiuser receiver.

detector delivers the a posteriori log-likelihood ratio (LLR) of a transmitted “+1” and a

transmitted “−1” for every code bit of each user,

Λ1(bk[i])
�
= log

P (bk[i] = +1 | r(t))
P (bk[i] = −1 | r(t)) , (6.28)

k = 1, . . . , K, i = 0, . . . ,M − 1.

As before, using Bayes’ rule, (6.29) can be written as

Λ1(bk[i]) = log
p[r(t) | bk[i] = +1]

p[r(t) | bk[i] = −1]︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = +1)

P (bk[i] = −1)︸ ︷︷ ︸
λ2(bk[i])

, (6.29)

where the second term in (6.29), denoted by λ2[bk(i)], represents the a priori LLR of the

code bit bk[i], which is computed by the MAP channel decoder of the kth user in the previous

iteration, interleaved and then fed back to the SISO multiuser detector. For the first iteration,

assuming equally likely code bits, i.e., no prior information available, we then have λ2(bk[i]) =

0, for 1 ≤ k ≤ K and 0 ≤ i < M . The first term in (6.29), denoted by λ1(bk[i]), represents

the extrinsic information delivered by the SISO multiuser detector, based on the received

signal r(t), the structure of the multiuser signal given by (6.27), the prior information about

the code bits of all other users, {λ2(bl[i])}i; l �=k, and the prior information about the code bits

of the kth user other than the ith bit, {λ2(bk[j])}j �=i. The extrinsic information {λ1(bk[i])}i

of the kth user, which is not influenced by the a priori information {λ2(bk[i])}i provided by

the MAP channel decoder, is then reverse interleaved and fed into the kth user’s channel
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decoder, as the a priori information in the next iteration. Denote the code bit sequence of

the kth user after deinterleaving as {bπk [i]}i.

Based on the prior information {λ1(b
π
k [i])}i, and the trellis structure of the channel code

(i.e., the constraints imposed by the code), the kth user’s MAP channel decoder computes

the a posteriori LLR of each code bit,

Λ2 (bπk [i])
�
= log

P (bπk [i] = +1 | {λ1(b
π
k [i])}i; code structure)

P (bπk [i] = −1 | {λ1(bπk [i])}i; code structure)

= λ2(b
π
k [i]) + λ1(b

π
k [i]), (6.30)

i = 0, . . . ,M − 1; k = 1, . . . , K,

where the second equality has been shown in the previous section [cf.(6.10)]. It is seen from

(6.30) that the output of the MAP channel decoder is the sum of the prior information

λ1(b
π
k [i]), and the extrinsic information λ2(b

π
k [i]) delivered by the MAP channel decoder. As

discussed in the previous section, this extrinsic information is the information about the

code bit bπk [i] gleaned from the prior information about the other code bits, {λ1(b
π
k [j])}j �=i,

based on the trellis constraint of the code. The MAP channel decoder also computes the

a posteriori LLR of every information bit, which is used to make decision on the decoded

bit at the last iteration. After interleaving, the extrinsic information delivered by the K

MAP channel decoders {λ2(bk[i])}i;k is then fed back to the SISO multiuser detector, as

the prior information about the code bits of all users, in the next iteration. Note that at

the first iteration, the extrinsic information {λ1(bk[i])}i;k and {λ2(bk[i])}i;k are statistically

independent. But subsequently, since they use the same information indirectly they will

become more and more correlated and finally the improvement through the iterations will

diminish.

6.3.2 The Optimal SISO Multiuser Detector

For the synchronous CDMA system (6.27), it is easily seen that a sufficient statistic for

demodulating the ith code bits of theK users is given by theK-vector y[i] =
[
y1[i] . . . yK [i]

]T

whose kth component is the output of a filter matched to sk(·) in the ith code bit interval,

i.e.,

yk[i]
�
=

∫ (i+1)T

iT

r(t) sk(t− iT )dt. (6.31)
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This sufficient statistic vector y[i] can be written as [511]

y[i] = RAb[i] + n[i], (6.32)

where R denotes the normalized cross-correlation matrix of the signal set s1, . . . , sK :

[R]k,l = ρkl
�
=

∫ T

0

sk(t) sl(t)dt; (6.33)

A
�
= diag(A1, . . . , AK); b[i] =

[
b1[i] . . . bK [i]

]T

; and n[i] ∼ N (0, σ2R) is a Gaussian noise

vector, independent of b[i].

In what follows, for notational simplicity, we drop the symbol index i whenever possible.

Denote

B+
k

�
=

{
(b1, . . . , bk−1,+1, bk+1, . . . , bK) : bj ∈ {+1,−1}

}
,

and B−
k

�
=

{
(b1, . . . , bk−1,−1, bk+1, . . . , bK) : bj ∈ {+1,−1}

}
.

From (6.32), the extrinsic information λ1(bk) delivered by the SISO multiuser detector

[cf.(6.29)] is then given by

λ1(bk)
�
= log

p(y | bk = +1)

p(y | bk = −1)

= log

∑
b∈B+

k

exp

[
− 1

2σ2
(y − RAb)T R−1 (y − RAb)

]∏
j �=k

P (bj)

∑
b∈B−

k

exp

[
− 1

2σ2
(y − RAb)T R−1 (y − RAb)

]∏
j �=k

P (bj)

,

(6.34)

where we used the notation P (bj)
�
= P (bj[i] = bj) for bj ∈ {+1,−1}. The summations in

the numerator (resp. denominator) in (6.34) are over all the 2K−1 possible vectors b in B+
k

(resp. B−
k ). We have

exp

[
− 1

2σ2
(y − RAb)T R−1 (y − RAb)

]
= exp

(
− 1

2σ2
yT R−1y

)
exp

(
− 1

2σ2
bT ARAb

)
exp

(
1

σ2
bT Ay

)
. (6.35)
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Note that the first term in (6.35) is independent of b and therefore will be canceled in (6.34).

The third term in (6.35) can be written as

exp

(
1

σ2
bT Ay

)
= exp

(
1

σ2

K∑
j=1

Aj yj bj

)
=

K∏
j=1

exp

(
Aj yj bj
σ2

)

=
K∏

j=1

[
1 + bj

2
exp

(
Aj yj

σ2

)
+

1 − bj
2

exp

(
−Aj yj

σ2

)]
(6.36)

=
K∏

j=1

{
1

2

[
exp

(
Aj yj

σ2

)
+ exp

(
−Aj yj

σ2

)]
+
bj
2

[
exp

(
Aj yj

σ2

)
− exp

(
−Aj yj

σ2

)]}

=
K∏

j=1

[
cosh

(
Aj yj

σ2

)][
1 + bj tanh

(
Aj yj

σ2

)]
, (6.37)

where (6.36) follows from the fact that bj ∈ {+1,−1}. The first term in (6.37) is also

independent of b and will be canceled in (6.34). In (6.34) the a priori probabilities of the

code bits can be expressed in terms of their LLR’s λ2(bj[i]), as follows. Since

λ2(bj[i])
�
= log

P (bj[i] = +1)

P (bj[i] = −1)
,

after some manipulations, we have for bj ∈ {+1,−1},

P (bj)
�
= P (bj[i] = bj)

=
exp [bj λ2(bj[i])]

1 + exp [bj λ2(bj[i])]

=
exp

[
1
2
bj λ2(bj[i])

]
exp

[−1
2
bj λ2(bj[i])

]
+ exp

[
1
2
bj λ2(bj[i])

]
=

cosh
[

1
2
λ2(bj[i])

] {
1 + bj tanh

[
1
2
λ2(bj[i])

]}
2 cosh

[
1
2
λ2(bj[i])

] (6.38)

=
1

2

{
1 + bj tanh

[
1

2
λ2(bj[i])

]}
, (6.39)

where (6.38) follows from a similar derivation as that of (6.37). Substituting (6.35), (6.37)

and (6.39) into (6.34) we obtain

λ1(bk[i]) =
2Ak yk[i]

σ2
+
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log

∑
b∈B+

k

{
exp

(
− 1

2σ2
bT ARAb

)∏
j �=k

[
1 + bj tanh

(
Aj yj[i]

σ2

)][
1 + bj tanh

(
1

2
λ2(bj[i])

)]}
∑
b∈B−

k

{
exp

(
− 1

2σ2
bT ARAb

)∏
j �=k

[
1 + bj tanh

(
Aj yj[i]

σ2

)][
1 + bj tanh

(
1

2
λ2(bj[i])

)]} .
(6.40)

It is seen from (6.40) that the extrinsic information λ1(bk[i]) at the output of the SISO

multiuser detector consists of two parts, the first term contains the channel value of the

desired user yk[i], and the second term is the information extracted from the other users’

channel values {yj[i]}j �=k as well as their prior information {λ2(bj[i])}j �=k.

6.3.3 A Low-Complexity SISO Multiuser Detector

It is clear from (6.40) that the computational complexity of the optimal SISO multiuser

detector is exponential in terms of the number of users K, which is certainly prohibitive

for channels with medium to large numbers of users. In what follows we describe a low-

complexity SISO multiuser detector based on a novel technique of combined soft interference

cancellation and linear MMSE filtering, which was first developed in [543].

Soft Interference Cancellation and Instantaneous Linear MMSE Filtering

Based on the a priori LLR of the code bits of all users, {λ2(bk[i])}k, provided by the MAP

channel decoder from the previous iteration, we first form soft estimates of the code bits of

all users as

b̃k[i]
�
= E {bk[i]} =

∑
b∈{+1,−1}

b P (bk[i] = b)

=
∑

b∈{+1,−1}

b

2

{
1 + b tanh

[
1

2
λ2(bj[i])

]}
(6.41)

= tanh

[
1

2
λ2(bj[i])

]
, k = 1, . . . , K, (6.42)

where (6.41) follows from (6.39). Define

b̃[i]
�
=

[
b̃1[i] . . . b̃K [i]

]T

, (6.43)
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and b̃k[i]
�
= b̃[i] − b̃k[i]ek

=
[
b̃1[i] . . . b̃k−1[i] 0 b̃k+1[i] . . . b̃K [i]

]T

, (6.44)

where ek denotes a K-vector of all zeros, except for the kth element, which is 1. Therefore,

b̃k[i] is obtained from b̃[i] by setting the kth element to zero. For each User k, a soft

interference cancellation is performed on the matched-filter output y[i] in (6.32), to obtain

yk[i]
�
= y[i] − RAb̃k[i]

= RA
(
b[i] − b̃k[i]

)
+ n[i], k = 1, . . . , K. (6.45)

Such a soft interference cancellation scheme was first proposed in [165]. Next, in order to

further suppress the residual interference in yk[i], an instantaneous linear minimum mean-

square error (MMSE) filter wk[i] is applied to yk[i], to obtain

zk[i] = wk[i]
T yk[i], (6.46)

where the filter wk[i] ∈ R
K is chosen to minimize the mean-square error between the code

bit bk[i] and the filter output zk[i], i.e.,

wk[i] = arg min
w∈RK

E
{(
bk[i] − wT yk[i]

)2
}

= arg min
w∈RK

wT E
{
yk[i] yk[i]

T
}

w − 2 wT E {bk[i] yk[i]} , (6.47)

where using (6.45), we have

E
{
yk[i] yk[i]

T
}

= RACov
{

b[i] − b̃k[i]
}

AR + σ2R, (6.48)

E {bk[i] yk[i]} = RAE
{
bk[i]

(
b[i] − b̃k[i]

)}
= RAek, (6.49)

and in (6.48)

Cov
{

b[i] − b̃k[i]
}

= diag
{

Var{b1[i]}, . . . , Var{bk−1[i]}, 1, Var{bk+1[i]}, . . . , Var{bK [i]}
}

= diag
{

1 − b̃1[i]2, . . . , 1 − b̃k−1[i]
2, 1, 1 − b̃k+1[i]

2, . . . , 1 − b̃K [i]2
}
,

(6.50)

because

Var{bj[i]} = E
{
bj[i]

2
} − (E{bj[i]})2 = 1 − b̃j[i]2. (6.51)
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Denote

V k[i]
�
= A Cov

{
b[i] − b̃k[i]

}
A

=
∑
j �=k

A2
j

(
1 − b̃j[i]2

)
eje

T
j + A2

keke
T
k . (6.52)

Substituting (6.48) and (6.49) into (6.47) we get

wk[i] =
(
RV k[i]R + σ2R

)−1
RAek

= Ak R−1
(
V k[i] + σ2R−1

)−1
ek. (6.53)

Substituting (6.45) and (6.53) into (6.46), we obtain

zk[i] = Ake
T
k

(
V k[i] + σ2R−1

)−1
(
R−1y[i] − Ab̃k[i]

)
. (6.54)

Notice that the term R−1y[i] in (6.54) is the output of a linear decorrelating multiuser

detector. Next we consider some special cases of the output zk[i].

1. No prior information on the code bits of the interfering users: i.e., λ2(bk[i]) = 0, for

1 ≤ k ≤ K. In this case, b̃k[i] = 0, and V k[i] = A2. Then (6.54) becomes

zk[i] = Ake
T
k

(
R + σ2A−2

)−1
y[i], (6.55)

which is simply the output of the linear MMSE multiuser detector for User k.

2. Perfect prior information on the code bits of the interfering users: i.e., λ2(bk[i]) = ±∞
for 1 ≤ k ≤ K. In this case,

b̃k[i] =
[
b1[i] . . . bk−1[i] 0 bk+1[i] . . . bK [i]

]T

,

V k[i] = A2
keke

T
k .

Substituting these into (6.53), we obtain

wk[i] = AkR
−1

(
A2

keke
T
k + σ2R−1

)−1
ek

=
Ak

σ2
R−1

(
R − A2

k

A2
k + σ2

Reke
T
k R

)
ek (6.56)

=
Ak

A2
k + σ2

ek, (6.57)
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where (6.56) follows from the matrix inversion lemma 1; and (6.57) follows from the

fact that eT
k Rek = [R]kk = 1. The output of the soft instantaneous MMSE filter is

then given by

zk[i] = wk[i]
T yk[i]

=
Ak

A2
k + σ2

eT
k yk[i]

=
Ak

A2
k + σ2

(
yk[i] −

∑
j �=k

Ajρkjbj[i]

)
. (6.58)

That is, in this case, the output of the soft instantaneous MMSE filter is a scaled

version of the kth user’s matched filter output after ideal interference cancellation.

3. In general, the prior information provided by the MAP channel decoder satisfies 0 <

|λ2(bk[i])| < ∞, 1 ≤ k ≤ K. The signal-to-interference-plus-noise ratio (SINR) at the

soft instantaneous MMSE filter output is defined as

SINR(zk[i])
�
=

E2{zk[i]}
Var {zk[i]} . (6.59)

Denote SINR(zk[i]) as the output SINR when there is no prior information on the

code bits of interfering users, i.e., the SINR of the linear MMSE detector. Denote also

SINR(zk[i]) as the output SINR when there is perfect prior information on the code

bits of interfering users, i.e., the input signal-to-noise ratio (SNR) for the kth user, then

we have the following result, whose proof is given in the Appendix (Section 6.9.1).

Proposition 6.1 If 0 < |λ2(bk[i])| <∞, for 1 ≤ k ≤ K, then we have

SINR(zk[i]) > SINR(zk[i]) > SINR(zk[i]). (6.60)

Gaussian Approximation of Linear MMSE Filter Output

It is shown in [372] that the distribution of the residual interference-plus-noise at the output

of a linear MMSE multiuser detector is well approximated by a Gaussian distribution. In

1

(
A + αbcT

)−1
= A−1 − 1

α−1 + cT A−1b
A−1bcT A−1.
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what follows, we assume that the output zk[i] of the instantaneous linear MMSE filter in

(6.46) represents the output of an equivalent additive white Gaussian noise channel having

bk[i] as its input symbol. This equivalent channel can be represented as

zk[i] = µk[i] bk[i] + ηk[i], (6.61)

where µk[i] is the equivalent amplitude of the kth user’s signal at the output, and ηk[i] ∼
N (0, ν2

k [i]) is a Gaussian noise sample. Using (6.45) and (6.46), the parameters µk[i] and

ν2
k [i] can be computed as follows, where the expectation is taken with respect to the code

bits of interfering users {bj[i]}j �=k and the channel noise vector n[i]:

µk[i]
�
= E {zk[i] bk[i]}

= Ake
T
k

(
V k[i] + σ2R−1

)−1
E

{
bk[i]A

(
b[i] − b̃k[i]

)
+ bk[i] n[i]

}
= A2

ke
T
k

(
V k[i] + σ2R−1

)−1
ek

= A2
k

[(
V k[i] + σ2R−1

)−1
]

kk
, (6.62)

and

ν2
k [i]

�
= Var{zk[i]} = E{zk[i]2} − µk[i]

2

= wk[i]
TE

{
yk[i]yk[i]

T
}

wk[i] − µk[i]
2

= A2
ke

T
k

(
V k[i] + σ2R−1

)−1
R−1

(
RV k[i]R + σ2R

)
R−1

(
V k[i] + σ2R−1

)−1
ek − µk[i]

2

= A2
ke

T
k

(
V k[i] + σ2R−1

)−1
ek − µk[i]

2

= µk[i] − µk[i]
2. (6.63)

Using (6.61) and (6.63) the extrinsic information delivered by the instantaneous linear MMSE

filter is then

λ1(bk[i])
�
= log

p(zk[i] | bk[i] = +1)

p(zk[i] | bk[i] = −1)

= −(zk[i] − µk[i])
2

2ν2
k [i]

+
(zk[i] + µk[i])

2

2ν2
k [i]

=
2µk[i] zk[i]

ν2
k [i]

=
2 zk[i]

1 − µk[i]
. (6.64)
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Recursive Procedure for Computing Soft Output

It is seen from (6.64) that in order to form the extrinsic LLR λ1(bk[i]) at the instantaneous

linear MMSE filter, we must first compute zk[i] and µk[i]. From (6.54) and (6.62) the

computation of zk[i] and µk[i] involves inverting a (K ×K) matrix, i.e.,

Φk[i]
�
=

(
V k[i] + σ2R−1

)−1
. (6.65)

Next we outline a recursive procedure for computing Φk[i]. Define Ψ (0) �
= σ2R, and

Ψ (k) �
=

[
σ2R−1 +

k∑
j=1

A2
j

(
1 − b̃j[i]2

)
ej eT

j

]−1

, k = 1, . . . , K. (6.66)

Using the matrix inversion lemma, Ψ (k) can be computed recursively as

Ψ (k) = Ψ (k−1) − 1

A−2
k

(
1 − b̃j[i]2

)−1

+
[
Ψ (k−1)

]
kk

[
Ψ (k−1) ek

] [
Ψ (k−1) ek

]T

, (6.67)

k = 1, . . . , K.

Denote Ψ
�
= Ψ (K). Using the definition of V k[i] given by (6.52), we can then compute Φk[i]

from Ψ as follows.

Φk[i] =
(
Ψ−1 + A2

kb̃k[i]
2eke

T
k

)−1

= Ψ − 1(
Akb̃k[i]

)−2

+ [Ψ ]kk

[Ψek] [Ψek]
T . (6.68)

k = 1, . . . , K.

Finally, we summarize the low-complexity SISO multiuser detection algorithm as follows.

Algorithm 6.2 [Low-complexity SISO multiuser detector - synchronous CDMA]

• Given {λ2(bk[i])}K
k=1, form the soft bit vectors b̃[i] and {b̃k[i]}K

k=1 according to (6.42) -

(6.44).

• Compute the matrix inversion Φk[i]
�
=

(
V k[i] + σ2R−1

)−1
, k = 1, . . . , K, according to

(6.66) - (6.68).
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• Compute the extrinsic information {λ1(bk[i])}K
k=1 according to (6.54), (6.62) and

(6.64), i.e.,

zk[i] = Ake
T
k Φk[i]

(
R−1y[i] − Ab̃k[i]

)
, (6.69)

µk[i] = A2
k {Φk[i]}kk , (6.70)

λ1(bk[i]) =
2 zk[i]

1 − µk[i]
, (6.71)

k = 1, . . . , K.

Next we examine the computational complexity of the low-complexity SISO multiuser

detector discussed in this section. From the above discussion, it is seen that at each symbol

time i, the dominant computation involved in computing the matrix Φk[i], for k = 1, . . . , K,

consists of (2K) K-vector outer products, i.e., K outer products in computing Ψ (k) as in

(6.67), and K outer products in computing Φk[i] as in (6.68). From (6.62) and (6.64), in

order to obtain the soft output λ1(bk[i]), we also need to compute the soft instantaneous

MMSE filter output zk[i], which by (6.54), is dominated by two K-vector inner products,

i.e., one in computing the kth user’s decorrelating filter output, and another in computing

the final zk[i]. Therefore, in computing the soft-output of the SISO multiuser detector, the

dominant computation per user per symbol involves two K-vector outer products and two

K-vector inner products.

A number of works in the literature have addressed different aspects of turbo multiuser

detection in CDMA systems. In particular, in [331], an optimal turbo multiuser detec-

tor is derived based on iterative techniques for cross-entropy minimization. Turbo mul-

tiuser detection methods based on different interference cancellation schemes are proposed

in [13, 84, 126, 154, 196, 263, 389, 401, 462, 543, 568, 598]. An interesting framework that

unifies these approaches to iterative multiuser detection is given in [49]. Moreover, tech-

niques for turbo multiuser detection in unknown channels are developed in [531, 585], which

are based on the Markov chain Monte Carlo (MCMC) method for Bayesian computation.

The application of the low-complexity SISO detection scheme discussed in this section to

equalization of ISI channels with long memory is found in [404].
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Simulation Examples

In this section, we present some simulation examples to illustrate the performance of the

turbo multiuser receiver in synchronous CDMA systems. Of particular interest is the receiver

that employs the low-complexity SISO multiuser detector. All users employ the same rate-1
2

constraint-length ν = 5 convolutional code (with generators 23, 35 in octal notation). Each

user uses a different interleaver generated randomly. The same set of interleavers is used for

all simulations. The block size of the information bits for each user is 128.
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Figure 6.6: Performance of the turbo multiuser receiver that employs the optimal SISO

multiuser detector. K = 4, ρij = 0.7. All users have equal power.

First we consider a 4-user system with equal cross-correlation ρij = 0.7, for 1 ≤ i, j ≤
4. All the users have the same power. In Fig. 6.6 the BER performance of the turbo

receiver that employs the optimal SISO multiuser detector (6.40) is shown for the first 5

iterations. In Fig. 6.7, the BER performance of the turbo receiver that employs the low-

complexity SISO multiuser detector is shown for the same channel. In each of the these

figures, the single-user BER performance (i.e., ρij = 0) is also shown. It is seen that the

performance of both receivers converges toward the single-user performance at high SNR.
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Figure 6.7: Performance of the turbo multiuser receiver that employs the low-complexity

SISO multiuser detector. K = 4, ρij = 0.7. All users have equal power.
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Figure 6.8: Strong user performance under the turbo multiuser receiver that employs the

low-complexity SISO multiuser detector. K = 4, ρij = 0.7. Two users are 3dB stronger than

the other two.
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Figure 6.9: Weak user performance under the turbo multiuser receiver that employs the

low-complexity SISO multiuser detector. K = 4, ρij = 0.7. Two users are 3dB stronger than

the other two.
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Figure 6.10: Performance of the turbo multiuser receiver that employs the low-complexity

SISO multiuser detector. K = 8, ρij = 0.7. All users have equal power.
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Moreover, the performance loss due to using the low-complexity SISO multiuser detector

is small. Next we consider a near-far situation, where there are two equal-power strong

users and two equal-power weak users. The strong users’ powers are 3dB above the weak

users’. The user cross-correlations remain the same. Fig. 6.8 and Fig. 6.9 show respectively

the BER performance of strong and weak users under the turbo receiver that employs the

low-complexity SISO multiuser detectors. It is seen that in such a near-far situation, the

weak users actually benefit from the strong interference whereas the strong users suffer

performance loss from the weak interference, a phenomenon previously also observed in the

optimal multiuser detector [509] and the multistage multiuser detector [502]. Note that

with a computational complexity O(2K), the optimal SISO multiuser detector (6.40) is not

feasible for practical implementation in channels with medium to large numbers of users K;

whereas the low-complexity SISO multiuser detector has a reasonable complexity that can be

easily implemented even for very large K. Fig. 6.10 illustrates the BER performance of the

turbo receiver that employs the low-complexity SISO multiuser detector in a 8-user system.

The user cross-correlations are still ρij = 0.7. All users have the same power. Note that

the performance of such receiver after the first iteration corresponds to the performance of a

“traditional” non-iterative receiver structure consisting of a linear MMSE multiuser detector

followed byK parallel (soft) channel decoders. It is seen from these figures that at reasonably

high SNR, the turbo receiver offers significant performance gain over the traditional non-

iterative receiver.

6.4 Turbo Multiuser Detection with Unknown Inter-

ferers

The turbo multiuser detection techniques developed so far assume that the spreading wave-

forms of all users are known to the receiver. Another important scenario, as discussed in

Chapter 3, is that the receiver has the knowledge of the spreading waveforms of some but

not all of the users in the system. Such a situation arises, for example, in a cellular system

where the base station receiver knows the spreading waveforms of the in-cell users, but not

those of the out-of-cell users. In this section, we discuss a turbo multiuser detection method

that can be applied in the presence of unknown interference, which was first developed in
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[405].

6.4.1 Signal Model

Consider again the synchronous CDMA signal model (6.27). Here we assume that the

spreading waveforms and the received amplitudes of the first K̃ (K̃ < K) users are known

to the receiver, whereas the rest of the users are unknown to the receiver. Since some of the

spreading waveforms are unknown, we can not form the sufficient statistic (6.32). Instead,

as done in Chapter 2 and Chapter 3, we sample the received continuous-time signal r(t) at

the chip-rate to convert it to discrete-time signal. The sample corresponds to the jth chip of

the ith symbol is given by

rj[i]
�
=

∫ iT+(j+1)Tc

iT+jTc

r(t)ψ(t− iT − jTc)dt, (6.72)

j = 0, . . . , N − 1; i = 0, . . . ,M − 1.

The resulting discrete-time signal corresponding to the ith symbol is then given by

r[i] =
K∑

k=1

Akbk[i]sk + n[i] (6.73)

= SAb[i] + n[i], (6.74)

with

r[i]
�
=


r0[i]

r1[i]
...

rN−1[i]

 , sk
�
= 1√

N


s0,k

s1,k

...

sN−1,k

 , and n[i]
�
=


n0[i]

n1[i]
...

nN−1[i]


where

nj[i] =

∫ (j+1)Tc

jTc

n(t)ψ(t− iT − jTc)dt, (6.75)

is a Gaussian random variable; n[i] ∼ N (0, σ2IN); sk is the normalized discrete-time

spreading waveform of the kth user, with sn,k ∈ {+1,−1}; and S
�
= [s1 . . . sK ];

A
�
= diag(A1, . . . , AK); and b[i]

�
=

[
b1[i] . . . bK [i]

]T

.
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Denote as S̃ the matrix consisting of the first K̃ columns of S. Denote the remaining

K̄ = K − K̃ columns of S by S̄. These first K̃ signature sequences are unknown to the

receiver. Let b̃[i] be the K̃-vector containing the first K̃ bits of b[i] and let b̄[i] contain the

remaining K̄ bits. Then we may write (6.74) as

r[i] = S̃Ãb̃[i] + S̄Āb̄[i] + n[i]. (6.76)

Since we do not have knowledge of S̄ we cannot hope to demodulate b̄[i]. We therefore write

(6.76) as

r[i] = S̃Ãb̃[i] + I[i] + n[i], (6.77)

where I[i]
�
= S̄Āb̄[i] is regarded as an interference term that is to be estimated and removed

by the multiuser detector before it computes the a posteriori log-likelihood ratios (LLRs)

for the bits in b̃[i].

6.4.2 Group-blind SISO Multiuser Detector

The heart of the turbo group-blind receiver is the soft-input soft-output (SISO) group-blind

multiuser detector. The detector accepts, as inputs, the a priori LLRs for the code bits of

the known users delivered by the SISO MAP channel decoders of these uses, and produces,

as outputs, updated LLRs for these code bits. This is accomplished by soft interference

cancellation and MMSE filtering. Specifically, using the a priori LLRs and knowledge of

the signature sequences and received amplitudes of the known users, the detector performs a

soft-interference cancellation for each user, in which estimates of the multiuser interference

from the other known users and an estimate for the interference caused by the unknown

users are subtracted from the received signal. Residual interference is suppressed by passing

the resulting signal through an instantaneous MMSE filter. The a posteriori LLR can then

be computed from the MMSE filter output.

The detector first forms soft estimates of the user code bits as

b̃k[i]
�
= E{bk[i]} = tanh

[
1

2
λ2(bk[i])

]
, (6.78)

i = 0, . . . ,M − 1, k = 1, . . . , K̃,
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where λ2(bk[i]) is the a priori LLR of the kth user’s ith bit delivered by the MAP channel

decoder. We denote hard estimates of the code bits as

b̂k[i]
�
= sign

(
b̃k[i]

)
, k = 1, . . . , K̃, (6.79)

and denote ˆ̃b[i]
�
=

[
b̂1[i] b̂2[i] . . . b̂K̃ [i]

]T

.

In the next step we form an estimate of interference of the unknown users, I[i], which

we denote by Î[i]. We begin by forming the following preliminary estimate

γ[i]
�
= r[i] − S̃Ãˆ̃b[i]

= S̃Ã
(
b̃[i] − ˆ̃b[i]

)
︸ ︷︷ ︸

d[i]

+S̄Āb̄[i] + n[i], (6.80)

where d[i]
�
=

[
d1[i] d2[i] . . . dK̃ [i]

]T

and dk[i] is a random variable defined by

dk[i]
�
= bk[i] − b̂k[i], k = 1, . . . , K̃. (6.81)

It will be seen that our ability to form a soft estimate for dk[i] will allow us to perform the

soft interference cancellation mentioned above. Clearly, dk[i] can take on one of two values, 0

or 2bk[i]. The probability that dk[i] is equal to zero is the probability that the hard estimate

is correct and is given by

P (dk[i] = 0) = P

(
bk[i] = sign

{
tanh

[
1

2
λ2(bk[i])

]})
. (6.82)

Recall that for b ∈ {+1,−1}, the probability that bk[i] = b is related to the corresponding

LLR by [cf.(6.42]

P (bk[i] = b) =
1

2
+
b

2
tanh

[
1

2
λ2(bk[i])

]
. (6.83)

On substituting b = sign
{
tanh

[
1
2
λ2(bk[i])

]}
in (6.83) we find that

P (dk[i] = 0) =
1

2

{
1 + sign

(
tanh

[
1

2
λ2(bk[i])

])
tanh

[
1

2
λ2(bk[i])

]}
=

1

2

{
1 + tanh

(
1

2
|λ2(bk[i])|

)}
. (6.84)
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Therefore, dk[i] is a random variable that can be described as

dk[i] =

{
0, with probability 1

2
+ 1

2
tanh

[
1
2
|λ2(bk[i])|

]
,

2bk[i], with probability 1
2
− 1

2
tanh

[
1
2
|λ2(bk[i])|

]
.

(6.85)

We now perform an eigendecomposition on 1
M

ΓΓ T where Γ
�
= [γ[0] . . .γ[M−1]]. We denote

by Uu the matrix of eigenvectors corresponding to the K̄ largest eigenvalues. The span of

the columns of Uu represents an estimate of the subspace of the unknown users, i.e., the

interference subspace. Ideally, i.e., when d[i] = 0 in (6.80), then Uu contains the signal

subspace spanned by the unknown interference S̄. In order to refine our estimate of I[i] we

project γ[i] onto Uu. The result is

Î[i] = UuU
T
u

{
S̃Ãd[i] + S̄Āb̄[i] + n[i]

}
. (6.86)

Denote S̃u
�
= UuU

T
u S̃ and nu[i]

�
= UuU

T
u n[i]. Since ideally UuU

T
u S̄ = S̄, we have

Î[i] = S̃uÃd[i] + S̄Āb̄[i] + nu[i]. (6.87)

Now we subtract the interference estimate from the received signal and form a new signal

ζ[i]
�
= r[i] − Î[i]

= S̃Ãb̃[i] − S̃uÃd[i] + v[i], (6.88)

where

v[i]
�
= n[i] − nu[i] ∼ N (0,Σv) , (6.89)

with Σv = σ2
(
IN − UuU

T
u

)
. (6.90)

For each known user we perform a soft interference cancellation on ζ[i] to obtain

rk[i]
�
= ζ[i] − S̃Ãb̃k[i] + S̃uÃd̃[i], k = 1, . . . , K̃, (6.91)

where

b̃k[i]
�
=

[
b̃1[i] . . . b̃k−1[i] 0 b̃k+1[i] . . . b̃K̃ [i]

]T

,

and d̃[i]
�
=

[
d̃1[i] d̃2[i] . . . d̃K̃ [i]

]T

,
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with d̃k[i] a soft estimate for dk[i], given via (6.85) by

d̃k[i]
�
= E{dk[i]}
= E{E{dk[i] | bk[i]}}
= b̃k[i]

{
1 − tanh

[
1

2
|λ2(bk[i])|

]}
, k = 1, . . . , K̃. (6.92)

Substituting (6.88) into (6.91) we obtain

rk[i] = S̃Ã︸︷︷︸
˜H

(
b̃[i] − b̃k[i]

)
− S̃uÃ︸︷︷︸

˜Hu

(
d[i] − d̃[i]

)
+ v[i]. (6.93)

An instantaneous linear MMSE filter is then applied to rk[i] to obtain

zk[i]
�
= wk[i]

T rk[i]. (6.94)

The filter wk[i] ∈ R
N is chosen to minimize the mean-squared error between the code bit

bk[i] and the filter output zk[i], i.e.,

wk[i]
�
= arg min

w∈RN
E

{(
bk[i] − wT rk[i]

)2
}
, (6.95)

where the expectation is with respect to the ambient noise and the interfering users. The

solution to (6.95) is given by

wk[i] = E
{
rk[i]rk[i]

T
}−1

E {bk[i]rk[i]} . (6.96)

It is easy to show that

E
{
rk[i]rk[i]

T
}

= E

[
H̃ H̃u

] −
(
b̃[i] − b̃k[i]

)
d[i] − d̃[i]

 −
(
b̃[i] − b̃k[i]

)
d[i] − d̃[i]

T [
H̃

T

H̃
T

u

] + Σv

= H Cov

{[
b̃k[i] − b̃[i]

d[i] − d̃[i]

]}
︸ ︷︷ ︸

∆[i]

HT + Σv, (6.97)

where H �
=

[
H̃ H̃u

]
. The covariance matrix ∆[i] has dimension (2K̃ × 2K̃) and may be

partitioned into four diagonal K̃ × K̃ blocks in the following manner:

∆[i] =

[
∆11[i] ∆12[i]

∆21[i] ∆22[i]

]
. (6.98)
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The diagonal elements of ∆11[i] are given by[
∆11[i]

]
kk

= Var{bk[i]}
= 1 − b̃k[i]2, k = 1, . . . , K̃. (6.99)

Using (6.85), the diagonal elements of ∆22[i] are given by[
∆22[i]

]
kk

= Var{dk[i]}
= 2αk[i] − b̃k[i]2αk[i]

2, k = 1, . . . , K̃, (6.100)

where

αk[i]
�
= 1 − tanh

[
1

2
|λ2(bk[i])|

]
. (6.101)

The diagonal elements of ∆12[i] and ∆21[i] are identical and are given by[
∆12[i]

]
kk

= Cov{bk[i], dk[i]}

= αk[i]
(
1 − b̃k[i]2

)
, k = 1, . . . , K̃. (6.102)

It is also easy to see that

E{bk[i]rk[i]} = H̃ek − αk[i]H̃uek
�
= pk, (6.103)

where ek is a K̃-vector whose elements are all zero except for the kth element which is 1.

Substituting (6.97) and (6.103) into (6.96), we may write the instantaneous MMSE filter for

User k as

wk[i] =
(H∆[i]HT + Σv

)−1
pk. (6.104)

As before, we make the assumption that the MMSE filter output is Gaussian distributed,

we may write

zk[i]
�
= wT

k [i]rk[i]

= µk[i]bk[i] + ηk[i], (6.105)

where µk[i] is the equivalent amplitude of the kth user’s signal at the filter output, and

ηk[i] ∼ N (0, ν2
k [i]) is a Gaussian noise sample. Using (6.97) and (6.104) the parameter µk[i]
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is computed as

µk[i] = E{zk[i]bk[i]} = wT
kE{bk[i]rk[i]}

= pT
k

(H∆[i]HT + Σv

)−1
pk, (6.106)

and ν2
k [i]

�
= Var{zk[i]} = E

{
zk[i]

2
} − µk[i]

2

= wk[i]
TE

{
rk[i]rk[i]

T
}

wk[i] − µk[i]
2

= µk[i] − µk[i]
2, (6.107)

where (6.107) follows from (6.97), (6.104) and (6.106).

Finally, exactly the same as (6.64), the extrinsic information, λ1(bk[i]), delivered by the

SISO multiuser detector is given by

λ1(bk[i])
�
= log

p(zk[i] | bk[i] = +1)

p(zk[i] | bk[i] = −1)

=
2zk[i]

1 − µk[i]
, k = 1, . . . , K̃. (6.108)

This group-blind SISO multiuser detection algorithm is summarized as follows.

Algorithm 6.3 [Group-blind SISO multiuser detector - synchronous CDMA]

• Given {λ2(bk[i])}, form soft and hard estimates of the code bits:

b̃k[i] = tanh

[
1

2
λ2(bk[i])

]
, (6.109)

b̂k[i] = sign
(
b̃k[i]

)
, (6.110)

k = 1, . . . , K̃; i = 0, . . . ,M − 1.

Denote

b̂[i]
�
=

[
b̂1[i] b̂2[i] . . . b̂K̃ [i]

]T

,

b̃k[i]
�
=

[
b̃1[i] . . . b̃k−1[i] 0 b̃k+1[i] . . . b̃K̃ [i]

]T

.

• Let

γ[i]
�
= r[i] − S̃Ãˆ̃b[i], i = 0, . . . ,M − 1, (6.111)

Γ
�
=

[
γ[0] . . .γ[M − 1]

]
. (6.112)
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Perform an eigendecomposition on 1
M

ΓΓ T ,

1

M
ΓΓ T = UΛUT . (6.113)

Set Uu equal to the first K̄ columns of U .

• For i = 0, 1, . . . ,M − 1:

– Refine the estimate of the unknown interference by projection:

Î[i] = UuU
T
u γ[i]. (6.114)

– Compute d̃k[i] according to:

d̃k[i] = b̃k[i]αk[i], k = 1, . . . , K̃, (6.115)

where αk[i] is defined in (6.101). Define

d̃[i]
�
=

[
d̃1[i] d̃2[i] . . . d̃K̃ [i]

]T

.

– Subtract Î[i] from r[i] and perform soft interference cancellation:

rk[i] = r[i] − Î[i] − S̃Ãb̃k[i] + S̃uÃd̃[i], (6.116)

k = 1, . . . , K̃,

where S̃u
�
= UuU

T
u S̃.

– Calculate ∆[i] according to (6.99)-(6.102).

– Calculate and apply the MMSE filters:

wk[i] =
(H∆[i]HT + Σv

)−1
(
H̃ek − αk[i]H̃uek

)
, (6.117)

zk[i] = wk[i]
T rk[i]. (6.118)

where Σv
�
= σ2

(
IN − UuU

T
u

)
, H �

=
[
H̃ H̃u

]
and where H̃

�
= S̃Ã and H̃u

�
=

UuU
H
u H̃.

– Compute µk[i] according to (6.106).

– Compute the a posteriori LLR’s for code bit bk[i] according to (6.108).
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6.4.3 Sliding Window Group-Blind Detector for Asynchronous

CDMA

It is not difficult to extend the results of the previous subsection to asynchronous CDMA.

The received signal due to user k(1 ≤ k ≤ K) is given by

yk(t) = Ak

M−1∑
i=0

bk[i]
N−1∑
j=0

ck[j]ψ(t− jTc − iT − dk), (6.119)

where dk is the delay of the k-th user’ signal, {ck[j]}N−1
j=0 is a signature sequence of ±1’s

assigned to the k-th user and ψ(t) is a normalized chip waveform of duration Tc = T/N .

The total received signal, given by

r(t) =
K∑

k=1

yk(t) + v(t), (6.120)

is matched filtered to the chip waveform and sampled at the chip rate, The n-th matched

filter output during the i-th symbol interval is

r[i, n]
�
=

∫ iT+(n+1)Tc

iT+nTc

r(t)ψ(t− iT − nTc)dt

=
K∑

k=1

{∫ iT+(n+1)Tc

iT+nTc

ψ(t− iT − nTc)yk(t)dt

}
︸ ︷︷ ︸

yk[i,n]

+

∫ iTs+(n+1)Tc

iT+nTc

v(t)ψ(t− iT − nTc)dt︸ ︷︷ ︸
v[i,n]

.

(6.121)

Substituting (6.119) into (6.121) we obtain

yk[i, n] = Ak

M−1∑
p=0

bk[p]
N−1∑
j=0

ck[j]

∫ iT+(n+1)Tc

iT+nTc

ψ(t− iT − nTc)ψ(t− jTc − pT − dk)dt

=

ιk−1∑
p=0

bk[i− p]Ak

N−1∑
j=0

ck[j]

∫ Tc

0

ψ(t)ψ(t− jTc + nTc + pT − dk)dt︸ ︷︷ ︸
hk[p,n]

(6.122)

where ιk
�
= 1 + �(dk + Tc)/T 	. Then

r[i, n] = hk[0, n]bk[i] +

ιk−1∑
j=1

hk[j, n]bk[i− j]︸ ︷︷ ︸
ISI

+
∑
k′ �=k

yk′ [i, n]︸ ︷︷ ︸
MAI

+v[i, n]. (6.123)
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Denote

r[i]
�
=


r[i, 0]

...

r[i, N − 1]

 , v[i] �
=


v[i, 0]

...

v[i, N − 1]

 , b[i] �
=


b1[i]

...

bK [i]

 , (6.124)

and, for j = 0, 1, . . . , ιk − 1,

H[j]
�
=


h1[j, 0] . . . hK̆ [j, 0] . . . hK [j, 0]

...
...

...
...

...

h1[j,N − 1] . . . hK̆ [j,N − 1] . . . hK [j,N − 1]

 . (6.125)

Then

r[i] = H[i] � b[i] + v[i]. (6.126)

By stacking ι
�
= maxk ιk successive received sample vectors, we define

r[i]︸︷︷︸
Nι×1

�
=


r[i]
...

r[i+ ι− 1]

 , v[i]︸︷︷︸
Nι×1

�
=


v[i]
...

v[i+ ι− 1]

 , b[i]︸︷︷︸
r×1

�
=


b[i− ι+ 1]

...

b[i+ ι− 1]

 , (6.127)

and

H︸︷︷︸
Nι×r

�
=


H[ι− 1] . . . H[0] . . . 0

...
. . . . . . . . .

...

0 . . . H[ι− 1] . . . H[0]

 , (6.128)

where r
�
= K(2ι− 1). Then we can write the received signal in matrix form as

r[i] = Hb[i] + v[i]. (6.129)

Define the set of matrices {H̆j}2ι−2
j=0 such that H̆j is the Nι×K̆ matrix composed of columns

jK + 1 through jK + K̆ of the matrix H . We define the matrix H̆
�
= [H̆0 H̆1 . . . H̆2ι−2].

The size of H̆ is Nι× K̆(2ι− 1). We denote by H̄ the matrix that contains the remaining

K̄(2ι − 1) columns of H . We define b̆[i] and b̄[i] by performing a similar separation of the

elements of b[i]. Then we may write (6.129) as

r[i] = H̆b̆[i] + H̄b̄[i] + v[i]. (6.130)

This equation is the asynchronous analog to (6.76). We can obtain estimates of

b1[i], b2[i], . . . , bK̆ [i] with straightforward modifications to Algorithm 6.3.
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Simulation Examples

We next present simulation results to demonstrate the performance of the proposed turbo

group-blind multiuser receiver for asynchronous CDMA. The processing gain of the system

is 7 and the total number of users is 7. The number of known users is either 2 or 5,

as noted on the figures. The spreading sequences are randomly generated and the same

sequences are used for all simulations. All users employ the same rate-1
2
, constraint-length

3 convolutional code (with generators g1 = [110] and g2 = [111]). Each user uses a different

random interleaver, and the same interleavers are used in all simulations. The block size of

information bits for each user is 128. The maximum delay, in symbol intervals is 1. All users

use the same transmitted power and the chip pulse waveform is a raised cosine with roll-off

factor .5.

Fig. 6.11 illustrates the average bit-error-rate performance of the known users for the

group-blind turbo receiver and the conventional turbo receiver discussed in Section 6.3 for

the first 4 iterations. The number of known users is 5. For the sake of comparison, we have

also included plots for the conventional turbo receiver when all of the users are known. The

three sets of plots in this figure are denoted in the legend by “GBMUD”, “TMUD”, and

“ALL KNOWN” respectively. Note that the curves for the first iteration are identical for

GBMUD and TMUD. Hence we have suppress the plot of the first iteration for TMUD to

improve clarity. Notice that iteration does not significantly improve the performance of the

conventional turbo receiver while the group-blind receiver provides significant gains through

iteration at moderate and high signal-to-noise ratios. We can also see that the use of more

than three iterations does not provide significant benefits.

In Fig. 6.12, the number of known users has been changed to 2. As we would expect, there

is a performance degradation for both the conventional and group-blind turbo receivers. In

fact, the conventional receiver gains nothing through iteration for this scenario because there

are now 5 users whose interference is simply ignored. It is also apparent that the group-blind

turbo receiver will not be able to mitigate all of the interference of the unknown users, even

for a large number of iterations. This is due, in part, to the use of an imperfect interference

subspace estimate in the SISO group-blind multiuser detector.
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Figure 6.11: Performance of the group-blind iterative multiuser receiver with 5 known users.

Curves denoted GB-TMUD are produced using the turbo group-blind multiuser receiver

and those denoted TMUD are produced using the traditional turbo multiuser receiver. Also

included are plots for TMUD when all users are known.
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Figure 6.12: Performance of the group-blind iterative multiuser receiver with 2 known users.

Curves denoted GB-TMUD are produced using the turbo group-blind multiuser receiver

and those denoted TMUD are produced using the traditional turbo multiuser receiver. Also

included are plots for TMUD when all users are known.
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6.5 Turbo Multiuser Detection in CDMA with Multi-

path Fading

In this section, we generalize the low-complexity SISO multiuser detector developed in Sec-

tion 6.3.3 for synchronous CDMA systems to general asynchronous CDMA systems with

multipath fading channels. The method discussed in this section was first developed in

[254].

6.5.1 Signal Model and Sufficient Statistics

We consider aK-user asynchronous CDMA system employing aperiodic spreading waveforms

and signaling over multipath fading channels. The transmitted signal due to the kth user is

given by

xk(t) = Ak

M−1∑
i=0

bk[i] si,k(t− iT ), (6.131)

where M is the number of data symbols per user per frame; T is the symbol interval; and

Ak, bk[i] and {si,k(t); 0 ≤ t ≤ T}, denote respectively the amplitude, the ith transmitted bit

and the normalized signature waveform during the ith symbol interval of the kth user. It is

assumed that si,k(t) is supported only on the interval [0, T ] and has unit energy. Note that

here we assume that aperiodic spreading waveforms are employed in the system, and hence

the spreading waveforms varies with symbol index i.

The kth user’s signal xk(t) propagates through a multipath channel with impulse response

gk(t) =
L∑

l=1

gl,k(t)δ(t− τl,k), (6.132)

where L is the number of paths in the kth user’s channel, and where gl,k(t) and τl,k are

respectively the complex fading process and the delay of the lth path of the kth user’s signal.

It is assumed that the fading is slow, i.e.,

gl,k(t) = gl,k[i], for iT ≤ t < (i+ 1)T ,

which is a reasonable assumption in many practical situations. At the receiver, the received

signal due to the kth user is then given by

yk(t) = xk(t) � gk(t)
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= Ak

M−1∑
i=0

bk[i]
L∑

l=1

gl,k[i] si,k(t− iT − τl,k), (6.133)

where � denotes convolution. The received signal at the receiver is the superposition of the

K users’ signals plus the additive white Gaussian noise, given by

r(t) =
K∑

k=1

yk(t) + n(t), (6.134)

where n(t) is a zero-mean complex white Gaussian noise process with power spectral density

σ2.

Denote b[i]
�
=

[
b1[i] . . . bK [i]

]T

, and b
�
=

[
b[0]T . . . b[M − 1]T

]T
. Define

S(t; b)
�
=

K∑
k=1

Ak

M−1∑
i=0

bk[i]
L∑

l=1

gl,k[i] si,k(t− iT − τl,k). (6.135)

Using the Cameron-Martin formula [375], the likelihood function of the received waveform

r(t) in (6.134) conditioned on all the transmitted symbols b of all users can be written as

� ({r(t) : −∞ < t <∞} | b) = C exp
[
Ω(b)/σ2

]
, (6.136)

where C is some positive scalar constant, and

Ω(b)
�
= 2�

{∫ ∞

−∞
S(t; b)∗ r(t) dt

}
−

∫ ∞

−∞
| S(t; b) |2 dt. (6.137)

The first integral in (6.137) can be expressed as

∫ ∞

−∞
S(t; b)∗ r(t) dt

�
=

K∑
k=1

Ak

M−1∑
i=0

bk[i]

yk[i]︷ ︸︸ ︷
L∑

l=1

gl,k[i]
∗
∫ ∞

−∞
r(t) si,k(t− iT − τl,k) dt︸ ︷︷ ︸

zkl[i]

.(6.138)

Since the second integral in (6.137) does not depend on the received signal r(t), by (6.138)

the sufficient statistic for detecting the multiuser symbols b is {yk[i]}i;k. From (6.138) it is

seen that the sufficient statistic is obtained by passing the received signal r(t) through a

bank of K maximal-ratio multipath combiners (i.e., RAKE receivers). Next we derive an

explicit expression for this sufficient statistic in terms of the multiuser channel parameters

and transmitted symbols, which is instrumental to developing the SISO multiuser detector.
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Note that the derivations below are similar to those in Section 5.3.1 for space-time CDMA

systems.

Assume that the multipath spread of any user’s channel is limited to at most ∆ symbol

intervals, where ∆ is a positive integer. That is,

τl,k ≤ ∆T, 1 ≤ k ≤ K, 1 ≤ l ≤ L. (6.139)

Define the following correlation of the delayed signaling waveforms

ρ
[j]
(k,l)(k′,l′)[i]

�
=

∫ ∞

−∞
si,k(t− τl,k) si−j,k′(t+ jT − τl′,k′) dt, (6.140)

−∆ ≤ j ≤ ∆, 1 ≤ k, k′ ≤ K, 1 ≤ l, l′ ≤ L.

Since τl,k ≤ ∆T and si,k(t) is non-zero only for t ∈ [0, T ], it then follows that ρ
[j]
(k,l)(k′,l′)[i] = 0,

for |j| > ∆. Now substituting (6.134) into (6.138), we have

zkl[i] =
M−1∑
i′=0

K∑
k′=1

Ak′bk′ [i′]
L∑

l′=1

gl′,k′ [i]

∫ ∞

−∞
si′,k′(t− i′T − τl′,k′)si,k(t− iT − τl,k)dt

+

∫ ∞

−∞
n(t)si,k(t− iT − τl,k)dt︸ ︷︷ ︸

ukl[i]

=
∆∑

j=−∆

K∑
k′=1

Ak′bk′ [i+ j]
L∑

l′=1

gl′,k′ [i] ρ
[−j]
(k,l)(k′,l′)[i] + ukl[i], (6.141)

where {ukl[i]} are zero-mean complex Gaussian random sequences with the following covari-

ance

E {ukl[i]uk′l′ [i
′]∗}

= E

{[∫ ∞

−∞
n(t)si,k(t− iT − τl,k)dt

] [∫ ∞

−∞
n∗(t′)si′,k′(t′ − i′T − τl′,k′)dt′

]}
=

[∫ ∞

−∞

∫ ∞

−∞
E {n(t)n∗(t′)} si,k(t− iT − τl,k) si′,k′(t′ − i′T − τl′,k′) dt dt′

]
=

[∫ ∞

−∞

∫ ∞

−∞
Ip δ(t− t′) si,k(t− iT − τl,k) si′,k′(t′ − i′T − τl′,k′) dt dt′

]
=

∫ ∞

−∞
si,k(t− iT − τl,k) si′,k′(t− i′T − τl′,k′) dt

= ρ
[i−i′]
(k,l)(k′l′)[i], (6.142)
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where Ip denotes a p × p identity matrix, and δ(t) is the Dirac delta function. Define the

following quantities

R[j][i]
�
=


ρ

[j]
(1,1)(1,1)[i] . . . ρ

[j]
(1,1)(1,L)[i] . . . ρ

[j]
(1,1)(K,1)[i] . . . ρ

[j]
(1,1)(K,L)[i]

ρ
[j]
(2,1)(1,1)[i] . . . ρ

[j]
(2,1)(1,L)[i] . . . ρ

[j]
(2,1)(K,1)[i] . . . ρ

[j]
(2,1)(K,L)[i]

...
...

...
...

...
...

...

ρ
[j]
(K,L)(1,1)[i] . . . ρ

[j]
(K,L)(1,L)[i] . . . ρ

[j]
(K,L)(K,1)[i] . . . ρ

[j]
(K,L)(K,L)[i]

 (KL×KL) matrix

ζ[i]
�
=

[
z11[i] . . . z1L[i] . . . . . . zK1[i] . . . zKL[i]

]T

(KL)-vector

u[i]
�
=

[
u11[i] . . . u1L[i] . . . . . . uK1[i] . . . uKL[i]

]T

(KL)-vector

g
k
[i]

�
=

[
gk1[i] . . . gkL[i]

]T

L-vector

G[i]
�
= diag

{
g

1
[i], . . . , g

K
[i]
}

(KL×K) matrix

A
�
= diag {A1, . . . , AK} (K ×K) matrix

y[i]
�
=

[
y1[i] . . . yK [i]

]T

K-vector

b[i]
�
=

[
b1[i] . . . bK [i]

]T

K-vector

We can then write (6.141) in the following vector form

ζ[i] =
∆∑

j=−∆

R[−j][i]G[i]Ab[i+ j] + u[i], (6.143)

and from (6.142), the covariance matrix of the complex Gaussian vector sequence {u[i]} is

E
{
u[i]u[i+ j]H

}
= σ2R[−j][i]. (6.144)

Substituting (6.143) into (6.138) we obtain an expression for the sufficient statistic y[i], given

by

y[i]
�
= G[i]H ζ[i] =

∆∑
j=−∆

G[i]H R[−j][i]G[i]︸ ︷︷ ︸
H[−j][i]

Ab[i+ j] +G[i]H u[i]︸ ︷︷ ︸
v[i]

, (6.145)

where v[i] is a sequence of zero-mean complex Gaussian vectors with covariance matrix

E
{
v[i] v[i+ j]H

}
= σ2G[i]HR[−j][i]G[i]

�
= σ2H [−j][i]. (6.146)

Note that by definition (6.140) we have ρ
[j]
(k,l)(k′,l′)[i] = ρ

[−j]
(k′,l′)(k,l)[i]. It then follows that

R[−j][i] = R[j][i]T , and therefore H [−j][i] = H [j][i]H .
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6.5.2 SISO Multiuser Detector in Multipath Fading Channel

In what follows, we assume that the multipath spread is within one symbol interval, i.e.,

∆ = 1. Define the following quantities

H [i]
�
=

[
H [1][i] H [0][i] H [−1][i]

]
(K × 3K) matrix

A
�
= diag

{
A,A,A

}
(3K × 3K) matrix

and b[i]
�
=

[
b[i− 1]T b[i]T b[i+ 1]T

]T
(3K)-vector

We can then write (6.145) in matrix form as

y[i] = H [i]Ab[i] + v[i], (6.147)

where by (6.146) v(i) ∼ Nc

(
0, σ2H0[i]

)
.

Based on the a priori LLR of the code bits of all users, {λ2(bk[i])}i;k, provided by the

MAP channel decoder, we first form soft estimates of the user code bits

b̃k[i]
�
= tanh

[
1

2
λ2(bk[i])

]
, (6.148)

i = 0, . . . ,M − 1; k = 1, . . . , K.

Denote

b̃[i]
�
=

[
b̃1[i] . . . b̃K [i]

]T

, (6.149)

b̃[i] =
[
b̃[i− 1]T b̃[i]T b̃[i+ 1]T

]T

, (6.150)

and b̃k[i]
�
= b̃[i] − b̃k[i]ek, (6.151)

where ek denotes a (3K)-vector of all zeros, except for the (K + k)th element, which is 1.

At symbol time i, for each User k, a soft interference cancellation is performed on the

received discrete-time signal y[i] in (6.147), to obtain

y
k
[i]

�
= y[i] − H [i] A b̃k[i] (6.152)

= H [i] A
(
b[i] − b̃k[i]

)
+ v[i], k = 1, . . . , K. (6.153)

An instantaneous linear MMSE filter is then applied to y
k
[i], to obtain

zk[i] = wk[i]
H y

k
[i], (6.154)
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where the filter wk[i] ∈ C
K is chosen to minimize the mean-square error between the code

bit bk[i] and the filter output zk[i], i.e.,

wk[i] = arg min
w∈CK

E

{∣∣∣bk[i] − wH y
k
[i]
∣∣∣2}

= arg min
w∈CK

wH E
{
y

k
[i] y

k
[i]H

}
w − 2�

[
wH E

{
bk[i] yk

[i]
}]

(6.155)

where

E
{
y

k
[i] y

k
[i]H

}
= H [i] A ∆k[i] A H [i]H + σ2H0[i], (6.156)

E
{
bk[i] yk

[i]
}

= H [i] A ek = Ak H [i] ek. (6.157)

with

∆k[i]
�
= Cov

{
b[i] − b̃k[i]

}
= diag

{
∆k[i− 1], ∆k[i], ∆k[i+ 1]

}
,

∆k[i− l] �
= diag

{
1 − b̃1[i− l]2, . . . , 1 − b̃K [i− l]2

}
, l = ±1,

and ∆k[i]
�
= diag

{
1 − b̃1[i]2, . . . , 1 − b̃k−1[i]

2, 1, 1 − b̃k+1[i]
2, 1 − b̃K [i]2

}
.

The solution to (6.155) is given by

wk[i] = Ak

(
H [i] A ∆k[i] A H [i]H + σ2H0[i]

)−1
H [i] ek. (6.158)

As before, in order to form the LLR of the code bit bk[i], we approximate the instan-

taneous linear MMSE filter output zk[i] in (6.154) as Gaussian distributed, i.e., zk[i] ∼
Nc (µk[i]bk[i], ν

2
k [i]). Conditioned on the code bit bk[i], the mean and variance of zk[i] are

given respectively by

µk[i]
�
= E{zk(i) bk(i)}
= eH

k H [i]H
(
H [i] ∆k[i] H [i]H + σ2H0[i]

)−1
H [i]E

{
b[i] − b̃k[i]

}
= eT

k H [i]H
(
H [i] ∆k[i] H

H + σ2H0[i]
)−1

H [i] ek, (6.159)

and

ν2
k [i]

�
= Var{zk[i]} = E

{∣∣∣zk[i]∣∣∣2} − µk[i]
2

= wH
k E

{
yk[i] yk[i]

H
}

wk − µk[i]
2

= eT
k H [i]H

(
H [i] ∆k[i] H [i]H + σ2H0[i]

)−1
H [i] ek − µk[i]

2

= µk[i] − µk[i]
2. (6.160)
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Therefore the extrinsic information λ1(bk[i]) delivered by the instantaneous linear MMSE

filter is given by

λ1[bk(i)] = −

∣∣∣zk[i] − µk[i]
∣∣∣2

ν2
k [i]

+

∣∣∣zk[i] − µk[i]
∣∣∣2

ν2
k [i]

=
4�{µk[i] zk[i]}

ν2
k [i]

=
4�{zk[i]}
1 − µk[i]

. (6.161)

The SINR at the instantaneous linear MMSE filter output is given by

SINR(zk[i])
�
=

E2 {�(zk[i])}
Var {�(zk[i])}

=
µk[i]

2

1
2
ν2

k [i]
=

2

1/µk[i] − 1
. (6.162)

Recursive Algorithm for Computing Soft Output

Similarly as before, the computation of the extrinsic information can be implemented ef-

ficiently. In particular, the major computation involved is the following K × K matrix

inversion.

Ψ k[i]
�
=

(
H [i] ∆k[i] H [i]H + σ2H0[i]

)−1
. (6.163)

Note that ∆k[i] can be written as:

∆k[i] = ∆[i] + b̃k[i]
2eke

T
k , (6.164)

where

∆[i]
�
= diag

{
1 − b̃1[i− 1]2, . . . , 1 − b̃K [i− 1]2, 1 − b̃1[i]2, . . . ,

1 − b̃K [i]2, 1 − b̃1[i+ 1]2, . . . , 1 − b̃K [i+ 1]2
}
. (6.165)

Substituting (6.164) into (6.163), we have

Ψ k[i] =
(
H [i] ∆[i] H [i]H + σ2H0[i] + b̃k[i]

2H(:,K+k)[i]H (:,K+k)[i]
H
)−1

, (6.166)

where H (:,K+k)[i] denotes the (K + k)th column of H [i]. Define

Ψ [i]
�
=

(
H [i] ∆[i] H [i]H + σ2H0[i]

)−1
. (6.167)
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Then by the matrix inversion lemma, (6.166) can be written as

Ψ k[i] = Ψ [i] − 1

b̃k[i]−2 + H(:,K+k)[i]HΨ [i]H(:,K+k)[i]

(
Ψ [i]H(:,K+k)[i]

) (
Ψ [i]H (:,K+k)[i]

)H
,

k = 1, . . . , K. (6.168)

Equations (6.167) and (6.168) constitute the recursive procedure for computing Ψ k[i] in

(6.163).

Next we summarize the SISO multiuser detection algorithm in multipath fading channels

(∆ = 1) as follows.

Algorithm 6.4 [SISO multiuser detector in multipath fading channel]

• Form the soft bit estimates using (6.148) - (6.151).

• Compute the matrix inversions using (6.167) and (6.168).

• For i = 0, . . . ,M − 1 and for k = 1, . . . , K, compute zk[i] using (6.152), (6.154) and

(6.158); compute µk[i] using (6.159); and compute λ1(bk[i]) using (6.161).

Finally we examine the computational complexity of the SISO multiuser detector in mul-

tipath fading channels. By (6.167), it takes O(K3) multiplications to obtain Ψ [i] using direct

matrix inversion. After Ψ [i] is obtained, by (6.168), it takes O(K2) more multiplications to

get Ψ k[i] for each k. Since at each time i, Ψ [i] is computed only once for all K users, it takes

O(K2) multiplications per user per code bit to obtain Ψ k[i]. After Ψ k[i] is computed, by

(6.154), (6.159), and (6.161), it takes O(K2) multiplications to obtain λ1(bk[i]). Therefore,

the total time complexity of the SISO multiuser detector is O(K2) per user per code bit.

6.6 Turbo Multiuser Detection in CDMA with Turbo

Coding

In this section, we discuss turbo multiuser detection for CDMA systems employing turbo

codes. Parallel concatenated codes, the so-called turbo codes, constitute the most important

breakthrough in the coding community in the 1990’s [173]. Since these powerful codes

can achieve near-Shannon-limit error correction performance with relatively low complexity,
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they have been adopted as an optional coding technique standardized in the third-generation

(3G) CDMA systems [197]. We first give a brief introduction to turbo codes and describe

the turbo decoding algorithm for computing the extrinsic information. We then compare the

performance of the turbo multiuser receiver with that of the conventional RAKE receiver

followed by turbo decoding, in a turbo coded CDMA system with mulitpath fading channels.

The material discussed in this section was developed in [253, 254].

6.6.1 Turbo Code and Soft Decoding Algorithm

Turbo Encoder

A typical parallel concatenated convolutional (PCC) turbo encoder consists of two (or more)

simple constituent recursive convolutional encoders linked by an interleaver (or different

interleavers). The block diagram is shown in Fig. 6.13. The interleavers can be a random,

non-random, or semi-random.

The turbo encoder works as follows. Suppose that all constituent encoders start from

the zero state and the first constituent encoder terminates in the zero state. For User

k, the frame of input binary information bits, denoted by dk =
[
dk[0], . . . , dk[I − 1]

]
, is

encoded by the constituent encoders, where I is the size of information bit frame. Let

xk[i] =
[
x0

k[i], . . . , x
J
k [i]

]
denote the systematic bit and output parity bits of the constituent

encoders, corresponding to dk[i], where x0
k[i] is the systematic bit; xj

k[i], j �= 0, is the

parity bit generated by the jth constituent encoder; and J is the number of constituent

encoders. To generate a desired code rate k0

n0
, {xk[i]}I−1

0=1 is punctured. The punctured bits

are BPSK mapped, and then transmitted serially. The output bit frame is denoted by

bk =
[
bk[0], . . . , bk[M − 1]

]
, where M is the size of the code bit frame. To terminate the first

constituent coder in the zero state, the last ν bits of dk are termination bits, where ν is the

number of shift registers in the first encoder.

Soft Turbo Decoder

Corresponding to the turbo encoder in Fig. 6.13, the block diagram of an iterative soft turbo

decoder is shown in Fig. 6.14. The turbo decoder consists of J MAP decoders. Each MAP

decoder is a slight modification of the MAP decoding algorithm for multiple turbo codes
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given in [28, 95]. The signal flow is shown in Fig. 6.14. The deinterleaved LLRs {λ1(bk[i])}i

of the kth user’s code bits delivered by the SISO multiuser detector are distributed to the

J MAP decoders as follows. The LLRs of the systematic bits, {λ1 (x0
k[i])}i, are sent to all

MAP decoders after going through different interleavers. The LLRs of the jth parity bits,{
λ1

(
xj

k[i]
)}

i
, are sent to the jth MAP decoder. Note that for a punctured bit xj

k[i], we let

λ1

(
xj

k[i]
)

= 0, since no information is obtained by the soft multiuser detector for this bit.

.
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Figure 6.14: Soft turbo decoder.

The soft turbo decoder is itself an iterative algorithm. The jth MAP decoder in the turbo

decoder computes the partial extrinsic information for the systematic bit and the jth parity

bit, λj
2 (x0

k[i]) and λj
2

(
xj

k[i]
)
, based on the code constraints, the input LLRs given by the

SISO multiuser detector, and the partial extrinsic information given by other modified MAP

decoders. This partial extrinsic information is then sent to the other modified MAP decoders

for the next iteration within a soft turbo decoding stage. After some iterations, the combined

partial extrinsic information, which is the sum of all J modified MAP decoders’ partial

extrinsic information, is sent to the SISO multiuser detector as the a priori information for
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the next iteration of turbo multiuser detection. A more detailed description of the soft turbo

decoder is as follows.

Denote the LLR of a code bit at the jth MAP decoder as

Λj
2 (xc

k[i])

�
= log

P
(
xc

k[i] = +1 | {λ1(x
0
k[i])}i ,

{
λ1(x

j
k[i])

}
i
,
{
λl

2(x
0
k[i])

}
i;l �=j

, jth encoder structure
)

P
(
xc

k[i] = −1 | {λ1(x0
k[i])}i ,

{
λ1(x

j
k[i])

}
i
,
{
λl

2(x
0
k[i])

}
i;l �=j

, jth encoder structure
)

= log

∑
(s′,s)∈S+

i,c

αi−1(s
′) γi(s

′, s) βi(s)

∑
(s′,s)∈S−

i,c

αi−1(s
′) γi(s

′, s) βi(s)
, (6.169)

c = 0 or j; j = 1, . . . , J,

where S+
i,c and S−

i,c denote the sets of state transition pairs (s′, s) such that the code bit xc
k[i]

is +1 and −1 respectively. Define

λj
2 (xc

k[i])
�
= Λj

2 (xc
k[i]) − λ1 (xc

k[i]) , c = 0 or j (6.170)

as the partial extrinsic information of bit xc
k[i] delivered by the jth MAP decoder.

As before, αi(s) and βi−1(s) can computed by the following forward and backward recur-

sions, respectively:

αi(s) =
∑
s′∈S

αi−1(s
′)γi(s

′, s), (6.171)

i = 1, . . . , I − 1 + ν;

βi−1(s) =
∑
s′∈S

βi(s
′)γi(s, s

′), (6.172)

i = I − 2 + ν, . . . , 0,

where S is the set of all 2ν constituent encoder states. The quantity γi is defined as

γi(s
′, s) = P

[
dk[i] = d(s′, s) | λ1(x

0
k[i]), λ1(x

j
k[i]),

{
λl

2(x
0
k[i])

}
l �=j

]
= P

[
x0

k[i] = d(s′, s), xj
k[i] = xj

k(s
′, s) | λ1(x

0
k[i]), λ1(x

j
k[i]),

{
λl

2(x
0
k[i])

}
l �=j

]
= P

[
x0

k[i] = d(s′, s) | λ1(x
0
k[i]) +

∑
l �=j

λl
2(x

0
k[i])

]
P

[
xj

k[i] = xj
k(s

′, s) | λ1(x
j
k[i])

]
.

(6.173)
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Note that by definition

λ(x)
�
= log

P (x = +1)

P (x = −1)
. (6.174)

Then for b ∈ {+1,−1}, we have

P (x = b) =
exp

[
b λ(x)

]
1 + exp

[
b λ(x)

]
=

exp
[

b
2
λ(x)

]
exp

[− b
2
λ(x)

]
+ exp

[
b
2
λ(x)

] (6.175)

=
1

exp
[−1

2
λ(x)

]
+ exp

[
1
2
λ(x)

] exp

[
b

2
λ(x)

]
(6.176)

∝ exp

[
b

2
λ(x)

]
, (6.177)

where (6.176) follows from the fact that b ∈ {+1,−1}. Using (6.177) in (6.173), we obtain

γi(s
′, s) ∝ exp

{
1

2
d(s′, s)

[
λ1(x

0
k[i]) +

∑
l �=j

λl
2(x

0
k[i])

]}
︸ ︷︷ ︸

γ0
i (s′,s)

exp

{
1

2
xj

k(s
′, s)λ1(x

j
k[i])

}
︸ ︷︷ ︸

γ1
i (s′,s)

.(6.178)

Substituting (6.178) into (6.170), we have

Λj
2(x

0
k[i]) = λ1(x

0
k[i]) +

∑
l �=j

λl
2(x

0
k[i]) +

λj
2(x0

k[i])︷ ︸︸ ︷
log

∑
(s′,s)∈S+

i,0

αi−1(s
′) γ1

i (s
′, s) βi(s)

∑
(s′,s)∈S−

i,0

αi−1(s
′) γ1

i (s
′, s) βi(s)

︸ ︷︷ ︸
λ2(x0

k[i])

,(6.179)

and Λj
2(x

j
k[i]) = λ1(x

j
k[i]) + log

∑
(s′,s)∈S+

i,j

αi−1(s
′) γ0

i (s
′, s) βi(s)

∑
(s′,s)∈S−

i,j

αi−1(s
′) γ0

i (s
′, s) βi(s)

︸ ︷︷ ︸
λ2(xj

k[i])

, (6.180)

where the term λj
2(x

c
k[i]) is the partial extrinsic information obtained by the jth MAP decoder

which will be sent to the other MAP decoders, as shown in Fig. 6.14; after some iterations
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within the turbo decoder, the total extrinsic information, λ2(x
c
k[i]), is sent to the soft mul-

tiuser detector as the a priori information about xc
k[i], if xc

k(i) is not unpunctured. At the

end of the turbo multiuser receiver iteration, a hard decision is made on each information

bit dk[i] = x0
k[i], according to

d̂k[i] = sign
[
Λ2(x

0
k[i])

]
. (6.181)

For numerical stability, (6.179) and (6.180) should be scaled as computation proceeds, in a

similar manner as discussed in Section 6.3.3.

6.6.2 Turbo Multiuser Receiver in Turbo-coded CDMA with Mul-

tipath Fading

In this section, we demonstrate the performance of the turbo multiuser receiver in a turbo-

coded CDMA system with multipath fading. We consider a K-user CDMA system employ-

ing random aperiodic spreading waveforms and signaling through multipath fading channels.

Each user’s information data bits are encoded by a turbo encoder and then randomly inter-

leaved. The interleaved code bits are then BPSK mapped and spread by a random signature

waveform, before being sent to the multipath fading channel. A block diagram of the system

is illustrated in Fig. 6.15. The turbo multiuser receiver for this system iterates between the

SISO multiuser detection stage (as discussed in Section 6.5.2 and the soft turbo decoding

stage (as discussed in Section 6.6.1) by passing the extrinsic information of the code bits

between the two stages.

Single-User RAKE Receiver

In order to compare the performance of the turbo multiuser receiver with the conventional

technique used in practical systems, a single-user RAKE receiver employing maximal-ratio

combining followed by a turbo decoder for the turbo coded CDMA system is described next.

The received signal in this system is given by (6.133) and (6.134). In a single-user RAKE

receiver, the decision statistic for the kth user’s ith code bit, bk[i], is given by yk[i] defined in

(6.138), i.e.,

yk[i]
�
=

L∑
l=1

gl,k[i]
∗
∫
r(t)si,k(t− iT − τl,k) dt. (6.182)
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To obtain the LLR of the code bit bk[i] based on yk[i], a Gaussian assumption is made on

the distribution of yk[i]. Moreover, assume that the user spreading waveforms contain i.i.d.

random chips and that the time delay τl,k is uniformly distributed over a symbol interval.

Assume also that the multipath fading gains are independent between different users and are

normalized, such that
∑L

l=1E

{∣∣∣gl,k[i]
∣∣∣2} = 1. It is shown in the Appendix (Section 6.9.2)

that the LLR of bk[i] based on the above assumption is given by:

λ1(bk[i]) =
4Ak �{yk[i]}

σ2 +
1

N

K∑
j �=k

A2
j

. (6.183)

The LLRs {λ1(bk[i])}i of the kth user’s code bits are then sent to the corresponding turbo

decoder to obtain the estimated information bits.

Note that the SISO multiuser detector discussed in Section 6.5.2 operates on the same

decision statistic as the conventional RAKE receiver (i.e., the outputs of the maximum ratio

combiners {yk[i]}k;i). The RAKE receiver demodulates the kth user’s data bits based only on

{yk[i]}i, whereas the SISO multiuser detector demodulates all users’ data bits jointly using

all decision statistics {yk[i]}i;k.

Simulation Examples

Next we demonstrate the performance of the proposed turbo multiuser receiver in multipath

fading CDMA channels by some simulation examples. The multipath channel model is given

by (6.132). The number of paths for each user is three (L = 3). The delays of all users’

paths are randomly generated. The time-variant fading coefficients are randomly generated

to simulate channels with different data rates and vehicle speeds. The parameters are chosen

based on the prospective services of wideband CDMA systems [422].

We consider a reverse link of an asynchronous CDMA system with six users (K = 6). The

spreading sequence of each different user’s different coded bit is independently and randomly

generated. The processing gain is N = 16. Each user uses a different random interleaver to

permute its code bits. In all simulations, the same set of interleavers is used, and all users

have equal signal amplitudes. The number of iterations within each soft turbo decoder is 5.

The code we choose is a rate-1
3

binary turbo code, whose encoder is shown in Fig. 6.16.

The two recursive convolutional constituent encoders have a generator polynomial, G =
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n(D)
d(D)

= 1+D2

1+D+D2 with effective free distance 10 [29]. An S-random interleaver, πj shown in

Fig. 6.14, is used and explained below. The interleaver size is I = 1000 and S = 22. (Hence

the symbol frame length M = 3000.)

S-random interleaver : The so called S-random interleaver [98] is one type of semi-random

interleaver. It is constructed as follows. To obtain a new interleaver index, a number is

randomly selected from the numbers which have not previously been selected as interleaver

indices. The selected number is accepted if and only if the absolute values of the differences

between the currently selected number and the S previously accepted numbers are greater

than S. If the selected number is rejected, a new number is randomly selected. This process

is repeated until all I (interleaver size) indices are obtained. The searching time increases

with S. Choosing S <
√
I/2 usually produces a solution in reasonable time. Note that

the minimum weight of the codewords increases as S increases. This equivalently increases

the effective free distance [29] of parallel concatenated codes, which improves the weight

distribution and thus the performance of the code. In Example 1, we will see that S-random

interleavers offer significant interleaver gains over random interleavers.

x0

x1

x2
Encoder 2

Encoder 1

D D

D D

Interleaver
1000 Bit

d

Figure 6.16: A rate 1/3 turbo encoder.

Example 1 : (The effect of the S-interleaver) The BER performance of the turbo code used

in this study with random interleavers and an S-random interleaver in a single-user AWGN

channel is plotted in Fig. 6.17. It is seen that the S-random interleaver offers a significant

interleaver gain over random interleavers.
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Figure 6.17: BER performance of the turbo code with different interleavers. (random inter-

leavers with size 256 and 1024, S-random interleaver with size 1000.)
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Figure 6.18: BER performance comparison between the turbo multiuser receiver and the

RAKE receiver in a multipath fading channel with K = 6, processing gain N = 16, vehicle

speed 120 Km/h, data rate 9.6 Kb/s, carrier frequency 2.0 GHz.
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Figure 6.19: BER performance comparison between the turbo multiuser receiver and the

RAKE receiver in a multipath fading channel with K = 6, processing gain N = 16, vehicle

speed 60 Km/h, data rate 38.4 Kb/s, carrier frequency 2.0 GHz.
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Figure 6.20: BER performance comparison between the turbo multiuser receiver and the

RAKE receiver in a time-invariant multipath channel with K = 6, processing gain N = 16.
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In the following three examples, the performance of the turbo multiuser receiver is com-

pared with that of the conventional single-user RAKE receiver. The single-user RAKE

receiver computes the code bit LLRs of the kth user using (6.183); these are then fed to a

turbo decoder to decode the information bits. The BER averaged over all six users is plotted.

Example 2 : (Fast vehicle speed and low data rate): In this example, we consider a Rayleigh

fading channel with the vehicle speed of 120Km/h, the data rate of 9.6Kb/s, and the carrier

frequency of 2.0GHz, (the effective bandwidth-time product is BT = 0.0231). The results

are plotted in Fig. 6.18,

Example 3 : (Medium vehicle speed and medium data rate): Next, we consider a multipath

Rayleigh fading channel with the vehicle speed 60 Km/h, the data rate 38.4Kb/s, and the

carrier frequency 2.0GHz, (BT = 0.00289). The results are plotted in Fig. 6.19.

Example 4 : (Very slow fading): Finally, we consider a very slow fading channel (a time-

invariant channel). The fading coefficients {gkl} of paths are randomly generated and kept

fixed, and every user has equal received signal energy. The results are plotted in Fig. 6.20.

From Examples 2, 3 and 4, it is seen that significant performance gain is achieved by

the turbo multiuser receiver compared with the conventional non-iterative receiver (i.e. the

RAKE receiver followed by a turbo decoder). The performance of the turbo multiuser

receiver with two iterations is very close to that of the RAKE receiver in a single-user channel.

Moreover, at high SNR, the detrimental effects of the multiple-access interference and the

intersymbol interference in the channel can be almost completely eliminated. Furthermore,

it is seen from the simulation results that the turbo multiuser receiver in a multiuser channel

even outperforms the RAKE receiver in a single-user channel. This is because the RAKE

receiver makes the assumption that the delayed signals from different paths for each user are

orthogonal, which effectively neglects the intersymbol interference.

6.7 Turbo Multiuser Detection in Space-time Block

Coded Systems

The recently developed space-time coding (STC) techniques [345] integrate the methods of

transmitter diversity and channel coding, and provide significant capacity gains over the
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traditional communication systems in fading wireless channels. STC has been developed

along two major directions: space-time block coding (STBC) and space-time trellis coding

(STTC). The common features of STBC and STTC lie in their realizations of spatial diversity,

i.e., both methods transmit a vector of complex code symbols simultaneously from multiple

transmitter antennas. Their differences, on the other hand, lie in their realizations of temporal

diversity: in STBC, the temporal constraint is represented in a matrix form; whereas in

STTC, the temporal constraint is represented in the form of a trellis tree, which is akin to

the trellis coded modulation (TCM) code.

.

.

.

.

.
.

.
.

.
.

User 1

User K

Tx 1

Tx 2

Tx N
Rx 1

Rx 2

Rx M

Tx 1

Tx 2

Tx N

Figure 6.21: A multiuser wireless communication system employing multiple transmitter

and receiver antennas. There are K users in the system, each user employing N transmitter

antennas. At the receiver side, there are M receiver antennas.

From the coding perspective, the single-user performance of STBC and STTC has been

studied in [467, 468], and some code design criteria have been developed. However, in wire-
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less communication systems, sharing the limited radio resources among multiple users is in-

evitable. Indeed, the emerging wireless systems with multiple transmitter and receiver anten-

nas enable a new dimension for multiple-accessing: space-division multiple-access (SDMA)

[483], which, when employed with the more conventional TDMA or CDMA techniques, can

substantially increase the system capacity. However, the presence of multiuser interference,

if not properly ameliorated, can significantly degrade the receiver performance as well as the

system capacity. Therefore, the development of efficient detection and decoding techniques

for multiuser STC systems (illustrated in Fig. 6.21) is key to bringing the STC techniques

into the practical arena of wireless communications. Research results along this direction first

appeared in [344, 467], where some techniques for combined array processing, interference

cancellation and space-time decoding for multiuser STC systems were proposed.

In this and the following section, we discuss turbo receiver structures for joint detection

and decoding in multiuser STC systems, based on the techniques developed in the previous

sections. Such iterative receivers and their variants, which were first developed in [286],

are described for both STBC and STTC systems. During iterations, extrinsic information is

computed and exchanged between a soft multiuser demodulator and a bank of MAP decoders

to achieve successively refined estimates of the users’ signals.

6.7.1 Multiuser STBC System

The transmitter end of a multiuser STBC system is shown in Fig. 6.22. The information

bit stream for the kth user, {dk[n]}n, is encoded by a convolutional encoder; the resulting

convolutional code bit stream {bk[i]}i is then interleaved by a code bit interleaver. After

interleaving, the interleaved code bit stream is then fed to an M -PSK modulator, which

maps the binary bits into complex symbols {ck[l]}l, where ck[l] ∈ ΩC
�
= {C1, C2, . . . , C|ΩC |},

and ΩC is the M -PSK symbol constellation set (M = |ΩC|). The symbol stream {ck[l]}l is

partitioned into blocks, with each block consisting of N symbols. Due to the existence of

the interleaver, we can ignore the temporal constraint induced by the outer convolutional

encoder and assume that the set {ck[l]}l contains independent symbols. Hence, from the

STBC decoder’s perspective, we only need to consider one block of symbols in the code

symbol stream, namely, the code vector ck
�
=

[
ck[1], ck[2], . . . , ck[N ]

]T

.

STBC was first proposed in [12] and was later generalized systematically in [467]. Fol-
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Figure 6.22: Transmitter structure for a multiuser STBC system.

lowing [467], the kth user’s STBC is defined by a (P ×N) code matrix Gk, where N denotes

the number of transmitter antennas or the spatial transmitter diversity order, and P denotes

the number of time slots for transmitting an STBC codeword or the temporal transmitter

diversity order. Each row of Gk is a permuted and transformed (i.e., negated and/or con-

jugated) form of the code vector ck. An STBC encoder takes as input the code vector ck,

and transmits each row of symbols in Gk at P consecutive time slots. At each time slot,

the symbols contained in an N -dimensional row vector of Gk are transmitted through N

transmitter antennas simultaneously.

As a simple example, we consider a particular user employing a 2 × 2 STBC (i.e., P =

2, N = 2). Its code matrix G1 is defined by

G1 =

[
c[1] c[2]

−c[2]∗ c[1]∗

]
. (6.184)

The input to this STBC is the code vector c =
[
c[1] c[2]

]T

. During the first time slot, the

two symbols in the first row of G1, i.e., c[1] and c[2], are transmitted simultaneously at the

two transmitter antennas; during the second time slot, the symbols in the second row of G1,

i.e., −c[2]∗ and c[1]∗ are transmitted.

We assume a flat fading channel between each transmitter–receiver pair. Specifically,

denote αm,n as the complex fading gain from the nth transmitter antenna to the mth receiver
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antenna, where αm,n ∼ Nc(0, 1) is assumed to be a zero-mean circularly symmetric complex

Gaussian random variable with unit variance. It is also assumed that the fading gains remain

constant over an entire signal frame, but they may vary from one frame to another.

In general, we consider an STBC system with K users, each employing N transmitter

antennas. At the receiver side, there are M receiver antennas. In this case, the received

signal can be written as


r1

r2

...

rM


︸ ︷︷ ︸

r MP×1

=
[

H1 H2 . . . HK

]
︸ ︷︷ ︸

H MP×NK


c1

c2
...

cK


︸ ︷︷ ︸

c NK×1

+


n1

n2

...

nM


︸ ︷︷ ︸

n MP×1

. (6.185)

In (6.185), rm �
=

[
rm[1], rm[2], . . . , rm[P ]

]T

, m = 1, 2, . . . ,M, consists of the received signal

from time slots 1 to P , at the mth receiver antenna; Hk, k = 1, 2, . . . , K, is the channel

response matrix for the kth user, as explained below; ck
�
=

[
ck[1], ck[2], . . . , ck[N ]

]T

is the

code vector for the kth user; and nm �
=

[
nm[1], nm[2], . . . , nm[P ]

]T

, contains the additive

Gaussian noise samples from time slots 1 to P at the mth receiver antenna.

As a simple example, consider a single user (K = 1) STBC system with two (N = 2)

transmitter antennas and M receiver antennas, employing the code matrix G1 in (6.184), the

received signal at the mth receiver antenna for this single user can be written as[
rm[1]

rm[2]

]
=

[
c[1] c[2]

−c[2]∗ c[1]∗

][
αm,1

αm,2

]
+

[
nm[1]

nm[2]

]
, (6.186)

m = 1, 2, . . . ,M .

For notational convenience, we write (6.186) in an alternative form by conjugating rm[2],[
rm[1]

rm[2]∗

]
︸ ︷︷ ︸

rm

=

[
αm,1 αm,2

α∗
m,2 −α∗

m,1

]
︸ ︷︷ ︸

Hm
1

[
c[1]

c[2]

]
︸ ︷︷ ︸
c1

+

[
nm[1]

nm[2]∗

]
︸ ︷︷ ︸

nm

, (6.187)

m = 1, 2, . . . ,M .

We can see that Hm
1 contains information of not only the channel response related to the

mth receiver antenna, but also the code constraint of the STBC G1. Finally by stacking all
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the rm in (6.187), we obtain (6.188). The signal model in (6.188) can be easily extended to

the general model (6.185) of a K-user (P × N) STBC system, in which each user employs

the G code defined in [467]. The analogy between this multiuser STBC signal model and the

synchronous CDMA signal model (6.74) is evident. Note that in order to effectively suppress

the interfering signals in model (6.185), the size of the receiver signal r should be larger than

the number of symbol to be decoded, i.e., MP ≥ NK.
r1

r2

...

rM


︸ ︷︷ ︸

r 2M×1

=


H1

1

H2
1

...

HM
1


︸ ︷︷ ︸

H1 2M×2

[
c[1]

c[2]

]
︸ ︷︷ ︸
c1 2×1

+


n1

n2

...

nM


︸ ︷︷ ︸

n 2M×1

. (6.188)

6.7.2 Turbo Multiuser Receiver for STBC System

The iterative receiver structure for a multiuser STBC system is illustrated in Fig. 6.23. It

consists of a soft multiuser demodulator, followed byK parallel MAP convolutional decoders.

The two stages are separated by interleavers and deinterleavers. The soft multiuser demod-

ulator takes as input the received signals from the M receiver antennas and the interleaved

extrinsic log likelihood ratios (LLR’s) of the code bits of all users {λ2(bk[i])}i;k (which are

fed back by the K single-user MAP decoders), and computes as output the a posteriori

LLR’s of the code bits of all users, {Λ1(bk[i])}i;k. The MAP decoder of the kth user takes as

input the deinterleaved extrinsic LLR’s of the code bits {λ1(d
π
k [i])}i from the soft multiuser

demodulator, and computes as output the a posteriori LLR’s of the code bits {Λ2(b
π
k [i])}i,

as well as the LLR’s of the information bits {Λ2(d
π
k [n])}n. We next describe each component

of the receiver in Fig. 6.23.

Soft Multiuser Demodulator

The soft multiuser demodulator is based on the same technique described in Section 6.3.3.

First, the soft estimate c̃k[l] of the kth user’s lth code symbol ck(l) is formed by

c̃k[l]
�
= E {ck[l]} =

∑
Ci∈ΩC

Ci P (ck[l] = Ci) , (6.189)
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Figure 6.23: Iterative receiver structure for a multiuser STBC system.

where ΩC is the set for all code symbols. At the first iteration, no prior information about

code symbols is available, thus code symbols are assumed to be equiprobable, i.e., P (ck[l] =

Ci) = 1
|ΩC | . In the subsequent iterations, the probability P (ck[i] = Ci) is computed from the

extrinsic information delivered by the MAP decoder, as will be explained later. [cf. (6.204)].

For the K-user STBC system (6.185), define an (NK)-dimensional soft code vector

c̃
�
=

[
c̃T1 , c̃

T
2 , . . . , c̃

T
K

]T

=
[
c̃1[1], . . . , c̃1[N ], c̃2[1], . . . , c̃2[N ], . . . . . . , c̃K [1], . . . , c̃K [N ]

]T

.

The basic idea is to treat every element in c̃ as a virtual user, and therefore there are totally

(NK) virtual users in the system (6.185). Viewing it this way, the model (6.185) is similar

to a synchronous CDMA signal model treated in Section 6.3.3. Henceforth in this section,

the notation k[l] is used to index a virtual user. Define

c̃k[l]
�
= c̃ − c̃k[l]ek[l] . (6.190)

In (6.190), ek[l] is a (NK)-vector of all zeros, except for the “1” element in the corresponding

entry of the k[l]
th virtual user. That is, c̃k[l] is obtained from c̃ by setting the k[l]

th element

to zero.

Subtracting the soft estimate of the interfering signals of other virtual users from the
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received signal r in (6.185), we get

r̃k[l]
�
= r − Hc̃k[l] (6.191)

= H (c − c̃k[l]) + n . (6.192)

As before, in order to further suppress the residual interference in r̃k[l], we apply an instan-

taneous linear minimum mean-square error (MMSE) filter to r̃k[l]. The linear MMSE weight

vector wk[l] is chosen to minimize the MSE between the transmitted symbol ck[l] and the

filter output, i.e.,

wk[l] = arg min
w∈CNK

E
{∣∣ck[l] − wH r̃k[l]

∣∣2}
= E

{
r̃k[l]r̃

H
k [l]

}−1
E {ck[l]∗r̃k[l]} . (6.193)

Using (6.191) and assuming that the M -PSK symbol ck[l] is of unit energy, i.e.
∣∣∣ck[l]∣∣∣2 = 1

and E{n nH} = σ2IMP , we have

E {ck[l]∗r̃k[l]} = HE {ck[l]∗ (c − c̃k[l])} = Hek[l] , (6.194)

E
{
r̃k[l]r̃k[l]

H
}

= HV k[l]H
H + σ2IMP , (6.195)

with V k[l]
�
= Cov

{
c − c̃k[l]

}
= diag

{
1 −

∣∣∣c̃1[1]
∣∣∣2, . . . , 1 −

∣∣∣c̃1[N ]
∣∣∣2, . . . , 1 −

∣∣∣c̃k[l − 1]
∣∣∣2,

1, 1 −
∣∣∣c̃k[l + 1]

∣∣∣2, . . . , 1 −
∣∣∣c̃K [N ]

∣∣∣2} . (6.196)

Using (6.193)–(6.196), the instantaneous MMSE estimate for ck[l] is then given by

ĉk[l]
�
= wk[l]

H r̃k[l] = ek[l]
T HH

(
HV k[l]H

H + σ2IMP

)−1
r̃k[l] . (6.197)

The instantaneous MMSE filter output is modelled by an equivalent additive white Gaussian

noise channel having ck[l] as its input symbol. The output of this filter can then be written

as

ĉk[l] = µk[l]ck[l] + ηk[l] , (6.198)

with µk[l]
�
= E {ĉk[l]ck[l]∗} =

[
HH

(
HV k[l]H

H + σ2IMP

)−1
H

]
kk
, (6.199)

and ν2
k [l]

�
= Var {ĉk[l]} = µk[l] − µk[l]

2 . (6.200)

Note that µk[l] and ν2
k [l] are real numbers. Equations (6.198)–(6.200) give the probability

distribution of the code symbol ĉk[l], based on which the a posteriori probability of the code

bits are computed, as will be discussed in the next.
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From the above discussions, the major computation involved in the soft multiuser de-

modulator is the (MP ×MP ) matrix inversion,
(
HV k[l]H

H + σ2IMP

)−1
. As before, this

can be done recursively by making use of the matrix inversion lemma. As a result, the

computational complexity of the proposed soft multiuser demodulator per user per symbol

is O
[

(MP )3

NK

]
. (Recall that M is the number of receiver antennas, N is the number of trans-

mitter antennas, P is the number of time slots in an STBC codeword, and K is the number

of the users.)

Computing A Posteriori Code Bit LLR’s

The convolutional code is chosen as the outer channel code in our proposed system. First

we need to compute the a posteriori LLR’s of the code bits based on the estimated code

symbols given by the soft multiuser demodulator. Since each user decodes its convolutional

code independently, henceforth we drop the subscript k, the user index, to simplify notation.

Every complex symbol c[l] can be represented by a J-dimensional binary bit vector,[
b[l, 1], . . . b[l, J ]

]
, where J

�
= log2 |ΩC| and b[l, j] ∈ {+1,−1} denotes the jth binary bit of

the lth complex code symbol. By (6.177),

P (b[l, j] = B) ∝ exp

{
B

2
λ(b[l, j])

}
, (6.201)

with λ(b[l, j])
�
= log

P (b[l, j] = +1)

P (b[l, j] = −1)
and B ∈ {+1,−1} .

Due to the existence of the interleaver, we can assume that b[l, j] is independent of c[l′], l′ �= l;

and b[l, j] is independent of b[l, j′], j �= j′. Based on the Gaussian model (6.198), we have

p
(
ĉ[l] | c[l] = Ci

)
=

1

πν2[l]
exp

−

∣∣∣ĉ[l] − µ[l]Ci

∣∣∣2
ν2[l]

 , i = 1, 2, . . . , |ΩC| , (6.202)

where Ci ∈ ΩC and with a binary representation, Ci ≡
[
B[i, 1], . . . B[i, J ]

]
. Then the a

posteriori LLR of b[l, j] at the output of soft multiuser demodulator can be computed as

Λ1(b[l, j])
�
= log

P [b(l, j] = +1 | ĉ[l])
P (b[l, j] = −1 | ĉ[l])
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= log

∑
Ci∈C+

j

p (ĉ[l] | c[l] = Ci) P (Ci)

∑
Ci∈C−

j

p (ĉ[l] | c[l] = Ci) P (Ci)

= log

∑
Ci∈C+

j

p (ĉ[l] | c[l] = Ci)
J∏

j′=1,j′ �=j

P (b[l, j′] = B[i, j′])

∑
Ci∈C−

j

p (ĉ[l] | c[l] = Ci)
J∏

j′=1,j′ �=j

P (b[l, j′] = B[i, j′])

+ log
P (b[l, j] = +1)

P (b[l, j] = −1)

= log

∑
Ci∈C+

j

exp

−

∣∣∣ĉ[l] − µ[l]Ci

∣∣∣2
ν2[l]

+
∑
j′ �=j

B[i, j′]
2

λ2(b[l, j
′])


∑

Ci∈C−
j

exp

−

∣∣∣ĉ[l] − µ[l]Ci

∣∣∣2
ν2[l]

+
∑
j′ �=j

B[i, j′]
2

λ2(b[l, j
′])


︸ ︷︷ ︸

λ1[b(l, j)]

+λ2(b[l, j]) ,

j = 1, 2, . . . , J , (6.203)

where C+
j is the set of the complex code symbols whose the jth binary bit equals “+1”;

and C−
j is similarly defined. The last equality in (6.203) follows from (6.201) and (6.202).

The term λ2(b[l, j]) in (6.203) is the interleaved extrinsic LLR of the jth code bit for the lth

complex code symbol in the previous iteration, and is computed by bit-wise subtracting the

code bit LLR at the input of the decoder from the corresponding code bit LLR at the output

[cf. Fig. 6.23]. At the first iteration, no prior information about code bits is available, thus

λ2(b[l, j]) = 0. It is seen from (6.203) that the output of the soft multiuser demodulator is the

sum of the a priori information λ2(b[l, j]) provided by the MAP convolutional decoder in the

previous iteration, and the extrinsic information λ1(b[l, j]). Finally, the extrinsic LLR’s of

the code bits calculated in (6.203), are deinterleaved, and then fed to the MAP convolutional

decoder.

MAP Decoding Algorithm for Convolutional Code

Consider a rate- k0

n0
binary convolutional code of overall constraint length k0ν0. At each time

t, the input to the encoder is the k0-dimensional binary vector dt = (d1
t , . . . , d

k0
t ) and the
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corresponding output is the n0-dimensional binary vector bt = (b1t , . . . , b
n0
t ).

As shown in Fig. 6.23, the deinterleaved extrinsic LLR’s of the code bits {λ1(b
π[i])}i

are fed as input to the MAP convolutional decoder. We partition this stream into n0-size

blocks, each block consisting of n0 code bit LLR’s, corresponding to the n0 output code bits

at one time instant. Denote each block by a vector λ1(bt)
�
=

[
λ1

(
bπ,1
t

)
, . . . , λ1 (bπ,n0

t )
]
, t =

1, 2, . . . , τ0, where τ0 blocks of code bits are transmitted in each signal frame. The partitioned

code-bit LLR stream is then denoted as {λ1(b
π
t )}t.

The extrinsic LLR’s of the code bits {λ2(b
π[i])}i are computed based on {λ1(b

π
t )}t and the

convolutional code structure by the MAP decoding algorithm described in Section 6.2. Based

on the interleaved extrinsic LLR’s of the code bits in the previous iteration, λ2(b[l, j]) , j =

1, 2, . . . , J , the soft estimate c̃[l] [cf. Eq.(6.189)] of the code symbol c[l] can then be computed

as

c̃[l] = E{c[l]} =
∑

Ci∈ΩC

Ci P (c[l] = Ci)

=
∑

Ci∈ΩC

Ci

J∏
j=1

P (b[l, j] = B[i, j])

=
∑

Ci∈ΩC

Ci

J∏
j=1

exp
{
B[i, j]λ2(b[l, j])

}
1 + exp

{
B[i, j]λ2(b[l, j])

} , (6.204)

where (6.204) follows from (6.175). At the first iteration, no prior information is available,

thus λ2(b[l, j]) = 0. At the last iteration, the information bits are recovered by the MAP

decoding algorithm.

6.7.3 Projection-based Turbo Multiuser Detection

So far in Section 6.7.2, we have considered the problem of decoding the information of

all users in the system. In some cases, however, we are only interested in decoding the

information of some specific users and are not willing to pay extra receiver complexity for

decoding the information of the undesired users. One approach to addressing this problem

is to null out the signals of the Ku undesired users at the front end, and then to apply the

iterative soft multiuser demodulation algorithm on the rest of Kd = K −Ku users’ signals

[430]. In [467], a projection-based technique was proposed for interference cancellation in
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STC multiuser systems. Here, we discuss applying soft multiuser demodulation and iterative

processing on the projected signal to further enhance the receiver performance.

Consider again the signal model (6.185). Divide the users into two groups, namely, the

desired users and the undesired users. Rewrite (6.185) as

r =
[

Hd Hu

] [ cd

cu

]
+ n , (6.205)

where the subscript d denotes desired users and u denotes undesired users. Define H⊥
u

�
=

IMP − HuH
†
u, r̃

�
= H⊥

u r, and H̃
�
= H⊥

u Hd. (where H†
u is the Moore-Penrose generalized

inverse of Hu [185]). It is assumed that the matrix Hu is “tall”, i.e., MP > NKu, and it

has full column rank. It is easily seen that

r̃ = H̃cd + ñ, ñ ∼ Nc(0, σ
2H⊥

u H⊥H
u ) , (6.206)

i.e., the undesired users’ signals are nulled out by this projection operation. Moreover,

before projection, the number of linearly independent rows of the H is MP ; whereas after

projection, the number of linearly independent rows of H̃ becomes (MP − NKu), which

implies that in the projected system the effective number of receiver antennas (the effective

receiver diversity order) is reduced toM ′ �
= (MP−NKu)/P . Hence, the projection operation

incurs a diversity loss. Following the same derivations as in Section 6.7.2, we can apply

the soft multiuser demodulator and MAP decoder on the projected signal r̃ in (6.206), to

iteratively detect and decode the information bits of the desired users.

Since we assume that the fading channel remains static within an entire signal frame,

which normally contains hundreds of code blocks (of N symbols), we need only compute

the projection matrix H⊥
u once per signal frame. Therefore, the dominant computation of

the projection-based soft multiuser demodulator is the same as before. However, the overall

computational complexity of the multiuser receiver is reduced, since now we need only decode

Kd users’ information, i.e., only Kd (instead of K) MAP decoders are needed.

Simulation Examples

Next we provide computer simulation results to illustrate the performance of the turbo

receivers in multiuser STBC systems. It is assumed that the fading processes are uncorrelated
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among all transmitter–receiver antenna pairs of all users; and for each user, the fading

processes are uncorrelated from frame to frame, but remain static within each frame. It is

also assumed that the channel response matrix H in (6.185) and (6.207) are perfectly known.

All users employ the same STBC code; but each user uses a different random interleaver.

Furthermore, all users transmit M -PSK symbols with equal powers, a scenario in space-

division multiple-access (SDMA) systems. Such an equal-power setup is also the worst case

scenario from the interference mitigation point of view.

We consider a four-user (K = 4) STBC system, as shown in Fig. 6.22. Each user

employs the STBC G1 defined in (6.184) and two transmitter antennas (N = 2). 8-PSK

signal constellation is used in the M -PSK modulator. The outer convolutional code, which

is same for all users, is a 4-state, rate-1
2

code with generator (5, 7) in octal notation. The

encoder is forced to the all-zero state at the end of every signal frame. Each signal frame

contains 128 8-PSK symbols. At the receiver side, four receiver antennas (M = 4) are used.

Assume that all K users’ signals are to be decoded (K = 4), we first demonstrate the

performance of the iterative receiver discussed in Sections 6.7.2. The frame error rate (FER)

and the bit error rate (BER) are shown in Fig. 6.24. For the purpose of comparison, we

also include the performance of the single-user STBC system with iterative decoding. The

dotted lines (denoted as SU1-1) in Fig. 6.24 represent the performance of the single-user

system with two transmitter antennas (N = 2) and four receiver antennas (M = 4) after

its 1st iteration, i.e., the conventional (non-iterative) single-user performance. The dash-dot

lines (denoted as SU1-6) in Fig. 6.24–Fig. 6.25 represent the single-user performance after 6

iterations by using the same iterative structure discussed in Section 6.7.2.

Since a single user transmits different STC code symbols from its N transmitter antennas,

virtually it could be viewed as an N -user system as discussed in Section 6.7.2. Then, the

iterative receiver structure for the multiuser STC systems can also be applied to single-

user STC systems. Note that the optimal receiver of the proposed multiuser STBC system

involves the joint decoding of the multiuser STBC and outer convolutional codes, which has

a prohibitive complexity O [|ΩC|NK2ν
]
. However, the STBC signal model in (6.188), either

single-user or multiuser, is analogous to the synchronous CDMA multiuser system model.

As seen from the previous sections, at high SNR, the iterative technique for interference

suppression and decoding in a multiuser system can approach the performance of a single-
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Figure 6.24: Frame error rate (FER) and bit error rate (BER) for a four-user STBC system.

K = 4, N = 2,M = 4. All four users are iteratively detected and decoded. SU1-1 and

SU1-6 denote the iterative decoding performance of the single-user system with K = 1, N =

2,M = 4.
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Figure 6.25: Frame error rate (FER) and bit error rate (BER) for a four-user STBC system.

K = 4, N = 2,M = 4,M ′ = 2. Two users are first nulled out, the rest two users are iter-

atively detected and decoded. SU2-1 and SU2-6 denote the iterative decoding performance

of the single-user system with K = 1, N = 2,M ′ = 2. The gap between SU1-6 and SU2-6

constitutes the diversity loss caused by the projection operation.
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user system, (which is the lower bound for the optimal performance). Hence it is reasonable

to view the performance of the iterative single-user STBC system as an approximate lower

bound of the optimal joint decoding performance. It is seen from Fig. 6.24 that after six

iterations the performance, in terms of both FER and BER, of both the single-user and

multiuser STBC system is significantly improved compared with that of the non-iterative

receivers, (i.e., the performance after the first iteration). More impressively, the performance

of the iterative receiver in a multiuser system approaches that of the iterative single-user

receiver at high SNR.

We next demonstrate the performance of the projection-based turbo receiver. Assume

that Kd out of all K users’ signals are to be decoded (K = 4, Kd = 2). In this scenario, two

users are first nulled out by a projection operation, and the rest of two users are iteratively

detected and decoded, as discussed in Section 6.7.3. The performance is shown in Fig. 6.25.

Since it is known in [467] that, due to the projection operation, the equivalent receiver

antenna number (the receiver diversity) reduces from MP to (MP − NKu). For a fair

comparison, in Fig. 6.25, we also present the iterative decoding performance after the first

iteration (denoted by SU2-1) and after the sixth iteration (denoted by SU2-6) of the single-

user system with two transmitter antennas (N = 2) and two receiver antennas (M ′ = 2),

where M ′ denotes the effective number of receiver antennas for the projected system, with

M ′ �
= (MP −NKu)/P . It is seen that the projection-based turbo receiver still significantly

outperform the projection-based non-iterative receiver. However, compared with the turbo

receiver discussed above, the projection operation incurs a substantial performance loss. The

reason for such a performance loss is two-fold. First of all, the projection operation causes a

diversity loss by suppressing the interference from other Ku users; Secondly, the projection

operation enhances the background ambient noise. We therefore advocate the use of turbo

receiver operating on all users’ signals in STBC systems.

6.8 Turbo Multiuser Detection in Space-time Trellis

Coded Systems

In the previous section, we have developed an iterative receiver structure for multiuser STBC

systems based on the turbo multiuser detection technique. In this section, we apply the
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same ideas to multiuser space-time trellis coded (STTC) systems. Moreover, by exploiting

the intrinsic structures of STTC, we consider a more compact system without introducing

any outer channel code.

6.8.1 Multiuser STTC System
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Figure 6.26: Transmitter structure for a multiuser STTC system.

STTC is basically a TCM code, which can be defined in terms of a trellis tree. The

input to the encoder at time t is the k0-dimensional binary vector dt =
(
d1

t , . . . , d
k0
t

)
and

the corresponding output is a n0-dimensional complex symbol vector ct =
(
c1t , . . . , c

n0
t

)
,

where the symbol clt ∈ ΩC, l = 1, 2, . . . , n0. At each time t, every k0 binary input bits

determine a state transition, and with each state transition there are n0 output M -PSK

symbols (M = |ΩC|). Rather than transmitting the output code symbols serially from

a single transmitter antenna as in the traditional TCM scheme, in STTC all the output

code symbols at each time t are transmitted simultaneously from the N = n0 transmitter

antennas. Hence, the rate of STTC at each transmitter antenna is k0

log2 |ΩC | , which is equal to

1 for all the STTCs designed so far. The first single-user STTC communication system was

proposed in [468]. Some design criteria and performance analysis for STTC in flat-fading

channels were also given there.
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In what follows, we discuss a multiuser STTC communication system which employs a

turbo receiver structure. The transmitter end of the proposed multiuser STTC system is

depicted in Fig. 6.26. Note that there is a complex symbol interleaver between the STTC

encoder and the multiple transmitter antennas for each user. Such an interleaver is key to

reducing the influence of error bursts at the input of each user’s MAP STTC decoder.

For the multiuser STTC system, the channel model is similar to (6.185), except that the

matrix-based temporal constraints no longer exist. We have the following system model for

the multiuser STTC system
r1

r2

...

rM


︸ ︷︷ ︸

r M×1

=
[

H1 H2 . . . HK

]
︸ ︷︷ ︸

H M×NK


c1

c2
...

cK


︸ ︷︷ ︸

c NK×1

+


n1

n2

...

nM


︸ ︷︷ ︸

n M×1

. (6.207)

In (6.207), rm, m = 1, 2, . . . ,M, is the received signal at the mth receiver antenna; Hk, k =

1, 2, . . . , K, is the channel response matrix for the kth user; the (m,n)th element of Hk is the

fading gain from the nth, n = 1, 2, . . . , N, transmitter antenna to the mth, m = 1, 2, . . . ,M,

receiver antenna of the kth user; ck
�
=

[
ck[1] ck[2] . . . ck[N ]

]T

is the code vector of the kth

user; and nm is the additive Gaussian noise sample at the mth receiver antenna.

Comparing (6.185) and (6.207), the key differences between the STBC and the STTC

systems are as follows

• The matrix H in (6.185) contains both the channel fading gains and the STBC tem-

poral constraints. By contrast, the matrix H in (6.207) only contains channel fading

gains.

• The vector r in (6.185) is the stack of received signals over the consecutive P time

slots, whereas in (6.207) the vector r contains only the received signals at one time

slot. Therefore (6.185) defines the received signals of an entire STBC codeword, and

contains all the information for decoding an STBC codeword. By contrast, (6.207)

contains only the spatial information of the multiuser STTC system, whereas the STTC

temporal information of each user is contained in the trellis tree which defines the

STTC.
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• In both signal models (6.185) and (6.207), in order to have sufficient degree of freedom

to suppress interference, the matrix H should be “tall”, which implies that for STBC,

MP ≥ NK; whereas for STTC, M ≥ NK.

6.8.2 Turbo Multiuser Receiver for STTC System
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Figure 6.27: Iterative receiver structure for a multiuser STTC system.

The turbo receiver structure for a multiuser STTC system is illustrated in Fig. 6.27. It

consists of a soft multiuser demodulator, followed by K parallel MAP STTC decoders. The

two stages are separated by interleavers and deinterleavers. The soft multiuser demodulator

takes as input the received signals from theM receiver antennas and the interleaved extrinsic

log probabilities (LP’s) of the complex code symbols (i.e., {λ2(ck[l])}l;k, which are fed back by

theK single-user MAP STTC decoders), and computes as output the a posteriori LP’s of the

complex code symbols {Λ1(ck[l])}l;k. The MAP STTC decoder of the kth user takes as input

the deinterleaved extrinsic LP’s of complex code symbols {λ1 (cπk [l])}l from the soft multiuser

demodulator, and computes as output the a posteriori LP’s of the complex code symbols

{Λ2 (cπk [l])}l, as well as the LLR’s of the information bits {Λ2 (dπ
k [j])}j. Here, a scaling

factor Q is introduced in the multiuser STTC iterative receiver (in Fig. 6.27) to enhance the

iterative processing performance. Such an idea first appeared in [100]. Although the receiver

in Fig. 6.27 appears similar to that in Fig. 6.23, there are some important differences between
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the STTC multiuser receiver and the STBC multiuser receiver. In what follows, we elaborate

only on those differences.

Soft Multiuser Demodulator

In terms of algorithmic operations, the soft multiuser demodulator for the STTC system

(6.207) is exactly the same as that discussed in Section 6.7.2. However, since the system

(6.185) contains both the information about the channel and the STBC temporal constraints,

the soft multiuser demodulator for the multiuser STBC system decodes the STBC codewords

of all users by estimating the code symbols of all users (which is realized implicitly through

the instantaneous MMSE filtering of virtual users’ signals in Section 6.7.2). By contrast,

the system (6.207) contains only the information about the channel, and therefore the soft

multiuser demodulator for the multiuser STTC system estimates only the code symbols of

all users, and each user needs to further apply the MAP decoder to decode its STTC code.

Computing A Posteriori Code Symbol LP’s

The output of the soft multiuser demodulator is a soft estimate ĉ[l] of the code symbol c[l],

given by (6.198). (For simplicity we drop the subscript k, the user index) In this section,

the concept of log probability (LP) is further elaborated upon for non-binary code symbols,

which is equivalent to the concept of LLR for binary code bits. Due to the presence of

the interleaver, all estimated symbols obtained from the soft multiuser demodulator are

assumed to be mutually independent. For each code symbol c[l], define an |ΩC|-dimensional

a posteriori LP vector as

Λ(c[l]) =
[
Λ(c[l, 1]), . . . , Λ(c[l, |ΩC|])

]T

,

with Λ(c[l, i])
�
= logP

(
c[l] = Ci | ĉ[l]

)
, (6.208)

i = 1, . . . , |ΩC|,

where the index [l, i] denotes the ith element in the |ΩC|-dimensional LP vector for the lth

code symbol. Note that

|ΩC |∑
i=1

exp
{
Λ(c[l, i])

}
≡ 1 . (6.209)
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At the output of the soft multiuser demodulator, the ith element of the a posteriori LP vector

for code symbol c[l] is computed as

Λ1(c[l, i])
�
= logP

(
c[l] = Ci | ĉ[l]

)
= log p

(
ĉ[l] | c[l] = Ci

)
− log p (ĉ[l]) + logP (Ci)

=

− log πν2[l] −

∣∣∣ĉ[l] − µ[l]Ci

∣∣∣2
ν2[l]

 − log p[ĉ[l]]

︸ ︷︷ ︸
λ1(c[l, i])

+λπ
2 (c[l, i]), (6.210)

i = 1, 2, . . . , |ΩC| ,

where log p(ĉ[l]) is a constant term for all the elements in the LP vector Λ1(c[l]), and need

not be evaluated explicitly. [Its value can be computed from (6.209)]. The term λ2(c[l, i]),

which substitutes the a priori log probability logP (Ci) in (6.210), is the ith element of

the interleaved extrinsic LP vector for code symbol c[l] (which is provided by MAP STTC

decoders) from the previous iteration, and is given by [cf. Fig.6.27]

λ2(c[l, i]) = Λ2(c[l, i]) −Q · λ1(c[l, i]). (6.211)

In (6.211) Q is a coefficient and will be discussed later. At the first iteration, no prior

information about code symbols is available, thus λ2(c[l, i]) = log 1
|ΩC | , i = 1, 2, . . . , |ΩC|. It

is seen from (6.210) that the output of the soft multiuser demodulator is the sum of the a

priori information λ2(c[l, i]) provided by the MAP STTC decoder in the previous iteration,

and the extrinsic information λ1(c[l, i]). Finally, the extrinsic LP’s, calculated in (6.210), are

deinterleaved, and then fed to the MAP STTC decoder. Note that at the STTC multiuser

receiver side, the interleavers/deinterleavers perform interleaving/deinterleaving on the LP

vectors rather than on the elements of the LP vector.

MAP Decoding Algorithm for STTC

The MAP STTC decoding algorithm is very similar to the MAP decoding algorithm for

the convolutional code except for some minor modifications. For the sake of conciseness,

we omit the derivation of the MAP STTC decoding algorithm here. Similarly as in Section

6.7.2, we partition the deinterleaved extrinsic LP’s stream {λ1(c
π[l])}l into blocks, with each
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block consisting of n0 code symbol LP vectors, corresponding to the n0 output code symbols

at one time instant. This re-organized code symbol LP stream is denoted as {λ1 (cπt )}t

�
={

λ1

(
cπ,1
t

)
, . . . , λ1 (cπ,n0

t )
}

t
. Then, the extrinsic LP’s for the code symbols are computed by

the MAP decoding algorithm for STTC.

Finally, based on the interleaved extrinsic LP vector λ2(c[l]) of the lth code symbol, the

soft estimated c̃[l] [cf. Eq.(6.189)] is calculated as

c̃[l]
�
= E{c[l]} =

∑
Ci∈ΩC

Ci P (c[l] = Ci)

=
∑

Ci∈ΩC

Ci exp
{
λ2(c[l, i])

}
. (6.212)

At the first iteration, no prior information is available, thus λ2(c[l, i]) = log 1
|ΩC | . At the last

iteration, the information bits are recovered by the MAP algorithm.

Projection-based Soft Multiuser Demodulator

The projection operation involves processing only the spatial information which is contained

in the channel response matrix H in (6.207). Therefore, in terms of algorithmic operations,

the projection-based soft multiuser demodulator for STTC system is exactly the same as

that discussed for STBC in Section 6.7.2.

Simulation Examples

We consider a four-user (K = 4) STTC system, as shown in Fig. 6.26. Each user employs

the same 8-PSK 8-state STTC, as defined in Fig. 7 in [468], and two transmitter antennas

(N = 2). The STTC encoder is forced to the all-zero state at the end of every signal frame,

where each frame containing 128 8-PSK code symbols. At the receiver side, eight receiver

antennas (M = 8) are used.

Assume that all K users’ signals are to be decoded (K = 4). The performance of the

turbo receiver discussed in Section 6.8.2 is shown in Fig. 6.28. In computing the extrinsic

code symbol information obtained from the MAP STTC decoder, we have introduced a

scaling factor Q [cf. Fig.6.27], which takes the same value between 0 and 1 for all users.

In our simulations we find that in STTC systems, introducing such a Q factor significantly

improves the performance of the iterative receiver. (The best performance is achieved for
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Figure 6.28: Frame error rate (FER) and bit error rate (BER) for a four-user STTC system.

K = 4, N = 2,M = 8, Q = 0.85. All four users are iteratively detected and decoded.

SU1-1 and SU1-6 denote the iterative decoding performance of the single-user system with

K = 1, N = 2,M = 8, Q = 0.85. MLLB denotes the optimal single-user performance with

K = 1, N = 2,M = 8.
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Figure 6.29: Frame error rate (FER) and bit error rate (BER) for a four-user STTC system.

K = 4, N = 2,M = 8,M ′ = 4, Q = 0.85. Two users are first nulled out, the rest two

users are iteratively detected and decoded. SU2-1 and SU2-6 denote the iterative decoding

performance of the single-user system with K = 1, N = 2,M ′ = 4, Q = 0.85. MLLB denotes

the optimal single-user performance with K = 1, N = 2,M ′ = 4. The gap between SU1-6

and SU2-6 constitutes the diversity loss caused by the projection operation.
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Q ≈ 0.85). Interestingly, we have found that for STBC systems, such a scaling factor does

not offer performance improvement.

As before, the dotted lines (denoted as SU1-1) and the dash-dot lines (denoted as SU1-6)

in Fig. 6.28–Fig. 6.29 represent respectively the iterative decoding performance after the first

iteration and after the sixth iteration in a single-user system (N = 2,M = 8). In contrast

to the STBC system, the proposed STTC system does not include the outer channel code;

therefore the optimal single-user STTC receiver is straightforward to implement [468]. We

also include its performance (in circle-dotted lines and denoted as MLLB) in Fig. 6.28–

Fig. 6.29. Similarly as in STBC systems, it is seen that the performance of the iterative

receiver is significantly improved compared with that of the non-iterative receiver, and it

approaches the optimal single-user performance as well as the single-user iterative decoding

performance.

We next consider the performance of the projection-based turbo receiver. Assume that

Kd out of all K users’ signals are to be decoded (K = 4, Kd = 2). In this scenario, two users

are first nulled out by a projection operation, and the other two users are iteratively detected

and decoded. The performance is shown in Fig. 6.29. Again the dotted lines (denoted as

SU2-1) and the dash-dash lines (denoted as SU2-6) in this figure represent respectively the

single-user iterative decoding performance (N = 2,M ′ = 4) after the first iteration and after

the sixth iteration. Similarly as in STBC systems, it is seen that the projection operation

incurs a substantial performance loss compared with the turbo receiver operating on all users

in the STTC system. Hence it is the best to avoid the use of such a projection operation

whenever possible in order to achieve optimal performance.

6.9 Appendix

6.9.1 Proofs in Section 6.3.3

Proof of Proposition 6.1:

The proof of this result is based on the following lemma.

Lemma 6.1 Let X be a K×K positive definite matrix. Denote by Xk the (K−1)×(K−1)
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submatrix obtained from X by deleting the kth row and kth column. Also, denote xk the kth

column of X with the kth entry xkk removed. Then we have[
X−1

]
kk

=
1

1 − xT
k X−1

k xk

. (6.213)

Proof: Since Xk is a principal submatrix of X, and X is positive definite, Xk is also

positive definite. Hence X−1
k exists.

Denote the above-mentioned partitioning of the symmetric matrix X with respect to the

kth column and row by

X = (Xk, xk, xkk).

In the same way we partition its inverse

Y
�
= X−1 = (Y k, yk, ykk).

Now from the fact that XY = IK , it follows that

Xkyk + ykkxk = 0, (6.214)

yT
k xk + ykk = 1. (6.215)

Solving for ykk from (6.214) and (6.215), we obtain (6.213). �

Proof of (6.60):

Using (6.62) and (6.63), by definition we have

SINR(zk[i]) =
µk[i]

2

ν2
k [i]

=
1

1/µk[i] − 1
. (6.216)

From (6.62) and (6.216) it is immediate that (6.60) is equivalent to[(
A2

keke
T
k + σ2R−1

)−1
]

kk
>

[(
V k[i] + σ2R−1

)−1
]

kk
(6.217)

>
[(

A2 + σ2R−1
)−1

]
kk
. (6.218)

Partition the three matrices above with respect to the kth column and the kth row to get(
A2

keke
T
k + σ2R−1

)
= (Ok,ok, α),(

V k[i] + σ2R−1
)

= (P k,pk, β),

and
(
A2 + σ2R−1

)
= (Qk, qk, γ).
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By (6.213), (6.218) is then equivalent to

oT
k O−1

k ok > pT
k P−1

k pk > qT
k Q−1

k qk. (6.219)

Since

A2 =
K∑

j=1

A2
jeje

T
j , (6.220)

and V k[i] = A2
keke

T
k +

∑
j �=k

A2
j

(
1 − b̃j[i]2

)
eje

T
j , (6.221)

we then have

ok = pk = qk. (6.222)

Therefore in order to show (6.219) it suffices to show that

O−1
k � P−1

k � Q−1
k , (6.223)

which is in turn equivalent to [185]

Qk � P k � Ok, (6.224)

where X � Y means that the matrix X − Y is positive definite. Since by assumption,

0 < |λ2(bj[i])| <∞, we have 0 < b̃j[i] < 1, j = 1, . . . , K. It is easy to check that

Qk − P k = diag
{
A2

1b̃1[i]
2, . . . , A2

k−1b̃k−1[i]
2, A2

k+1b̃k+1[i]
2, . . . , A2

K b̃K [i]2
}

� 0, (6.225)

and P k − Ok = diag
{
A2

1[1 − b̃1[i]2], . . . , A2
k−1[1 − b̃k−1[i]

2], A2
k+1[1 − b̃k+1[i]

2],

. . . , A2
K [1 − b̃K [i]2]

}
� 0. (6.226)

Hence (6.224) holds and so does (6.60). �

6.9.2 Derivation of the LLR for the RAKE Receiver in Section

6.6.2

To obtain the code bit LLR for the RAKE receiver, a Gaussian assumption is made on the

distribution of yk[i] in (6.182), i.e., we assume that

yk[i] = µk[i]bk[i] + ηk[i], ηk[i] ∼ Nc

(
0, ν2

k [i]
)
, (6.227)
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where µk[i] is the equivalent signal amplitude, and ν2
k [i] is the equivalent noise variance.

As in typical RAKE receivers [388], we assume that the signals from different paths are

orthogonal for a particular user. Conditioned on bk[i], using (6.133) and (6.134), the mean

µk[i] in (6.227) is given by

µk[i]
�
= E {bk[i] yk[i]}

= E

{
L∑

l=1

∫
bk[i]r(t)gl,k[i]

∗si,k(t− iT − τl,k)dt
}

= Ak

L∑
l=1

E

{∣∣∣gl,k[i]
∣∣∣2}︸ ︷︷ ︸

1

= Ak, (6.228)

where the expectation is taken with respect to channel noise and the all code bits other than

bk[i]. The variance ν2
k [i] in (6.227) can be computed as:

ν2
k [i] = E

{∣∣∣yk[i] − µk[i]bk[i]
∣∣∣2}

= E

{∣∣∣ bk[i] L∑
l=1

∫
gl,k[i]

∗si,k(t− iT − τl,k)
L∑

l′=1

Ak gl′,k[i] si,k(t− iT − τl′,k)dt− µk[i]bk[i]︸ ︷︷ ︸
A

+
L∑

l=1

∫ ∑
k′ �=k

L∑
l′=1

M−1∑
i′=0

bk′ [i′]Ak′ gl′,k′ [i′] si′,k′(t− i′T − τl′,k′) gl,k[i]
∗ si,k(t− iT − τl,k)dt︸ ︷︷ ︸

B

+
L∑

l=1

∫
n(t) gl,k[i]

∗ si,k(t− iT − τl,k)dt︸ ︷︷ ︸
C

∣∣∣2}. (6.229)

Using the orthogonality assumption, it is easy to check that A = 0 in (6.229). Since term

B and term C in (6.229) are two zero-mean independent random variables, the variance is

then given by

ν2
k [i] = E

{|B|2} + E
{|C|2} . (6.230)

Due to the orthogonality assumption, the second term in (6.230) is given by

E
{|C|2} = σ2

L∑
l=1

E

{∣∣∣gl,k[i]
∣∣∣2} = σ2. (6.231)
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For simplicity, we assume that the time delay τl,k equals some multiple of the chip duration.

Then the first term in (6.230) can be written as

E
{|B|2} = E

{∣∣∣ L∑
l=1

gl,k[i]
∗ ∑

k′ �=k

Ak′

L∑
l′=1

gl′,k′ [i′]
N−1∑
n=0

ρ(k,l),(k′,l′)[n]
∣∣∣2} , (6.232)

where

ρ(k,l),(k′,l′)[n]
�
=

∫
Tc

bk′ [i′]si′,k′(t− i′T − nTc − τl′,k′)si,k(t− iT − nTc − τl,k) dt .(6.233)

Assuming that signature waveforms contain i.i.d. antipodal chips, then ρ(k,l),(k′,l′)[n] is an

i.i.d. binary random variable taking values of ± 1
N

with equal probability. Since gl,k[i], gl′,k′ [i′]

and ρ(k,l),(k′,l′)[n] are independent, (6.232) can be written as

E
{|B|2} =

∑
k′ �=k

A2
k′

L∑
l=1

E

{∣∣∣gl,k[i]
∣∣∣2}︸ ︷︷ ︸

1

L∑
l′=1

E

{∣∣∣gl′,k′ [i′]
∣∣∣2}︸ ︷︷ ︸

1

N−1∑
n=0

E

{∣∣∣ρ(k,l),(k′,l′)[n]
∣∣∣2}︸ ︷︷ ︸

1
N2

=
1

N

∑
k′ �=k

A2
k′ . (6.234)

Substituting (6.231) and (6.234) into (6.230), we have,

ν2
k [i] = σ2 +

1

N

∑
j �=k

A2
j . (6.235)

Hence the LLR of bk[i] can be written as:

λ1(bk[i]) = −

∣∣∣yk[i] − µk[i]
∣∣∣2

ν2
k [i]

+

∣∣∣yk[i] + µk[i]
∣∣∣2

ν2
k [i]

=
4Ak �{yk[i]}
σ2 +

1

N

∑
j �=k

Aj
2
. � (6.236)
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Chapter 7

Narrowband Interference Suppression

7.1 Introduction

As we have noted in Chapter 1, spread spectrum, in the form of direct-sequence (DS),

frequency-hopping (FH), or orthogonal frequency-division multiplexing (OFDM), is one of

the most common signaling schemes in current and emerging wireless services. Such services

include both second-generation (IS-95) and third-generation (WCDMA, cdma2000) cellu-

lar telephony [127, 324, 357], piconets (Bluetooth) [40], wireless LANs (IEEE802.11 and

Hiperlan) [40], wireless local loop [102, 549], and digital broadcast (DAB, SBS). Among

the reasons that spread spectrum is so useful in wireless channels are its use as a counter-

measure to frequency-selective fading caused by multipath, and its favorable performance

in shared channels. In this chapter we will be concerned with this latter aspect of spread

spectrum, which includes several particular advantages, including flexibility in the allocation

of channels and the ability to operate asynchronously in multiuser systems, frequency re-use

in cellular systems, increased capacity in bursty or fading channels, and the ability to share

bandwidth with narrowband communication systems without undue degradation of either

system’s performance. More particularly, this chapter is concerned with this last aspect of

spread spectrum, and specifically with the suppression of narrowband interference (NBI)

from the spread spectrum partner of such shared-access systems.

NBI arises in a number of types of practical spread-spectrum systems. A classical, and

still important, instance of this is narrowband jamming in tactical spread-spectrum com-

439
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munications; and, of course, the antijamming capabilities of spread-spectrum was an earlier

motivator for its development as a military communications technique. A further situation

in which NBI can be a significant factor in spread-spectrum systems is in systems deployed

in unregulated bands, such as the Industrial, Scientific and Medical (ISM) bands in which

wireless LAN’s, cordless phones, and Bluetooth piconets operate as spread-spectrum sys-

tems. Similarly, shared access gives rise to NBI in military VHF systems that must contend

with civilian VHF traffic. An example of this arises in littoral sonobuoy networks that

must contend with on-shore commercial VHF systems, such as dispatch systems. Yet an-

other situation of interest is that in which traffic with multiple signaling rates is generated

by heterogeneous users sharing the same CDMA network. Finally, in some parts of the

world the spectrum for third-generation (3G) systems is being allocated in bands not yet

vacated by existing narrowband services, creating NBI with which 3G spread-spectrum sys-

tems must contend. In all but the first of these examples, the spread-spectrum systems are

operating as overlay systems, in which the combination of wideband signaling, low spec-

tral energy density, and natural immunity to NBI of spread-spectrum systems, are being

exploited to make more efficient use of a slice of the radio spectrum. These advantages

are so compelling that we can expect the use of such systems to continue to rise in the

future. Thus, the issue of NBI in spread-spectrum overlay systems is one that is of increas-

ing importance in the development of future advanced wideband telecommunications systems

[56, 225, 226, 231, 326, 327, 353, 364, 392, 393, 457, 519, 520, 521, 522, 523, 524, 525, 554, 558].

The ability of spread-spectrum systems to coexist with narrowband systems can be easily

explained with the help of Fig. 7.1. We first note that the spreading of the spread-spectrum

data signal over a wide bandwidth gives it a low spectral density that assures that it will

cause little damage to the narrowband signal beyond that already caused by the ambient

wideband noise in the channel. On the other hand, although the narrowband signal has

very high spectral density, this energy is concentrated near one frequency and is of very

narrow bandwidth. The despreading operation of the spread spectrum receiver has the

effect of spreading this narrowband energy over a wide bandwidth, while at the same time it

collapses the energy of the originally spread data signal down to its original data bandwidth.

So, after despreading, the situation is reversed between the original narrowband interferer

(now wideband) and the originally spread data signal (now narrowband). A bandpass filter
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Figure 7.1: Spectral characteristics of the narrowband interference (NBI) signal and the

spread-spectrum (SS) signal before and after despreading.



442 CHAPTER 7. NARROWBAND INTERFERENCE SUPPRESSION

can be employed so that only the interferer power that falls within the bandwidth of the

despread signal causes any interference. This will be only a fraction (the inverse of the

spreading gain) of the original NBI that could have occupied this same bandwidth before

despreading.

SS
receiver

signal estimate
Bit Received 

filter
domain 

frequency
F F -1

Figure 7.2: Illustration of transform domain NBI suppression.

Although spread-spectrum systems are naturally resistant to narrowband interference, it

has been known for decades that active methods of NBI suppression can significantly improve

the performance of such systems. Not only does active suppression of NBI improve error-rate

performance [36], but it also leads to increased CDMA cellular system capacity[369], im-

proved acquisition capability [323], and so forth. Existing active NBI suppression techniques

can be grouped into three basic types: frequency-domain techniques, predictive techniques,

and code-aided techniques. To illustrate these three types, let us consider a basic received

waveform

r(t) = S(t) + I(t) + N(t) , (7.1)

consisting of the useful (wideband) data signal {S(t)}, the NBI signal {I(t)}, and wideband

ambient noise {N(t)}. As the name implies, frequency-domain techniques operate by trans-

forming the received signal {r(t)} into the frequency domain, masking frequency bands in

which the NBI {I(t)} is dominant, and then passing the signal off for subsequent despreading

and demodulation. This process is illustrated in Fig. 7.2. Alternatively, predictive systems

operate in the time domain. The basic idea of such systems is to exploit the discrepancy in

predicatability of narrowband signals and wideband signals to form an accurate replica of

the NBI that can be subtracted from the received signal to suppress the NBI. In particular,

the received signal {r(t)} consists of the wideband component {S(t) + N(t)} and the nar-

rowband component {I(t)}. If one generates a prediction (e.g., a linear prediction) of {r(t)},
then the predicted values will consist primarily of a prediction of {I(t)} since the wideband

parts of the signal are largely unpredictable (without making explicit use of the structure of

{S(t)}). Thus, such a prediction forms a replica of the NBI, which can then be suppressed
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from the received signal. That is, if we form a residual signal

r(t) − r̂(t)

where r̂(t) is a prediction of r(t) from past observations, the effect of the subtraction is to

significantly reduce the narrowband component of {r(t)}. The prediction residual is then

passed on for despreading and demodulation. Interpolators can also be used to produce

the replica in such a scheme, with somewhat better performance and with less distortion

of the useful data signal. Prediction-based methods take advantage of the difference in

bandwidths of the spread-spectrum signal and the NBI without making use of any knowledge

of the specific structure of the spread-spectrum data signal. Fig. 7.3 illustrates this process,

which will be described in more detail in Sections 7.2 and 7.3. Code-aided techniques get

further performance improvement by making explicit use of the structure of the useful data

signal and, where possible, of the NBI. To date, these methods have primarily made use of

techniques from linear multiuser detection, such as those described in Chapter 2.

Estimating 

filter

SS 
receiver

signal
Received 

+
- Bit 

estimate

Figure 7.3: Illustration of the predictive method of NBI suppression.

Progress in the area of NBI suppression for spread-spectrum systems up until the late

1980’s is reviewed in [322]. The principal techniques of that era were frequency-domain

techniques, and predictive or interpolative techniques based on linear predictors or inter-

polators. In the past decade, there have been a number of developments in this field, the

main thrust of which has been to take further advantage of the signaling structure. This

has led to techniques that improve the performance of predictive and interpolative methods,

and more recently to the more powerful code-aided techniques mentioned above. In this

chapter, we will discuss these latter developments. Since these results have been concerned

primarily with direct-sequence spread-spectrum systems (exceptions are found in [207], which

considers frequency-hopping systems, and [414], which considers multicarrier systems), we
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will restrict attention to such systems throughout most of this chapter. We will also focus

here on predictive and code-aided techniques; for discussions of frequency-domain and other

transform-domain techniques (including time-frequency methods), the reader is referred to

[90, 137, 149, 221, 248, 312, 322, 325, 394, 409, 421, 423, 424, 582, 601]. We also refer to

reader to a very recent survey paper [55], which discusses a number of aspects of code-aided

NBI suppression.

The remainder of this chapter is organized as follows. In Sections 7.2, 7.3 and 7.4, we

discuss, respectively, linear predictive techniques, nonlinear predictive techniques, and code-

aided techniques for NBI suppression. In Section 7.5, we present performance comparisons of

the above three family of NBI suppression techniques. In Section 7.6, we discuss the near-far

resistance of the linear MMSE detector to both NBI and MAI. In Section 7.7, we present

the adaptive linear MMSE NBI suppression algorithm. In Section 7.8, we discuss briefly

a maximum-likelihood code-aided NBI suppression method. Finally, some mathematical

derivations are collected in Section 7.9.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 7.1: Kalman-Bucy prediction-based NBI suppression;

• Algorithm 7.2: LMS linear prediction-based NBI suppression;

• Algorithm 7.3: ACM filter-based NBI suppression;

• Algorithm 7.4: LMS nonlinear prediction-based NBI suppression.

7.2 Linear Predictive Techniques

7.2.1 Signal Models

We next refine the model of (7.1) to more completely account for the structure of the useful

data signal {S(t)} and of the narrowband interference {I(t)}. It is the exploitation of such

structure that has led to many of the improvements in NBI suppression that have been

developed in the past decade.

Let us, then, re-consider the model (7.1) and examine its components in more detail.

(These components are assumed throughout to be independent of one another.) We first
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consider the useful data signal {S(t)}. In this chapter we will treat primarly the case in

which this signal is a multiuser, linearly modulated, digital communications signal in the

real baseband, which can be written more explicitly as (see also Chapter 2)

S(t) =
K∑

k=1

Ak

M−1∑
i=0

bk[i] sk(t− τk − iT ), (7.2)

whereK is the number of active (wideband) users in the channel,M is the number of symbols

per user in a data frame of interest, bk[i] is the ith binary (±1) symbol transmitted by User k,

Ak > 0 and τk are the respective amplitude and delay with which User k’s signal is received,

sk(t) is User k’s normalized (
∫ |sk(t)|2dt = 1) transmitted waveform, and 1/T is the per-user

symbol rate. It is also assumed that the support of sk(t) is completely within the interval

[0, T ]. The signaling waveforms are assumed to be direct-sequence spread-spectrum signals

of the form

sk(t) =
1√
N

N−1∑
n=0

sn,k ψ(t− nTc) , 0 ≤ t ≤ T , (7.3)

where N, {s0,k, s1,k, . . . , sN−1,k}, and 1/Tc, are the respective spreading ratio, binary (±1)

spreading code, and chip rate of the spread-spectrum signal {sk(t)}; and where ψ(t) is a

unit-energy pulse of duration Tc.

It should be noted that this model accounts for asychrony and slow fading, but not

for other possible channel features and impairments, such as multipath, dispersion, carrier

offsets, multiple antennas, aperiodic spreading codes, fast fading, higher-order signaling,

etc. All of these phenomena can be incorporated into a more general model for a linearly

modulated signal in the complex baseband:

S(t) =
K∑

k=1

M−1∑
i=0

bk[i] fk,i(t) (7.4)

in which the symbols {bk[i]} are complex, and fk,i(t) is the (possibly vector-valued) waveform

received from User k in the ith symbol interval. Here, the collection of waveforms {fk,i(t) :

k = 1, 2, . . . , K; i = 0, 1, . . . ,M − 1} contains all information about the signaling waveforms

transmitted by the users, and all information about the channels intervening the users and

the receiver. Many of the results discussed in this chapter can be directly transferred to this

more general model, although we will not always explicitly mention such generalizations.
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It is also of interest to model more explicitly the narrowband interference signal {I(t)}
appearing in (7.1). Here, we can consider three basic types of NBI: tonal signals, narrowband

digital communication signals, and entropic narrowband stochastic processes. Tonal signals

are those which consist of the sum of pure sinusoidal signals. These signals are useful for

modelling tone jammers and other harmonic interference phenomena. Narrowband digital

communication signals generalize tonal signals to include digitally modulated carriers. This

leads to signals with nonzero-bandwidth components, and as we will see in the sequel, the

digital signaling structure can be exploited to improve the NBI suppression capability. Less

structure can be assumed by modelling the NBI as entropic narrowband stochastic processes

such as narrowband autoregressions. Such processes do not have specific deterministic struc-

ture. Typical models that can be used in this framework are ideal narrowband processes

(with brick-wall spectra) or processes generated by linear stochastic models. Further discus-

sion of the details of these models is deferred until they arise the following sections. Finally,

for convenience, we will assume almost exclusively that the ambient noise {N(t)} is a white

Gaussian process, although in the following section we will mention briefly the situation in

which this noise may have impulsive components.

As noted in Section 7.1, narrowband signals can be suppressed from wideband signals by

exploiting the difference in predictability in these two types of signals. In this section, we

develop this idea in more detail. In order to focus on this issue, we will consider the specific

situation of (7.1) - (7.2) in which there is only a single spread-spectrum signal in the channel

(i.e., K = 1). It is also useful to convert the continuous-time signal of (7.1) to discrete time

by passing it through an arrangement of a filter matched to the chip waveform ψ(t), followed

by a chip-rate sampler. That is, we convert the signal (7.1) to a discrete-time signal

rn =

∫ (n+1)Tc+τ1

nTc+τ1

r(t) ψ(t− nTc − τ1) dt

= sn + in + un, n = 0, 1, . . . , NM − 1, (7.5)

where {sn}, {in} and {un} represent the converted spread-spectrum data signal, narrowband

interferer, and white Gaussian noise, respectively. Note that for the single-user channel

(K = 1) and in the absence of NBI, a sufficient statistic for detecting the data bit b1[i] is

the signaling-waveform matched-filter output

y1[i] =

∫ (i+1)T+τ1

iT+τ1

r(t) s1(t− iT − τ1) dt, (7.6)
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which can be written in terms of this sampled signal as

y1[i] =
N−1∑
n=0

sn,1 rn+iN . (7.7)

Thus, this conversion to discrete-time can be thought of as an intermediate step in the

calculation of the sufficient statistic vector, and is thus lossless in the absence of NBI.

Narrowband interference suppression in this type of signal can be based on the following

idea. Since the spread-spectrum signal has a nearly flat spectrum, it cannot be predicted

accurately from its past values (unless, of course, we were to make use of our knowledge of

the spreading code, as will be discussed in Section 7.4). On the other hand, the interfering

signal, being narrowband, can be predicted accurately. Hence, a prediction of the received

signal based on previously received values will, in effect, be an estimate of the narrowband

interfering signal. Thus, by subtracting a prediction of the received signal obtained at

each sampling instant from the signal received during the subsequent instant and using the

resulting prediction error as the input to the matched filter (7.7), the effect of the interfering

signal can be reduced. Thus, in such a scheme the signal {rn} is replaced in the matched

filter (7.7) by the prediction residual {rn−r̂n}, where r̂n denotes the prediction of the received

signal at time n, and the data detection scheme becomes

b̂1[i] = sign

{
N−1∑
n=0

sn,1 [rn+iN − r̂n+iN ]

}
. (7.8)

7.2.2 Linear Predictive Methods

This technique for narrowband interference suppression has been explored in detail through

the use of fixed and adaptive linear predictors (e.g., [16, 18, 19, 36, 195, 205, 206, 217, 224,

232, 250, 252, 305, 307, 322, 341, 362, 442, 471]; see [6, 241, 322, 327] for reviews). Two basic

architectures for fixed linear predictors are: Kalman-Bucy predictors based on a state-space

model for the interference, and finite-impulse-response (FIR) linear predictors based on a

tapped-delay-line structure.
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Kalman-Bucy Predictors

To use Kalman-Bucy prediction (cf.[232]) in this application, it is useful to model the nar-

rowband interference as a pth order Gaussian autoregressive (AR(p)) process:

in =

p∑
i=1

φiin−i + en, (7.9)

where {en} is a white Gaussian sequence, en ∼ N (0, ν2), and where the AR parameters

φ1, φ2, . . . , φp are assumed to be constant or slowly varying.

Under this model, the received discrete-time signal (7.5) has a state-space representation

as follows (assuming one spread-spectrum user, i.e., K = 1):

xn = Φxn−1 + zn, (7.10)

rn = cT xn + vn, (7.11)

where

xn
�
=

[
inin−1 . . . in−p+1

]T

,

Φ
�
=



φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

 ,

zn
�
= [en 0 . . . 0 ]T ,

c
�
= [ 1 0 . . . 0 ]T ,

and

vn
�
= sn + un, (7.12)

with sn ∈
{
A1√
N
,− A1√

N

}
, un ∼ N (0, σ2).

Given this state-space formalism, the linear minimum mean-square error (MMSE) prediction

of the received signal (and hence of the interference) can be computed recursively via the

Kalman-Bucy filtering equations (e.g., [375]), which predicts the nth observation rn as r̂n =



7.2. LINEAR PREDICTIVE TECHNIQUES 449

cT x̂n, where x̂n denotes the state prediction in (7.10) - (7.11), given recursively through the

update equations

x̂n+1 = Φx̄n, (7.13)

x̄n = x̂n +
rn − r̂n
σ2

n

Mnc, (7.14)

with σ2
n = cT Mnc +

A2
1

N
+ σ2, denoting the variance of the prediction residual, and where

the matrix Mn (which is the covariance of the state prediction error xn − x̂n) is computed

via the recursion

Mn+1 = ΦP nΦ
T + Q, (7.15)

P n = Mn − 1

σ2
n

MnccT Mn, (7.16)

with Q = E
{

znz
T
n

}
= ν2e1e

T
1 , (7.17)

where e1 denotes a p-vector with all entries being zeros, except for the first entry, which

is 1. The Kalman-Bucy prediction-based NBI suppresssion algorithm based on the state-

space model (7.10)-(7.11) is summarized as follows. (Note that it is assumed that the model

parameters are known.)

Algorithm 7.1 [Kalman-Bucy prediction-based NBI suppression] At time i, N received

samples {riN , riN+1, . . . , riN+N−1} are obtained at the chip-matched filter output (7.5).

• For n = iN, iN + 1, . . . , iN +N − 1 perform the following steps

r̂n = cT x̂n, (7.18)

σ2
n = cT Mnc +

A2
1

N
+ σ2, (7.19)

P n = Mn − 1

σ2
n

MnccT Mn, (7.20)

x̄n = x̂n +
rn − r̂n
σ2

n

Mnc, (7.21)

x̂n+1 = Φx̄n, (7.22)

Mn+1 = ΦP nΦ
T + Q. (7.23)

• Detect the ith bit b1[i] according to

b̂1[i] = sign

{
N−1∑
j=0

sj,1[rj+iN − r̂j+iN ]

}
. (7.24)
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Linear FIR Predictor

The Kalman-Bucy filter is, of course, an infinite-impulse-response (IIR) filter. A simpler

linear structure is a tapped-delay-line (TDL) configuration, which makes one-step predictions

via the FIR filter

r̂n =
L∑

�=1

α� rn−� , (7.25)

where L is the data length used by the predictor, and α1, α2, . . . , αL, are tap weights. In the

stationary case, the tap weights can be chosen optimally via the Levinson algorithm (see,

e.g., [375]). More importantly, though, the FIR structure (7.25) can be easily adapted using,

for example, the least-mean squares (LMS) algorithm (e.g., [454]). Denote α
�
= [α1 . . . αL]T .

Let α[n] denotes the tap-weight vector to be applied at the nth chip sample, (i.e., to predict

rn+1). Also denote rn
�
= [rn−1 rn−2 . . . rn−L]T . Then the predictor coefficients can be

updated according to

α[n] = α[n− 1] + µ
(
rn − r̂n

)
rn, (7.26)

where µ is a tuning constant. Although the Kalman-Bucy filter can also be adapted, the

ease and stability with which the FIR structure can be adapted makes is a useful choice for

this application. In order to make the choice of tuning constant invariant to changes in the

input signal levels, the LMS algorithm (7.26) can be normalized as follows:

α[n] = α[n− 1] +
µ0

pn

(
rn − r̂n

)
rn, (7.27)

where pn is an estimate of the input power obtained by

pn = pn−1 + µ0

(
‖rn‖2 − pn−1

)
. (7.28)

The estimate of the signal power pn is an exponentially weighted estimate. The constant µ0

is chosen small enough to ensure convergence; and the initial condition p0 should be large

enough so that the denominator never shrinks so small as to make the step size large enough

for the adaptation to become unstable.

A block diagram of a TDL-based linear predictor is shown in Fig. 7.4. The LMS linear

prediction-based NBI suppression algorithm is summarized as follows.

Algorithm 7.2 [LMS linear prediction-based NBI suppression] At time i, N received sam-

ples {riN , riN+1, . . . , riN+N−1} are obtained at the chip-matched filter output (7.5).
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Figure 7.4: Linear predictor.

• For n = iN, iN + 1, . . . , iN +N − 1 perform the following steps

r̂n = α[n− 1]T rn−1, (7.29)

pn = pn−1 + µ0

(
‖rn‖2 − pn−1

)
, (7.30)

α[n] = α[n− 1] +
µ0

pn

(
rn − r̂n

)
rn. (7.31)

• Detect the ith bit b1[i] according to

b̂1[i] = sign

{
N−1∑
j=0

sj,1[rj+iN − r̂j+iN ]

}
. (7.32)

Performance and convergence analyses of these types of linear predictor-subtractor sys-

tems have shown that considerable signal-to-interference-plus-noise ratio (SINR) improve-

ment can be obtained by these methods. (See the above-cited references, and also results

included in Section 7.4 below.) Linear interpolation filters can also be used in this con-

text, leading to further improvements in SINR and to better phase characteristics compared

with linear prediction filters (e.g., [306]). For example, a simple linear interpolator of order

(L1 + L2) for estimating rn is given by

r̂n =

L2∑
�=−L1

α�rn−�, (7.33)
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where α−L1 , . . . , αL2 , are tap weights. Such an interpolator can be similarly adapted via the

LMS algorithm.

7.3 Nonlinear Predictive Techniques

Linear predictive methods exploit the wideband nature of the useful data signal to suppress

the interference. In doing so, they are exploiting only the spectral structure of the spread

data signal, and not its further structure. These techniques can be improved upon in this

application by exploiting such further structure of the useful data signal as it manifests

itself in the sampled observations (7.5). In particular, on examining (7.1), (7.2), (7.3) and

(7.5), we see that for the single-user case (i.e., K = 1), the discrete-time data signal {sn}
takes on values of only ± A1/

√
N. While linear prediction would be optimal in the model

of (7.5) in the case in which all signals are Gaussian, this binary-valued direct-sequence

data signal {sn} is highly non-Gaussian. So, even if the NBI and background noise are

assumed to be Gaussian, the optimal filter for performing the required prediction will, in

general, be nonlinear (e.g., [375]). This non-Gaussian structure of direct-sequence signals

can be exploited to obtain nonlinear filters that exhibit significantly better suppression of

narrowband interference than do linear filters under conditions where this non-Gaussian-ness

is of sufficient import. In the following paragraphs, we will elaborate this idea, which was

introduced in [513] and explored further in [130, 374, 379, 416, 526, 527, 528, 529].

Consider again the state-space model of (7.10)–(7.11). The Kalman-Bucy estimator

discussed above is the best linear predictor of rn from its past values. If the observation noise

{vn} of (7.12) were a Gaussian process, then this filter would also give the global MMSE (or

conditional mean) prediction of the received signal (and hence of the interference). However,

since {vn} is not Gaussian but rather is the sum of two independent random variables, one of

which is Gaussian and the other of which is binary (±A1/
√
N), its probability density is the

weighted sum of two Gaussian densities. In this case, the exact conditional mean estimator

can be shown to have complexity that increases exponentially in time [443], which renders

it unsuitable for practical implementation.
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7.3.1 ACM Filter

In [304] Masreliez proposed an approximate conditional mean (ACM) filter for estimating the

state of a linear system with Gaussian state noise and non-Gaussian measurement noise. In

particular, Masreliez proposed that some, but not all, of the Gaussian assumptions used in

the derivation of the Kalman filter be retained in defining a nonlinearly recursively updated

filter. He retained a Gaussian distribution for the conditional mean, although it is not a

consequence of the probability densities of the system (as is the case for Gaussian observation

noise); hence the name approximate conditional mean (ACM) that is applied to this filter.

In [130, 379, 513] this ACM filter was developed for the model (7.10) - (7.11). To describe

this filter, first denote the prediction residual by

εn = rn − r̂n. (7.34)

This filter operates just as the one of (7.13) - (7.17), except that the measurement update

equations (7.14) and (7.15) are replaced, respectively, with

x̄n = x̂n + gn(εn) Mnc, (7.35)

and the update equation (7.16) is replaced with

P n = Mn −Gn(εn) Mnc cT Mn. (7.36)

The terms gn and Gn are nonlinearities arising from the non-Gaussian distribution of the

observation noise, and are given by

gn(z)
�
= −

∂p
(
z | rn−1

0

)
∂z

p
(
z | rn−1

0

) , (7.37)

and Gn(z)
�
=

∂gn(z)

∂z
, (7.38)

where we have used the notation rb
a

�
= {ra, ra+1, . . . , rb}, and p

(
z|rn−1

0

)
denotes the measure-

ment prediction density. The measurement updates reduce to the standard equations for the

Kalman-Bucy filter when the observation noise is Gaussian.

For the single-user system, the density of the observation noise in (7.12) is given by the

following Gaussian mixture

vn ∼ 1

2
N

(
A1√
N
, σ2

)
+

1

2
N

(
− A1√

N
, σ2

)
. (7.39)
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Let σ̃2
n be the variance of the innovation (or residual) signal in (7.34), i.e.,

σ̃2
n = cT Mnc + σ2, (7.40)

we can then write the functions gn and Gn in this case as

gn(z) = z − A1√
N

tanh

(
A1√
N

z

σ̃2
n

)
, (7.41)

and Gn(z) = 1 − A2
1

N σ̃2
n

sech2

(
A1√
N

z

σ̃2
n

)
. (7.42)

The ACM filter is thus seen to have a structure similar to that of the standard Kalman-

Bucy filter. The time updates (7.13) and (7.15) are identical to those in the Kalman-Bucy

filter. The measurement updates (7.35) and (7.36) involve correcting the predicted value by

a nonlinear function of the prediction residual εn. This correction essentially acts like a soft-

decision feedback to suppress the spread-spectrum signal from the measurements. That is,

it corrects the measurement by a factor in the range
[
− A1√

N
, A1√

N

]
that estimates the spread

spectrum signal. When the filter is performing well, the variance term in the denominator of

the tanh(·) is low. This means the argument of the tanh(·) is larger, driving the tanh(·) into

a region where it behaves like the sign(·) function, and thus estimates the spread-spectrum

signal to be A1√
N

if the residual signal εn is positive, and − A1√
N

if the residual is negative. On

the other hand, when the filter is not making good estimates, the variance is high and tanh(·)
is in a linear region of operation. In this region, the filter hedges its bet on the accuracy of

sign(εn) as an estimate of the spread-spectrum signal. Here the filter behaves essentially like

the (linear) Kalman filter. The ACM filter-based NBI suppresssion algorithm based on the

state-space model (7.10)-(7.11) is summarized as follows.

Algorithm 7.3 [ACM filter-based NBI suppression] At time i, N received samples

{riN , riN+1, . . . , riN+N−1} are obtained at the chip-matched filter output (7.5).

• For n = iN, iN + 1, . . . , iN +N − 1 perform the following steps

r̂n = cT x̂n, (7.43)

σ2
n = cT Mnc + σ2, (7.44)

P n = Mn −Gn(εn)MnccT Mn, (7.45)
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x̄n = x̂n + gn(εn)Mnc, (7.46)

x̂n+1 = Φx̄n, (7.47)

Mn+1 = ΦP nΦ
T + Q, (7.48)

where gn and Gn are defined in (7.41) and (7.42) respectively.

• Detect the ith bit b1[i] according to

b̂1[i] = sign

{
N−1∑
j=0

sj,1[rj+iN − r̂j+iN ]

}
. (7.49)
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Figure 7.5: Performance of the Kalman filter-based and the ACM filter-based NBI suppres-

sion methods.

Simulation Examples

When the interference is modelled as a first-order autoregressive process, which does not

have a very sharply peaked spectrum, the performance of the ACM filter does not seem to

be appreciably better than that of the Kalman-Bucy filter. However, when the spectrum of
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the interference is made to be more sharply peaked by increasing the order of the autoregres-

sion, the ACM filter is found to give significant performance gains over the Kalman filter.

Simulations were run for a second-order AR interferer with both poles at 0.99, i.e.,

in = 1.98 in−1 − 0.9801 in−2 + en,

where {en} is white Gaussian noise (i.e., AWGN). The ambient noise power is held constant

at σ2 = 0.01 while the total of noise plus interference power varies from 5dB to 20dB (all

relative to a unity power spread spectrum signal). The figure of merit in comparing filtering

methods is the ratio of SINR at the output of filtering to the SINR at the input, which

reduces to

SINR improvement
�
=

E
{
|rn − sn|2

}
E
{
|εn − sn|2

} ,
where εn is defined as in (7.34). The results from the Kalman predictor and the ACM

predictor are shown in Fig. 7.5. The filters were run for 1500 points. The results reflect the

last 500 points, and the given values represent average over 4000 independent simulations.

To stress the effectiveness against the narrowband interferer (versus the background

noise), the solid line in Fig. 7.5 gives an upper bound on the SNR improvement assum-

ing that the narrowband interference is predicted with noiseless accuracy. This is calculated

by setting E
{
|εn − sn|2

}
equal to the power of the AWGN driving the AR process, i.e., the

unpredictable portion of the interference.

7.3.2 Adaptive Nonlinear Predictor

It is seen that in the ACM filter, the predicted value of the state is obtained as a linear

function of the previous estimate modified by a nonlinear function of the prediction error.

We now use the same approach to modify the adaptive linear predictive filter described in

Section 7.2.2. This technique was first developed in [379, 513]. In order to show the influence

of the prediction error explicitly, using (7.34) we rewrite (7.25) as

r̂n =
L∑

�=1

α�

(
r̂n−� + εn−�

)
. (7.50)
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Figure 7.6: Nonlinear predictor.

We make the assumption, similar to that made in the derivation of the ACM filter, that the

prediction residual εn is the sum of a Gaussian random variable and a binary random variable.

If the variance of the Gaussian random variable is σ̃2
n, then the nonlinear transformation

appearing in the ACM filter can be written as

gn(εn) = εn − A1√
N

tanh

(
A1√
N

εn
σ̃2

n

)
. (7.51)

By transforming the prediction error in (7.50) using the above nonlinearity, we get a nonlinear

transversal filter for the prediction of rn, namely,

r̂n =
L∑

�=1

α�

[
r̂n−� + gn−�(εn−�)

]
︸ ︷︷ ︸

r̄n−�

, (7.52)

where r̄n is given by

r̄n
�
= r̂n + gn(εn),

= r̂n + εn︸ ︷︷ ︸
rn

− A1√
N

tanh

(
A1√
N

εn
σ̃2

n

)
. (7.53)

The structure of this filter is shown in Fig. 7.6. In order to implement the filter of (7.52),

an estimate of the parameter σ̃2
n and an algorithm for updating the tap weights must be
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obtained. A useful estimate for σ̃2
n is ̂̃σ2 = ∆n − A2

n

N
, where ∆n is a sample estimate of the

prediction error variance, e.g., ∆n = 1
L

∑L
�=1 ε

2
n−�. On the other hand, the tap-weight vector

can be updated according to the following modified LMS algorithm

α[n] = α[n− 1] +
µ0

pn

(
r̄n − r̂n

)
r̄n, (7.54)

where r̄n =
[
r̄n−1 r̄n−1 . . . r̄n−L

]T

and pn is given by (7.28). Note that the nonlinear

prediction given by (7.52) is recursive in the sense that the prediction depends explicitly on

the previous predicted values as well as on the previous input to the filter. This is in contrast

to the linear prediction of (7.25) which depends explicitly only on the previous inputs to the

filter though it depends on the previous outputs implicitly through their influence on the tap-

weight updates. The nonlinear prediction-based NBI suppression algorithm is summarized

as follows.

Algorithm 7.4 [LMS nonlinear prediction-based NBI suppression] At time i, N received

samples {riN , riN+1, . . . , riN+N−1} are obtained at the chip-matched filter output (7.5).

• For n = iN, iN + 1, . . . , iN +N − 1 perform the following steps

r̂n = α[n− 1]T r̄n−1, (7.55)

r̄n = rn − A1√
N

tanh

(
A1√
N

εn
σ̃2

n

)
, (7.56)

pn = pn−1 + µ0

(
‖rn‖2 − pn−1

)
, (7.57)

α[n] = α[n− 1] +
µ0

pn

(
r̄n − r̂n

)
r̄n. (7.58)

• Detect the ith bit b1[i] according to

b̂1[i] = sign

{
N−1∑
j=0

sj,1[rj+iN − r̂j+iN ]

}
. (7.59)

It is interesting to note that the predictor (7.52) can be viewed as a generalization of both

linear and hard-decision-feedback (see, e.g., [103, 104, 251]) adaptive predictors, in which

we use our knowledge of the prediction error statistics to make a soft decision about the

binary signal, which is then fed back to the predictor. As noted above, the introduction of

this nonlinearity improves the prediction performance over the linear version. As discussed

in [379], the softening of this feedback nonlinearity improves the convergence properties of

the adaptation over the use of hard-decision feedback.
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Figure 7.7: Performance of adaptive linear predictor-based and adaptive nonlinear predictor-

based NBI suppression methods.

Simulation Examples

To assess the above nonlinear adaptive NBI suppression algorithm, simulations were per-

formed on the same AR model for interference given in the previous section. The results

are shown in Fig. 7.7. It is seen that as in the case where the interference statistics are

known, the nonlinear adaptive NBI suppression method significantly outperforms its linear

counterpart.

7.3.3 Nonlinear Interpolating Filters

ACM Interpolator

Nonlinear interpolative interference suppression filters have been developed in [416]. We next

derive the interpolating ACM filter. We consider the density of the current state conditioned

on previous and following states. We have

p
(
in | rn−1

0 , rM−1
n+1

)
=

p
(
rn−1
0 , rM−1

n+1 | in
)
p(in)

p
(
rn−1
0 , rM−1

n+1

)
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∼=
p
(
rn−1
0 | in

)
p
(
rM−1

n+1 | in
)
p(in)

p
(
rn−1
0 , rM−1

n+1

) (7.60)

=
p
(
in | rn−1

0

)
p
(
in | rM−1

n+1

)
p(in)

p
(
rM−1

n+1

)
p
(
rM−1

n+1 | rn−1
0

) , (7.61)

where in (7.60) we made the approximation that conditioned on in, rn−1
0 and rM−1

n+1 are

independent. The second term in (7.61) is independent of in. If it is assumed (analogously

to what is done in the ACM filter) that the two densities in the numerator of the first term in

(7.61) are Gaussian, then the interpolated estimate is also Gaussian. Therefore, if we assume

that the densities are as follows (where f indicates the forward prediction and b indicates

the backward prediction)

p
(
in | rn−1

0

)
∼ N (µf,n, Σf,n),

p
(
in | rM−1

n+1

)
∼ N (µb,n, Σb,n),

p(in) ∼ N (µ0, Σ0),

then the interpolated estimate is still Gaussian

p
(
in | rn−1

0 , rM−1
n+1

)
∼ N (µn, Σn), (7.62)

with Σn
�
=

(
Σ−1

f,n +Σ−1
b,n −Σ−1

0

)−1

, (7.63)

µn
�
=

(
µf,nΣ

−1
f,n + µb,nΣ

−1
b,n

)
Σn. (7.64)

While the mean and variance of the interpolated estimate at each sample n can be computed

via the above equations, recall that the forward and backward means and variances are

determined by the nonlinear ACM filter recursions.

Simulation Examples

The above equations can be used for both the linear Kalman filter and the ACM filter

to generate interpolative predictions from the forward and backward predicted estimates.

As in the ACM prediction filter, we have approximated the conditional densities as being

Gaussian, although the observation noise is not Gaussian. The filters are run forward on a
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Figure 7.8: Performance of Kalman interpolator-based and ACM interpolator-based NBI

suppression methods.

block of data, and then backward on the same data. The two results are combined to form

the interpolated prediction via (7.63)-(7.64).

Simulations were run on the same AR model for interference given in the previous section.

Fig. 7.8 gives results for interpolative filtering over predictive filtering for the known statistics

case. The filters were run forward and backward for all 1500 points in the block. Interpolator

SINR gain was calculated over the middle 500 points (when both forward and backward

predictors were in steady state).

Adaptive Nonlinear Block Interpolator

Recall that the ACM predictor uses the interference prediction at time n, r̂n, to generate a

prediction of the observation less the spread spectrum signal r̄n. This estimate r̄n is used in

subsequent samples to generate new interference predictions. Since the estimates of r̄n+� are

not available for � > 0 at time n, i.e., samples that occur after the current one, the ACM

filter can not be directly cast in the interpolator structure. However, an approach similar to

the one for the known-statistics ACM interpolator can be used. In this approach the data

is segmented in blocks and run through a forward filter of length L to give predictions r̂f
n
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and r̄f
n. The same data is run through a backward adaptive ACM filter with a separate tap

weight vector, also of length L, to generate estimates r̂b
n and r̄b

n. After these calculations are

made for the entire block, the data is combined to form an interpolated prediction according

to

r̂n =
1

2

(
r̂f
n + r̂b

n

)
, (7.65)

and r̄n = rn − A1√
N

tanh

(
A1√
N

rn − r̄n
σ̃2

n

)
. (7.66)

The next block of data follows the same procedure. However, when the next block is initial-

ized the previous tap weights are used to start the forward predictor and the interpolated

predictions {r̄n} are used to initialize the forward prediction. This “head start” on the

adaptation can only take place in the forward direction. We do not have any information

on the following block of data to give us insight into the backward prediction. Therefore

the backward prediction is less reliable than the forward prediction. To compensate for this

effect, consecutive blocks are overlapped, with the overlap being used to allow the back-

ward predictor some startup time to begin good predictions of the spread-spectrum signal

[371, 416].

Simulation Examples

Results for the same simulation when the statistics are unknown are given in Fig. 7.9. The

adaptive interpolator had a block length of 250 samples, with 100 samples being overlapped.

That is, for each block of 250 samples, 150 interpolated estimates were made. For the case

of known statistics, the ACM predictor already performs well, and there is little margin

for improvement via use of an interpolator. The adaptive filter shows greater margin for

improvement, on which the interpolator capitalizes. However, in either case, the interpolator

does offer improved phase characteristics and some performance gain at the cost of additional

complexity and a delay in processing.

A number of further results have been developed using and expanding the ideas discussed

above. For example, performance analysis methods have been developed both for both

predictive [528] and interpolative [529] nonlinear suppression filters. Predictive filters for

the further situation in which the ambient noise {N(t)} has impulsive components have
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Figure 7.9: Performance of linear interpolator-based and nonlinear interpolator-based NBI

suppression methods.

been developed in [130]. The multiuser case, in which K > 1, has been considered in [416].

Further results can be found in [11, 14, 235, 526, 527].

7.3.4 HMM-Based Methods

In the prediction-based methods discussed above, the narrowband interference environment

is assumed to be stationary or, at worst, slowly varying. In some applications, however,

the interference environment is dynamic in that narrowband interferers enter and leave the

channel at random and at arbitrary frequencies within the spread bandwidth. An example of

such an application arises in the littoral sonobuoy arrays mentioned in the Introduction, in

which shore-based commercial VHF traffic, such as dispatch traffic, appears throughout the

spread bandwidth in a very bursty fashion. A difficulty with the use of adaptive prediction

filters of the type noted above is that, when an interferer suddenly drops out of the channel,

the “notch” that the adaptation algorithm created to suppress it will persist for some time

after the signal leaves the channel. This is because, while the energy of the narrowband

source drives the adaptation algorithms to suppress an interferer when it enters the channel,
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there is no counterbalancing energy to drive the adaptation algorithm back to normalcy

when an interferer exits the channel. That is, there is an asymmetry between what happens

when an interferer enters the channel and what happens when an interferer exits the channel.

If interferers enter and exit randomly across a wide band, then this asymmetry will cause

the appearance of notches across a large fraction of the spread bandwidth, which will result

in a significantly degraded signal of interest. Thus, a more sophisticated approach is needed

for such cases. One such approach, described in [63], is based on a hidden-Markov model

(HMM) for the process controlling the exit and entry of NBI’s in the channel. An HMM filter

is then used to detect the sub-channels that are hit by interferers, and a suppression filter

is placed in each such sub-channel as it is hit. When an exit is detected in a sub-channel,

then the suppression filter is removed from that sub-channel. Related ideas for interference

suppression based on HMM’s and other “hidden-data” models have been explored in [215,

235, 350, 373].

7.4 Code-Aided Techniques

In the preceding sections, we discussed the use of linear predictive interference suppression

methods, which make use of the spectral properties of the spread data signal. We also

discussed the improvement of these predictive methods by making use of a more accurate

model for the spread-spectrum signal. In this latter situation, we considered in particular

the first-order probability distribution of the data signal (i.e., binary-valued) which led to

the ACM filter and its adaptive transversal form. Further improvements in NBI suppression

can be made by going beyond random modelling at the chip level and taking advantage of

the fact that we must know the spreading code of at least one user of interest in order to

begin data demodulation. Techniques for taking advantage of this are termed code-aided

techniques, a term coined in [380].

This approach was first proposed in [371, 417], and has been explored further in sev-

eral works, including [380, 381, 382]. These works have been based primarily on detectors

originally designed for linear multiuser detection. As noted in Section 2.2, in the context

of multiuser detection linear detectors operate by estimating the data sequence via linear

model-fitting techniques, and then quantizing the resulting estimates to get estimates of
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the data symbols themselves. Two of the principal such multiuser detection techniques are

the zero-forcing detector, or decorrelator, and the linear MMSE detector. The decorrelator

completely eliminates the multiple-access interference (MAI), with the attendant disadvan-

tage of possibly enhancing the ambient noise. The linear MMSE detector reduces this latter

effect by minimizing the mean-square error between the linear estimate and the transmitted

symbols. The linear MMSE detector has the further advantage of being more easily adapted

than the decorrelator and it results in lower bit-error rate under most practical circumstances

[338, 372].

Although developed originally for the suppression of intersymbol interference and (later)

MAI, these two methods can also be applied to the problem of suppressing NBI. This idea

was first proposed in [371, 417], for the case in which the NBI signal is also a digital com-

munications signal, but with a data rate much lower than the spread-spectrum chip rate.

This digital NBI model finds applications, for example, in modelling the interference in mul-

tirate CDMA systems in which multiple spreading gains and multiple chip rates may be

employed (e.g., [70, 328]). In [416], the decorrelator was employed to suppress the NBI in

such cases, and comparison with even ideal predictive techniques showed signifcant perfor-

mance gains from this method. The linear MMSE detector, in both fixed and adaptive forms,

was proposed for the suppression of digital NBI in [382], again resulting in significant per-

formance gains over predictive techniques. The linear MMSE detector was further explored

in [380, 381] for suppression of tonal and entropic narrowband interferers, and for the joint

suppression of NBI and MAI.

7.4.1 NBI Suppression Via the Linear MMSE Detector

As before, we begin by considering the case of (7.1)–(7.2) in which there is only a single

spread-spectrum signal in the channel (i.e., K = 1) in addition to the NBI signal and

white Gaussian noise. We again adopt the discrete-time model (7.5), and (without loss of

generality) restrict attention to the observations in a single symbol interval, say the zeroth

one: [0, T ]. It is convenient here to represent the corresponding samples in vector form:

r =
[
r0 r1 . . . rN−1

]T

= Abs + i + n, (7.67)
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where for convenience we denote A ≡ A1; b ≡ b1[0]; s contains the (normalized) spreading

code of User 1:

s =
1√
N

[
s0,1 s1,1 . . . sN−1,1

]T

; (7.68)

i = [i0 i1 . . . iN−1]
T is a vector containing the NBI samples; and n = [u0 u1 . . . uN−1]

T ∼
N (0, σ2IN) is a vector containing the corresponding ambient noise samples. Denote by

Ri the covariance matrix of i, i.e., Ri
�
= E

{
i iT

}
. For simplicity, we will assume for the

remainder of this section that the sampled interference signal is wide-sense stationary with

zero mean, although some of the results given do not require this.

In this framework the linear MMSE detector has the form

b̂ = sign
(
wT r

)
, (7.69)

where w ∈ R
N is a weight vector chosen to minimize the mean-square error

MSE
�
= E

{(
wT r − b

)2
}
. (7.70)

As we have noted before, the motivation for this criterion is that we would like for the

continuous estimator wT r of the symbol b to be as close to the symbol as possible in some

sense before quantizing it. The MSE is a convenient and tractable measure of closeness for

this purpose. Using (7.67), and the assumption that b, i and n are mutually independent,

then (7.70) can be written as

MSE = wT
(
Ri + σ2IN + A2s sT

)
w − 2AwT s + 1. (7.71)

Taking the gradient of the MSE with respect to w and setting it to zero, we get

(
Ri + σ2IN + A2s sT

)
w − As = 0. (7.72)

Solving for w in (7.72), and using the matrix inversion lemma, we obtain the minimizing

weights as

w =
A

1 + A2 sT (Ri + σ2IN)−1 s︸ ︷︷ ︸
α

(
Ri + σ2IN

)−1
s. (7.73)
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A useful figure of merit for assessing the NBI suppression capability of the linear detector

with weights w is the output signal-to-interference-plus-noise ratio (SINR), which is defined

in this situation as

SINR
�
=

E

{
E
{

wT r | b
}2

}
E

{
Var

{
wT r | b

}} . (7.74)

Using (7.67),(7.73) and the assumption that b, i and n are independent and zero-mean, we

have

E
{

wT r | b
}

= AbwT s,

= αA b sT
(
Ri + σ2IN

)−1

s, (7.75)

and Var
{

wT r | b
}

= Var
{

wT i
}

+ Var
{

wT n
}

= wT
(
Ri + σ2IN

)
w

= α2 sT
(
Ri + σ2IN

)−1

s. (7.76)

Substituting (7.75) and (7.76) into (7.74), the output SINR for the linear MMSE detector is

then given by

SINR = A2
[
sT

(
Ri + σ2IN

)−1
s
]
. (7.77)

As noted previously, the NBI signal can be modelled in one of three basic ways: a tonal

signal, an entropic narrowband stochastic process, or a digital data signal with data rate

much lower than the spread-spectrum chip rate. We next analyze the performance of the

linear MMSE detector against each of these three types of narrowband interference.

7.4.2 Tonal Interference

For mathematical convenience, we assume that the narrowband interference signal consists

of m complex sinusoids of the form

in =
m∑

l=1

√
Ple

(2πfln+φl), (7.78)
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where Pl and fl are the power and normalized frequency of the lth sinusoid, and the {φl} are

independent random phases uniformly distributed on (0, 2π). The covariance matrix Ri of

the multi-tone interference signal i can be represented as

Ri =
m∑

l=1

Plgl gH
l , (7.79)

where

gl
�
=

[
1, e2πfl , e4πfl , . . . , e2π(N−1)fl

]T

. (7.80)

Denote Rm
�
=

m∑
l=1

Plglg
H
l + σ2IN , and Km

�
= R−1

m . Then Rm = Rm−1 + PmgmgH
m, and

hence we have

Km = Km−1 − Km−1gmgH
mKm−1

P−1
m + gH

mKm−1gm

, (7.81)

where Km−1
�
= R−1

m−1. According to (7.77), let SINRm
�
= A2

(
sT Kms

)
. Then from (7.81)

we can write

SINRm = SINRm−1 − A2
∣∣sT Km−1gm

∣∣2
P−1

m + gH
mKm−1gm

. (7.82)

Assuming that the spread-spectrum user has a random signature sequence, we next derive

expressions for the expected values of the output SINR with respect to the random signature

vector s, for several special cases.

Case 1 : m = 1. We have SINR0 = A2σ−2, K0 = σ−2IN , gH
1 K0g1 = Nσ−2, and

E
{|sK0g1|2

}
= σ−4

n E
{∣∣sT g1

∣∣2} = σ−4
n tr

(
E

{
ssT

}
g1g

H
1

)
=

σ−4
n

N
gH

1 g1 = σ−4
n , (7.83)

where we have used E
{
ssT

}
= 1

N
IN and gH

1 g1 = N . Substituting these into (7.82), we

obtain

E {SINR1} =

[
1 − (P1/σ

2)

1 +N (P1/σ2)

]
A2

σ2

→
(

1 − 1

N

)
A2

σ2
, as P1 → ∞. (7.84)
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Therefore when N is large, the energy of a strong interferer is almost completely suppressed

by the linear MMSE detector.

Case 2 : m = 2. From (7.81) we have

K1 = σ−2

[
IN − γ1

1 +Nγ1

g1g
H
1

]
, (7.85)

where γ1
�
= A2σ−2. Now using (7.82) we obtain

E {SINR2} = E {SINR1} −
P2E

{∣∣sT K1g2

∣∣2}
1 + P2 (gH

2 K1g2)
A2. (7.86)

Using (7.85) we have

A2
(
gH

2 K1g2

)
= γ2

(
N − γ1

1 +Nγ1

β12

)
, (7.87)

where γ2
�
= P2σ

−2, and

β12
�
=

∣∣gH
2 g1

∣∣2 =

(
N−1∑
k=0

e2π∆fk

)(
N−1∑
k=0

e−2π∆fk

)

=

(
1 − e2π∆fN

) (
1 − e−2π∆fN

)
(1 − e2π∆f ) (1 − e−2π∆f )

=

(
sin π∆fN

sin π∆f

)2

, (7.88)

where ∆f
�
= f1 − f2. On the other hand, using (7.85) we can write

E
{∣∣sT K1g2

∣∣2} = tr
(
E

{
ssT

}
K1g2g

H
2 K1

)
=

1

N
gH

2 K1K1g2

= σ−4

[
1 − 2

N

(
γ1

1 +Nγ1

)
β12 +

(
γ1

1 +Nγ1

)2

β12

]
. (7.89)

Substituting (4.55) and (7.89) into (7.86) we then have

E {SINR2} =

1 − γ1

1 +Nγ1

−
γ2

[
1 − 2

N

(
γ1

1+Nγ1

)
β12 +

(
γ1

1+Nγ1

)2

β12

]
1 + γ2

[
N −

(
γ1

1+Nγ1

)
β12

]

A2

σ2

→
(

1 − 2

N

)
A2

σ2
, as γ1 → ∞ and γ2 → ∞. (7.90)

Again we see that for large N , the interfering energy is almost completely suppressed. In

general, it is difficult to obtain an explicit expression for E {SINRm} for m > 2. However,
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for the special case when the {gl} are mutually orthogonal, a closed-form expression for

E {SINRm} can easily be found.

Case 3 : Orthogonal {gl}. Assume that

gH
l gk =

{
N, l = k,

0, l �= k.
(7.91)

This condition is met, for example, when fl − fk is a multiple of 1
N

for all l �= k. Under this

condition of orthogonality, it follows straightforwardly that

Km = σ−2

(
IN −

m∑
l=1

Pl

σ2 +NPl

glg
H
l

)
. (7.92)

The expected value of the output SINR with respect to the random signature vector s is

E {SINRm} = A2E
{
sT Kms

}
=

[
1 −

m∑
l=1

γl

1 +Nγl

E
{∣∣sT gl

∣∣2}] A2

σ2

=

[
1 −

m∑
l=1

γl

1 +Nγl

]
A2

σ2

≥ 1 + (N −m)γmax

1 +Nγmax

A2

σ2

→
(
N −m
N

)
A2

σ2
, as γmax → ∞, (7.93)

where γl
�
= Plσ

−2, and γmax
�
= max

1≤l≤m
{γl}. Fig. 7.10 shows some numerical examples of tone

suppression by the linear MMSE detector. In both plots the SINRs without interference

are 10dB (after despreading). Each curve in the plots corresponds to one set of 3-tone (or

7-tone) frequencies {fl} randomly chosen. (The vectors {gl} are not necessarily orthogonal.)

Interestingly it is seen from Fig. 7.10 that the output SINRs are centered at the value given

by (7.93).

7.4.3 Autoregressive (AR) Interference

Let us assume that the NBI signal is modelled as a pth order AR process, where p� N , i.e.,

in = −
p∑

j=1

φjin−j + en, (7.94)
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Figure 7.10: Numerical examples of multi-tone interference suppression in CDMA system

by the linear MMSE detector. The parameters are N = 31, A2 = 1 and σ2 = 0.1. The

interfering tones have the same power Pl ranging from 1 to 500. Each curve in the plots

corresponds to one set of 3-tone (or 7-tone) frequencies {fl} randomly chosen. The SINR’s

are calculated by using (7.77).

where {en} is a white Gaussian process with variance ν2. Supposing that Ri is positive

definite, we first derive a closed-form expression for R−1
i . Using (7.94) we can write the

following:

1 φ1 φ2 . . . φp

1 φ1 φ2 . . . φp

. . . . . . . . .

1 φ1 φ2 . . . φp

1

1
. . .

1





in

in−1

...

in−N+p+1

in−N+p

in−N+p−1

...

in−N+1


=



en

en−1

...

en−N+p+1

in−N+p

in−N+p−1

...

in−N+1


, (7.95)

or, in a compact form:

A

[
iN−p

ip

]
=

[
eN−p

ip

]
, (7.96)
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where A is the matrix appearing on the left-hand side of (7.95), iN−p =

[in, in−1, . . . , in−N+p+1]
T , ip = [in−N+p, in−N+p−1, . . . , in−N+1]

T , and eN−p =

[en, en−1, . . . , en−N+p+1]
T . Multiplying both sides of (7.96) by their transposes and taking

expectations, we obtain

A E

{[
iN−p

ip

] [
iT
N−p iT

p

]}
AT = E

{[
eN−p

ip

] [
eT

N−p iT
p

]}
; (7.97)

that is

AR
(N)
i AT =

[
ν2IN−p 0

0 R
(p)
i

]
, (7.98)

where R
(N)
i and R

(p)
i are respectively the N ×N and p× p autocorrelation matrices of the

interference signal. Since A is nonsingular, then

R
(N)
i = A−1

[
ν2IN−p 0

0 R
(p)
i

]
A−T , (7.99)

and

R
(N)
i

−1
= AT

[
1
ν2 IN−p 0

0 R
(p)
i

−1

]
A. (7.100)

Partition the N ×N matrix A into the following four blocks:

A =

[
A11 A12

0 Ip

]
, (7.101)

where A11 is of dimension (N−p)×(N−p), and A12 is of dimension (N−p)×p. Substituting

(7.101) into (7.100), we can write

R
(N)
i

−1
=

1

ν2

[
AT

11A11 AT
11A12

AT
12A11 AT

12A12 + ν2R−1
p

]
. (7.102)

Now most of the elements of R
(N)
i

−1
are explicitly given by (7.102), except for the southeast

p × p block. But notice that R
(N)
i is a Toeplitz matrix, and the inverse of a nonsingular

Toeplitz matrix is persymmetric, i.e., it is symmetric about its northeast-southwest diagonal
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[155]. Therefore, the elements of the southeast p × p block of R
(N)
i

−1
can be found in the

northwest p× p block, which have already been determined. Hence with the aid of persym-

metry, R
(N)
i

−1
is completely specified by (7.102). Straightforward calculation of (7.102) then

shows that R
(N)
i

−1
is a band-limited matrix, with bandwidth 2p+ 1. Since it is symmetric,

we need only to specify the upper p+ 1 nonzero diagonals, as follows,

D0 =
1

ν2
diag

{
1, 1 + φ2

1, . . . , 1 + φ2
1 + . . .+ φ2

p, . . . , 1 + φ2
1 + . . .+ φ2

p, . . . , 1 + φ2
1, 1

}
,

D1 =
1

ν2
diag

{
φ1, φ1 + φ1φ2, . . . , φ1 + φ1φ2 + . . .+ φp−1φp, . . . , φ1 + φ1φ2 + . . .+ φp−1φp,

. . . , φ1 + φ1φ2, φ1

}
,

D2 =
1

ν2
diag

{
φ2, φ2 + φ1φ3, . . . , φ2 + φ1φ3 + . . .+ φp−2φp, . . . , φ2 + φ1φ3 + . . .+ φp−2φp,

. . . , φ2 + φ1φ3, φ2

}
,

...
...

Dp =
1

ν2
diag

{
φp, . . . , φp

}
, (7.103)

where Dk contains the (N − k) elements on the kth upper (lower) diagonal of R
(N)
i

−1
, k =

0, 1, . . . , p.

Next we consider the output SINR of the linear MMSE detector when the interferer is

an AR signal. For the sake of analytical tractability, and also to stress the effectiveness of

the MMSE detector against the narrowband AR interference (versus the background noise),

we consider the output SINR when there is no background noise, that is, σ2 → 0. Using

(7.103) we have

sT R
(N)
i

−1
s =

1

N

N−1∑
i=0

D0[i] + 2

p∑
k=1

N−1−k∑
i=0

Dk[i]s[i]s[i+ k]

∼= D0[�N/2	] + 2

p∑
k=1

Dk[�N/2	]
N−1−k∑

i=0

s[i]s[i+ k] (7.104)

∼= 1 + φ2
1 + . . .+ φ2

p

ν2
, (7.105)

where in (7.104), we have made the approximation that Dk[i] = Dk[�N/2	], 0 ≤ k ≤ p,

0 ≤ i ≤ N − k − 1, since when N � p, it is seen from (7.103) that on each nonzero

diagonal most of the elements are the same; and in (7.105) we used the approximation
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N−1−k∑
i=0

s[i]s[i + k] ∼= ±1/N and thus dropped the second term in (7.104). The output SINR

is then

SINR = A2
(
sT R

(N)
i

−1
s
)

∼= (
1 + φ2

1 + . . .+ φ2
p

) A2

ν2
. (7.106)

As will be seen later in Section 7.5, this SINR value is the same as the SINR upperbound

given by the nonlinear interpolator NBI suppression method in the absence of background

noise.

7.4.4 Digital Interference

s0  

s1

sm

SS  user

virtual user  1

virtual user  m

.

.

.

Figure 7.11: Virtual CDMA system (synchronous case).

Now let us consider a system with one spread-spectrum (SS) signal and one narrowband

binary signal in an otherwise additive white Gaussian noise (AWGN) channel. We assume

for now that the narrowband signal is synchronized with the SS signal. Furthermore, we

assume a relationship between the data rates of the two users, i.e., m bits of the narrowband

user occur for each bit of the SS user. (Given that most digital data is sent at rates that are

powers of two, it is reasonable to employ an integer relationship between the bit rates; indeed,

m is most likely to be a power of two for practical channels.) As shown in Fig. 7.11, the
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narrowband digital signal can be regarded as m virtual users, each with its virtual signature

sequences. The first virtual user’s signature sequence equals one during the first narrowband

user’s bit interval, i.e., a virtual chip interval, and zero everywhere else. Similarly, each

other narrowband user’s bit can be thought of as a signal arising from a virtual user with a

signature sequence with only one non-zero entry. It is obvious from this construction that

the signature waveforms of the virtual users are orthogonal with each other. However, in

general, the kth virtual user has some cross-correlation with the spread-spectrum user. If we

use ρ to denote the vectors formed by the cross-correlations, defined explicitly in (7.108),

then the cross-correlation matrix R of this virtual multiuser system has the following simple

structure (Note: the SS user is numbered 0, and the m virtual users are numbered from 1

to m).

R =

[
1 ρT

ρ Im

]
. (7.107)

We have assumed that the narrowband user had a faster data rate than the SS user (but

this rate is still much slower than the chip rate). The opposite case can also hold and our

analysis applies to it as well, although we do not discuss that case explicitly. The covariance

matrix of the system in that case has the same structure as (7.107).

Let T be the bit duration of the SS user, so that T/m is the bit duration of the narrowband

user. Similarly let N be the processing gain of the SS signal, so that the chip interval has

length T/N . By our assumption that the interferer is narrowband, we have N � m. Let s(t)

be the normalized signature waveform of the SS user, i.e., s(t) is zero outside the interval [0, T ]

and has unity energy. Similarly, let p(t) be the normalized bit waveform of the narrowband

user, i.e., p(t) is zero outside the interval [0, T/m] and has unity energy. Then the normalized

signature waveform of the kth virtual user is pk(t) = p(t−(k−1)T/m). The cross-correlation

vector mentioned earlier is ρ = [ρ1 ρ2 . . . ρm]T , where ρk is the cross-correlation between

the kth virtual user and the SS user, defined as

ρk = 〈s, pk〉. (7.108)

where the inner product notation denotes 〈x, y〉 =

∫ T

0

x(t)y(t)dt.

We assume that the SS user and the narrowband user are sending digital data through

the same channel characterized by AWGN with power spectral density σ2. Let AI be the
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received amplitude of the narrowband signal, and A be the received amplitude of the SS

signal. We use the notation that the narrowband user data bits during the interval (0, T ) are

d1, d2, . . . dm, and the SS bit is b. When the users are synchronous, it is sufficient to consider

the one-shot version of the received signal

r(t) = Ab s(t) + AI

m∑
k=1

dkpk(t) + n(t), t ∈ [0, T ]. (7.109)

where n(t) is the white Gaussian noise with power spectral density σ2.

The linear MMSE detector for User 0 (i.e., the SS user) is characterized by the impulse

response w ∈ L2[0, T ], such that the decision on b0 is

b̂ = sign(〈w, r〉), (7.110)

A closed-form expression for w is given by [511] as

w(t) = w0 s(t) +
m∑

j=1

wj pj(t), (7.111)

where wT = [w0, w1, . . . , wm] is the first row of the matrix

C =
[
R + σ2A−2

]−1
, (7.112)

and A = diag{A, AI , . . . , AI}. Substituting (7.107) into (7.112), we get

C =

 (
1 + σ2

A2

)
ρT

ρ
(
1 + σ2

A2
I

)
Im

−1

. (7.113)

The following matrix identity can be easily verified,[
α ρT

ρ βIm

]−1

=

[
1

αγ
− 1

αβγ
ρT

− 1
αβγ
ρ 1

β
Im + 1

αβ2γ
ρρT

]
, (7.114)

where γ = 1 − ρT ρ/αβ.

Now on defining α = 1 + σ2/A2 and β = 1 + σ2/A2
I , the first row of C in (7.113) is then

given by

wT =

[(
1 +

σ2

A2

)(
1 +

σ2

A2
I

)
− ρT ρ

]−1 [
1 +

σ2

A2
I

, −ρ1, −ρ2, . . . , −ρm

]
. (7.115)
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Substituting (7.115) into (7.111) we get an expression for the linear MMSE detector for the

SS user; namely,

w(t) =

[(
1 +

σ2

A2

)(
1 +

σ2

A2
I

)
− ρT ρ

]−1
[(

1 +
σ2

A2
I

)
s(t) −

m∑
k=1

ρkpk(t)

]
. (7.116)

Using (7.74), the SINR at the output of the linear MMSE detector w(t) becomes

SINR =
A2〈w, s〉2

A2
I

m∑
j=1

〈w, pj〉2 + σ2〈w,w〉
. (7.117)

That is, the SINR is the ratio of the desired SS signal power to the sum of the powers due

to narrowband interference and noise at the output of the filter w(t). Substituting (7.116)

into (7.117), we get

SINR =
A2

(
1 + σ2

A2
I
− ρT ρ

)2

A2
I

(
σ2

A2
I

)2

ρT ρ + σ2

[(
1 + σ2

A2
I

)2

− 2
(
1 + σ2

A2
I

)
ρT ρ + ρT ρ

]
=

A2

σ2

(
1 − ρT ρ

1 + σ2

A2
I

)
. (7.118)

Fig.7.12 illustrates the virtual multiuser system for the asynchronous case. Let t0 be

the fixed time lag between the spread-spectrum bit and the nearest previous start of a

narrowband bit, i.e., 0 ≤ t0 ≤ T/m. We see that because of the time lag t0, the virtual

User 1 in Fig. 7.11 effectively contributes two interference signals during a SS bit interval

– at the beginning and at the end of the SS bit interval, respectively. We can therefore

treat the asynchronous system as a synchronous system with one additional virtual user,

i.e., a synchronous system with one SS user, and m+1 virtual users. The preceding analysis

therefore holds in the asynchronous case as well, with only minor modification.

7.5 Performance Comparisons of NBI Suppression

Techniques

In the preceding section, we have derived closed-form expressions for the performance mea-

sure (SINR) of the linear MMSE detector against three types of NBI. In this section, we
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Figure 7.12: Virtual CDMA system (asynchronous case).

compare its performance against NBI with performance bounds for the linear and nonlinear

NBI suppression methods discussed in Sections 7.2 and 7.3.

Matched Filter

For the conventional detector, the received signal r in (7.67) is sent directly to a single filter

matched to the spreading sequence, i.e., w = s. The mean and variance at the output of

the matched filter are

E
{
sT r | b} = Ab, (7.119)

and Var
{
sT r | b} = sT

(
Ri + σ2IN

)
s. (7.120)

The output SINR is then given by

SINR(matched filter) =
A2

sT (Ri + σ2IN) s
. (7.121)

Linear Predictor and Interpolator

As mentioned before, linear or nonlinear predictive NBI suppression methods are based on

the following idea. Since the spread-spectrum signal has a nearly flat spectrum, it can not
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be predicted accurately from its past value without explicit use of knowledge of the spread-

ing code. On the other hand, the interfering signal, being narrowband, can be predicted

accurately. These methods essentially form a replica of the NBI which can be subtracted

from the received signal to enhance the wideband components. The linear methods have

primarily involved the use of linear transversal prediction or interpolation filters to create

the NBI replica. Such a filter forms a linear prediction of the received signal based on a fixed

number of previous samples, or a linear interpolation based on a fixed number of past and

future samples. This estimate is subtracted from the appropriately timed received signal to

obtain the error signal to be used as input to the SS user signature sequence correlator.

Let Si(ω) denote the power spectral density of the NBI signal. The following output SINR

upper bounds for the linear prediction/interpolation methods can be found in [305, 306].

SINR(linear predictor) ≤ A2

2π exp

[
1
2π

∫ π

−π

ln

(
A2/N + σ2

2π
+ Si(ω)

)
dω

]
− A2/N

,

and (7.122)

SINR(linear interpolator) ≤
A2

∫ π

−π

[
A2/N+σ2

2π
+ Si(ω)

]−1

dω

(2π)2 − A2

N

∫ π

−π

[
A2/N+σ2

2π
+ Si(ω)

]−1

dω

. (7.123)

Nonlinear Predictor and Interpolator

For narrowband interference added to a spread-spectrum signal in an AWGN environment,

the prediction of the interferer takes place in the presence of both Gaussian and non-Gaussian

noise. The non-Gaussian noise is the spread-spectrum signal itself. In such a non-Gaussian

environment, linear methods are no longer optimal and nonlinear techniques offer improved

suppression capability over linear methods, as demonstrated in Section 7.3. Essentially, the

nonlinear filters provide decision feedback that suppresses the spread-spectrum signal from

the observations. When the decision feedback is accurate, the filter adaptation is done in

essentially Gaussian noise, i.e., observations from which the spread-spectrum signal has been

removed.

Based on the above discussion, we can obtain similar SINR upper bounds for the nonlinear

predictive/interpolative methods. The idea is that we assume that the decision feedback

part of the nonlinear filter accurately estimates the SS signal, and the SS signal is always
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subtracted from the observations, so that the NBI signal is estimated only in the presence

of Gaussian noise. More specifically, consider the signal model (7.5). Assume that for the

purpose of estimating the NBI signal, a genie provides an SS-signal-free observation

yn = in + un.

A linear predictor or interpolator is then employed to obtain and estimate în of the NBI

signal, which is then subtracted from the received signal to form the decision statistic for

the SS data bit b,

U =
N−1∑
n=0

(
rn − în

)
sn,1

= Ab+
N−1∑
n=0

εn sn,1, (7.124)

where εn is the prediction error of the linear predictor (interpolator), i.e., εn = in − în + un.

Since {sn,1} is a sequence of independent, identically distributed random variables such that

sn,1 = ±1/
√
N with probability 1

2
, the output SINR of this ideal system is then

SINR =
E {U}2

Var {U} =
A2

E {ε2n}
. (7.125)

Substituting the lower bounds for the mean-square prediction errors E {ε2n} given by the

linear predictor and linear interpolator [305, 306], we obtain the following very optimistic

SINR upper bounds for the nonlinear estimator–subtracter methods.

SINR(nonlinear predictor) ≤ A2

2π exp

[
1
2π

∫ π

−π

ln

(
σ2

2π
+ Si(ω)

)
dω

] , (7.126)

SINR(nonlinear interpolator) ≤
A2

∫ π

−π

[
σ2

2π
+ Si(ω)

]−1

dω

(2π)2
. (7.127)

Now assume that the NBI is a pth order AR signal, given by (7.94). Its power spectrum

density function is given by

Si(ω) =
1

2π

ν2∣∣∣∣∣1 +

p∑
k=1

φke
−ωk

∣∣∣∣∣
2 . (7.128)
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Substituting (7.128) into (7.127), and letting σ → 0, we get the SINR upperbound for the

nonlinear interpolator when the NBI is an AR signal in the absence of background noise,

SINR(nonlinear interpolator ) ≤ A2

ν2
· 1

2π

∫ π

−π

∣∣∣∣∣1 +

p∑
k=1

φke
−jωk

∣∣∣∣∣
2

dω

=
(
1 + φ2

1 + . . .+ φ2
p

)A2

ν2
. (7.129)

Notice that this is the same output SINR value for the linear MMSE detector when the NBI

is an AR signal in the absence of noise, given by (7.106).

Numerical Examples

In order to compare the NBI suppression capabilities of the various techniques described

above, we consider two numerical examples. In the first example, the narrowband interferer

is a second-order AR signal with both poles at 0.99, i.e., φ1 = −1.98 and φ2 = 0.9801. The

noise power is held constant at σ2 = −20dB (relative to the SS signal after despreading),

while the interference power is varied from −20dB to 40dB (all relative to a unity SS power

signal). The spreading signature sequence is a length-31m-sequence. In Fig. 7.13 we plot the

output SINR performance of various NBI suppression techniques for this example. We see

that the linear MMSE detector significantly outperforms the linear predictor/interpolator,

and it almost achieves the loose SINR upperbound for the nonlinear interpolator.

In the second example, the narrowband interferer is a digital signal withm = 4. Assuming

that the digital NBI signal has a rectangular pulse waveform, the autocorrelation function

of the chip-sampled NBI signal is then

Ri[k] =


A2

i

L

(
1 − |k|

L

)
, |k| ≤ L

0, |k| > L
, (7.130)

where L = �N/m	, and the power spectral density is

Si(ω) =
1

2π

A2
i

L2

(
sin Lω

2

sin ω
2

)2

. (7.131)

The performance of various methods against the digital NBI in this example is plotted in

Fig. 7.14. The noise power is 20 dB below the SS signal power (after despreading), while
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 1.  No interference.
 2.  Nonlinear interpolator: upper bound.
 3.  MMSE detector.
 4.  Linear interpolator: upper bound.
 5.  Nonlinear predictor: upper bound.
 6.  Linear predictor: upper bound.
 7.  Matched filter.

Figure 7.13: Comparison of the performance against the NBI by different NBI suppression

techniques. The narrowband interferer is a second-order AR signal with both poles at 0.99.

The noise power is held constant at σ2 = −20dB relative to the SS signal after despreading,

while the interference power is varied from −20dB to 40dB relative to the SS signal. The

spreading signature sequence is a length-31 m-sequence.
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the NBI signal power is varied from −20dB to 40dB, relative to the SS signal power. It is

seen that in this case the linear MMSE detector almost completely removes the NBI energy

at the output, and the output SINR is held at 20dB irrespective of the NBI power. This can

be readily explained by (7.118). The other techniques are all clearly inferior to the linear

MMSE detector in suppressing the digital NBI, and their performance degrades as the NBI

power increases.
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 1.  MMSE detector.   
 2.  Nonlinear interpolator: upper bound.
 3.  Linear interpolator: upper bound.
 4.  Nonlinear predictor: upper bound.
 5.  Linear predictor: upper bound.
 6.  Matched filter.

Figure 7.14: Comparison of the performance against the NBI by different NBI suppression

techniques. The narrowband interferer is a digital signal withm = 4. The noise power is held

constant at σ2 = −20dB relative to the SS signal after despreading, while the interference

power is varied from −20dB to 40dB relative to the SS signal. The spreading signature

sequence is a length-31 m-sequence.
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7.6 Near-far Resistance to Both NBI and MAI by Lin-

ear MMSE Detector

We now consider the limiting behavior of the linear MMSE detector in the presence of NBI

together with MAI, in which the energy of one or more of the interference signals (either MAI

or NBI) can increase arbitrarily, i.e., the near-far situation. When the NBI is analog, the

near-far resistance in the sense defined in [292, 293] is not easily determined, since in general

the expression for the probability of error can not be obtained. Another more intuitive view

of a “near-far resistant” detector is that the output SINR is always great than zero no matter

how powerful the interference signal is [302]. In what follows we will discuss the near-far

resistance of the linear MMSE detector to both MAI and NBI in this sense.

7.6.1 Near-far Resistance to NBI

We first consider the situation in which there is NBI, but no MAI. Let the NBI signal i

be an arbitrary discrete-time wide-sense stationary process, with autocorrelation matrix Ri,

which is nonnegative definite. Suppose the spectral decomposition of Ri is given by

Ri =
N∑

l=1

λlul uT
l , (7.132)

where λ1, . . . , λN and u1, . . . ,uN are the nonnegative eigenvalues and the corresponding

orthogonal eigenvectors of Ri. Since

IN =
N∑

l=1

ul uT
l , (7.133)

using (7.77) we obtain

SINR = A2 sT
(
Ri + σ2IN

)−1
s

=
N∑

l=1

A2

σ2 + λl

∣∣sT ul

∣∣2 . (7.134)

When the NBI signal power is increased, the nonzero λl’s increase proportionally. Therefore

it is seen from (7.134) that the near-far resistance to NBI is nonzero if and only if Ri has at

least one zero eigenvalue, and the corresponding eigenvector is not orthogonal to s. On the

other hand, if Ri has full rank, the near-far resistance to NBI is zero.
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7.6.2 Near-far Resistance to Both NBI and MAI

Now suppose that the interference in the system includes (K − 1) independent synchronous

MAIs in addition to the NBI. Let the signature vector for the kth MAI be sk, and the power

be Pk. It is straightforward to generalize (7.77) to include the effect of MAI, and we obtain

the output SINR of the MMSE detector as

SINR = A2 sT

(
K−1∑
k=1

Pk sk sT
k + Ri + σ2IN

)−1

s

= A2 sT

(
K−1∑
k=1

Pk sk sT
k +

N∑
l=1

λl ul u
T
l + σ2IN

)−1

s. (7.135)

Equation (7.135) suggests that when we consider the output SINR for the linear MMSE

detector, the NBI signal can be viewed as being equivalent to N independent synchronous

virtual MAIs. The lth virtual MAI has signature vector ul and power λl. Suppose that

r = rank(Ri), and λr+1 = . . . = λN = 0. Then using the results from [302], the near-far

resistance (to both MAI and NBI) is non-zero if and only if s is not contained in the subspace

span{s1, . . . , sK ; u1, . . . ,ur}.
Next we consider the effect of NBI on the near-far resistance to MAI, by fixing the power

of the NBI and increasing the power of the MAIs. It is shown in [302] that the linear MMSE

solution w is asymptotically orthogonal to the subspace spanned by s1, . . . , sK , i.e.,

w ⊥ span{s1, . . . , sK}. (7.136)

Such an asymptotic w can be found by solving the following constrained optimization prob-

lem:

minimize MSE = wT Rw − 2A2 wT s + A2,

s.t. wT sl = 0, l = 1, . . . , K,

wT s = 1,

where

R
�
= E

{
r rT

}
= A2 s sT +

K−1∑
k=1

Pk sk sT
k + Ri + σ2IN . (7.137)
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It then follows from the method of Lagrange multipliers that

w ∈ span
{
Σ−1s,Σ−1s1, . . . ,Σ

−1sK

}
, (7.138)

where Σ
�
= Ri + σ2IN . Let s = s‖ + s⊥, where s‖ ∈ span{s1, . . . , sK}, and s⊥ ⊥

span{s1, . . . , sK}. The near-far resistance to MAI is nonzero if and only if sT w �= 0. There-

fore, from (7.136) and (7.138) it is easily seen that the near-far resistance to MAI is nonzero

if and only if s⊥ �= 0 and s⊥ ∈ span{Σ−1s,Σ−1s1, . . . ,Σ
−1sK}. Notice that if there is no

NBI, i.e., Σ = σ2IN , then this condition for nonzero near-far resistance reduces to s⊥ �= 0

[302].

Simulation Examples

Fig. 7.15 shows the output SINR of the linear MMSE detector in the presence of both

MAI and NBI. The signal-to-noise ratio for the desired user in the absence of interference

is fixed at 20dB. The NBI is a second-order AR signal with both poles at 0.99. The MAIs

are synchronous with the desired SS user, with random signature sequences and the same

power. The processing gain is N = 31. Two cases are shown: three MAIs and six MAIs.

For each case, we vary the power of one type of interference (MAI or NBI) while keeping the

power of the other fixed.

It is seen from Fig. 7.15 that the effects of the MAI and the NBI on the output SINR are

different. The output SINR is insensitive to the power of the MAI while it is more sensitive

to the power of NBI. To see this, we consider a simple example where the CDMA system

consists of the desired SS user signal, one MAI and one NBI, in the absence of background

noise. Then by (7.135) the output SINR of the MMSE detector in this case is given by

SINR = A2 sT
(
P1s1s

T
1 + Ri

)−1
s

= A2
(
sT R−1

i s
) − P1

(
sT R−1

i s1

)2

1 + P1

(
sT R−1

i s
) , (7.139)

where the second equality is obtained by using the matrix inversion lemma. Now because

of the pseudo randomness of the signature vectors s and s1,
(
sT R−1

i s1

) � (
sT R−1

i s
)
. It

is seen from (7.139) that the power of the MAI (P1) affects the SINR only through the

negligible second term in (7.139), while the power of the NBI affects the SINR through the

dominant first term in (7.139).
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Figure 7.15: Output SINR of the linear MMSE detector in the presence of both MAI and

NBI. The noise power is held constant at σ2 = −20dB relative to the SS signal after de-

spreading. The NBI signal is a second-order AR signal with both poles at 0.99. The MAI’s

are synchronous with the SS user, with random signature sequences. The processing gain is

N = 31.
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Fig. 7.16 is a plot of the probability of error of the MMSE detector, in the presence of

strong MAI and NBI, in addition to ambient noise. The symbols (“o” and “+”) in this plot

correspond to the data obtained from simulations, and the solid and dashed lines correspond

to Gaussian approximations of the probability of error (i.e., BER). It has been shown in [372]

that in an environment of MAI and AWGN, the error probability for the MMSE detector

can be well approximated by assuming that the output MAI-plus-noise is Gaussian. This

plot seems to suggest that even in the presence of NBI, the output NBI-plus-MAI-plus-noise

is still approximately Gaussian.

6 10dB MAI’s + 1 20 dB NBI, simulation.

6 10dB MAI’s + 1 20 dB NBI, Gaussian approximation.

3 10dB MAI’s + 1 20 dB NBI, simulation.

3 10dB MAI’s + 1 20 dB NBI, Gaussian approximation.  
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Figure 7.16: BER performance of the linear MMSE detector, in the presence of both MAI

and NBI, in addition to ambient noise. The MAI’s are synchronous with the SS user, with

random signature sequence of length N = 31. The NBI signal is a second-order AR signal

with both poles at 0.99.
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7.7 Adaptive Linear MMSE NBI Suppression

In the preceding section, we saw that the linear MMSE detector is an excellent technique

for suppressing NBI from spread-spectrum systems. A further advantage of the MMSE

detector is that it is easily adapted to unknown NBI statistics. A number of adaptive

algorithms for the linear MSE detector as an MAI-suppressor have been explored, including

both those using a sequence of known training symbols and blind algorithms, which do not

require such sequences [179, 234, 265, 320, 365, 395] (see [180] for a survey). These studies

have primarily employed the LMS algorithm for adaptation because of its simplicity and

overall good performance characteristics against wideband MAI. However, unlike the case of

adaptive prediction-based NBI suppression discussed in Sections 7.2 and 7.3 (in which LMS

features prominently), adaptation of the linear MMSE detector takes place at the symbol

rate, rather than at the chip rate. This does not cause difficulties with the LMS algorithm

for wideband interference such as MAI. But, for NBI, some problems may arise in using

LMS at the symbol rate due to resulting large eigenvalue spreads of the covariance matrix

of the observations (cf. [593] for an review of the properties of LMS). These problems can

be corrected by using instead the recursive-least-squares (RLS) algorithm, which may have

better properties in such situations [381].

The use of RLS algorithm for blind adaptation of the linear MMSE detector for MAI

suppression is discussed in Section 2.3.2 of this book [cf. Algorithm 2.3]. Exactly the same

algorithm can be employed for adaptive suppression of both MAI and NBI. It is shown in

the Appendix to this chapter (Section 7.9.5) that the steady-state SINR of the blind RLS

linear MMSE detector is given by

SINR∞ =
SINR∗

(1 + d) + d · SINR∗ , (7.140)

where SINR∗ is the optimum SINR value given in (7.77) and where (recall that λ is the

forgetting factor)

d
�
=

(1 − λ)(N − 1)

2λ
. (7.141)

Usually the RLS algorithm operates in the range such that d � 1. From (7.140) it can be

seen that the performance of the blind adaptive algorithm in terms of the steady-state SINR

can be severely degraded from the optimum value SINR∗, especially when SINR∗ � 1. In



490 CHAPTER 7. NARROWBAND INTERFERENCE SUPPRESSION

fact, it is seen that if 1
d

� SINR∗, then the SINR in the steady state is upper bounded

by 1
d
. This problem can be overcome by switching to the conventional RLS algorithm that

uses decision feedback, after the initial blind adaptation converges. The steady-state SINR

of this scheme can be estimated via that of trained RLS, which is given in this case by [cf.

Appendix (Section 7.9.6)]

SINR∞ =
SINR∗

(1 + d) + d/SINR∗ . (7.142)

It is seen from (7.142) that in contrast to the blind adaptive algorithm, when the adaptive

algorithm has access to the transmitted symbols b1[i], the steady state output SINR is close

to its optimum possible value. Therefore, it is best to switch to a decision-directed adaptation

mode as soon as the blind adaptation converges. However, decision-directed adaptation is

subject to catastrophic error propagation in case of a sudden change in the environment.

Whenever such a situation happens, the receiver should immediately switch back to the blind

adaptation mode, and stay in the blind mode until it converges, before it switches to the

decision-directed mode again.

A difficulty with RLS relative to LMS is that RLS is more complex computationally. The

complexity per update of RLS in this application is O (N2) compared with O (N) for LMS,

where we recall that N denotes the spreading gain. This complexity can be mitigated by

using a parallel implementation on a systolic array first proposed in [311], as discussed in

Section 2.3.3 of this book.

Simulation Examples

The first example illustrates the tracking capability of the RLS blind adaptive algorithm in

a dynamic environment. Fig. 7.17 shows a plot of time-averaged output SINR versus time

of the RLS blind adaptive algorithm, in a synchronous CDMA system with processing gain

N = 31, when the number and types of interferers in the system vary with time. The signal

power to background noise power is 20dB (after despreading). The simulation starts with

one desired user’s signal and 6 MAI signals each of 10dB. At time n = 500, a strong NBI

signal of 20dB is added in the system. At time n = 1000, another strong MAI signal of 20dB

is added. At time n = 1500, three of the original 10dB MAI signals are removed from the

system. The desired user’s signature sequence is an m-sequence; and the signature sequences
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of the MAIs are generated randomly. The NBI signal is a second-order AR signal with both

poles at 0.99. The forgetting factor is λ = 0.995. The data shown in the plot are values

averaged over 100 simulations. It is seen that the RLS blind adaptive algorithm can adapt

rapidly to the changing environment, which makes it suitable for practical use in a mobile

environment.
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Figure 7.17: Tracking behavior of the RLS blind adaptive algorithm in a dynamic environ-

ment.

The second example illustrates the difference between the steady-state SINR’s of the

blind adaptation rule and the decision-directed adaptation rule. Fig. 7.18 shows a plot of

time-averaged output SINR versus time for the RLS adaptive algorithms in a strong near-

far environment. This example assumes a synchronous CDMA system with processing gain

N = 31. There are three 10dB MAIs, each with random signature sequence. In addition,

there is a 20dB NBI which is a second-order AR signal with both poles at 0.99. The signal

power to background noise power is 20dB. The blind adaptation rule is used for the first 500

iterations, and the conventional RLS algorithm using decision feedback is used thereafter.
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The forgetting factor is λ = 0.995. Again the data shown in the plot are values averaged

over 100 simulations. It is seen from Fig. 7.18 that there is a significant gap between the

steady-state SINR of the blind RLS algorithm and that of the conventional RLS algorithm,

which can be readily explained by (7.140) and (7.142). Moreover, the steady-state SINR of

the conventional RLS algorithm using decision feedback is very close to the optimal value of

the MMSE detector, which is also plotted in Fig. 7.18 as the dashed line.
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Figure 7.18: Time averaged SINR for the blind adaptation rule and the decision-directed

adaptation rule.

7.8 A Maximum-Likelihood Code-Aided Method

In the preceding section, we saw that the linear MMSE detector is a very useful tool for

NBI suppression in DS/CDMA systems. A natural question to ask is whether its favor-

able performance properties can be improved upon. Within the context of linear code-aided
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methods, an optimal method was proposed and analyzed in [417], although without compar-

ison to the linear MMSE technique (which had not yet been explored in this context at that

time). In this section, we look briefly at a more generally optimal, nonlinear, code-aided

NBI suppression technique.

We saw in Sections 7.2 and 7.3 that, in the context of predictive suppression, performance

gains can be obtained by going from a linear to a nonlinear method to exploit signal structure.

In the code-aided context, this suggests that it could be of use to progress from linear methods

to optimal methods. One such method is maximum-likelihood detection, which is known to

offer the ultimate performance improvement against MAI.

In the context of NBI suppression, we can examine a maximum-likelihood detector in the

setting of digital NBI discussed in Section 7.4.4. To examine this situation, let us look at

the signal model of (7.1)–(7.2) with a single spread user (i.e., K = 1 and with τ1 = 0) and

in which the NBI signal is given by

I(t) = AI

m(M−1)∑
j=0

dI [j] p(t− j T/m) , (7.143)

where AI > 0 is the received amplitude of the NBI signal, m is the number of digital NBI

symbols transmitted per spread-spectrum data symbol, dI [j] is the jth (binary) symbol of

the NBI, and {p(t)} is the basic pulse shape (having unit energy and duration T/m) used by

the digital NBI. To simplify the discussion, we will assume that {p(t)} is synchronous with

{s1(t)} so that exactly m symbols of the NBI interfere with each symbol of the spread data

signal. Similarly to the situation in Fig. 7.11, we can think of the signal (7.143) as adding

a set of m additional users to the channel, so that we have a multiple-access channel with

m+ 1 total users.

We now consider the maximum-likelihood detection of the symbol stream {b1[i]} of the

overlaid spread signal {S(t)}. Due to the synchrony and the assumption of white Gaussian

noise, we can restrict attention to a single symbol interval. Examining the i = 0 spread-data

symbol interval, the log-likelihood function of the received waveform {r(t)} can be shown

straightforwardly to be proportional to (see, e.g., [371])

� ({r(t)}) = AI

m−1∑
j=0

dI [j]xI [j] + A1b1[0]
[
y1[0] − AI

m−1∑
j=0

dI [j]ρj

]
(7.144)
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where y1[0] =

∫ T

0

r(t) s1(t) dt,

xI [j] =

∫
p(t− jT/m)r(t)dt, j = 0, 1, . . . ,m− 1, (7.145)

and

ρj =

∫
p(t− jT/m)s1(t)dt, j = 0, 1, . . . ,m− 1. (7.146)

Let us examine the likelihood function (7.144) for a maximum over the unknown symbols

b1[0], dI [0], . . . , dI [m − 1]. Note that, with the NBI symbols dI [0], . . . , dI [m − 1] fixed, the

maximum-likelihood choice of the spread-data symbol b1[0] is easily seen to be given by

b̂1[0] = sign

{
y1[0] − AI

m−1∑
j=0

dI [j]ρj

}
, (7.147)

so that the maximum over b1[0] can we written as

max
b1[0]

� ({r(t)}) = A

m−1∑
j=0

dI [j]xI [j] + A1

∣∣∣∣∣y1[0] − AI

m−1∑
j=0

dI [j]ρj

∣∣∣∣∣ . (7.148)

In order to find the global maximum-likelihood solution, we must maximize the quantity

in (7.148) over the NBI data symbols, which generally requires direct search over the 2m

possible values for these m binary symbols. However, in a practical overlay system, the

parameters AI , A1 and ρj’s should be such that the narrowband symbols can be detected by

conventional methods with relatively low probability of error. Thus, (7.148) is dominated

by the first term on its right-hand side, and so should be approximately maximized by the

choice

d̂I [j] = sign { xI [j] } , j = 0, 1, . . . ,m− 1, (7.149)

which maximizes this first term AI

∑m−1
j=0 dI(j)xI(j). So, an approximate maximum-

likelihood detector for the spread user’s data symbol is

b̂1[0] = sign

{
y1[0] − AI

m−1∑
j=0

sign {xI [j]} ρj

}
. (7.150)

This detector is essentially an “onion peeling” detector, in which the layer of NBI symbols

is peeled off (i.e., detected and subtracted) using a conventional narrowband detector, and

then the residual left after peeling is used for conventional detection of the spread user’s
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symbol. Note that this detector fits the general mode of NBI suppression systems, in which

a replica of the NBI is formed and then subtracted from the spread-spectrum signal before

it is detected. A distinction is that, here, this process takes place after despreading, and so

it fits within the code-aided framework. Note that multiple spread users can also be handled

in this way, by first peeling off the NBI, and then applying a standard multiuser detector

on the residual. Similar ideas have been proposed in the context of multirate systems in

[216, 295, 367, 500, 559].

Whether the detector of (7.150) offers general performance improvements over the linear

code-aided methods of the preceding section is an interesting open question. Results from a

simulation example comparing the maximum-likelihood and linear MMSE code-aided detec-

tors for digital interferers with N = 15 and m = 3 are shown in Fig. 7.19. In this example

it is seen that, for a pre-suppression interference-to-signal ratio (ISR) of 0 dB the linear

MMSE detector is better than the ML detector, but at ISR = 5dB (and, of course, for larger

values of ISR) the opposite behavior is observed. Also, observe that, for increasing ISR,

the linear MMSE performance degrades (even though very slightly in view of the near-far

resistant feature of the linear MMSE receiver), while, for increasing ISR, the performance of

the ML detector improves. This matches with the intuition that, for large ISR, the NBI can

be better cancelled with such a receiver.

There are many other techniques and aspects of the NBI suppression problem that we

have not discussed in this chapter. Such contributions include a variety of other adaptive

techniques [56, 68, 132, 150, 170, 283, 284, 347, 442, 471], subspace-based methods [15,

115, 178], Markov chain Monte Carlo (MCMC)-based Bayesian methods [586], results for

higher-order signaling [251, 530, 547], other types of interference such as chirp signals [148],

the effects of NBI suppression on tasks such as acquisition and tracking, on the correlation

properties of PN signals (and vice-versa) [152, 239, 323, 460], and the explicit exploitation

of cyclostationarity in this context [55]. The interested reader is referred to these sources for

further details.
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Figure 7.19: BER comparison of maximum-likelihood and MMSE code-aided suppression of

digital NBI: N = 15, m = 3, and for several values of pre-suppression interference-to-signal

ratio (ISR).
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7.9 Appendix: Convergence of the RLS Linear MMSE

Detector

7.9.1 Linear MMSE Detector and RLS Blind Adaptation Rule

Consider the following received signal model

r =
K∑

k=1

Ak bk sk + i + n, (7.151)

where Ak, bk and sk denote respectively the received amplitude, data bit and the spreading

waveform of the kth user; i denotes the NBI signal; and n ∼ N (0, σ2IN) is the Gaussian

noise. Assume that User 1 is the user of interest, and for convenience we will use the following

notations: P
�
= A2

1, s
�
= s1, b

�
= b1, and Pk

�
= A2

k. The weight vector of the linear MMSE

detector is given by

w =
1

sT R−1s
R−1s, (7.152)

where R is the autocorrelation matrix of the received discrete signal r, i.e.,

R
�
= E

{
r rT

}
=

K∑
k=1

Pksks
T
k + Ri + σ2IN . (7.153)

The output SINR is given by

SINR∗ �
=
E2

{
wT r

}
Var {wT r} = P sT Σ−1s, (7.154)

where

Σ
�
= R − Ps sT =

K∑
k=2

Pksks
T
k + Ri + σ2IN . (7.155)

The mean output energy (MOE) associated with w, defined as the mean-square output value

of w applied to r, is

ξ̄
�
= E

{(
wT r

)2
}

= wT Rw =
1

sT R−1s
= P +

1

sT Σ−1s
, (7.156)

where the last equality follows from (7.155) and the matrix inversion lemma. The mean-

square error (MSE) at the output of w is

ε̄
�
= E

{(√
Pb− wT r

)2
}

= P + ξ̄ − 2P
(
wT s

)
= ξ̄ − P =

1

sT Σ−1s
. (7.157)
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The exponentially windowed RLS algorithm selects the weight vector w[i] to minimize

the sum of exponentially weighted output energies:

minimize
i∑

m=1

λi−m
(
w[i]T r[m]

)2
, subject to sT w[i] = 1,

where 0 < λ < 1 is a forgetting factor (1−λ� 1). The purpose of λ is to ensure that the data

in the distant past will be forgotten in order to provide tracking capability in nonstationary

environments. The solution to this constrained optimization problem is given by

w[i] =
1

sT R−1[i]s
R[n]−1s, (7.158)

where

R[i]
�
=

i∑
m=1

λi−mr[m] r[m]T . (7.159)

A recursive procedure for updating w[i] is as follows:

k[i]
�
=

R−1[i− 1]r[i]

λ+ r[i]T R−1[i− 1]r[i]
, (7.160)

h[i]
�
= R−1[i]s =

1

λ

(
h[i− 1] − k[i]r[i]T h[i− 1]

)
, (7.161)

w[i] =
1

sT h[i]
h[i], (7.162)

and R−1[i] =
1

λ

(
R−1[i− 1] − k[i]r[i]T R−1[i− 1]

)
. (7.163)

In what follows we provide a convergence analysis for the above algorithm. In this analysis,

we make use of three approximations/assumptions: (a) For large i, R[i] is approximated by

its expected value [108, 297]; (b) The input data r[i] and the previous weight vector w[i−1]

are assumed to be independent [105]; (c) Some fourth-order statistic can be approximated

in terms of second-order statistic [105].

7.9.2 Convergence of the Mean Weight Vector

We start by deriving an explicit recursive relationship between w[i] and w[i− 1]. Denote

α[i]
�
=

1

sT R−1[i]s
=

1

sT h[i]
. (7.164)
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Premultiplying both sides of (7.161) by sT , we have

α−1[i] =
1

λ

(
α−1[i− 1] − sT k[i]r[i]T h[i− 1]

)
. (7.165)

From (7.165) we obtain

α[i] = λ

(
α[i− 1] +

α2[i− 1]sT k[i]r[i]T h[i− 1]

1 − sT k[i]r[i]T h[i− 1]α[i− 1]

)
= λ

(
α[i− 1] + α[i− 1]β[i]r[i]T h[i− 1]

)
, (7.166)

where

β[i]
�
=

α[i− 1]sT k[i]

1 − sT k[i]r[i]T h[i− 1]α[i− 1]
. (7.167)

Substituting (7.161) and (7.166) into (7.162), we can write

w[i] = α[i]h[i] = λα[i− 1]h[i] + λβ[i]α[i− 1]r[i]T h[i− 1]h[i]

= α[i− 1]
(
h[i− 1] − k[i]r[i]T h[i− 1]

)
+ λβ[i]e[i]h[i]

= w[i− 1] − e[i]k[i] + λβ[i]e[i]h[i], (7.168)

where

e[i]
�
= r[i]T w[i− 1] = α[i− 1]r[i]T h[i− 1], (7.169)

is the a priori least-squares (LS) estimation at time i. It is shown below that

k[i] = R−1[i]r[i], (7.170)

and λβ[i] = α[i]sT k[i]. (7.171)

Substituting (7.161) and (7.170) into (7.168), we have

w[i] = w[i− 1] − R−1[i]r[i]e[i] + R−1[i]sλβ[i]e[i]. (7.172)

Premultiplying both sides of (7.172) by R[i], we get

R[i]w[i] = R[i]w[i− 1] − r[i]e[i] + sλβ[i]e[i]

= λR[i− 1]w[i− 1] + r[i]r[i]T w[i− 1] − r[i]e[i] + sλβ[i]e[i]

= λR[i− 1]w[i− 1] + sλβ[i]e[i], (7.173)
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where we have used (7.159) and (7.169). Let θ[i] be the weight error vector between the

weight vector w[i] at time n, and the optimal weight vector w, i.e.,

θ[i]
�
= w[i] − w. (7.174)

Then from (7.173) we can deduce that

R[i]θ[i] = λR[i− 1]θ[i− 1] +
(
sλβ[i]e[i] − r[i]r[i]T w

)
. (7.175)

Therefore

θ[i] = λR−1[i]R[i− 1]θ[i− 1] + R−1[i]y[i], (7.176)

where

y[i]
�
= sλβ[i]e[i] − r[i]r[i]T w

= α[i]ssT k[i]r[i]T w[i− 1] − r[i]r[i]T w

= α[i]ssT k[i]r[i]T θ[i− 1] +
(
α[i]ssT k[i]r[i]T w − r[i]r[i]T w

)
, (7.177)

in which we have used (7.171) and (7.169).

It has been shown [108, 297] that for large i, the inverse autocorrelation estimate R−1[i]

behaves like a quasi-deterministic quantity, when N(1 − λ) � 1. Therefore, for large i, we

can replace R−1[i] by its expected value, which is given by [7, 108, 297]

lim
i→∞

R−1[i] ∼= lim
i→∞

E
{
R−1[i]

}
= (1 − λ)R−1. (7.178)

Using this approximation, we have

lim
i→∞

α[i]R−1[i]s ∼= (1 − λ)R−1s

(1 − λ)sT R−1s
= w. (7.179)

Therefore, for large i,

R−1[i]y[i]

∼= α[i]R−1[i]ssT k[i]r[i]T θ[i− 1] +
(
α[i]R−1[i]ssT k[i]r[i]T − R−1[i]r[i]r[i]T

)
w

= wsT k[i]r[i]T θ[i− 1] +
(
wsT − IN

)
k[i]r[i]T w, (7.180)
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where we have used (7.170) and (7.179). For large i, R[i] and R[i−1] can be assumed almost

equal, and thus, approximately [108, 297],

lim
i→∞

R−1[i]R[i− 1] ∼= IN . (7.181)

Substituting (7.181) and (7.180) into (7.176), we then have

θ[i] ∼= (
λIN + wsT k[i]r[i]T

)
θ[i− 1] +

(
wsT − IN

)
k[i]r[i]T w. (7.182)

Equation (7.182) is a recursive equation that the weight error vector θ[i] satisfies for large i.

In what follows, we assume that the present input r[i] and the previous weight error

θ[i− 1] are independent. In this application of interference suppression, this assumption is

satisfied when the interference signal consists of only MAI and white noise. If in addition

there is NBI present, then this assumption is not satisfied, but is nevertheless assumed,

as is the common practice in the analysis of adaptive algorithms [108, 105, 297]. Taking

expectations on both sides of (7.182), we have

E {θ[i]} ∼= λE {θ[i− 1]} + wsTE
{
k[i]r[i]T

}
E {θ[i− 1]} +

(
wsT − IN

)
E

{
k[i]r[i]T

}
w

∼= λE {θ[i− 1]} + (1 − λ) (wsT E {θ[i− 1]} + wsT w − w
)

= λE {θ[i− 1]} ,

where we have used the facts that sT w = sT w[i] = 1, sT θ[i] = sT w[i] − sT w = 0 and

E
{
k[i]r[i]T

}
= E

{
R−1[i]r[i]r[i]T

} ∼= (1 − λ)R−1 E
{
r[i] r[i]T

}
= (1 − λ)IN . (7.183)

Therefore the expected weight error vector always converges to zero, and this convergence

is independent of the eigenvalue distribution.

Finally we verify (7.170) and (7.171). Postmultipling both sides of (7.163) by r[i], we

have

R−1[i]r[i] =
1

λ

(
R−1[i− 1] − k[i]r[i]TR−1[i− 1]r[i]

)
. (7.184)

On the other hand, (7.160) can be rewritten as

k[i] =
1

λ

(
R−1[i− 1] − k[i]r[i]T R−1[i− 1]r[i]

)
. (7.185)

Equation (7.170) is obtained by comparing (7.184) and (7.185).
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Multiplying both sides of (7.166) by sT k[i], we can write

α[i]sT k[i] = λ
[
α[i− 1]sT k[i] + α[i− 1]β[i]r[i]T h[i− 1]sT k[i]

)
, (7.186)

and (7.167) can be rewritten as

β[i] = α[i− 1]sT k[i] + α[i− 1]β[i]r[i]T h[i− 1]sT k[i]. (7.187)

Equation (7.171) is obtained comparing (7.186) and (7.187).

7.9.3 Weight Error Correlation Matrix

We proceed to derive a recursive relationship for the time evolution of the correlation matrix

of the weight error vector θ[i], which is key to the analysis of the convergence of the MSE.

Let K[i] be the weight error correlation matrix at time n, taking the expectation of the

outer product of the weight error vector θ[i], we get

K[i]
�
= E

{
θ[i] θ[i]T

}
= E

{(
λIN + wsT k[i]r[i]T

)
θ[i− 1]θ[i− 1]T

(
λIN + r[i]k[i]T swT

)}
+E

{(
λIN + wsT k[i]r[i]T

)
θ[i− 1]wT r[i]k[i]T

(
swT − IN

)}
+E

{(
wsT − IN

)
k[i]r[i]T wθ[i− 1]T

(
λIN + r[i]k[i]T swT

)}
+E

{(
wsT − IN

)
k[i]r[i]T wwT r[i]k[i]T

(
swT − IN

)}
. (7.188)

We next compute the four expectations appeared on the right-hand side of (7.188).

First term:

= λ2E
{
θ[i− 1]θ[i− 1]T

}
+ λwsTE

{
k[i]r[i]T

}
E

{
θ[i− 1]θ[i− 1]T

}
+λE

{
θ[i− 1]θ[i− 1]T

}
E

{
r[i]k[i]T

}
swT + wsTE

{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
swT

= λ2K[i− 1] + λ(1 − λ) (wsT K[i− 1] + K[i− 1]swT
)

+wsTE
{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
swT (7.189)

= λ2K[i− 1] + wsTE
{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
swT (7.190)

= λ2K[i− 1] + (1 − λ)2wsT
(
2K[i− 1] + tr{RK[i− 1]}R−1

)
swT (7.191)

= λ2K[i− 1] + (1 − λ)2tr{RK[i− 1]}wsT R−1swT (7.192)

= λ2K[i− 1] + (1 − λ)2tr{RK[i− 1]}R−1ssT R−1

sT R−1s
, (7.193)
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where in (7.189), we have used (7.183); in (7.193), we have used (7.152); in (7.190) and

(7.192), we have used the fact that sT K[i − 1] = E
{
sT θ[i− 1]θ[i− 1]T

}
= 0; and in

(7.191), we have used the following fact, which is derived below:

E
{
k[i]rT [i]θ[i− 1]θ[i− 1]T r[i]k[i]T

}
= (1 − λ)2

(
2K[i− 1] + tr{RK[i− 1]}R−1

)
.

(7.194)

Second term:

= λE {θ[i− 1]}wTE
{
r[i]kT [i]

} (
swT − IN

)
+wsTE

{
k[i]r[i]T θ[i− 1]wT r[i]k[i]T

} (
swT − IN

)
→ λ(1 − λ)E {θ[i− 1]} (wT swT − wT

)
= 0, as i→ ∞, (7.195)

where we have used (7.183) and the following fact, which is shown below,

E
{
k[i]r[i]T θ[i− 1]wT r[i]k[i]T

} → 0, as i→ ∞. (7.196)

Therefore the second term is a transient term.

Third term: The third term is the transpose of the second term, and therefore it is also a

transient term.

Fourth term:

=
(
wsT − IN

)
E

{
k[i]r[i]T wwT r[i]k[i]T

} (
swT − IN

)
= 2(1 − λ)2

(
wsT − IN

)
wwT

(
swT − IN

)
+ (1 − λ)2ξ̄

(
wsT − IN

)
R−1

(
swT − IN

)
(7.197)

= (1 − λ)2ξ̄

(
R−1 − R−1ssT R−1

sT R−1s

)
, (7.198)

where in (7.198), we have used (7.152); and in (7.197), we have used the following fact, which

is derived below:

E
{
k[i]r[i]T wwT r[i]k[i]T

}
= 2(1 − λ)2wwT + (1 − λ)2ξ̄R−1, (7.199)

where ξ̄ is the MOE defined in (7.156).

Now combining these four terms in (7.188), we obtain (for large i),

K[i] ∼= λ2K[i− 1] + (1 − λ)2tr{RK[i− 1]}R−1ssT R−1

sT R−1s
+ (1 − λ)2ξ̄

(
R−1 − R−1ssT R−1

sT R−1s

)
.

(7.200)
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Finally we drive (7.194), (7.196) and (7.199).

Derivation of (7.194): We use the notation [·]mn to denote the (m,n)th entry of a matrix,

and [·]k to denote the kth entry of a vector. Then

E
{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
mn

= E

{
N∑

p=1

N∑
q=1

[
k[i]r[i]T

]
mp

[
θ[i− 1]θ[i− 1]T

]
pq

[
r[i]k[i]T

]
qn

}

=
N∑

p=1

N∑
q=1

E

{[
k[i]

]
m

[
r[i]

]
p

[
r[i]

]
q

[
k[i]

]
n

}[
K[i− 1]

]
pq
. (7.201)

Next we use the Gaussian moment factoring theorem to approximate the fourth-order mo-

ment introduced in (7.201). The Gaussian moment factoring theorem states that if z1, z2,

z3 and z4 are four samples of a zero-mean, real Gaussian process, then [105]

E [z1z2z3z4] = E [z1z2]E [z3z4] + E [z1z3]E [z2z4] + E [z1z4]E [z2z3] . (7.202)

Using this approximation we proceed with (7.201),

E
{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
mn

=
N∑

p=1

N∑
q=1

[
E

{[
k[i]

]
n

[
r[i]

]
p

}
E

{[
r[i]

]
q

[
k[i]

]
n

}
+ E

{[
k[i]

]
m

[
r[i]

]
q

}
E

{[
r[i]

]
p

[
k[i]

]
n

}
+

E
{[

k[i]
]

m

[
k[i]

]
n

}
E

{[
r[i]

]
p

[
r[i]

]
q

}][
K[i− 1]

]
pq

=
N∑

p=1

N∑
q=1

[
E

{
k[i]r[i]T

}
mp
E

{
r[i]k[i]T

}
qn

+ E
{
k[i]r[i]T

}
mq
E

{
r[i]k[i]T

}
pn

+

E
{
k[i]k[i]T

}
mn
E

{
r[i]r[i]T

}
pq

] [
K[i− 1]

]
pq

= 2
[
E

{
k[i]r[i]T

}
K[i− 1]E

{
r[i]k[i]T

}]
mn

+ tr {RK[i− 1]}E {
k[i]k[i]T

}
mn
. (7.203)

Therefore

E
{
k[i]r[i]T θ[i− 1]θ[i− 1]T r[i]k[i]T

}
= 2E

{
k[i]r[i]T

}
K[i− 1]E

{
r[i]k[i]T

}
+ tr {RK[i− 1]}E {

k[i]k[i]T
}

= (1 − λ)2
(
2K[i− 1] + tr{RK[i− 1]}R−1

)
,



7.9. APPENDIX: CONVERGENCE OF THE RLS LINEAR MMSE DETECTOR 505

where in the last equality we used (7.183) and the following fact:

E
{
k[i]k[i]T

}
= E

{
R−1[i]r[i]r[i]T R−1[i]

}
= (1 − λ)2R−1E

{
r[i]r[i]T

}
R−1 = (1 − λ)2R−1.

(7.204)

Derivation of (7.196): Similarly we use the approximation by the Gaussian moment factoring

formula, and obtain

E
{
k[i]r[i]T θ[i− 1]wT r[i]k[i]T

}
= E

{
k[i]r[i]T

} [
E {θ[i− 1]}wT + wE

{
θ[i− 1]T

}]
E

{
r[i]k[i]T

}
+wT RE {θ[i− 1]}E {

k[i]k[i]T
}

= (1 − λ2)
[
E {θ[i− 1]}wT + wE

{
θ[i− 1]T

}
+ wT RE {θ[i− 1]}R−1

]
→ 0, as i→ ∞,

since E {θ[i]} → 0.

Derivation of (7.199): Using the Gaussian moment factoring formula, we obtain

E
{
k[i]r[i]T wwT r[i]k[i]T

}
= 2E

{
k[i]r[i]T

}
wwTE

{
r[i]k[i]T

}
+ tr

{
RwwT

}
E

{
k[i]k[i]T

}
= 2(1 − λ)2wwT + (1 − λ)2ξ̄R−1.

7.9.4 Convergence of MSE

Next we consider the convergence of the output MSE. Let ξ[i] denote the MOE at time i,

and ε[i] denote the MSE at time i, i.e.,

ξ[i])
�
= E

{(
w[i− 1]T r[i]

)2
}
, (7.205)

and ε[i]
�
= E

{(√
Pb[i] − w[i− 1]T r[i]

)2
}

= ξ[i] − P. (7.206)

Since ε[i] and ξ[i] differ only by a constant P , we can therefore just focus on the behavior of

the MOE ξ[i]:

ξ[i] = E
{(

wT + θ[i− 1]T
)
r[i] r[i]T (w + θ[i− 1])

}
= ξ̄ + tr {RK[i− 1]} + 2wT RE {θ[i− 1]} . (7.207)
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Since E {θ[i]} → 0, as i → ∞, the last term in (7.207) is a transient term. Therefore for

large i, ξ[i] ∼= ξ̄ + εex[i], where εex[i]
�
= tr {RK[i− 1]} is the average excess MSE at time i.

We are interested in the asymptotic behavior of the excess MSE. Premultiplying both sides

of (7.200) by R, and then taking the trace on both sides, we obtain

tr {RK[i]}
∼= λ2tr {RK[i− 1]} + (1 − λ)2tr {RK[i− 1]} tr

{
ssT R−1

}
sT R−1s

+(1 − λ)2ξ̄

(
tr {IN} − tr

{
ssT R−1

}
sT R−1s

)
=

[
λ2 + (1 − λ)2

]
tr {RK[i− 1]} + (1 − λ)2(N − 1)ξ̄. (7.208)

Since λ2 + (1 − λ)2 < [λ + (1 − λ)]2 = 1, the term tr {RK[i]} converges. The steady-state

excess mean-square error is then given by

εex(∞)
�
= lim

i→∞
tr{RK[i]} =

1 − λ
2λ

(N − 1)ξ̄. (7.209)

Again we see that the convergence of the MSE and the steady-state mis-adjustment are

independent of the eigenvalue distribution of the data autocorrelation matrix, in contrast to

situation for the LMS version of the blind adaptive algorithm [179].

7.9.5 Steady-state SINR

We now consider the steady-state output SINR of the RLS blind adaptive algorithm. At

time i, the mean output value is

E
{
r[i]T w[i− 1]

}
= E

{
r[i]T

}
E {w[i− 1]} →

√
P b[i] sT w =

√
P b[i], as i→ ∞.(7.210)

The variance of the output at time i is

Var
{
r[i]T w[i− 1]

}
= E

{(
w[i− 1]T r[i]

)2
}

− E2
{
r[i]T w[i− 1]

} → ξ(∞) − P. (7.211)

Let d
�
= 1−λ

2λ
(N − 1). Substituting (7.209) and (7.156) into (7.207), we get

ξ(∞) = (1 + d)ξ̄ = (1 + d)

(
P +

1

sT Σ−1s

)
. (7.212)
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Therefore the steady-state SINR is given by

SINR∞ �
= lim

i→∞
E2

{
r[i]T w[i− 1]

}
Var {r[i]T w[i− 1]} =

P sT Σ−1s

(1 + d) + d · P · (sT Σ−1s
)

=
SINR∗

(1 + d) + d · SINR∗ , (7.213)

where SINR∗ is the optimum SINR value given in (7.154).

7.9.6 Comparison with Training-based RLS Algorithm

We now compare the preceding results with the analogous results for the conventional RLS

algorithms, in which the data symbols b[i] are assumed to be known to the receiver. This

condition can be achieved by either using a training sequence or using decision feedback.

In this case, the exponentially windowed RLS algorithm chooses w[i] to minimize the cost

function

i∑
m=1

λi−m
(√
Pb[m] − w[i]T r[m]

)2

. (7.214)

The RLS adaptation rule in this case is given by [105]

εp[i] =
√
Pb[i] − w[i− 1]T r[i], (7.215)

and w[i] = w[i− 1] + εp[i]k[i], (7.216)

where εp[i] is the prediction error at time i, and k[i] is the Kalman gain vector defined in

(7.160). Using the results from [108], we conclude that the mean weight vector w[i] converges

to w, i.e., E {w[i]} → w, as i→ ∞, where w is the optimal linear MMSE solution:

w = PR−1s, (7.217)

The MSE ε[i] = ε2p[i] also converges, ε[i] → ε∗ + εex(∞), as i → ∞, where ε∗ is the mean-

square error of the optimum filter w, given by

ε∗ �
= E

{(
wT r −

√
Pb

)2
}

= wT Rw − 2PwT s + P = P
[
1 − P (

sT R−1s
)]

=
P

1 + P
(
sT Σ−1s

) =
P

1 + SINR∗ . (7.218)
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The steady-state excess mean-square error is given by [108]

εex(∞) =
1 − λ
1 + λ

Nε∗ ∼= dε∗, (7.219)

where we have used the approximation that 1−λ
1+λ
N ∼= 1−λ

2λ
(N − 1)

�
= d, since 1 − λ � 1 and

N � 1. Next we consider the steady-state output SINR of this adaptation rule in which the

data symbols b[i] are known. At time i, the mean output value is

E
{
r[i]T w[i− 1]

}
= E

{
r[i]T

}
E {w[i− 1]} (7.220)

→
√
P b[i] sT w =

√
P b[i]P sT R−1s

=
SINR∗

1 + SINR∗
√
P b[i],

where the last equality follows from (7.156). The output MSE at time i is

ε[i] = E

{(√
Pb[i] − r[i]T w[i− 1]

)2
}

= P + E
{(

r[i]T w[i− 1]
)2
}

− 2
√
Pb[i]E

{
r[i]T w[i− 1]

}
. (7.221)

Therefore

E
{(

r[i]T w[i− 1]
)2
}

= ε[i] + 2
√
Pb[i]E

{
r[i]T w[i− 1]

} − P
→ ε(∞) − P (

1 − 2sT w
)
. (7.222)

Using (7.221) and (7.222), after some manipulation, we have

Var
{(

r[i]T w[i− 1]
)2
}

= E
{(

r[i]T w[i− 1]
)2
}

− E2
{(

r[i]T w[i− 1]
)}

→ ε(∞) − P (
1 − sT w

)2

=
(1 + d)SINR∗ + d

(1 + SINR∗)2
P. (7.223)

Therefore the output SINR in the steady state is given by

SINR∞ �
= lim

i→∞
E2

{
r[i]T w[i− 1]

}
Var {r[i]T w[i− 1]} =

SINR∗

(1 + d) + d/SINR∗ . (7.224)



Chapter 8

Monte Carlo Bayesian Signal

Processing

8.1 Introduction

Advanced statistical methods can result in substantial signal processing gain in wireless

systems. Among the most powerful such techniques are the Monte Carlo Bayesian method-

ologies that have recently emerged in statistics. These methods provide a novel paradigm

for the design of low-complexity signal processing techniques with performance approaching

theoretical optima, for fast and reliable communication in the severe and highly dynamic

wireless environments. Over the past decade or so in the field of statistics, a large body of

methods has emerged based on iterative Monte Carlo techniques that is useful, especially

in computing the Bayesian solutions to the optimal signal reception problems encountered

in wireless communications. These powerful statistical tools, when employed in the signal

processing engines of the digital receivers in wireless networks, hold the potential of closing

the substantial gap between the performance of current state-of-art wireless receivers and

the ultimate optimal performance predicted by statistical communication theory.

In this chapter, we provide an overview of the theories and applications in the emerging

field of Monte Carlo signal processing [535]. These methods in general fall into two categories:

Markov chain Monte Carlo (MCMC) methods for batch signal processing, and sequential

Monte Carlo (SMC) methods for adaptive signal processing. For each category, we outline

509



510 CHAPTER 8. MONTE CARLO BAYESIAN SIGNAL PROCESSING

the general theory and provide a signal processing example found in wireless communications

to illustrate its application. Specifically, we apply the MCMC technique to the problem of

Bayesian multiuser detection in unknown channels; and we apply the SMC technique to the

problem of adaptive blind equalization in MIMO ISI channels. The remainder of this chapter

is organized as follows. In Section 8.2, we describe the general Bayesian signal processing

framework. In Section 8.3, we introduce the Markov chain Monte Carlo (MCMC) techniques

for Bayesian computation. In Section 8.4, we illustrate the application of MCMC by treating

the problem of Bayesian multiuser detection in unknown channels. In Section 8.5, we discuss

the sequential Monte Carlo (SMC) paradigm for Bayesian computing. In Section 8.6, we

illustrate the application of SMC by treating the problem of blind adaptive equalization in

MIMO ISI channels. Finally Section 8.7 contains some mathematical derivations and proofs.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 8.1: Metropolis-Hastings algorithm - Form I;

• Algorithm 8.2: Metropolis-Hastings algorithm - Form II;

• Algorithm 8.3: Random-scan Gibbs sampler;

• Algorithm 8.4: Systematic-scan Gibbs sampler;

• Algorithm 8.5: Gibbs multiuser detector in Gaussian noise;

• Algorithm 8.6: Gibbs multiuser detector in impulsive noise;

• Algorithm 8.7: Sequential importance sampling (SIS);

• Algorithm 8.8: Sequential Monte Carlo filter for dynamical systems;

• Algorithm 8.9: Residual resampling;

• Algorithm 8.10: Mixture Kalman filter for conditional dynamical linear models;

• Algorithm 8.11: SMC-based blind adaptive equalizer in MIMO channels.
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8.2 Bayesian Signal Processing

8.2.1 The Bayesian Framework

A typical statistical signal processing problem can be stated as follows: Given a set of observa-

tions Y
�
= [y1,y2, . . . ,ym], we would like to make statistical inferences about some unknown

quantities X = [x1,x2, . . . ,xn]. Typically the observations Y are functions of the desired

unknown quantities X and some unknown “nuisance” parameters Θ = [θ1,θ2, . . . ,θl]. To

illustrate this, consider the following classical signal processing example of equalization.

Example: (Equalization) Suppose we want to transmit binary symbols b1, b2, . . . , bt ∈
{+1,−1}, through an intersymbol interference (ISI) channel whose input-output relationship

is given by

yt =
L−1∑
l=0

hlbt−l + nt, (8.1)

where {hl}L−1
l=0 represents the unknown complex channel response; {nt}t are i.i.d. Gaussian

noise samples, with nt ∼ Nc(0, σ
2). The inference problem of interest is to estimate the

transmitted symbols X = {bt}, based on the received signal Y = {yt}. The nuisance

parameters are Θ = {h0, . . . , hL−1, σ
2}.

In the Bayesian approach to statistical signal processing problems, all unknown quanti-

ties, i.e., (X,Θ), are treated as random variables with some prior distribution described by

a probability density p(X,Θ). The Bayesian inference is made based on the joint posterior

distribution of these unknowns, described by the density

p(X,Θ | Y ) ∝ p(Y | X,Θ) p(X,Θ). (8.2)

Note that, typically, the joint posterior distribution is completely known up to a normalizing

constant. If we are interested in making inference about the ith component xi of X, that is,

we wish to compute E{h(xi) | Y } for some function h(·), then this quantity is given by

E{h(xi) | Y } =

∫
h(xi) p(xi | Y )dxi (8.3)

=

∫
h(xi)

∫
p(X,Θ | Y )dX [−i] dΘ dxi, (8.4)
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where X [−i]
�
= X\xi. These computations are not easy in practice.

For an introductory treatment of the Bayesian philosophy, including the selection of

prior distributions, see the textbooks [50, 133, 245]. An account of criticism of the Bayesian

approach to data analysis can be found in [32, 413]; and a defense of “The Bayesian Choice”

can be found in [410].

8.2.2 Batch Processing versus Adaptive Processing

Depending on how the data are processed and the inference is made, most signal processing

methods fall into one of two categories: batch processing and adaptive (i.e., sequential)

processing. In batch signal processing, the entire data block Y is received and stored before

it is processed; and the inference about X is made based on the entire data block Y . In

adaptive processing, on the other hand, inference is made sequentially (i.e., on-line) as the

data are being received. For example, at time t, after a new sample yt is received, an

update on the inference about some or all elements of X is made. In this chapter, we focus

on optimal signal processing under the Bayesian framework, for both batch processing and

adaptive processing. We next illustrate the batch and adaptive Bayesian signal processing,

respectively, using the above equalization example.

Example: (Batch equalization) Consider the equalization problem mentioned above. Let

Y
�
= [y1 y2 . . . yT ]T be the received signal, and X

�
= [b1 b2 . . . bT ]T be the transmitted

symbols. Denote h
�
= [h0 h1 . . . hL−1]

T . An optimal batch processing procedure for this

problem is as follows. Assume that the unknown quantities h, σ2 and X are independent

of each other and have prior densities p(h), p(σ2) and p(X), respectively. Since {nt} is

a sequence of independent Gaussian random variables, the joint posterior density of these

unknown quantities (h, σ2,X) based on the received signal Y takes the form of

p
(
h, σ2,X | Y

)
= p

(
Y | h, σ2,X

)
p (h) p

(
σ2

)
p (X) /p(Y ) (8.5)

∝
(

1

σ2

)T
2

exp

− 1

σ2

T∑
t=1

∣∣∣∣∣yt −
L−1∑
l=0

hl bt−l

∣∣∣∣∣
2
 p (h) p

(
σ2

)
p (X) . (8.6)

The a posteriori probabilities of the transmitted symbols can then be calculated from the



8.2. BAYESIAN SIGNAL PROCESSING 513

joint posterior distribution (8.6) according to

P (bt = +1 | Y ) =
∑

X : bt=+1

P (X | Y ) (8.7)

=
∑

X : bt=+1

∫
p
(
h, σ2,X | Y

)
dh dσ2. (8.8)

Clearly the computation in (8.8) involves 2T−1 multi-dimensional integrals, which is certainly

infeasible for most practical implementations.

Example: (Adaptive equalization) Again consider the above equalization problem. Denote

Y t
�
= [y1 y2 . . . yt]

T and X t
�
= [b1 b2 . . . bt]

T for any t. We now look at the problem of

on-line estimation of the symbol bt based on the received signals up to time t+ τ , for some

fixed delay τ > 0. This problem is the one of making Bayesian inference with respect to the

posterior density

p(h, σ2,X t+τ | Y t+τ ) ∝
(

1

σ2

) t+τ
2

exp

− 1

2σ2

t+τ∑
j=1

∣∣∣∣∣yj −
L−1∑
l=0

hl bj−l

∣∣∣∣∣
2
 p (h) p

(
σ2

)
p (X t+τ ) ,

t = 1, 2, . . . . (8.9)

An on-line symbol estimate can then be obtained from the marginal posterior distribution

P (bt = +1 | Y t+τ ) =
∑

X t+τ : bt=+1

∫
p(h, σ2,X t+τ | Y t+τ ) dh dσ2. (8.10)

Again we see that direct implementation of the above optimal sequential Bayesian equaliza-

tion involves 2t+τ−1 multi-dimensional integrals at time t, which is exponentially increasing

in time.

It is seen from the above discussions that although the optimal (i.e., Bayesian) signal

processing procedures achieve the best performance (i.e., the Bayesian solutions achieve

the minimum probability of error on symbol detection.), they exhibit prohibitively high

computational complexity and thus are not generally implementable in practice. The recently

developed Monte Carlo methods for Bayesian computation have provided a viable approach

to solving many such optimal signal processing problems with reasonable computational cost.
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8.2.3 Monte Carlo Methods

In a typical Bayesian analysis, the computations involved in eliminating the missing param-

eters and other unknown quantities are so difficult that one has to resort to some numerical

approaches to complete the required summations and integrations. Among all the numerical

approaches, Monte Carlo methods are perhaps the most versatile, flexible, and powerful ones

[273].

Suppose that we can generate random samples (either independent or dependent)(
X(1),Θ(1)

)
,
(
X(1),Θ(1)

)
, . . . ,

(
X(n),Θ(n)

)
,

from the joint posterior distribution (8.2). Then we can approximate the marginal posterior

p(xi|Y ) by the empirical distribution (i.e., the histogram) based on the corresponding com-

ponent in the Monte Carlo sample, i.e., x
(1)
i ,x

(2)
i , . . . ,x

(n)
i , and approximate the inference

(8.4) by

E{h(xi) | Y } ∼= 1

n

n∑
j=1

h
(
x

(j)
i

)
. (8.11)

As noted in the introduction, most Monte Carlo techniques fall into one of the following two

categories: Markov chain Monte Carlo (MCMC) methods, corresponding to batch processing,

and sequential Monte Carlo (SMC) methods, corresponding to adaptive processing. These

are discussed in the remainder of this chapter.

8.3 Markov Chain Monte Carlo (MCMC) Signal Pro-

cessing

Markov chain Monte Carlo refers to a class of algorithms that allow one to draw (pseudo-)

random samples from an arbitrary target probability density, p(x), known up to a normal-

izing constant. The basic idea behind these algorithms is that one can achieve the sampling

from the target density p(x) by running a Markov chain whose equilibrium density is ex-

actly p(x). Here we describe two basic MCMC algorithms, the Metropolis algorithm and

the Gibbs sampler, which have been widely used in diverse fields. The validity of the both

algorithms can be proved by the basic Markov chain theory [411].
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The roots of MCMC methods can be traced back to the well-known Metropolis algorithm

[313], which was initially used to investigate the equilibrium properties of molecules in a gas.

The first use of the Metropolis algorithm in a statistical context is found in [171]. The Gibbs

sampler, which is a special case of the Metropolis algorithm, was so termed in the seminal

paper [134] on image processing. It was brought to statistical prominence by [131], where it

was observed that many Bayesian computation could be carried out via the Gibbs sampler.

For tutorials on the Gibbs sampler, see [20, 64].

8.3.1 Metropolis-Hastings Algorithm

Let p(x) = c exp{−f(x)} be the target probability density from which we want to simulate

random draws. The normalizing constant c may be unknown to us. Metropolis et al. intro-

duced the fundamental idea of evolving a Markov process to achieve the sampling of p(x)

[313]. Hastings later provided a more general algorithm which will be described below [171].

Starting with any configuration x(0), the algorithm evolves from the current state x(t) = x

to the next state x(t+1) as follows:

Algorithm 8.1 [Metropolis-Hastings algorithm - Form I]

• Propose a random perturbation of the current state, i.e., x → x′. More precisely, x′ is

generated from a proposal transition T (x(t) → x′) (i.e.,
∑

y T (x → y) = 1 for all x),

which is nearly arbitrary (of course, some are better than others in terms of efficiency)

and is completely specified by the user.

• Compute the Metropolis ratio

r(x,x′) =
p(x′)T (x′ → x)

p(x)T (x → x′)
. (8.12)

• Generate a random number u ∼ uniform(0,1). Let x(t+1) = x′ if u ≤ r(x,x′), and let

x(t+1) = x(t) otherwise.

A more well-known form of the Metropolis algorithm is as follows. At each iteration:

Algorithm 8.2 [Metropolis-Hastings algorithm - Form II ]

• A small but random perturbation of the current configuration is made;
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• The gain (or loss) of an objective function (corresponding to log p(x) = f(x)) resulting

from this perturbation is computed.

• A random number u ∼ uniform(0,1) is generated independently.

• The new configuration is accepted if log(u) is smaller than or equal to the gain and

rejected otherwise.

Heuristically, this algorithm is constructed based on a “trial-and-error” strategy. Metropolis

et al. restricted their choice of the perturbation function to be the symmetric ones [313].

Intuitively, this means that there is no “trend bias” at the proposal stage. That is, the

chance of getting x′ from perturbing x is the same as that of getting x from perturbing x′.

Since any proper random perturbation can be represented by a Markov transition function

T , the symmetry condition can be written as T (x → x′) = T (x′ → x).

Hastings generalized the choice of T to all those that satisfies the property: T (x →
x′) > 0 if and only if T (x′ → x) > 0 [171]. It is easy to prove that the Metropolis-Hasting

transition rule results in an “actual” transition functionA(x,y) (it is different from T because

an acceptance/rejection step is involved) that satisfies the detailed balance condition

p(x)A(x,y) = p(y)A(y,x), (8.13)

which necessarily leads to a reversible Markov chain with p(x) as its invariant distribution.

Thus, the sequence x(0),x(1), . . . is (asymptotically) drawn from the desired distribution.

The Metropolis algorithm has been extensively used in statistical physics over the past

forty years and is the cornerstone of all MCMC techniques recently adopted and generalized

in the statistics community. Another class of MCMC algorithms, the Gibbs sampler [134],

differs from the Metropolis algorithm in that it uses conditional distributions based on p(x)

to construct Markov chain moves.

8.3.2 Gibbs Sampler

Let X = (x1, . . . ,xd), where xi is either a scalar or a vector. Suppose that we want to draw

samples of X from an underlying density p(X). In the Gibbs sampler, one randomly or

systematically choose a coordinate, say xi, and then updates its value with a new sample
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x′
i drawn from the conditional distribution p(xi|X [−i]), where we denote X [−i]

�
= X\xi.

Algorithmically, the Gibbs sampler can be implemented as follows:

Algorithm 8.3 [Random-scan Gibbs sampler]

Suppose the current sample is X(t) =
(
x

(t)
1 , . . . ,x

(t)
d

)
. Then

• Randomly select i from the index set {1, . . . , d} according to a given probability vector

(π1, . . . , πd).

• Draw x
(t+1)
i from the conditional distribution p

(
xi | X

(t)
[−i]

)
, and let X

(t+1)
[−i] = X

(t)
[−i].

Algorithm 8.4 [Systematic-scan Gibbs sampler]

Let the current sample be X(t) =
(
x

(t)
1 , . . . ,x

(t)
d

)
.

For i = 1, . . . , d, draw x
(t+1)
i from the conditional distribution

p
(
xi | x

(t+1)
1 , . . . ,x

(t+1)
i−1 ,x

(t)
i+1, . . . ,x

(t)
d

)
. (8.14)

It is easy to check that every individual conditional update leaves p(·) invariant. Suppose

currently X(t) ∼ p(·). Then X
(t)
[−i] follows its marginal distribution under p(·). Thus,

p
(
x

(t+1)
i | X

(t)
[−i]

)
· p

(
X

(t)
[−i]

)
= p

(
x

(t+1)
i ,X

(t)
[−i]

)
, (8.15)

implying that the joint distribution of
(
X

(t)
[−i],x

(t+1)
i

)
is unchanged at p(·) after one update.

Under regularity conditions, in the steady state, the vectors . . . ,X(t−1),X(t),X(t+1), . . .

is a realization of a homogeneous Markov chain with the transition kernel from state X ′ to

state X given by

K (X ′,X) = p (x1 | x′
2, . . . ,x

′
d) p (x2 | x1,x

′
3, . . . ,x

′
d) . . . p (xd | x1, . . . ,xd−1) . (8.16)

The convergence behavior of the Gibbs sampler is investigated in [67, 131, 134, 276, 427, 464]

and general conditions are given for the following two results:

• The distribution of X(t) converges geometrically to p(X), as t→ ∞.

• 1

T

T∑
t=1

f
(
X(t)

)
a.s.→

∫
f(X) p(X) dX, as T → ∞, for any integrable function f .
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The Gibbs sampler requires an initial transient period to converge to equilibrium. An initial

period of length t0 is known as the “burning-in” period, and the first t0 samples should always

be discarded. Convergence is usually detected in some ad hoc way; some methods for this

are found in [463]. One such method is to monitor a sequence of weights that measure the

discrepancy between the sampled and the desired distribution [463]. The samples generated

by the Gibbs sampler are not independent, hence care needs to be taken in accessing the

accuracy of such estimators. By grouping variables together, i.e. drawing samples of several

elements of X simultaneously, one can usually accelerate the convergence and generate less-

correlated data [272, 276]. To reduce the dependence between samples, one can extract every

rth sample to be used in the estimation procedure. When r is large, this approach generates

almost independent samples.

Other techniques - A main problem with all the MCMC algorithms is that they may,

for various reasons, move very slowly in the configuration space or may become trapped

in a local mode. This phenomenon is generally called slow-mixing of the chain. When a

chain is slow-mixing, estimation based on the resulting Monte Carlo samples becomes very

inaccurate. Some recent techniques suitable for designing more efficient MCMC samplers

include parallel tempering [138], the multiple-try method [277], and evolutionary Monte

Carlo [262].

8.4 Bayesian Multiuser Detection via MCMC

In this section, we illustrate the application of MCMC signal processing (in particular, the

Gibbs sampler) by treating three related problems in multiuser detection under a general

Bayesian framework. These problems are: (a) optimal multiuser detection in the presence

of unknown channel parameters; (b) optimal multiuser detection in non-Gaussian ambient

noise; and (c) multiuser detection in coded CDMA systems. The methods discussed in this

section were first developed in [531]. We begin with a perspective on the related works in

these three areas.

The optimal multiuser detection algorithms with known channel parameters, that is, the

multiuser maximum-likelihood sequence detector (MLSD), and the multiuser maximum a

posteriori symbol probability (MAP) detector, were first investigated in [508, 509] (cf.[511]).
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When the channel parameters (e.g., the received signal amplitudes and the noise variance)

are unknown, it is of interest to study the problem of joint multiuser channel parameter

estimation and data detection from the received waveform. This problem was first treated in

[373], where a solution based on the expectation-maximization (EM) algorithm is derived. In

[451], the problem of sequential multiuser amplitude estimation in the presence of unknown

data is studied, and an approach based on stochastic approximation is proposed. In [573],

a tree-search algorithm is given for joint data detection and amplitude estimation. Other

works concerning multiuser detection with unknown channel parameters include [116, 202,

204, 321, 334, 455]. For systems employing channel coding, the optimal decoding scheme

for convolutionally coded CDMA is studied in [140], which is shown to have a prohibitive

computational complexity. In [141], some low-complexity receivers which perform multiuser

symbol detection and decoding either separately or jointly are studied. The powerful turbo

multiuser detection techniques for coded CDMA systems are discussed in Chapter 6 of this

book. Finally, robust multiuser detection methods in non-Gaussian ambient noise CDMA

systems are treated in Chapter 4 of this book.

In what follows, we present Bayesian multiuser detection techniques with unknown chan-

nel parameters, in both Gaussian and non-Gaussian ambient noise channels. The Gibbs

sampler is employed to calculate the Bayesian estimates of the unknown multiuser symbols

from the received waveforms. The Bayesian multiuser detector can naturally be used in con-

junction with the MAP channel decoding algorithm to accomplish turbo multiuser detection

in unknown channels. Note that although in this section we treat only the simple synchronous

CDMA signal model, the techniques discussed here can be generalized to treat more compli-

cated systems, such as intersymbol-interference (ISI) channels [532], asynchronous CDMA

with multipath fading [586], nonlinearly modulated CDMA system [368], multicarrier CDMA

system with space-time coding [583], and system with GMSK modulation over multipath

fading channel [584].

8.4.1 System Description

As in Chapter 6, we consider a coded discrete-time synchronous real-valued baseband CDMA

system with K users, employing normalized modulation waveforms s1, s2, . . . , sK , and sig-

naling through a channel with additive white noise. The block diagram of the transmitter
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Figure 8.1: A coded synchronous CDMA communication system.

end of such a system is shown in Fig. 8.1. The binary information bits {dk[n]}n for User k

are encoded using a channel code (e.g., block code, convolutional code or turbo code). A

code-bit interleaver is used to reduce the influence of the error bursts at the input of the

channel decoder. The interleaved code bits are then mapped to BPSK symbols, yielding

symbol stream {bk[i]}i. Each data symbol is then modulated by a spreading waveform sk,

and transmitted through the channel. The received signal is the superposition of the K

users’ transmitted signals plus the ambient noise, given by

r[i] =
K∑

k=1

Ak bk[i] sk + n[i], i = 0, . . . ,M − 1. (8.17)

In (8.17), M is the number of data symbols per user per frame; Ak, bk[i] and sk denote

respectively the amplitude, the ith symbol and the normalized spreading waveform of the kth

user; and n[i] =
[
n0[i] n1[i] . . . nN−1[i]

]T

is a zero-mean white noise vector. The spreading

waveform is of the form

sk =
1√
N

[s0,k s1,k . . . sN−1,k]
T , sj,k ∈ {+1,−1}, (8.18)

where N is the spreading factor. It is assumed that the receiver knows the spreading wave-

forms of all active users in the system. Define the following a priori symbol probabilities

ρk[i]
�
= P (bk[i] = +1), i = 0, . . . ,M − 1, k = 1, . . . , K. (8.19)

Note that when no prior information is available, then ρk[i] = 1
2
, i.e., all symbols are equally

likely.
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It is further assumed that the additive ambient channel noise vector {n[i]} is a sequence

of zero-mean independent and identically distributed (i.i.d.) random vectors, and that it is

independent of the symbol sequences {bk[i]}i;k. Moreover, the noise vector n[i] is assumed

to consist of i.i.d. samples {nj[i]}j. Here we consider two types of noise distributions

corresponding to additive Gaussian noise and additive impulsive noise, respectively. For the

former case, the noise nj[i] is of course assumed to have a Gaussian distribution, i.e.,

nj[i] ∼ N (
0, σ2

)
, (8.20)

where σ2 is the variance of the noise. For the latter case, the noise nj[i] is assumed to have

a two-term Gaussian mixture distribution, i.e.,

nj[i] ∼ (1 − ε)N (
0, σ2

1

)
+ εN (

0, σ2
2

)
, (8.21)

with 0 < ε < 1 and σ2
1 < σ2

2. Here the term N (0, σ2
1) represents the nominal ambient

noise, and the term N (0, σ2
2) represents an impulsive component, with ε representing the

probability that an impulse occurs. The total noise variance under distribution (8.21) is

given by

σ2 = (1 − ε)σ2
1 + εσ2

2. (8.22)

Denote Y
�
=

[
r[0] r(1) . . . r[M − 1]

]
. We consider the problem of estimating the a

posteriori probabilities of the transmitted symbols

P (bk[i] = +1 | Y ) , i = 0, . . . ,M − 1, k = 1, . . . , K, (8.23)

based on the received signals Y and the prior information {ρk[i]}i;k, without knowing the

channel amplitudes {Ak} and the noise parameters (i.e., σ2 for Gaussian noise; ε, σ2
1 and

σ2
2 for non-Gaussian noise). These a posteriori probabilities are then used by the channel

decoder to decode the information bits {dk[n]}n;k shown in Fig. 8.1, which will be discussed

in Section 8.4.4.

8.4.2 Bayesian Multiuser Detection in Gaussian Noise

We now consider the problem of computing the a posteriori probabilities in (8.23) under the

assumption that the ambient noise distribution is Gaussian; i.e., the pdf of n[i] in (8.17) is
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given by

p(n[i]) =
1

(2πσ2)
N
2

exp

(
−‖n[i]‖2

2σ2

)
. (8.24)

Define the following notations

b[i]
�
=

[
b1[i] b2[i] . . . bK [i]

]T

, i = 0, 1, . . . ,M − 1,

B[i]
�
= diag

{
b1[i], b2[i], . . . , bK [i]

}
, i = 0, 1, . . . ,M − 1,

X
�
=

[
b[0] b[1] . . . b[M − 1]

]
,

Y
�
=

[
r[0] r[1] . . . r[M − 1]

]
,

a
�
= [A1 A2 . . . AK ]T ,

A
�
= diag{A1, A2, . . . , AK},

and S
�
= [s1 s2 . . . sK ] .

Then (8.17) can be written as

r[i] = SAb[i] + n[i] (8.25)

= SB[i]a + n[i], i = 0, 1, . . . ,M − 1. (8.26)

We will approach this problem using a Bayesian framework: First, the unknown quantities

a, σ2 and X are regarded as realizations of random variables with some prior distributions.

The Gibbs sampler, a Monte Carlo method, is then employed to calculate the maximum a

posteriori (MAP) estimates of these unknowns.

Bayesian Inference

Assume that the unknown quantities a, σ2 and X are independent of each other and have

prior densities p(a), p(σ2) and p(X), respectively. Since {n[i]} is a sequence of independent

Gaussian vectors, using (8.24) and (8.25), the joint posterior density of these unknown

quantities (a, σ2,X) based on the received signal Y takes the form of

p
(
a, σ2,X | Y

)
= p

(
Y | a, σ2,X

)
p (a) p

(
σ2

)
p (X) /p(Y )

∝
(

1

σ2

)MN
2

exp

(
− 1

2σ2

M−1∑
i=0

‖r[i] − SAb[i]‖2

)
p (a) p

(
σ2

)
p (X) . (8.27)
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The a posteriori probabilities (8.23) of the transmitted symbols can then be calculated from

the joint posterior distribution (8.27) according to

P (bk[i] = +1 | Y ) =
∑

X : bk[i]=+1

P (X | Y )

=
∑

X : bk[i]=+1

∫
p
(
a, σ2,X | Y

)
da dσ2. (8.28)

The computation in (8.28) involves 2KM−1 multi-dimensional integrals, which is clearly

infeasible for any practical implementations with typical values of K and M . To avoid

the direct evaluation of the Bayesian estimate (8.28), we resort to the Gibbs sam-

pler discussed in Section 8.3. The basic idea is to generate ergodic random samples{
a(n), σ2(n)

,X(n) : n = n0, n0 + 1, . . .
}

from the posterior distribution (8.27), and then to

average {bk[i](n) : n = n0, n0 + 1, . . .} to obtain an approximation of the a posteriori proba-

bilities in (8.28).

Prior Distributions

In Bayesian analysis, prior distributions are used to incorporate the prior knowledge about

the unknown parameters. When such prior knowledge is limited, the prior distributions

should be chosen such that they have a minimal impact on the posterior distribution. Such

priors are termed as non-informative. The rationale for using noninformative prior dis-

tributions is to “let the data speak for themselves”, so that inferences are unaffected by

information external to current data [50, 133, 245].

Another consideration in the selection of the prior distributions is to simplify computa-

tions. To that end, conjugate priors are usually used to obtain simple analytical forms for

the resulting posterior distributions. The property that the posterior distribution belongs to

the same distribution family as the prior distribution is called conjugacy. Conjugate fami-

lies of distributions are mathematically convenient in that the posterior distribution follows

a known parametric form [50, 133, 245]. Finally, to make the Gibbs sampler more com-

putationally efficient, the priors should also be chosen such that the conditional posterior

distributions are easy to simulate.

Following these general guidelines in Bayesian analysis, we choose the conjugate prior

distributions for the unknown parameters p(a), p (σ2) and p(X), as follows.
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For the unknown amplitude vector a, a truncated Gaussian prior distribution is assumed,

p(a) ∝ N (a0,Σ0) I{a>0}, (8.29)

where I{a>0} is an indicator which is 1 if all elements of a are positive and it is zero otherwise.

Note that large values of Σ0 corresponds to less informative priors. For the noise variance

σ2, an inverse chi-square prior distribution is assumed,

p
(
σ2

)
=

(
ν0λ0

2

) ν0
2

Γ
(

ν0

2

) (
1

σ2

) ν0
2

+1

exp

(
−ν0λ0

2σ2

)
∼ χ−2(ν0, λ0), (8.30)

or
ν0λ0

σ2
∼ χ2(ν0). (8.31)

Small values of ν0 correspond to the less informative priors (roughly the prior knowledge is

worth ν0 data points). The value of ν0λ0 reflects the prior belief of the value of σ2. Finally

since the symbols {bk[i]}i;k are assumed to be independent, the prior distribution p(X) can

be expressed in terms of the prior symbol probabilities defined in (8.19) as

p(X) =
M−1∏
i=0

K∏
k=1

ρk[i]
δk,i

(
1 − ρk[i]

)1−δk,i

, (8.32)

where

δk,i =

{
1 if bk[i] = +1

0 if bk[i] = −1
. (8.33)

Conditional Posterior Distributions

The following conditional posterior distributions are required by the Gibbs multiuser detector

in Gaussian noise. The derivations are found in the Appendix (Section 8.7.1).

1. The conditional distribution of the amplitude vector a given σ2, X and Y is given by

p
(
a | σ2,X,Y

) ∝ N (a∗, Σ∗) I{a>0}, (8.34)

with Σ−1
∗

�
= Σ−1

0 +
1

σ2

M−1∑
i=0

B[i]RB[i], (8.35)

and a∗
�
= Σ∗

(
Σ−1

0 a0 +
1

σ2

M−1∑
i=0

B[i]ST r[i]

)
, (8.36)

where, in (8.35), we have used R
�
= ST S as usual to denote the cross-correlation

matrix of the signaling set.
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2. The conditional distribution of the noise variance σ2 given a, X and Y is given by

p
(
σ2 | a,X,Y

) ∼ χ−2

(
ν0 +MN,

ν0λ0 + s2

ν0 +MN

)
, (8.37)

or
(ν0λ0 + s2)

σ2
∼ χ2 (ν0 +MN) , (8.38)

with s2
�
=

M−1∑
i=0

∥∥∥r[i] − SAb[i]
∥∥∥2

. (8.39)

3. The conditional probabilities of bk[i] = ±1, given a, σ2, Xki and Y can be obtained

from (where Xki
�
= X\bk[i])

P
(
bk[i] = +1 | a, σ2,Xki,Y

)
P

(
bk[i] = −1 | a, σ2,Xki,Y

) =
ρk[i]

1 − ρk[i]
· exp

{
2Ak

σ2
sT

k

(
r[i] − SAb0

k[i]
)}
, (8.40)

i = 0, . . . ,M − 1, k = 1, . . . , K,

where b0
k[i]

�
=

[
b1[i], . . . , bk−1[i], 0, bk+1[i], . . . , bK [i]

]T

.

Gibbs Multiuser Detector in Gaussian Noise

Using the above conditional posterior distributions, the Gibbs sampling implementation of

the Bayesian multiuser detector in Gaussian noise proceeds iteratively as follows.

Algorithm 8.5 [Gibbs multiuser detector in Gaussian noise] Given initial values of the un-

known quantities
{

a(0), σ2(0)
, X(0)

}
drawn from their prior distributions, proceed as follows.

For n = 1, 2, . . .

• Draw a(n) from p
(
a | σ2(n−1)

,X(n−1),Y
)

given by (8.34).

• Draw σ2(n)
from p

(
σ2 | a(n),X(n−1),Y

)
given by (8.38).

• For i = 0, 1, . . . , M − 1

For k = 1, 2, . . . , K

Draw bk[i]
(n) from P

(
bk[i] | a(n), σ2(n)

,X
(n)
ki ,Y

)
given by (8.41),

where X
(n)
ki

�
=

{
b[0](n), . . . , b[i− 1](n), b1[i]

(n), . . . bk−1[i]
(n), bk+1[i]

(n−1), . . . ,

bK [i](n−1), b[i+ 1](n−1), . . . , b[M − 1](n−1)
}
.
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Note that to draw samples of a from (8.29) or (8.34), the so-called rejection method [518]

can be used. For instance, after a sample is drawn from N (a0,Σ0) or N (a∗,Σ∗) , check to

see if the constraint Ak > 0, k = 1, . . . , K, is satisfied; if not, the sample is rejected and a

new sample is drawn from the same distribution. The procedure continues until a sample is

obtained that satisfies the constraint.

To ensure convergence, the above procedure is usually carried out for (n0 +N0) iterations

for suitably chosen n0 and N0, and samples from the last N0 iterations are used to calculate

the Bayesian estimates of the unknown quantities. In particular, the a posteriori symbol

probabilities in (8.28) are approximated as

P (bk[i] = +1 | Y ) ∼= 1

N0

n0+N0∑
n=n0+1

δ
(n)
ki , (8.41)

where

δ
(n)
ki

�
=

{
1, if b

(n)
k [i] = +1

0, if b
(n)
k [i] = −1

. (8.42)

A MAP decision on the symbol bk[i] is then given by

b̂k[i] = arg max
b∈{+1,−1}

P (bk[i] = b | Y ) . (8.43)

Furthermore, if desired, estimates of the amplitude vector a and the noise variance σ2 can

also be obtained from the corresponding sample means

E {a | Y } ∼= 1

N0

n0+N0∑
n=n0+1

a(n), (8.44)

and E
{
σ2 | Y

} ∼= 1

N0

n0+N0∑
n=n0+1

σ2(n)
. (8.45)

The posterior variances of a and σ2, which reflect the uncertainty in estimating these quan-

tities on the basis of Y , can also be approximated by the sample variances, as

Cov {a | Y } ∼= 1

N0

n0+N0∑
n=n0+1

[
a(n)

] [
a(n)

]T − 1

N2
0

[
n0+N0∑
n=n0+1

a(n)

][
n0+N0∑
n=n0+1

a(n)

]T

, (8.46)

and

Var
{
σ2 | Y

} ∼= 1

N0

n0+N0∑
n=n0+1

[
σ2(n)

]2

− 1

N2
0

[
n0+N0∑
n=n0+1

σ2(n)

]2

. (8.47)
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Note that the above computations are exact in the limit as N0 → ∞. However, since they

involve only a finite number of samples, we think of them as approximations, but realize

that in theory any order of precision can be achieved given sufficiently large sample size N0.

The complexity of the above Gibbs multiuser detector per iteration is O (K2 +KM), i.e.,

it has a term that is quadratic with respect to the number of users K, due to the inversion of

the positive definite symmetric matrix in (8.35), and a term that is linear with respect to the

symbol block size M . The total complexity is then O [(K2 +KM) (n0 +N0)]. For practical

values of K and M , this is a substantial complexity reduction compared with the direct

implementation of the Bayesian symbol estimate (8.28), whose complexity is O (
2KM

)
.

Simulation Examples

We consider a 5-user (K = 5) synchronous CDMA channel with processing gain N = 10.

The user spreading waveform matrix S and the corresponding correlation matrix R are given

respectively by

ST =
1√
10



−1 −1 1 1 −1 1 −1 1 −1 1

1 1 −1 −1 −1 −1 −1 1 1 1

1 −1 −1 1 −1 −1 −1 −1 1 −1

−1 −1 1 −1 −1 −1 1 1 −1 1

1 1 −1 −1 −1 1 −1 −1 −1 −1


,

and R = ST S =
1

10



10 −2 −2 4 −2

−2 10 2 0 2

−2 2 10 −4 2

4 0 −4 10 −4

−2 2 2 −4 10


.

The following non-informative conjugate prior distributions are used in the Gibbs sampler

for the case of Gaussian noise:

p
(
a(0)

) ∼ N (a0,Σ0) I{a(0)>0} −→ a0 = [1 1 1 1 1]T , Σ0 = 1000 IK ;

p
(
σ2(0)

)
∼ χ−2(ν0, λ0) −→ ν0 = 1, λ0 = 0.1.

Note that the performance of the Gibbs sampler is insensitive to the values of the parameters

in these priors, as long as the priors are non-informative.
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Figure 8.2: Samples and histograms – Gaussian noise. A2
1 = −4dB, A2

2 = −2dB, A2
3 = 0dB,

A2
4 = 2dB, A2

5 = 4dB, and σ2 = −2dB. The histograms are based on 500 samples collected

after the initial 50 iterations.
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We illustrate the convergence behavior of the Bayesian multiuser detector in Gaussian

noise. In this example, the user amplitudes and the noise variance are taken to be

A2
1 = −4dB, A2

2 = −2dB, A3
3 = 0dB, A2

4 = 2dB, A2
5 = 4dB, σ2 = −2dB.

The data block size of each user is M = 256. In Fig. 8.2, we plot the first 100 samples drawn

by the Gibbs sampler of the parameters b3[50], b4[100], A1, A5 and σ2. The corresponding

true values of these quantities are also shown in the same figure as the straight lines. Note

that in this case, the number of unknown parameters is K + KM + 1 = 1286 (i.e., a, X,

and σ2). Remarkably, it is seen that the Gibbs sampler reaches convergence within about 20

iterations. The marginal posterior distributions of the unknown parameters A1, A5 and σ2

in the steady state can be illustrated by the corresponding histograms, which are also shown

in Fig. 8.2. The histograms are based on 500 samples collected after the initial 50 iterations.

8.4.3 Bayesian Multiuser Detection in Impulsive Noise

We next discuss Bayesian multiuser detection via the Gibbs sampler in non-Gaussian impul-

sive noise. As discussed above, it is assumed that the noise samples {nj[i]}j of n[i] in (8.17)

are independent with a common two-term Gaussian mixture pdf, given by

p(nj[i]) =
1 − ε√
2πσ2

1

exp

(
−nj[i]

2

2σ2
1

)
+

ε√
2πσ2

2

exp

(
−nj[i]

2

2σ2
2

)
, (8.48)

with 0 < ε < 1 and σ2
1 < σ

2
2.

Prior Distributions

Define the following indicator random variable to indicate the distribution of the noise sample

nj[i]:

Ij[i] =

{
1, if nj[i] ∼ N (0, σ2

1),

2, if nj[i] ∼ N (0, σ2
2),

i = 0, . . . ,M − 1, j = 0, . . . , N − 1. (8.49)

Denote I
�
= {Ij[i]}j;i, and

Λ[i]
�
= diag

{
σ2

I0[i], σ
2
I1[i], . . . , σ

2
IN−1[i]

}
, i = 0, . . . ,M − 1. (8.50)
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The unknown quantities in this case are (a, σ2
1, σ

2
2, ε, I,X). The joint posterior distribution

of these unknown quantities based on the received signal Y takes the form of

p
(
a, σ2

1, σ
2
2, ε, I,X | Y

)
∝ p

(
Y | a, σ2

1, σ
2
2, ε, I,X

)
p (a) p

(
σ2

1

)
p
(
σ2

2

)
p (ε) p (I | ε) p(X)

∝ exp

{
−1

2

M−1∑
i=0

(
r[i] − SAb[i]

)T

Λ[i]−1
(
r[i] − SAb[i]

)}

·
(

1

σ2
1

) 1
2

∑M−1
i=0 n1[i] (

1

σ2
2

) 1
2

∑M−1
i=0 n2[i]

p (a) p
(
σ2

1

)
p
(
σ2

2

)
p (ε) p (I | ε) p(X), (8.51)

where nl[i] is the number of l’s in {I0[i], I1[i], . . . , IN−1[i]}, l = 1, 2. Note that n1[i] + n2[i] =

N . We next specify the conjugate prior distributions of the unknown quantities in (8.51).

As in the case of Gaussian noise, the prior distributions p(a) and p(X) are given re-

spectively by (8.29) and (8.32). For the noise variances σ2
l , l = 1, 2, independent inverse

chi-square distributions are assumed, i.e.,

p(σ2
l ) ∼ χ−2(νl, λl), l = 1, 2, with ν1λ1 < ν2λ2. (8.52)

For the impulse probability ε, a beta prior distribution is assumed, i.e.,

p(ε) =
Γ(a0 + b0)

Γ(a0)Γ(b0)
εa0−1(1 − ε)b0−1 ∼ beta(a0, b0). (8.53)

Note that the value a0/(a0 + b0) reflects the prior knowledge of the value of ε. Moreover

(a0 + b0) reflects the strength of the prior belief, i.e., roughly the prior knowledge is worth

(a0 + b0) data points. Given ε, the conditional distribution of the indicator Ij[i] is then

P (Ij[i] = 1 | ε) = 1 − ε, and P (Ij[i] = 2 | ε) = ε, (8.54)

⇒ p(I | ε) = (1 − ε)m1 εm2 , (8.55)

with m1
�
=

M−1∑
i=0

n1[i] and m2
�
=

M−1∑
i=0

n2[i] = MN −m1.

Conditional Posterior Distributions

The following conditional posterior distributions are required by the Gibbs multiuser detector

in non-Gaussian noise. The derivations are found in the Appendix (Section 8.7.2).
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1. The conditional distribution of the amplitude vector a given σ2
1, σ

2
2, ε, I, X and Y is

given by

p
(
a | σ2

1, σ
2
2, ε, I,X,Y

) ∼ N (a∗, Σ∗) I{a>0}, (8.56)

with Σ−1
∗

�
= Σ−1

0 +
M−1∑
i=0

B[i]ST Λ[i]−1SB[i], (8.57)

and a∗
�
= Σ∗

(
Σ−1

0 a0 +
M−1∑
i=0

B[i]ST Λ[i]−1r[i]

)
. (8.58)

2. The conditional distribution of the noise variance σ2
l given a, σ2

l̄
, ε, I, X and Y is

given by [Here l̄ = 2 if l = 1, and l̄ = 1 if l = 2.]

p
(
σ2

l | a, σ2
l̄ , ε, I,X,Y

) ∼ χ−2

([
νl +

∑M−1
i=0 nl[i]

]
,

νlλl + s2l
νl +

∑M−1
i=0 nl[i]

)
, (8.59)

with s2l
�
=

M−1∑
i=0

N−1∑
j=0

(
rj[i] − ξT

j Ab[i]
)2 · 1{Ij [i]=l}, l = 1, 2. (8.60)

In (8.60) 1{Ij [i]=l} is 1 if Ij[i] = l, and is 0 if Ij[i] �= l; and ξT
j is the jth row of the

spreading waveform matrix S, j = 0, . . . , N − 1.

3. The conditional probability of bk[i] = ±1, given a, σ2
1, σ

2
2, ε, I, Xki and Y can be

obtained from (where Xki
�
= X\bk[i])

P
(
bk[i] = +1 | a, σ2

1, σ
2
2, ε, I,Xki,Y

)
P

(
bk[i] = −1 | a, σ2

1, σ
2
2, ε, I,Xki,Y

) =
ρk[i]

1 − ρk[i]
· exp

{
2Aks

T
k Λ[i]−1

(
r[i] − SAb0[i]

)}
,

k = 1, . . . , K, i = 0, . . . ,M − 1, (8.61)

where b0
k[i]

�
=

[
b1[i], . . . , bk−1[i], 0, bk+1[i], . . . , bK [i]

]T

.

4. The conditional distribution of Ij[i], given a, σ2
1, σ

2
2, ε, Iji, X and Y is given by (

where Iji
�
= I\Ij[i])

P
(
Ij[i] = 1 | a, σ2

1, σ
2
2, ε, Iji,X,Y

)
P

(
Ij[i] = 2 | a, σ2

1, σ
2
2, ε, Iji,X,Y

) =
1 − ε
ε

(
σ2

2

σ2
1

) 1
2

exp

{
1

2

(
rj[i] − ξT

j Ab[i]
)2

(
1

σ2
2

− 1

σ2
1

)}
.

j = 0, . . . , N − 1, i = 0, . . . ,M − 1. (8.62)

5. The conditional distribution of ε, given a, σ2
1, σ

2
2, I, X and Y is given by

p
(
ε | a, σ2

1, σ
2
2, I,X,Y

)
= beta

(
a0 +

M−1∑
i=0

n2[i], b0 +
M−1∑
i=0

n1[i]

)
. (8.63)
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Gibbs Multiuser Detector in Impulsive Noise

Using the above conditional posterior distributions, the Gibbs sampling implementation of

the Bayesian multiuser detector in impulsive noise proceeds iteratively as follows.

Algorithm 8.6 [Gibbs multiuser detector in impulsive noise] Given initial values of the

unknown quantities
{

a(0), σ2
1
(0)
, σ2

2
(0)
, ε(0), I(0), X(0)

}
drawn from their prior distributions,

proceed as follows. For n = 1, 2, . . .

• Draw a(n) from p
(
a | σ2

1
(n−1)

, σ2
2
(n−1)

, ε(n−1), I(n−1),X(n−1),Y
)

given by (8.56).

• Draw σ2
1
(n)

from p
(
σ2

1 | a(n), σ2
2
(n−1)

, ε(n−1), I(n−1),X(n−1),Y
)

given by (8.59);

Draw σ2
2
(n)

from p
(
σ2

2 | a(n), σ2
1
(n)
, ε(n−1), I(n−1),X(n−1),Y

)
given by (8.59).

• For i = 0, 1, . . . , M − 1

For k = 1, 2, . . . , K

Draw bk[i]
(n) from P

(
bk[i] | a(n), σ2

1
(n)
, σ2

2
(n)
, ε(n−1), I(n−1),X

(n)
ki ,Y

)
given

by (8.61),

where X
(n)
ki

�
=

{
b[0](n), . . . , b[i− 1](n), b1[i]

(n), . . . , bk−1[i]
(n), bk+1[i]

(n−1), . . . ,

bK [i](n−1), b[i+ 1](n−1), . . . , b[M − 1](n−1)
}
.

• For i = 0, 1, . . . , M − 1

For j = 0, 1, . . . , N − 1

Draw Ij[i]
(n) from P

(
Ij[i] | a(n), σ2

1
(n)
, σ2

2
(n)
, ε(n−1), I

(n)
ji ,X

(n),Y
)

given

by (8.62),

where I
(n)
ji

�
=

{
I0[0](n), . . . , IN−1[0](n), . . . , I0[i− 1](n), . . . , IN−1[i− 1](n), I0[i]

(n),

. . . , Ij−1[i]
(n), Ij+1[i]

(n−1), . . . , IN−1[i]
(n−1), . . . , IN−1[M − 1](n−1)

}
.

• Draw ε(n) from p
(
ε | a(n), σ2

1
(n)
, σ2

2
(n)
, I(n),X(n),Y

)
given by (8.63).

As in the case of Gaussian noise, the a posteriori symbol probabilities P (bk[i] = +1 | Y )

are computed using (8.41). The a posteriori means and variances of the other unknown

quantities, can also be computed, similar to (8.44) – (8.47). The complexity of the above

Gibbs multiuser detector is O (K2 +KM +MN) per iteration. Note that the direct imple-

mentation of the Bayesian symbol estimate based on (8.51) has a computational complexity

of O (
2KM+MN

)
.
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Simulation Examples

The simulated CDMA system is the same as that in Section 8.4.2, except that the noise

samples are generated according to the two-term Gaussian model (8.21) with the following

parameters

ε = 0.1, σ2
2/σ

2
1 = 100, σ2 �

= (1 − ε)σ2
1 + εσ2

2 = 7dB.

The data block size of each user is M = 256. The following non-informative conjugate prior

distributions are used in the Gibbs sampler.

p
(
a(0)

) ∼ N (a0,Σ0) I{a(0)>0} −→ a0 = [1 1 1 1 1]T , Σ0 = 1000 IK ;

p
(
σ2

1
(0)

)
∼ χ−2(ν1, λ1) −→ ν1 = 1, λ1 = 0.1;

p
(
σ2

2
(0)

)
∼ χ−2(ν1, λ1) −→ ν1 = 1, λ1 = 1;

and p
(
ε(0)

) ∼ beta(a0, b0) −→ a0 = 1, b0 = 2.

The first 100 samples drawn by the Gibbs sampler of the parameters b3[100], I5[75], A3,

σ2
1, σ

2
2 and ε are shown in Figure 8.3. The corresponding true values of these quantities are

also shown in the same figure as the straight lines. Note that in this case, the number of

unknown parameters is K +KM +NM + 3 = 3848 (i.e., a, X, I, σ2
1, σ

2
2 and ε)! It is seen

that as in the Gaussian noise case, the Gibbs sampler converges within about 20 samples.

The histograms of the unknown parameters A3, σ
2
1, σ

2
2 and ε are also shown in Figure 8.3,

which are based on 500 samples collected after the initial 50 iterations.

8.4.4 Bayesian Multiuser Detection in Coded Systems

Turbo Multiuser Detection in Unknown Channels

Because it utilizes the a priori symbol probabilities, and it produces symbol (or bit) a

posteriori probabilities, the Bayesian multiuser detector discussed in this section is well suited

for iterative processing that allows the Bayesian multiuser detector to refine its processing

based on the information from the decoding stage, and vice versa. In Chapter 6 of this book,

turbo multiuser receivers are described for a number of systems, under the assumption that

the channels are known to the receiver. The Bayesian multiuser detectors discussed in the
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histograms are based on 500 samples collected after the initial 50 iterations.
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previous two sections makes it possible to accomplish turbo multiuser detection in coded

CDMA systems with unknown channels.

channel
decoder

channel
decoder

channel
decoder
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Figure 8.4: Turbo multiuser detection in unknown channels.

As discussed in Section 6.3.1, a turbo receiver structure is shown in Fig. 8.4. It consists

of two stages: the Bayesian multiuser detector followed by K MAP channel decoders. The

two stages are separated by deinterleavers and interleavers. The Bayesian multiuser detector

delivers the a posteriori symbol probabilities {P (bk[i] = +1 | Y )}i;k. Based on these, we

first compute the a posteriori log-likelihood ratios of a transmitted “+1” symbol and a

transmitted “−1” symbol,

Λ1(bk[i])
�
= log

P (bk[i] = +1 | Y )

P (bk[i] = −1 | Y )
, k = 1, . . . , K; i = 0, . . . ,M − 1. (8.64)

Using Bayes’ formula, (8.64) can be written as

Λ1(bk[i]) = log
p(Y | bk[i] = +1)

p(Y | bk[i] = −1)︸ ︷︷ ︸
λ1(bk[i])

+ log
P (bk[i] = +1)

P (bk[i] = −1)︸ ︷︷ ︸
λ2(bk[i])

, (8.65)

where the second term in (8.65), denoted by λ2(bk[i]), represents the a priori LLR of the code

bit bk[i], which is computed by the channel decoder in the previous iteration, interleaved and

then fed back to the adaptive Bayesian multiuser detector. For the first iteration, assuming

equally likely code bits, i.e., no prior information available, we then have λ2(bk[i]) = 0,

k = 1, . . . , K, i = 0, . . . ,M − 1. The first term in (8.65), denoted by λ1(bk[i]), represents the

extrinsic information delivered by the Bayesian multiuser detector, based on the received

signals Y , the structure of the multiuser signal given by (8.17), and the prior information
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about all other code bits. The extrinsic information λ1(bk[i]), which is not influenced by the

a priori information λ2(bk[i]) provided by the channel decoder, is then reverse interleaved

(we denote the deinterleaved code bit sequence of the kth user as {bπk [i]}i) and fed into the

channel decoder, as the a priori information in the next iteration.

Based on the extrinsic information of the code bits {λ1(b
π
k [i])}i, and the structure of the

channel code, the kth user’s MAP channel decoder computes the a posteriori LLR of each

code bit (See Section 6.2 for the MAP decoding algorithm.),

Λ2(b
π
k [i])

�
= log

P (bπk [i] = +1 | {λ1(bk[i])}i code structure )

P (bπk [i] = −1 | {λ1(bk[i])}i code structure )

= λ2(b
π
k [i]) + λ1(b

π
k [i]). (8.66)

It is seen from (8.66) that the output of the MAP channel decoder is the sum of the prior

information λ1(b
π
k [i]), and the extrinsic information λ2(b

π
k [i]) delivered by the channel de-

coder. This extrinsic information is the information about the code bit bπk [i] gleaned from

the prior information about the other code bits, {bπk [l]}l �=i, based on the constraint struc-

ture of the code. The MAP channel decoder also computes the a posteriori LLR of every

information bit, which is used to make a decision on the decoded bit at the last iteration.

After interleaving, the extrinsic information delivered by the channel decoder {λ2(bk[i])}i;k

is then used to compute the a priori symbol distributions {ρk[i]}i;k defined in (8.23), from

the corresponding LLR’s as follows:

ρk[i]
�
= P (bk[i] = +1)

=
1

2

{
1 + tanh

[
1

2
λ2(bk[i])

]}
, (8.67)

where the derivation of (8.67) can be found in Section 6.3.2 [cf. (6.39)]. The symbol probabil-

ities {ρk[i]}i;k are then fed back to the Bayesian multiuser detector as the prior information

for the next iteration.

Decoder-assisted Convergence Assessment

Detecting convergence in the Gibbs sampler is usually done in some ad hoc way. Some

methods can be found in [463]. One of them is to monitor a sequence of weights that

measure the discrepancy between the sampled and the desired distribution. In the application
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considered here, since the adaptive multiuser detector is followed by a bank of channel

decoders, we can assess convergence by monitoring the number of bit corrections made by

the channel decoders. If this number exceeds some predetermined threshold, then we decide

convergence is not achieved. In that case the Gibbs multiuser detector will be applied again

to the same data block. The rationale is that if the Gibbs sampler has reached convergence,

then the symbol (and bit) errors after multiuser detection should be relatively small. On

the other hand, if convergence is not reached, then the code bits generated by the multiuser

detector are virtually random and do not satisfy the constraints imposed by the code trellises.

Hence the channel decoders will make a large number of corrections. Note that there is no

additional computational complexity for such a convergence detection: we need only compare

the signs of the code bit log-likelihood ratios at the input and the output of the soft channel

decoder to determine the number of corrections made.

Code-constrained Gibbs Multiuser Detector

Another approach to exploiting the coded signal structure in Bayesian multiuser detection

is to make use of the code constraints in the Gibbs sampler. For instance, suppose that the

user information bits are encoded by some block code of length L and the code bits are not

interleaved. Then one signal frame of M symbols contains J = M/L code words, with the

jth code word given by

bk[j] =
[
bk[jL], bk[jL+ 1], . . . , bk[jL+ L− 1]

]
,

j = 0, 1, . . . ,M/L− 1, k = 1, . . . , K.

Let Bk be the set of all valid code words for User k. Now in the Gibbs sampler, instead of

drawing each individual symbols bk[i] once a time according to (8.41) or (8.61), we draw a

code word bk[j] of L symbols from Bk each time. Specifically, let −1 denote the code word

with all entries being “−1”s. (This is the so-called all-zero code word and it is always a valid

code word for any block code [557].) If the ambient channel noise is Gaussian, then for any

code word u ∈ Bk, the conditional probability of bk[j] = u, given the values of the rest of

the unknowns, can be obtained from

P
(
bk[j] = u | a, σ2,Xkj,Y

)
P

(
bk[j] = −1 | a, σ2,Xkj,Y

)
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=
ρkj(u)

1 − ρkj(u)
· exp

2Ak

σ2
sT

k

L−1∑
l=0

u[l] �=−1

(
r[jL+ l] − SAb0

k[jL+ l]
) , (8.68)

k = 1, . . . , K; j = 0, 1, . . . ,M/L− 1,

where Xkj
�
= X\xk[j]; ρkj(u)

�
= P (bk[j] = u); and

b0
k[i]

�
=

[
b1[i], . . . , bk−1[i], 0, bk+1[i], . . . , bK [i]

]T

. On the other hand, if the ambient channel

noise is non-Gaussian, we have

P
(
bk[j] = u | a, σ2

1, σ
2
2, ε, I,Xkj,Y

)
P

(
bk[j] = −1 | a, σ2

1, σ
2
2, ε, I,Xkj,Y

)
=

ρkj(u)

1 − ρkj(u)
· exp

2Aks
T
k

L−1∑
l=0

u[l] �=−1

Λ[jL+ l]−1
(
r[jL+ l] − SAb0[jL+ l]

) , (8.69)

k = 1, . . . , K; j = 0, . . . ,M/L− 1.

The conditional distributions for sampling the other unknowns remain the same as before.

The advantage of sampling a code word instead of sampling an individual symbol is that it

can significantly improve the accuracy of samples drawn by the Gibbs sampler, since only

valid code words are drawn. This will be demonstrated by simulation examples below.

Relationship Between the Gibbs Sampler and the EM Algorithm

As noted previously, the Expectation-Maximization (EM) algorithm has also been applied

to joint parameter estimation and multiuser detection [373]. The major advantage of the

Gibbs sampling technique over the EM algorithm is that the Gibbs sampler is a global

optimization technique. The EM algorithm is a local optimization method and it can easily

get trapped by local extrema on the likelihood surface. The EM algorithm performs well

if the initial estimates of the channel and symbols are close to their true values. On the

other hand, the Gibbs sampler is guaranteed to converge to the global optimum with any

random initialization. Of course, the convergence rate crucially depends on the shape of the

joint posterior density surface. When the posterior distribution has several modes separated

by very low density regions (energy gap), then the Gibbs sampler which generates “random

walks” according to the distribution may have difficulties to cross such gaps to visit all the

modes. If such a gap is severe, then the random walk may get stuck within one mode for a
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long time before it moves to another mode. Many modification of the Gibbs sampler have

been developed to combat the “large energy gap” situation. See, for example, [159, 567].

Simulation Examples

We now illustrate the performance of the above turbo multiuser detectors in coded systems.

The channel code for each user is a rate-1
2

constraint length-5 convolutional code (with

generators 23, 35 in octal notation). The interleaver of each user is independently and

randomly generated, and fixed for all simulations. The block size of the information bits

is 128 (i.e., the code bit block size is M = 256). The code bits are BPSK modulated,

i.e., bk[i] ∈ {+1,−1}. All users have the same signal-to-noise ratio (Eb/N0). The symbol

posterior probabilities are computed according to (8.41) with n0 = N0 = 50.

For the first iteration, the prior symbol probabilities ρk[i]
�
= P (bk[i] = +1) = 1

2
for

all symbols; in the subsequent iterations, the prior symbol probabilities are provided by

the channel decoder, as given by (6.39). The decoder-assisted convergence assessment is

employed. Specifically, if the number of bit corrections made by the decoder exceeds one-

third of the total number of bits (i.e., M
3

), then it is decided that convergence is not reached

and the Gibbs sampler is applied to the same data block again.

Fig. 8.5 illustrates the BER performance of the Gibbs turbo multiuser detector for User 1

and User 3. The code bit error rate at the output of the Bayesian multiuser detector is plotted

for the first three iterations. The curve corresponding to the first iteration is the uncoded bit

error rate at the output of the Bayesian multiuser detector. The uncoded and coded bit error

rate curves in a single-user additive white Gaussian noise (AWGN) channel are also shown

in the same figure (as respectively the dash-dotted and the dashed lines). It is seen that by

incorporating the extrinsic information provided by the channel decoder as the prior symbol

probabilities, the turbo multiuser detector approaches single-user performance in an AWGN

channel within a few iterations. The BER performance of the turbo multiuser detector in

impulsive noise is illustrated in Fig. 8.6, where the code bit error rates at the output of

the Bayesian multiuser detector for the first three iterations are shown. The uncoded and

coded bit error rate curves in a single-user additive white impulsive noise (AWIN) channel

are also shown in the same figure (as the dash-dotted and dashed lines respectively), where

the conventional matched-filter receiver is employed for demodulation. Note that at high
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Eb/N0, the performance of User 3 after the first iteration is actually better than the single-

user performance. This is because the matched-filter receiver is not the optimal single-user

receiver in non-Gaussian noise. Indeed, when K = 1, the maximum likelihood detector for

signal model (8.17) is given by

b̂1[i] = sign

{
N∑

j=1

rj[i]sj,k
σ2

j [i]

}
.

Finally we consider the performance of the code-constrained Gibbs multiuser detectors.

We assume that each user employs the (7,4) cyclic block code with eight possible codewords

[557]:

B =



( −1 −1 −1 −1 −1 −1 −1 )

( 1 −1 1 1 1 −1 −1 )

( 1 1 1 −1 −1 1 −1 )

( −1 1 1 1 −1 −1 1 )

( 1 1 −1 −1 1 −1 1 )

( −1 −1 1 −1 1 1 1 )

( −1 1 −1 1 1 1 −1 )

( 1 −1 −1 1 −1 1 1 )



The BER performance of the code-constrained Gibbs multiuser detector in Gaussian

noise is shown in Fig. 8.7. In this case the Gibbs sampler draws a code word from B at each

time, according to (8.68). In the same figure, the unconstrained Gibbs multiuser detector

performance before and after decoding is also plotted. It is seen that by exploiting the code

constraints in the Gibbs sampler, significant performance gain is achieved. The performance

of the code-constrained Gibbs multiuser detector in non-Gaussian noise is shown in Fig. 8.8

and similar performance gain over the unconstrained Gibbs multiuser detector is evident.
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Figure 8.5: BER performance of the Gibbs turbo multiuser detector – convolutional code,

Gaussian noise. All users have the same amplitudes.
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Figure 8.6: BER performance of the Gibbs turbo multiuser detector – convolutional code,

impulsive noise. All users have the same amplitudes. σ2
2/σ

2
1 = 100 and ε = 0.1.
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Figure 8.7: BER performance of the Gibbs turbo multiuser detector – block code, Gaussian

noise. All users have the same amplitudes.
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Figure 8.8: BER performance of the Gibbs turbo multiuser – block code, impulsive noise.

All users have the same amplitudes. σ2
2/σ

2
1 = 100 and ε = 0.1.
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8.5 Sequential Monte Carlo (SMC) Signal Processing

8.5.1 Sequential Importance Sampling

Importance sampling is one of the most well-known and elementary Monte Carlo techniques.

Suppose we want to make inference about some random quantity X ∼ p(X) using the Monte

Carlo method. Sometimes directly drawing samples from p(X) is difficult, but it may be

easier (or otherwise advantageous) to draw samples from a trial density, say, q(X). Note

that the desired inference can be written as

E{h(X)} =

∫
h(X) p(X) dX (8.70)

=

∫
h(X)w(X) q(X) dX, (8.71)

where

w(X)
�
=

p(X)

q(X)
, (8.72)

is called the importance weight. In importance sampling, we draw samples

X(1),X(2), . . . ,X(n) according to the trial distribution q(·). We then approximate the infer-

ence (8.71) by

E{h(X)} ∼= 1

n

n∑
j=1

h
(
X(j)

)
w
(
X(j)

)
. (8.73)

This technique is widely used, for example, for reducing the sample-size requirements in

BER estimation.

However, it is usually difficult to design a good trial density function in high dimensional

problems. One of the most useful strategies in these problems is to build up the trial density

sequentially. Suppose we can decompose X as X = (x1, . . . ,xd) where each of the xj may

be either a scalar or a vector. Then our trial density can be constructed as

q(X) = q1(x1) q2(x2 | x1) . . . qd(xd | x1, . . . ,xd−1), (8.74)

by which we hope to obtain some guidance from the target density while building up the

trial density. Corresponding to the decomposition of X, we can rewrite the target density

as

p(x) = p1(x1) p2(x2 | x1) . . . pd(xd | x1, . . . ,xd−1), (8.75)
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and the importance weight as

w(X) =
p1(x1) p2(x2 | x1) . . . pd(xd | x1, . . . ,xd−1)

q1(x1) q2(x2 | x1) . . . qd(xd | x1, . . . ,xd−1)
. (8.76)

Equation (8.76) suggests a recursive way of computing and monitoring the importance

weight. That is, by denoting X t = (x1, . . . ,xt) (thus, Xd ≡ X), we have

wt(X t) = wt−1(X t−1) · pt(xt | X t−1)

qt(xt | X t−1)
. (8.77)

Then wd(Xd) is equal to w(X) in (8.76). Potential advantages of this recursion and (8.75)

are (a) we can stop generating further components of X if the partial weight derived from

the sequentially generated partial sample is too small; and (b) we can take advantage of

pt(xt|X t−1) in designing qt(xt|X t−1). In other words, the marginal distribution p(X t) can

be used to guide the generation of X.

Although the above idea sounds interesting, the trouble is that the decomposition of

p(X) as in (8.75) and that of w(X) as in (8.76) are not practical at all! The reason is that

in order to get (8.75), one needs to have the marginal distribution

p(X t) =

∫
p(x1, . . . ,xd)dxt+1 . . . dxd, (8.78)

whose computation involves integrating out components xt+1, . . . ,xd in p(X) and is as dif-

ficult as — or even more difficult than — the original problem.

In order to carry out the sequential sampling idea, we need to introduce another layer of

complexity. Suppose we can find a sequence of “auxiliary distributions,”

π1(X1), π2(X2), . . . , πd(X),

so that πt(X t) is a reasonable approximation to the marginal distribution pt(X t), for t =

1, . . . , d − 1, and πd(X) = p(X). We emphasize that {πt(X t)} are required to be known

only up to a normalizing constant and they only serve as “guides” to our construction of

the whole sample X = (x1, . . . ,xd). The sequential importance sampling (SIS) method can

then be defined as the following recursive procedure.

Algorithm 8.7 [Sequential importance sampling (SIS)]

For t = 2, . . . , d:
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• Draw xt from qt(xt | X t−1), and let X t = (X t−1,xt).

• Compute

ut
�
=

πt(X t)

πt−1(X t−1) qt(xt | X t−1)
, (8.79)

and let wt = wt−1 ut.

In the SIS step, we call ut an “incremental weight.” It is easy to show that X t is properly

weighted by wt with respect to πt provided that X t−1 is properly weighted by wt−1 with

respect to πt−1. Thus, the whole sample X obtained in this sequential fashion is properly

weighted by the final importance weight, wd, with respect to the target density p(X). One

reason for the sequential build-up of the trial density is that it breaks a difficult task into

manageable pieces. The SIS framework is particularly attractive as it can use the “auxiliary

distributions” π1, π2, . . . , πd to help construct more efficient trial distribution:

• We can build qt in light of πt. For example, one can choose (if possible)

qt(xt | X t−1) = πt(xt | X t−1). (8.80)

Then the incremental weight becomes

ut =
πt(X t)

πt−1(X t−1)
. (8.81)

• When we observe that wt is getting too small, we can choose to reject the sample

half-way and restart again. In this way we avoid wasting time on generating samples

that are doomed to have little effect in the final estimation. However, as an outright

rejection incurs bias, the rejection control techniques can be used to correct such bias

[277].

• Another problem with the SIS is that the resulting importance weights are still very

skewed, especially when d is large. An important recent advance in sequential Monte

Carlo to address this problem is the resampling technique [157, 274].
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8.5.2 SMC for Dynamical Systems

Consider the following dynamical system modelled in a state-space form as

state equation zt = ft(zt−1,ut)

observation equation yt = gt(zt,vt),
(8.82)

where zt, yt, ut and vt are, respectively, the state variable, the observation, the state noise,

and the observation noise at time t. They can be either scalars or vectors.

Let Zt=(z0,z1, . . . ,zt) and let Y t=(y0,y1, . . . ,yt). Suppose an on-line inference of Zt

is of interest; that is, at current time t we wish to make a timely estimate of a function of the

state variable Zt, say h(Zt), based on the currently available observation, Y t. From Bayes’

formula, we realize that the optimal solution to this problem is

E{h(Zt) | Y t} =

∫
h(Zt) p(Zt | Y t) dZt. (8.83)

In most cases an exact evaluation of this expectation is analytically intractable because of

the complexity of such a dynamical system. Monte Carlo methods provide us with a viable

alternative to the required computation. Specifically, if we can draw m random samples{
Z

(j)
t

}m

j=1
from the distribution p(Zt|Y t), then we can approximate E{h(Zt)|Y t} by

E{h(Zt) | Y t} ∼= 1

m

m∑
j=1

h
(
Z

(j)
t

)
. (8.84)

Very often direct simulation from p(Zt|Y t) is not feasible, but drawing samples from some

trial distribution is easy. In this case we can use the idea of importance sampling discussed

above. Suppose a set of random samples
{

Z
(j)
t

}m

j=1
is generated from the trial distribution

q(Zt|Y t). By associating the weight

w
(j)
t =

p
(
Z

(j)
t | Y t

)
q
(
Z

(j)
t | Y t

) (8.85)

to the sample Z
(j)
t , we can approximate the quantity of interest, E{h(Zt)|Y t}, as

Ep{h(Zt) | Y t} ∼= 1

Wt

m∑
j=1

h
(
Z

(j)
t

)
w

(j)
t , (8.86)

with Wt
�
=

m∑
j=1

w
(j)
t . (8.87)
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The pair
(
Z

(j)
t , w

(j)
t

)
, j = 1, . . . ,m, is called a properly weighted sample with respect

to distribution p(Zt|Y t). A trivial but important observation is that the z
(j)
t (one of the

components of Z
(j)
t ) is also properly weighted by the w

(j)
t with respect to the marginal

distribution p(zt|Y t).

Another possible estimate of E{h(Zt)|Y t} is

Ep{h(Zt) | Y t} ∼= 1

m

m∑
j=1

h
(
Z

(j)
t

)
w

(j)
t . (8.88)

Main reasons for preferring the ratio estimate (8.86) to the unbiased estimate (8.88) in an

importance sampling framework are that: (a) estimate (8.86) usually has a smaller mean

squared error than that of (8.88); and (b) the normalizing constants of both the trial and

the target distributions are not required in using (8.86) (where these constants are cancelled

out); in such cases the weights {w(j)
t } are evaluated only up to a multiplicative constant. For

example, the target distribution p(Zt|Y t) in a typical dynamical system (and many Bayesian

models) can be evaluated easily up to a normalizing constant (e.g., the likelihood multiplied

by a prior distribution), whereas sampling from the distribution directly and evaluating the

normalizing constant analytically are impossible.

To implement Monte Carlo techniques for a dynamical system, a set of random sam-

ples properly weighted with respect to p(Zt|Y t) is needed for any time t. Because the state

equation in system (8.82) possesses a Markovian structure, we can implement a recursive im-

portance sampling strategy, which is the basis of all sequential Monte Carlo techniques [275].

Suppose a set of properly weighted samples
{

(Z
(j)
t−1, w

(j)
t−1)

}m

j=1
with respect to p(Zt−1|Y t−1)

is given at time (t − 1). A sequential Monte Carlo filter generates from the set a new

one,
{

Z
(j)
t , w

(j)
t

}m

j=1
, which is properly weighted at time t with respect to p(Zt|Y t). The

algorithm is described as follows.

Algorithm 8.8 [Sequential Monte Carlo filter for dynamical systems]

For j = 1, . . . ,m:

• Draw a sample z
(j)
t from a trial distribution q

(
zt|Z(j)

t−1,Y t

)
and let Z

(j)
t =(

Z
(j)
t−1,z

(j)
t

)
;
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• Compute the importance weight

w
(j)
t = w

(j)
t−1 ·

p
(
Z

(j)
t | Y t

)
p
(
Z

(j)
t−1 | Y t−1

)
q
(
z

(j)
t | Z

(j)
t−1,Y t

) . (8.89)

The algorithm is initialized by drawing a set of i.i.d. samples z
(1)
0 , . . . ,z

(m)
0 from p(z0|y0).

When y0 represents the “null” information, p(z0|y0) corresponds to the prior distribution

of z0. The samples and the weights drawn by the above algorithm are characterized by the

following result, the proof of which is found in the Appendix (Section 8.7.3).

Proposition 8.1 The weighted samples generated by Algorithm 8.8 satisfy

E
{
h
(
Z

(j)
t

)
w

(j)
t

}
= E{h(Zt) | Y t}, (8.90)

and E
{
w

(j)
t

}
= 1. (8.91)

The above result together with the law of large numbers implies

1

Wt

m∑
j=1

h
(
Z

(j)
t

)
w

(j)
t =

∑m
j=1 h

(
Z

(j)
t

)
/m

Wt/m

a.s.−→ E{h(Zt) | Y t}, as m→ ∞. (8.92)

There are a few important issues regarding the design and implementation of a sequential

Monte Carlo filter, such as the choice of the trial distribution q(·) and the use of resampling

(see Section 8.5.3). Specifically, a useful choice of the trial distribution q
(
zt|Z(j)

t−1,Y t

)
for

the state space model (8.82) is of the form

q
(
zt | Z

(j)
t−1,Y t

)
= p

(
zt | Z

(j)
t−1,Y t

)
=

p
(
yt | zt,Z

(j)
t−1,Y t−1

)
p
(
zt | Z

(j)
t−1,Y t−1

)
p
(
yt | Z

(j)
t−1,Y t−1

)
=

p(yt | zt) p
(
zt | z

(j)
t−1

)
p
(
yt | z

(j)
t−1

) , (8.93)
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where in (8.93) we used the facts that

p
(
yt | zt,Z

(j)
t−1,Y t−1

)
= p(yt | zt), (8.94)

and p
(
zt | Z

(j)
t−1,Y t−1

)
= p

(
zt | z

(j)
t−1

)
, (8.95)

both of which follow directly from the state space model (8.82). For this trial distribution,

the importance weight is updated according to

w
(j)
t = w

(j)
t−1 ·

p
(
Z

(j)
t | Y t

)
p
(
Z

(j)
t−1 | Y t−1

)
p
(
z

(j)
t | Z

(j)
t−1,Y t

)
= w

(j)
t−1 ·

p
(
Z

(j)
t−1 | Y t

)
p
(
Z

(j)
t−1 | Y t−1

) (8.96)

= w
(j)
t−1 ·

p
(
yt,Z

(j)
t−1,Y t−1

)
p (Y t−1)

p
(
Z

(j)
t−1,Y t−1

)
p (Y t)

∝ w
(j)
t−1 · p

(
yt | Z

(j)
t−1,Y t−1

)
= w

(j)
t−1 · p

(
yt | z

(j)
t−1

)
, (8.97)

where (8.96) follows from the fact that

p
(
Z

(j)
t | Y t

)
= p

(
Z

(j)
t−1 | Y t

)
p
(
z

(j)
t | Z

(j)
t−1,Y t

)
; (8.98)

and the last equality is due to the conditional independence property of the state-space

model (8.82). See [275] for the general sequential Monte Carlo framework and a detailed

discussion on various implementation issues.

8.5.3 Resampling Procedures

The importance sampling weight w
(j)
t measures the “quality” of the corresponding imputed

sequence Z
(j)
t . A relatively small weight implies that the sample is drawn far from the main

body of the posterior distribution and has a small contribution in the final estimation. Such

a sample is said to be ineffective. If there are too many ineffective samples, the Monte

Carlo procedure becomes inefficient. This can be detected by observing a large coefficient of
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variation in the importance weight. Suppose
{
w

(j)
t

}m

j=1
is a sequence of importance weights.

Then the coefficient of variation, υt is defined as

υ2
t =

1
m

m∑
j=1

(
w

(j)
t − w̄t

)2

w̄2
t

=
1

m

m∑
j=1

(
w

(j)
t

w̄t

− 1

)2

, (8.99)

with w̄t =
1

m

m∑
j=1

w
(j)
t . (8.100)

Note that if the samples are drawn exactly from the target distribution, then all the weights

are equal, implying that υt = 0. A large coefficient of variation in the importance weights

indicates ineffective samples. It is shown in [229] that the importance weights resulting

from a sequential Monte Carlo filter form a martingale sequence. As more and more data

are processed, the coefficient of variation of the weights increases – that is, the number of

ineffective samples increases – rapidly.

A useful method for reducing ineffective samples and enhancing effective ones is resam-

pling, which was suggested in [157, 274] under the sequential Monte Carlo setting. Roughly

speaking, resampling allows those “bad” samples (with small importance weights) to be

discarded and those “good” ones (with large importance weights) to replicate so as to ac-

commodate the dynamic change of the system. Specifically, let
{

(Z
(j)
t , w

(j)
t )

}m

j=1
be the

original properly weighted samples at time t. A residual resampling strategy forms a new

set of weighted samples
{

(Z̃
(j)

t , w̃
(j)
t )

}m

j=1
according to the following algorithm (assume that

m∑
j=1

w
(j)
t = m):

Algorithm 8.9 [Residual resampling]

• For j = 1, . . . ,m, retain kj =
⌊
w

(j)
t

⌋
copies of the sample

(
Z

(j)
t , κ

(j)
t

)
. Denote Kr =

m−
m∑

j=1

kj.

• Obtain Kr i.i.d. draws from the original sample set
{

Z
(j)
t

}m

j=1
, with probabilities pro-

portional to
(
w

(j)
t − kj

)
, j = 1, . . . ,m.
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• Assign equal weight, i.e., set w̃
(j)
t = 1, for each new sample.

The correctness of the above residual resampling procedure is stated by the following result,

whose proof is given in the Appendix (Section 8.7.4).

Proposition 8.2 The samples drawn by the residual resampling procedure Algorithm 8.9

are properly weighted with respect to p(Zt|Y t), for m→ ∞.

Alternatively, we can use the following simple resampling procedure, which also produces

properly weighted samples with respect to p(Zt|Y t):

• For j = 1, . . . ,m, draw i.i.d. random number lj from the set {1, 2, . . . ,m}, with

probability

P (lj = k) ∝ w
(k)
t , k = 1, . . . ,m. (8.101)

• The m new samples and the corresponding weights {(Z̃(j)

t , w̃
(j)
t )}m

j=1 are given by

Z̃
(j)

t = Z
(lj)
t , w̃

(j)
t =

1

m
, j = 1, . . . ,m. (8.102)

In practice when small to modest m is used (we used m = 50 in our simulations), the

resampling procedure can be seen as trading off between bias and variance. That is, the new

samples with their weights resulting from the resampling procedure are only approximately

proper, which introduces small bias in Monte Carlo estimation. On the other hand, however,

resampling greatly reduces Monte Carlo variance for the future samples.

Resampling can be done at any time. However resampling too often adds computational

burden and decreases “diversities” of the Monte Carlo filter (i.e., it decreases the number

of distinctive filters and loses information). On the other hand, resampling too rarely may

result in a loss of efficiency. It is thus desirable to give guidance on when to do resampling.

A measure of the efficiency of an importance sampling scheme is the effective sample size

m̄t, defined as

m̄t
�
=

m

1 + υ2
t

. (8.103)

Heuristically, m̄t reflects the equivalent size of a set of i.i.d. samples for the set of m weighted

ones. It is suggested in [275] that resampling should be performed when the effective sample

size becomes small, e.g., m̄t ≤ m
10

. Alternatively, one can conduct resampling at every fixed-

length time interval (say, every five steps).
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8.5.4 Mixture Kalman Filter

Many dynamical system models belong to the class of conditional dynamical linear models

(CDLM) of the form

xt = F λtxt−1 + Gλtut,

yt = Hλtxt + Kλtvt,
(8.104)

where ut ∼ Nc(0, I), vt ∼ Nc(0, I), and λt is a random indicator variable. The matrices F λt ,

Gλt , Hλt and Kλt are known, given λt. In this model, the “state variable” zt corresponds

to (xt, λt).

We observe that for a given trajectory of the indicator λt in a CDLM, the system is

both linear and Gaussian, for which the Kalman filter provides the complete statistical

characterization of the system dynamics. Recently a novel sequential Monte Carlo method,

the mixture Kalman filter (MKF), was developed in [71] for on-line filtering and prediction

of CDLM’s; it exploits the conditional Gaussian property and utilizes a marginalization

operation to improve the algorithmic efficiency. Instead of dealing with both xt and λt,

the MKF draws Monte Carlo samples only in the indicator space and uses a mixture of

Gaussian distributions to approximate the target distribution. Compared with the generic

sequential Monte Carlo method, the MKF is substantially more efficient (e.g., giving more

accurate results with the same computing resources). However, the MKF often needs more

“brain power” for its proper implementation, as the required formulas are more complicated.

Additionally, the MKF requires the CDLM structure which may not be applicable to other

problems.

Let Y t = (y0,y1, . . . ,yt) and let Λt = (λ0, λ1, . . . , λt). By recursively generating a

set of properly weighted random samples
{

(Λ
(j)
t , w

(j)
t )

}m

j=1
to represent p(Λt|Y t), the MKF

approximates the target distribution p(xt|Y t) by a random mixture of Gaussian distributions

m∑
j=1

w
(j)
t Nc

(
µ

(j)
t ,Σ

(j)
t

)
, (8.105)

where κ
(j)
t

�
=

[
µ

(j)
t , Σ

(j)
t

]
is obtained by implementing a Kalman filter for the given indicator

trajectory Λ
(j)
t . Thus, a key step in the MKF is the production at time t of the weighted sam-

ples of indicators,
{

(Λ
(j)
t , κ

(j)
t , w

(j)
t )

}m

j=1
, based on the set of samples,

{
(Λ

(j)
t−1, κ

(j)
t−1, w

(j)
t−1)

}m

j=1
,

at the previous time (t− 1) according to the following algorithm.
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Algorithm 8.10 [Mixture Kalman filter for conditional dynamical linear models]

For j = 1, . . . ,m:

• Draw a sample λ
(j)
t from a trial distribution q

(
λt | Λ

(j)
t−1, κ

(j)
t−1,Y t

)
.

• Run a one-step Kalman filter based on λ
(j)
t , κ

(j)
t−1, and yt to obtain κ

(j)
t .

• Compute the weight

w
(j)
t ∝ w

(j)
t−1 ·

p
(
Λ

(j)
t−1, λ

(j)
t | Y t

)
p
(
Λ

(j)
t−1 | Y t−1

)
q
(
λ

(j)
t | Λ

(j)
t−1, κ

(j)
t−1,Y t

) . (8.106)

The MKF can be extended to handle the so-called partial CDLM, where the state variable

has a linear component and a nonlinear component. See [71] for a detailed treatment of the

MKF and the extended MKF.

8.6 Blind Adaptive Equalization of MIMO Channels

via SMC

Many systems can be modelled as multiple-input multiple-output (MIMO) systems, where

the observed signals are superpositions of several linearly distorted signals from different

sources. Examples of MIMO systems include spatial-division multiple-access (SDMA) in

wireless communications, speech processing, seismic exploration and some biological systems.

The problem of blind source separation for MIMO systems with unknown parameters is of

fundamental importance and its solutions find wide applications in many areas. Recently,

there has been much interest in solving this problem, and there are primarily two approaches

– the approach based on the second-order statistics [5, 94, 461, 486], and the approach based

on the constant-modulus algorithm [214, 258, 485]. In this section, we treat the problem of

blind adaptive signal separation in MIMO channels using the sequential Monte Carlo method

outlined in the previous section. The application of SMC technique to blind equalization of

single-user ISI channel with single transmit and receive antennas was first treated in [274],

and generalized to multiuser MIMO channels in [534].
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8.6.1 System Description

Consider an SDMA communications system with K users. The kth user transmits data sym-

bols {bk[n]}n in the same frequency band at the same time, where bk[n] ∈ Ω and Ω is a signal

constellation set. The receiver employs an antenna array consisting of P antenna elements.

The received signal at the pth antenna element is the superposition of the convolutively

distorted signals from all users plus the ambient noise, given by

yp[n] =
K∑

k=1

L−1∑
l=0

hp,k,lbk[n− l] + vp[n],

= hH
p b[n] + vp[n], p = 1, . . . , P, (8.107)

where vp[n]
i.i.d∼ Nc(0, σ

2), L is the length of the channel dispersion in terms of number of

symbols, and

hp
�
= [hp,1,0 . . . hp,1,L−1 . . . hp,K,0 . . . hp,K,L−1]

H ,

b[n]
�
=

[
b1[n] . . . b1[n− L+ 1] . . . bK [n] . . . bK [n− L+ 1]

]T

.

Denote

y[n]
�
=

[
y1[n] . . . yP [n]

]T

,

H
�
=

[
hH

1 . . .h
H
P

]
,

and v[n]
�
=

[
v1[n] . . . vP [n]

]T

.

Then (8.107) can be written as

y[n] = Hx[n] + v[n]. (8.108)

We now look at the problem of on-line estimation of the multiuser symbols

b[n]
�
=

[
b1[n] . . . bK [n]

]T

and the channels H based on the received signals up to time n, {y[i]}n
i=1. Assume that the

multiuser symbol streams are independent and identically distributed uniformly a priori,

i.e., p(xk[n] = ai ∈ Ω) = 1/|Ω|. Denote

X[n]
�
=

[
b[1] . . . b[n]

]
,

and Y [n]
�
=

[
y[1] . . .y[n]

]
.
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Then the problem becomes one of making Bayesian inference with respect to the posterior

density

p
(
X[n],H , σ2 | Y [n]

)
∝ (

πσ2
)−n

exp
{

− 1

σ2

n∑
i=1

∥∥∥y[i] − Hb[i]
∥∥∥2}

. (8.109)

For example, an on-line multiuser symbol estimation can be obtained from the marginal

posterior distribution p(b[n]|Y [n]), and an on-line channel state estimation can be obtained

from the marginal posterior distribution p(H|Y [n]). Although the joint distribution (8.109)

can be written out explicitly up to a normalizing constant, the computation of the corre-

sponding marginal distributions involves very-high dimensional integration and is infeasible

in practice. Our approach to this problem is the sequential Monte Carlo technique.

8.6.2 SMC Blind Adaptive Equalizer for MIMO Channels

For simplicity, assume that the noise variance σ2 is known. The SMC principle suggests the

following basic approach to the blind MIMO signal separation problem discussed above. At

time n, draw m random samples{
b(j)[n]

}m

j=1
∼ q

(
b[n] | X(j)[n− 1],Y [n]

)
from some trial distribution q(·). Then update the important weights {w(j)(n)}m

j=1 according

to (8.97). The a posteriori symbol probability of each user can be then estimated as

P
(
b[n] = ai | Y [n]

)
= E

{
I(b[n] = ai) | Y [n]

}
=

1

W [n]

m∑
j=1

I
(
b(j)[n] = ai

)
w(j)[n], (8.110)

with W [n] =
m∑

j=1

w(j)[n],

for ai ∈ Ω, where I(·) is an indicator function such that I(b[n] = ai) = 1 if b[n] = ai and

I(b[n] = ai) = 0 otherwise.

Following the above discussions, the trial distribution is chosen to be

q
(
b[n] | X(j)[n− 1],Y [n]

]
= p

(
b[n] | X(j)[n− 1],Y [n]

)
; (8.111)
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and the importance weight is updated according to

w(j)[n] = w(j)[n− 1] · p
(
y[n] | X(j)[n− 1],Y [n− 1]

)
. (8.112)

We next specify the computation of the two predictive densities (8.111) and (8.112).

Assume the channel hp has an a priori Gaussian distribution, i.e.,

hp ∼ Nc(h̄p, Σ̄p). (8.113)

Then the conditional distribution of hp, conditioned on X(n) and Y (n) can be computed

as

p
(
hp | X[n],Y [n]

)
∝ p

(
X[n],Y [n] | hp

)
p(hp)

∼ Nc

(
hp[n], Σp[n]

)
, (8.114)

where

hp[n]
�
= Σp[n]

(
Σ̄

−1
p h̄p +

1

σ2

n∑
i=1

b[i]yp[i]
∗
)
, (8.115)

Σp[n]
�
=

(
Σ̄

−1
p +

1

σ2

n∑
i=1

b[i]b[i]H
)−1

(8.116)

Hence the predictive density in (8.112) is given by

p
(
y[n] | X[n− 1],Y [n− 1]

)
∝

∑
al∈ΩK

p
(
y[n] | X[n− 1],Y [n− 1], b[n] = al

)

=
∑

l

P∏
p=1

p
(
yp[n] | X[n− 1],Y [n− 1], b[n] = al

)
,

(8.117)

where

p
(
yp[n] | X[n− 1],Y [n− 1], b[n] = al

)
=

∫
p
(
yp[n] | X[n− 1],Y [n− 1], b[n] = al,hp

)
p
(
hp | X[n− 1],Y [n− 1]

)
dhp.

(8.118)
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Note that the above is an integral of a Gaussian pdf with respect to another Gaussian pdf.

The resulting distribution is still Gaussian, i.e.,

p
(
yp[n] | X[n− 1],Y [n− 1], b[n] = al

)
∼ Nc

(
µp,l[n], σ

2
p,l[n]

)
, (8.119)

with mean and variance given respectively by

µp,l[n]
�
= E

{
yp[n] | X[n− 1],Y [n− 1], b[n] = al

}
= hp[n− 1]Hb[n] |b[n]=al

, (8.120)

and σ2
p,l[n]

�
= Var

{
yp[n] | X[n− 1],Y [n− 1], b(n) = al

}
= σ2 + b[n]HΣp[n− 1]b[n] |b[n]=al

. (8.121)

Therefore (8.117) becomes

p
(
y[n] | X[n− 1],Y [n− 1]

)
∝

∑
l

P∏
p=1

ρp,l[n], (8.122)

with ρp,l[n]
�
=

1

σ2
p,l[n]

exp

{
−|yp[n] − µp,l[n]|2

σ2
p,l[n]

}
. (8.123)

The filtering density in (8.111) can be computed as follows.

p
(
b[n] = al | X[n− 1],Y [n]

)
∝ p

(
X[n− 1],Y [n], b[n] = al

)
∝ p

(
y[n] | X[n],Y [n− 1], b[n] = al

)
∝

P∏
p=1

ρp,l. (8.124)

Note that the a posteriori mean and covariance of the channel in (8.115) and (8.116) can

be updated recursively as follows. At time n, after a new sample of b[n] is drawn, we combine

it with the past samples b[n−1] to form b[n]. Let µp[n] and σ2
p[n] be the quantities computed

by (8.120) and (8.121) for the imputed b[n]. It then follows from the matrix inversion lemma

that (8.115) and (8.116) become

hp[n] = hp[n− 1] +

(
yp[n] − µp[n]

σ2
p[n]

)∗
ξ[n], (8.125)

and Σp[n] = Σp[n− 1] − 1

σ2
p[n]

ξ[n]ξ[n]H , (8.126)

with ξ[n]
�
= Σp[n− 1]b[n]. (8.127)
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Finally, we summarize the SMC-based blind adaptive equalizer in MIMO channels as

follows:

Algorithm 8.11 [SMC-based blind adaptive equalizer in MIMO channels]

• Initialization: The initial samples of the channel vectors are drawn from the following

a priori distribution

h(j)
p [0] ∼ Nc(0, 1000IKL), j = 1, . . . ,m, p = 1, . . . , P.

All importance weights are initialized as w
(j)
0 [0] = 1, j = 1, . . . ,m. Since the data

symbols are assumed to be independent, initial symbols are not needed.

The following steps are implemented at time n to update each weighted sample.

For j = 1, . . . ,m:

• For each al ∈ ΩK and p = 1, . . . , P , compute the following quantities:

µ
(j)
p,l [n] = h(j)

p [n− 1]Hb
(j)
l [n], (8.128)

σ2
p,l[n]

(j) = σ2 + b
(j)
l [n]HΣ(j)

p [n− 1]b
(j)
l [n], (8.129)

ρ
(j)
p,l [n] =

[
σ2

p,l[n]
(j)

]−1
exp

{
−

∣∣∣yp[n] − µ(j)
p,l [n]

∣∣∣2
σ2

p,l[n]
(j)

}
, (8.130)

with b
(j)
l [n]

�
= b(j)[n] |b(j)[n]=al

.

• Impute the multiuser symbol b(j)[n]: Draw b(j)[n] from the set ΩK with probability

p
(
b(j)[n] = al

)
∝

P∏
p=1

ρ
(j)
p,l , al ∈ ΩK . (8.131)

• Compute the importance weight:

w(j)[n] ∝ w(j)[n− 1] ·
∑

al∈ΩK

P∏
p=1

ρ
(j)
p,l .

Let µ
(j)
p [n] and σ2

p[n]
(j) be the quantities computed in Step 2 with al corresponding to

the imputed symbol b(j)[n].
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• Update the a posteriori mean and covariance of channels:

h(j)
p [n] = h(j)

p [n− 1] +

(
yp[n] − µ(j)

p [n]

σ2
p[n]

(j)

)∗

ξ(j)[n],

and Σ(j)
p [n] = Σ(j)

p [n− 1] − 1

σ2
p[n]

(j)
ξ(j)[n]ξ(j)[n]H ,

with ξ(j)[n]
�
= Σ(j)

p [n− 1]b(j)[n].

• Do resampling according to Algorithm 8.9 when the effective sample size m̄t in (8.103)

is below a threshold.

As an example, we consider a single-user system with single transmit and single receive

antenna, and with channel length L = 4. In Fig. 8.9 we plot the channel estimates as

a function of time by the SMC adaptive equalizer. It is seen that the channel can be

tracked quickly. Note that in general, when multiple users and/or multiple antennas are

present, there is an ambiguity problem associated with any blind methods, which can be

resolved by periodically inserting certain pattern of pilot symbols. For more discussions on

the SMC blind adaptive equalizer, see [274, 275]. Note also that it is possible (and sometimes

desirable) to make inference of the current symbols b[n] based on some both the current and

future observations, Y [n + ∆], for some ∆ > 0, i.e., to make inference with respect to

p(b[n]|Y [n + ∆]) [72, 533]. This is called delayed-estimation and such approaches will be

elaborated in the next chapter.

8.7 Appendix

8.7.1 Derivations in Section 8.4.2

Derivation of (8.34):

p(a | σ2,X,Y ) = p(a, σ2,X | Y )/ p(σ2,X | Y )︸ ︷︷ ︸
not a function of a

∝ p(a, σ2,X | Y )

∝ exp
{

− 1

2σ2

M−1∑
k=0

‖r[i] − SB[i]a‖2
}

exp
{

− 1

2
(a − a0)

T Σ−1
0 (a − a0)

}
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Figure 8.9: Convergence of the SMC blind adaptive equalizer.
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∝ exp
{

− 1

2
aT

(
Σ−1

0 +
1

σ2

M−1∑
k=0

B[i]ST SB[i]
)

︸ ︷︷ ︸
Σ−1

∗

a + aT
(
Σ−1

0 a0 +
1

σ2

M−1∑
k=0

B[i]ST r[i]
)

︸ ︷︷ ︸
Σ−1

∗ a∗

}

∝ exp
{

− 1

2
(a − a∗)T Σ−1

∗ (a − a∗)
}

∼ N (a∗, Σ∗). (8.132)

Derivation of (8.38):

p(σ2 | a,X,Y ) = p(a, σ2,X | Y )/ p(a,X | Y )︸ ︷︷ ︸
not a function of σ2

∝ p(a, σ2,X | Y )

∝
( 1

σ2

)MN
2

exp
{

− 1

2σ2

M−1∑
k=0

‖r[i] − SAb[i]‖2

︸ ︷︷ ︸
s2

}
·
( 1

σ2

) ν0
2

+1

exp
{

− ν0λ0

2σ2

}

=
( 1

σ2

) ν0+MN
2

+1

exp
{

− ν0λ0 + s2

2σ2

}
∼ χ−2

(
ν0 +MN,

ν0λ0 + s2

ν0 +MN

)
. (8.133)

Derivation of (8.41):

P (bk[i] = +1 | a, σ2,Xki,Y ) = p(a, σ2,X | Y )/ p(a, σ2,Xki | Y )︸ ︷︷ ︸
not a function of bk[i]

∝ p(a, σ2,X | Y ) ∝ ρk[i] exp
{

− 1

2σ2

M−1∑
l=0

‖r[l] − SAb[l]‖2
}

∝ ρk[i] exp
{

− 1

2σ2
‖r[i] − SAb[i]‖2

}
(8.134)

⇒ P (bk[i] = +1 | a, σ2,Xki,Y )

P (bk[i] = −1 | a, σ2,Xki,Y )

=
ρk[i]

1 − ρk[i]
· exp

{ 1

2σ2

(
‖r[i] − SA(b0

k[i] − 1k)‖2 − ‖r[i] − SA(b0
k[i] + 1k)‖2

)}
=

ρk[i]

1 − ρk[i]
· exp

{ 2

σ2
(SA1k)

T (r[i] − SAb0
k[i])

}
=

ρk[i]

1 − ρk[i]
· exp

{2Ak

σ2
sT

k (r[i] − SAb0
k[i])

}
. (8.135)

[ 1k is K-dimensional vector with all-zero entries except for the kth entry, which is 1.]
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8.7.2 Derivations in Section 8.4.3

Derivation of (8.56):

p(a | σ2
1, σ

2
2, ε, I,X,Y )

= p(a, σ2
1, σ

2
2, ε, I,X | Y )/ p(σ2

1, σ
2
2, ε, I,X | Y )︸ ︷︷ ︸

not a function of a

∝ p(a, σ2
1, σ

2
2, ε, I,X | Y )

∝ exp
{

− 1

2

M−1∑
i=0

(r[i] − SB[i]a)T Λ[i]−1(r[i] − SB[i]a)
}

exp
{

− 1

2
(a − a0)

T Σ−1
0 (a − a0)

}
∝ exp

{
− 1

2
aT

(
Σ−1

0 +
M−1∑
i=0

B[i]ST Λ[i]−1SB[i]
)

︸ ︷︷ ︸
Σ−1

∗

a + aT [Σ−1
0 a0 +

M−1∑
i=0

B[i]ST Λ[i]−1r[i]]︸ ︷︷ ︸
Σ−1

∗ a∗

}

∝ exp
{

− 1

2
(a − a∗)T Σ−1

∗ (a − a∗)
}

∼ N (a∗, Σ∗). (8.136)

Derivation of (8.59):

p(σ2
l | a, σ2

l̄ , ε, I,X,Y )

= p(a, σ2
1, σ

2
2, ε, I,X | Y )/ p(a, σ2

l̄ , ε, I,X | Y )︸ ︷︷ ︸
not a function of of σ2

l

∝ p(a, σ2
1, σ

2
2, ε, I,X | Y )

∝
( 1

σ2
l

) 1
2

∑M−1
i=0 nl[i]

exp
{

− 1

2σ2
l

M−1∑
i=0

N−1∑
j=0

(
rj[i] − ξT

j Ab[i]
)2

1{Ij [i]=l}︸ ︷︷ ︸
s2
l

}
·
( 1

σ2
l

) νl
2

+1

exp
{

− νlλl

2σ2
l

}

=
( 1

σ2
l

) νl
2

+ 1
2

∑M−1
i=0 nl[i]+1

exp
{

− νlλl + s2l
2σ2

l

}
∼ χ−2

(
νl +

∑M−1
i=0 nl[i] ,

νlλl+s2
l

νl+
∑M−1

i=0 nl[i]

)
. (8.137)

Derivation of (8.61):

P (bk[i] = +1 | a, σ2
1, σ

2
2, ε, I,Xki,Y ) = p(a, σ2

1, σ
2
2, ε, I,X | Y )/ p(a, σ2

1, σ
2
2, ε, I,Xki | Y )︸ ︷︷ ︸

not a function of xk(i)

∝ p(a, σ2
1, σ

2
2, ε, I,X | Y ) ∝ ρk[i] exp

{
− 1

2

M−1∑
l=0

(r[l] − SAb[l])T Λ[l]−1(r[l] − SAb[l])
}

∝ ρk[i] exp
{

− 1

2
(r(i) − SAb[i])T Λ[i]−1(r[i] − SAb[i])

}
(8.138)



8.7. APPENDIX 565

⇒ P (bk[i] = +1 | a, σ2
1, σ

2
2, ε,Xki,Y )

P (bk[i] = −1 | a, σ2
1, σ

2
2, ε,Xki,Y )

=
ρk[i]

1 − ρk[i]
· exp

{1

2

[
r[i] − SA(b[i] − 1k)

]T

Λ[i]−1
[
r[i] − SA(b[i] − 1k)

]
−
[
r[i] − SA(b[i] + 1k)

]T

Λ[i]−1
[
r[i] − SA(b[i] + 1k)

] }
=

ρk[i]

1 − ρk[i]
· exp

{
2(SA1k)

T Λ[i]−1(r[i] − SAb0
k[i])}

=
ρk[i]

1 − ρk[i]
· exp

{
2Aks

T
k Λ[i]−1(r[i] − SAb0

k[i])
}
. (8.139)

Derivation of (8.62):

P [Ij(i) = l | a, σ2
1, σ

2
2, ε, Iji,X,Y ] = p(a, σ2

1, σ
2
2, ε, I,X | Y )/ p(a, σ2

1, σ
2
2, ε, Iji,X | Y )︸ ︷︷ ︸

not a function of of Ij(i)

∝ p(a, σ2
1, σ

2
2, ε, I,X | Y ) ∝ P [Ij(i) = l | ε] · 1√

σ2
l

exp
{

− 1

2σ2
l

(
rj[i] − ξT

j Ab[i]
)2}

(8.140)

⇒ P (Ij[i] = 1 | a, σ2
1, σ

2
2, ε, Iji,X,Y )

P (Ij[i] = 2 | a, σ2
1, σ

2
2, ε, Iji,X,Y )

=
1 − ε
ε

·
√
σ2

2

σ2
1

· exp
{ 1

2

(
rj[i] − ξT

j Ab[i]
)2 ( 1

σ2
2

− 1

σ2
1

) }
. (8.141)

Derivation of (8.63):

p(ε | a, σ2
1, σ

2
2, I,X,Y )

= p(a, σ2
1, σ

2
2, ε, I,X | Y )/ p(a, σ2

1, σ
2
2, I,X | Y )︸ ︷︷ ︸

not a function of ε

∝ p(a, σ2
1, σ

2
2, ε, I,X | Y ) ∝ p(ε) p(I | ε)

∝ εa0−1(1 − ε)b0−1 · ε
∑M−1

i=0 n2[i](1 − ε)
∑M−1

i=0 n1[i]

∼ Beta
(
a0 +

∑M−1
i=0 n2[i], b0 +

∑M−1
i=0 n1[i]

)
. (8.142)

8.7.3 Proof of Proposition 8.1 in Section 8.5.2

Note that

wt = wt−1 · p(Zt | Y t)

p(Zt−1 | Y t−1)q(zt | Zt−1,Y t)
(with w0 = 1)
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=
t∏

i=1

p(Zi | Y i)

p(Zi−1 | Y i−1) q(zi | Zi−1,Y i)

=
p(Zt | Y t)

p(z0 | y0)
∏t

i=1 q(zi | Zi−1,Y i)
(8.143)

The numerator in (8.143) is the target distribution, and the denominator is the sampling

distribution from which Zt was generated. Hence, for any measurable function h(·), we have

E
{
h(Z

(j)
t )w

(j)
t

}
=

∫
h(Zt)

p(Zt | Y t)

p(z0 | y0)
∏t

i=1 q(zi | Zi−1,Y i)

[
p(z0 | y0)

t∏
i=1

q(zi | Zi−1,Y i)

]
dZt

=

∫
h(Zt) p(Zt | Y t)dZt = E {h(Zt) | Y t} . (8.144)

Finally note that both (8.90) and (8.91) are special cases of (8.144).

8.7.4 Proof of Proposition 8.2 in Section 8.5.3

In this section we verify the correctness of the residual resampling under a general setting.

Let (x
(j)
t , w

(j)
t ) be a properly weighted sample with respect to p(xt|Y t) - without loss of

generality, we assume that
m∑

j=1

w
(j)
t = m - and let

{
x̃

(j)
t

}m

j=1
be the set of samples generated

from the residual resampling scheme. The new set consists of kj = �w(j)
t  copies of the

sample x
(j)
t for j = 1, . . . ,m, and Kr = m−

m∑
j=1

kj i.i.d. samples drawn from set
{

x
(j)
t

}m

j=1

with probability proportional to 1
Kr

(
w

(j)
t − �w(j)

t 
)
. The weights for the new samples are

set to 1. Hence,

E

[
1

m

m∑
j=1

h(x̃
(j)
t )

]
= E

{
E

[
1

m

m∑
j=1

h(x̃
(j)
t )

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

=
1

m
E

{
m∑

j=1

h(x
(j)
t )�w(j)

t  +
m∑

j=m−Kr+1

E

[
h(x̃

(j)
t )

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

=
1

m
E

{
m∑

j=1

h(x
(j)
t )�w(j)

t  +KrE

[
h(x̃t)

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

=
1

m
E

{
m∑

j=1

h(x
(j)
t )�w(j)

t  +Kr

m∑
j=1

h(x
(j)
t )
w

(j)
t − �w(j)

t 
Kr

}
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=
1

m
E

{
m∑

j=1

h(x
(j)
t )w

(j)
t

}
= E{h(xt) | Y t}. (8.145)

Furthermore,

Var

{
1

m

m∑
j=1

h(x̃
(j)
t )

}
= Var

{
E

[
1

m

m∑
j=1

h(x̃
(j)
t )

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

+E

{
Var

[
1

m

m∑
j=1

h(x̃
(j)
t )

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

= Var

{
1

m

m∑
j=1

h(x
(j)
t )w

(j)
t

}
+ E

{
Kr

m2
Var

[
h(x̃t)

∣∣∣∣ {x
(j′)
t , w

(j′)
t

}m

j′=1

]}

≤ 1

m
Var{h(xt)wt} + E

{
Kr

m2

m∑
j=1

(h(x
(j)
t ))2 (w

(j)
t − �w(j

t ))
Kr

}

≤ 1

m
Var{h(xt)wt} +

1

m2
E

{
m∑

j=1

(h(x
(j)
t ))2 min{1, w(j)

t }
}

≤ 1

m
Var{h(xt)wt} +

1

m
E{(h(xt))

2wt} → 0 as m→ ∞. (8.146)

Here we assume that Var{h(xt)wt} < ∞. Hence, 1
m

∑m
j=1 h(x̃

(j)
t ) → E{h(xt)|Y t} in proba-

bility.
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Chapter 9

Signal Processing Techniques for Fast

Fading Channels

9.1 Introduction

As noted in Chapter 1, mobile wireless communication systems are affected by propagation

anomalies due to terrain or buildings which cause multipath reception, producing extreme

variations in both amplitude and apparent frequency in the received signals, a phenomenon

which is known as fading. Signal reception in such channels presents new challenges, and

dealing with these is the main theme of this chapter. Channel estimation and data detection

in various fading channels have been the subjects of intensive research over the past two

decades. In what follows we provide a brief overview of the literature in this area.

Single-user Receivers in Frequency-Flat Fading Channels: Narrowband mobile communica-

tions for voice and data can be modelled as signaling over frequency-nonselective Rayleigh

fading channels. Depending on the fading rate relative to the data rate, the fading process

can be categorized as either slow (time-nonselective) fading, where the fading process is as-

sumed to remain constant over one symbol interval and to vary from symbol to symbol; or fast

(time-selective) fading, where the fading process is assumed to vary within the symbol inter-

val. A considerable amount of recent research has addressed the problem of data detection

in frequency-nonselective fading channels. Specifically, various techniques for maximum-

likelihood sequence estimation (MLSE) in slow fading channels have been proposed. The

569
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optimal solutions under several fading models are studied in [164, 282, 303], and the exact

implementations of these solutions involve very high-dimensional filtering. Most suboptimal

schemes employ a two-stage receiver structure, with a channel estimation stage followed by a

sequence detection stage. Channel estimation is typically implemented by a Kalman filter or

a linear predictor, and is facilitated by per-survivor processing [391, 516], decision-feedback

[164, 219, 278], pilot symbols [66, 89, 230, 332], or a combination of the above [212]. Other

alternative solutions to MLSE in slow fading channels include a method based on a combi-

nation of hidden Markov model and Kalman filtering [81, 82], and the approach based on

the expectation-maximization (EM) algorithm [135]. Moreover, in [136, 177], turbo receiver

techniques for joint demodulation and decoding in flat-fading channels are developed.

Data detection over fast fading channels has also been addressed in the recent literature.

In [168, 515, 517], a linearly time-varying model is used to approximate the time varia-

tion within a symbol interval of a time-selective fading process, and several double-filtering

receiver structures are developed. Another approach [355] that has been investigated is to

sample the received signal at a multiple of the symbol rate, and to track the channel variation

within a symbol interval using a nonlinear filter. Extensions to this method have been made

to address the issue of tracking the random phase drift [246, 247] and the carrier frequency

Doppler shift [354] in fast fading channels.

Single-user Receivers in Frequency-Selective Fading Channels: Multipath effects over fad-

ing channels that cause time-varying intersymbol interference (ISI), constitutes a severe im-

pediment to high-speed wireless communications. Although equalization of time-invariant

channels has been an active research area for almost four decades [105], equalization of

time-varying fading channels presents substantial new challenges and has received signifi-

cant attention only recently, due to its potential for wide-spread application in high-speed

wireless data/multimedia applications. Maximum likelihood sequence estimation receivers

for time-varying ISI channels with known channel state information are studied in [48, 168],

which are generalizations of the Ungerboeck receiver for time-invariant channels [493]. In

[88, 309, 480, 589], several MLSE receiver structures are developed that are based on the

known second-order statistics of the fading process, instead of the actual channel state.

When the fading statistics are unknown, they are usually estimated from the data in a

training-assisted mode or decision-directed mode [91, 169, 237, 243, 266, 494]. Furthermore,
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symbol-by-symbol maximum a posteriori (MAP) schemes for equalizing time-varying fading

channels have also been studied [21, 22, 23, 472], where channel estimation is facilitated by

some ad hoc Kalman-type nonlinear estimators, which take as inputs the a posteriori prob-

abilities of the ISI channel state and the received signal. Related to these methods are the

Bayesian equalization techniques developed for time-invariant ISI channels [73, 146, 209, 242],

which essentially model the channel coefficients as slowly time-varying processes. Moreover,

orthogonal frequency-division modulation (OFDM) techniques convert a frequency-selective

fading channel into a set of parallel frequency-flat fading channels. Channel estimation and

data detection methods in OFDM systems are developed in [107, 256, 257, 260, 261].

Another approach to equalization of time-varying channels, found in the signal processing

literature [269, 477, 479], is to model the time-varying channel impulse response function

by a superposition of deterministic time-varying basis functions (e.g., complex exponentials)

with time-invariant coefficients [144]. Such a model effectively converts the time-varying ISI

channel into a time-invariant ISI channel. High-order statistic (HOS)-based and second-order

statistic (SOS)-based equalization methods for time-invariant channels can then be employed

to identify the channel coefficients, and thus identify and equalize the time-varying channel.

Multiuser Receivers in Fading Channels: Of course, data detection in multiuser fading

channels has been addressed from a number of perspectives. Derivation and analysis of the

optimum multiuser detection schemes under various fading channels are found in [61, 425,

503, 504, 505, 506, 538, 605]. Suboptimal linear multiuser detection methods for fading

channels are developed in [223, 425, 459, 538, 571, 606, 607]. Techniques for joint fading

channel estimation and multiuser detection that are based on the EM algorithm are proposed

in [87, 116]. Moreover, adaptive linear multiuser detection in fading channels has been

studied in [25, 180, 184, 538, 603].

A few recent works have addressed the exploitation of coded signal structure in sequence

estimation. In [587] the reduced-state sequence estimation (RSSE) [101, 110, 111, 552, 553]

technique is integrated with an error-detection code for channel equalization. In this method,

some subset of the set of all possible paths in the trellis are generated to satisfy the code

constraints. Similar ideas have also been applied to joint channel and data estimation where

the estimation procedure is forced to yield valid code-constrained path sequences [52, 53, 208].

The remainder of this chapter is organized as follows. In Section 9.2, we discuss statistical
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modelling of multipath fading channels. In Section 9.3, we present coherent receiver tech-

niques for fading channels based on the expectation-maximization algorithm. In Section 9.4,

we discuss decision-feedback-based low-complexity differential receiver techniques in fading

channels. In Section 9.5, we present adaptive receiver techniques in fading channels that are

based on the sequential Monte Carlo methodology.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 9.1: EM algorithm for pilot-symbol-aided receiver in flat-fading channels;

• Algorithm 9.2: Multiple-symbol decision-feedback differential detection;

• Algorithm 9.3: Differential space-time decoding;

• Algorithm 9.4: Multiple-symbol decision-feedback space-time differential decoding;

• Algorithm 9.5: SMC for adaptive detection in flat-fading channels - Gaussian noise;

• Algorithm 9.6: Delayed-sample SMC algorithm for adaptive detection in flat fading

channels - Gaussian noise;

• Algorithm 9.7: SMC algorithm for adaptive decoding in flat fading channels - Gaussian

noise;

• Algorithm 9.8: SMC algorithm for adaptive detection in flat-fading channels - impulsive

noise.

9.2 Statistical Modelling of Multipath Fading Chan-

nels

We first describe the statistical modelling of mobile wireless channels. We will follow [388]

closely. For a typical terrestrial wireless channel, we can assume the existence of multiple

propagation paths between the transmitter and the receiver. With each transmission path we

can associate a propagation delay and an attenuation factor, which are usually time-varying

due to changes in propagation conditions resulting primarily from transceiver mobility. In
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the absence of additive noise, the received complex baseband signal in such a channel is given

by

y(t) =
∑

n

αn(t)x(t− τn(t)) e−2πfcτn(t), (9.1)

where x(t) is the transmitted baseband signal; αn(t) and τn(t) are, respectively, the path

attenuation and the propagation delay for the signal received on the nth path; and fc is

the carrier frequency. By inspecting (9.1), we can model the multipath fading channel by a

time-varying linear filter with impulse response h(τ, t) given by

h(τ, t) =
∑

n

αn(t) e−2πfcτn(t). (9.2)

For some mobile channels, we can further assume that the received signal consists of a

continuum of multipath components. Accordingly, for these channels, (9.1) is modified as

follows

y(t) =

∫ ∞

−∞
α(τ, t)x(t− τ) e−2πfcτ dτ, (9.3)

where α(τ, t) denotes the attenuation factor associated with a path delayed by τ at time

instant t. The corresponding baseband time-varying impulse response of the channel is then

h(τ, t) = α(τ, t) e−2πfcτ . (9.4)

By the central limit theorem, assuming a large enough number of multiple paths between

the transmitter and the receiver, and by further assuming that the associated attenuations

per path are independent and identically distributed, the impulse response h(τ, t) can be

modelled by a complex-valued Gaussian random process. If the received signal r(t) has only

a diffuse multipath component, h(τ, t), is characterized by a zero-mean complex Gaussian

random variable, i.e., |h(τ, t)| has a Rayleigh distribution. In this case the channel is called a

Rayleigh fading channel. Alternatively, if there are fixed scatterers or signal reflections in the

medium, h(τ, t) has a non-zero mean value and therefore |h(τ, t)| has a Rician distribution.

In this case the channel is a Rician fading channel.

We will assume that the fading process h(τ, t) is wide-sense stationary in t, and define

its corresponding autocorrelation function as

Rh(τ1, τ2;∆t) =
1

2
E {h(τ1, t)h(τ2, t+∆t)∗} . (9.5)
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A further reasonable assumption for most mobile communication channels is that the atten-

uation and phase shift associated with path delay τ1 are uncorrelated with the corresponding

attenuation and phase shift associated with a different path delay τ2. This situation is known

as uncorrelated scattering. Thus (9.5) can be expressed as

Rh(τ1, τ2;∆t) = Rh(τ1, ∆t) · δ(τ1 − τ2), (9.6)

where Rh(τ,∆t) represents the average channel power as a function of the time delay τ and

the difference ∆t in observation time. The multipath spread of the channel, Tm, is the range

of values of the path delay τ for which Rh(τ, 0) is essentially constant. Let Sh(f,∆t) =

Fτ{Rh(τ,∆t)}, i.e., the Fourier transform of Rh(τ,∆t) with respect to τ . Then Sh(f,∆t) is

essentially the frequency response function of the linear time-varying channel. The coherence

bandwidth of the channel, Bc, is the range of values of frequency f for which Sh(f, 0) is

essentially constant. Hence the multipath delay spread Tm and the coherence bandwidth Bc

are related reciprocally, i.e., Bc ≈ 1
Tm

. Roughly speaking, the channel frequency response

remains the same within the coherence bandwidth Bc. Let W be the bandwidth of the

transmitted signal. When W < Bc, the channel is called frequency-selective fading; and

when W > Bc, the channel is called frequency non-selective fading or flat-fading.

We can also take the Fourier transform of Rh(τ,∆t) with respect to ∆t, to obtain the so-

called scattering function Sh(τ, λ) = F∆t{Rh(τ,∆t)}. The Doppler spread of the channel, Bd,

is the range of values of frequency λ for which Sh(0, λ) is essentially constant. The channel

coherence time is given by Tc ≈ 1
Bd

. Roughly speaking, the channel time response remains

the same within the coherence time Tc. Let T be the symbol interval of the transmitted

signal. When T < Tc, (i.e., small Doppler), the channel is said to be time-non-selective

fading or slow fading; and when T > Tc, (i.e., large Doppler), the channel is said to be

time-selective fading or fast fading.

9.2.1 Frequency-non-selective Fading Channels

Note from (9.3) and (9.4) we have

y(t) = x(τ) � h(τ, t) =

∫
X(f)H(f, t)e2πftdf, (9.7)

where X(f) = F{x(τ)}, and H(f, t) = Fτ{h(τ, t)}. Assume that the channel fading is

frequency-non-selective (flat), i.e., W � Bc, then the channel frequency response H(f, t) is
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approximately constant over the signal bandwidth, i.e., H(f, t) = g(t). In this case (9.7) can

be written as

y(t) = g(t)

∫
X(f)e2πftdf = g(t)x(t). (9.8)

Hence the effect of a flat-fading channel can be modelled as a time-varying multiplicative

distortion. Note that since h(τ, t) is assumed to be a complex Gaussian process, then g(t) is

also a complex Gaussian process. When the fading is Rayleigh, we have E{g(t)} = 0. The

autocorrelation function of g(t) is given by the so-called Jakes’ model [213]:

Rg(∆t)
�
=

1

2
E {g(t) g(t+∆t)∗} = P J0(2πBd∆t), (9.9)

where P is the average power of the fading process, i.e., P = E {|g(t)|2}, and J0(·) is

the Bessel function of the first kind and zero-th order. The corresponding Doppler power

spectrum of the channel is then given by

Sg(λ) = F{Rg(∆t)} =
P

π

√
1 −

(
λ

Bd

)2
. (9.10)

9.2.2 Frequency-selective Fading Channels

Now assume that the transmitted baseband signal has a bandwidth of W , and W � Bc,

i.e., the channel exhibits frequency-selective fading. By the sampling theorem, we have

x(t) =
∞∑

n=−∞
x
( n
W

)
sinc

[
πW

(
t− n

W

)]
, (9.11)

and X(f) = F{x(t)} =
1

W

∞∑
n=−∞

x
( n
W

)
e− 2πfn

W , |f | ≤ W

2
. (9.12)

Hence the noiseless received signal is given by

y(t) =

∫
X(f)H(f ; t)e2πftdf

=
1

W

∞∑
n=−∞

x
( n
W

)∫
H(f, t)e2πf(t− n

W )df

=
1

W

∞∑
n=−∞

x
( n
W

)
h
(
t− n

W
, t
)

=
1

W

∞∑
n=−∞

h
( n
W
, t
)
x
(
t− n

W

)
. (9.13)
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Let L
�
= �WTm + 1	, then for practical purposes we can use the following truncated tapped-

delay-line model to describe the frequency-selective fading channel [388]

y(t) =
L−1∑
l=0

hl(t)x
(
t− n

W

)
, (9.14)

where hl(t)
�
= 1

W
h
(

l
W
, t
)
, and {hl(t)}L−1

l=0 contains independent complex Gaussian processes.

9.3 Coherent Detection in Fading Channels Based on

the EM Algorithm

As will be seen below, the maximum-likelihood sequence detector in fading channels typically

has prohibitive computational complexity. The expectation-maximization (EM) algorithm

is an iterative technique for solving complex maximum-likelihood estimation problems. In

this section, we discuss sequence detection in fading channels based on the EM algorithm.

Both the batch algorithm and the sequential algorithm will be discussed.

9.3.1 The Expectation-Maximization Algorithm

Suppose θ is a set of parameters to be estimated from some observed data Y . The maximum-

likelihood (ML) estimate θ̂ of θ is given by

θ̂ = arg max
θ
p(Y | θ), (9.15)

where p(Y |θ) denotes the probability density of Y with θ fixed. In many cases, an explicit

expression for the conditional density p(Y |θ) does not exist. In other cases, the above

maximization problem is very difficult to solve, even though the conditional density can be

explicitly expressed. The expectation-maximization (EM) algorithm [245, 310] is an iterative

procedure for solving the above ML estimation problem in many such situations.

In the EM algorithm, the observation Y is termed incomplete data. The algorithm postu-

lates that one has access to complete data X, which is such that Y can be obtained through

a many-to-one mapping. Typically the complete data is chosen such that the conditional

density p(X|θ) is easy to obtain and maximize over θ. Starting from some initial estimate
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θ(0), the EM algorithm solves the ML estimation problem (9.15) by the following iterative

procedure:

• E-step: Compute

Q
(
θ | θ(i)

)
= E

{
log p(X|θ) | Y ,θ(i)

}
. (9.16)

• M-step: Solve

θ(i+1) = arg max
θ
Q

(
θ | θ(i)

)
. (9.17)

It is known that the sequence
{

θ(i)
}

i
obtained in the above EM algorithm monotonically

increases the incomplete-data likelihood function, i.e.,

p
(
Y | θ(i+1)

)
≥ p

(
Y | θ(i)

)
. (9.18)

Moreover, if the function Q(θ; θ′) is continuous in both θ and θ′, then all limit points of an

EM sequence
{

θ(i)
}

i
are stationary points of p(Y |θ) (i.e., local maxima or saddle points)

and p
(
Y |θ(i)

)
converges monotonically to p

(
Y |θ̂

)
for some stationary point θ̂ [245, 310].

9.3.2 EM-based Receiver in Flat-Fading Channels

We consider the following discrete-time flat-fading channel

rn = αn sn + vn, n = 0, 1, . . . ,M − 1, (9.19)

where {αn} is the complex Gaussian fading process, {sn} is a sequence of transmitted phase-

shift-keying (PSK) symbols (|sn| = 1), and {vn} is a sequence of i.i.d. Gaussian noise

samples. Define the following notations:

r = [r0 r1 . . . rM−1]
T ,

s = [s0 s1 . . . sM−1]
T ,

S = diag{s0 s1 . . . sM−1},
α = [α0 α1 . . . αM−1]

T ,

and v = [v0 v1 . . . vM−1]
T .
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Then (9.19) can be written as

r = Sα + v. (9.20)

Note that both α and v are complex Gaussian vectors, namely,

α ∼ Nc(0, Es ΣM), (9.21)

and v ∼ Nc(0, σ
2IM), (9.22)

where Es is the average received signal energy. For mobile fading channels, the normalized

M ×M autocorrelation matrix has elements given by the Jakes’ model as

ΣM [i, j] = J0

(
2πBdT (i− j)

)
, (9.23)

where BdT is the symbol-rate normalized Doppler shift and J0(·) is the Bessel function of

the first kind and zero-th order. Hence r in (9.20) has the following complex Gaussian

distribution

r ∼ Nc

(
0, Es SΣMSH + σ2IM︸ ︷︷ ︸

Q

)
, (9.24)

and the log-likelihood function of r given S is thus given by

log p(r | s) = −rHQ−1r − log det(Q) −M log π. (9.25)

Note that

Q−1 =
[
S
(
EsΣM + σ2IM

)
SH

]−1

= E−1
s S

(
ΣM +

σ2

Es

IM

)−1

SH , (9.26)

and det(Q) = det
[
S
(
EsΣM + σ2IM

)
SH

]
= det(S) det

(
EsΣM + σ2IM

)
det

(
SH

)
= det

(
EsΣM + σ2IM

)
, (9.27)

where we have used the facts that SSH = SHS = IM and det(S) = 1, since S is a diagonal

matrix containing PSK symbols. Hence the ML estimate of s becomes

ŝ = arg min
s

rHS

(
ΣM +

σ2

Es

IM

)−1

SHr. (9.28)
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The optimal solution involves an exhaustive enumeration of all possible PSK sequences of

length M , which is certainly prohibitively complex even for moderate M .

The EM algorithm was applied to solve the above fading channel detection problem in

[135]. In order to use the EM algorithm, we define the complete data as consisting of the

incomplete data r together with the fading process α, i.e., x = (r,α). Then the log-

likelihood function of the complete data is

log p(x | s) = −‖r − Sα‖2 + terms not depending on S

= 2�{
rHSα

}
+ terms not depending on S (9.29)

Hence the E-step computes the following quantity:

Q
(
s | s(i)

)
= E

{�{
rHSα

} | r, s(i)
}

= �
{

rHS E
{
α | r, s(i)

}}
. (9.30)

Since given s = s(i), r and α are jointly Gaussian, we then have

α̂(i) �
= E

{
α | r, s(i)

}
= Cov(α, r) Cov(r)−1 r

= Es ΣMS(i)HQ−1r

= ΣM

(
ΣM +

σ2

Es

IM

)−1

S(i)Hr. (9.31)

The maximization step becomes

s(i+1) = arg max�
{

rHSα̂(i)
}

=⇒ s(i+1)
n = arg max

sn

�{
r∗n sn α̂

(i)
n

}
, n = 0, . . . ,M − 1. (9.32)

An initial estimate of the data symbol sequence s(0) can be obtained with the aid of pilot

symbols as follows. Suppose we choose M such that M = NL + 1, where N and L are

positive integers. Suppose further that the symbols in positions 0, N, 2N, . . . , (L− 1)N are

known. Then the initial channel estimates at these positions are given by

α(−1)
n = rn s

∗
n, n = 0, N, . . . , LN. (9.33)

And the initial channel estimates at other positions are obtained by linear interpolation;

that is

α
(−1)
kN+m = α

(−1)
kN +

m

N

[
α

(−1)
(k+1)N − α(−1)

kN

]
, k = 0, . . . , L− 1, m = 1, . . . , N − 1.(9.34)
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Substituting the above initial channel estimate α(−1) into (9.32), we obtain the initial symbol

estimate s(0).

Finally we summarize the EM-based pilot-symbol-aided receiver algorithm in flat-fading

channels as follows.

Algorithm 9.1 [EM algorithm for pilot-symbol-aided receiver in flat-fading channels]

• Initialization: Based on the pilot symbol information, obtain an initial channel estimate

α(−1) using (9.33) and (9.34). Substitute α(−1) into (9.32) and compute the initial

symbol estimate s(0).

• For i = 1, . . . , I, iterate the following E- and M- steps (where I is the number of EM

iterations):

– E-step: Compute α(i) according to (9.31).

– M-step: Compute s(i+1) according to (9.32).

9.3.3 Linear Multiuser Detection in Flat-Fading Synchronous

CDMA Channels

The EM-based receiver discussed above can easily be applied to synchronous CDMA sys-

tems in flat-fading channels. The basic idea is to use a linear multiuser detector, e.g., the

decorrelating detector, to separate the multiuser signals, and then to employ an EM receiver

for each user to demodulate its data [546]. This is briefly discussed next.

We consider the following simple K-user synchronous CDMA system signaling through

flat-fading channels. The received signal during the ith symbol interval is given by

r(t) =
K∑

k=1

Akαk[i]bk[i]sk(t− iT ) + n(t), iT ≤ t < (i+ 1)T, (9.35)

where αk[i] is the complex fading gain of the kth user’s channel during the ith symbol interval;

Ak is the amplitude of the kth user; bk[i] ∈ {+1,−1} is the ith bit of the kth user; {sk(t), 0 ≤
t ≤ T} is the unit-energy spreading waveform of the kth user; and n(t) is white complex

Gaussian noise with power spectral density σ2. The received signal is correlated with the
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signature waveform of each user, to obtain the decision statistic:

yk[i] =

∫ (i+1)T

iT

r(t) sk(t− iT ) dt

=
K∑

j=1

Ajρjkαj[i]bj[i] + vk[i], (9.36)

where ρjk =

∫ T

0

sj(t) sk(t) dt, and vk[i] =

∫ T

0

n(t) sk(t − iT ) dt. On denoting y[i] =[
y1[i] y2[i] . . . yK [i]

]T

, we can write

y[i] = RAΦ[i]b[i] + v[i], (9.37)

where R = [ρjk], A = diag{A1, . . . , AK}, Φ[i] = diag{α1[i], . . . , αK [i]}, b[i] =[
b1[i] b2[i] . . . bK [i]

]T

, and v[i] =
[
v1[i] v2[i] . . . vK [i]

]T

. Note that v[i] ∼ Nc (0, σ2R).

The multiuser signals y[i] in (9.37) can be separated by a linear decorrelator, to obtain

z[i] = R−1y[i] = AΦ[i]b[i] + u[i], (9.38)

with u[i] ∼ Nc

(
0, σ2R−1

)
. We can write (9.38) in scalar form as

zk[i] = Ak αk[i] bk[i] + uk[i], k = 1, . . . , K, (9.39)

with uk[i] ∼ Nc

(
0, σ2[R−1]kk

)
. We see that for each User k, the output of the decorrelating

detector (9.39) is of exactly the same form as (9.19). Hence with the aid of pilot symbols,

the EM receiver discussed in Section 9.3.2 can be employed to demodulate the kth user’s

data {bk[i]}i, k = 1, . . . , K.

An alternative suboptimal receiver structure for demodulating the kth user’s data uses

a Kalman filter to track the fading channel {αk[i]}i, based on training symbols or decision-

feedback [538, 569, 570]. For example, in the simplest setting, the fading coefficients {αk[i]}i

may be modelled by a second-order autoregressive (AR) process, i.e.,

αk[i] = −a1αk[i− 1] − a2αk[i− 2] + w[i], (9.40)

where w[i] is a zero-mean white complex Gaussian process. The parameters a1 and a2 are

chosen to fit the spectrum of the AR process to that of the underlying Rayleigh fading process.
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On the other hand, a statistically equivalent representation of the linear decorrelator output

(9.39) is

zk[i]bk[i] = Ak αk[i] + uk[i], (9.41)

where we have invoked the symmetry of the distribution of uk[i]. Based on the state equation

(9.40) and the observation equation (9.41), we can use a Kalman filter to track the fading

channel coefficients {αk[i]}i and subsequentially detect the data symbols. Note that in

(9.41), the data symbols {bk[i]}i are assumed known – this is the case when they are training

symbols. When these symbols are unknown, they are replaced by the detected symbols

{b̂k[i]}i. Such a decision-directed scheme is subject to error propagation of course, and thus

requires periodic insertion of training symbols.

9.3.4 The Sequential EM Algorithm

The EM algorithm discussed above is a batch algorithm. We next briefly describe a sequential

version of the EM algorithm [473, 555]. Suppose y1,y2, . . . is a sequence of observations with

marginal pdf f(y|θ), where θ ∈ C
m is a static parameter vector, for some m. A class of

sequential estimators derived from the maximum-likelihood principle is given by

θ(i+1) = θ(i) + Π
(
yi+1,θ

(i)
)

s
(
yi+1,θ

(i)
)
, (9.42)

where θ(i) is the estimate of θ at the ith step; Π
(
yi+1,θ

(i)
)

is an m × m matrix defined

later in this section; and

s
(
yi+1,θ

(i)
)

�
=

[
∂

∂θ∗1
log f(yi+1|θ), · · · , ∂

∂θ∗m
log f(yi+1|θ)

]T ∣∣∣∣
θ=θ(i)

(9.43)

is the update score (i.e., the gradient of the log-likelihood function). Let H
(
yi,θ

(i)
)

denote

the Hessian matrix of log f(yi|θ(i)), i.e.,

Hj,k

(
yi,θ

(i)
)

=
∂2

∂θ∗j ∂θk
log f(yi|θ)

∣∣∣
θ=θ(i) , j = 1, · · · ,m, k = 1, · · · ,m. (9.44)

Let xi denote a “complete” data set related to yi, for i = 1, 2, · · ·. The complete data

set xi is selected in the (sequential) EM algorithm such that yi can be obtained through

a many-to-one mapping xi → yi, and so that its knowledge makes the estimation problem
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easy (for example, the conditional density f(xi|θ) can be easily obtained). Denote the Fisher

information matrix of the data yi and xi, respectively, as

I
(
θ(i)

)
= −E

{
H

(
yi,θ

(i)
)}

and Ic

(
θ(i)

)
= −E

{
H

(
xi,θ

(i)
)}
.

Different versions of sequential estimation algorithms are characterized by different choices

of the function Π
(
yi+1,θ

(i)
)
, as follows in (9.42).

• The sequential EM algorithm:

Π
(
yi+1,θ

(i)
)

=
1

i
I−1

c

(
θ(i)

)
. (9.45)

The consistency and asymptotic normality of this algorithm are considered in [473].

Applications of the sequential EM algorithm to communications and signal processing

problems are reported in [120, 236, 235, 555, 591, 592].

• The Newton-Raphson algorithm:

Π
(
yi+1,θ

(i)
)

= −H−1
(
yi+1,θ

(i)
)
. (9.46)

• A stochastic approximation procedure:

Π
(
yi+1,θ

(i)
)

=
1

i
I−1

(
θ(i)

)
. (9.47)

Note that, for independent and identically distributed (i.i.d.) observations {yi}, if i in

(9.47) is replaced by (i + 1), we obtain the maximum-likelihood estimator (MLE) of

θ for exponential families [473]. The asymptotic distribution of this procedure can be

found in [112, 419].

• If Π
(
yi+1,θ

(i)
)

is a constant diagonal matrix with small elements, then (9.42) is the

conventional steepest-descent algorithm. Some other related choices of Π
(
yi+1,θ

(i)
)

are suggested in [473].

• For time-variant parameters {θ(i)}, a conventional approach suggested in [120, 281] is

to substitute the converging series 1/i in (9.45) with a small positive constant λ0. The

new estimator is given by

θ̂(i+ 1) = θ̂(i) + λ0 I−1
c

(
θ̂(i)

)
s
(
yi+1, θ̂(i)

)
, (9.48)

where θ̂(i) is the estimate of θ(i).
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9.4 Decision-Feedback Differential Detection in Fading

Channels

9.4.1 Decision-Feedback Differential Detection in Flat-Fading

Channels

The coherent detection methods discussed in the previous section requires explicit or implicit

estimation of the fading channel, which in turn requires the transmission of pilot or training

symbols. In this section, we discuss decision-feedback differential detection in flat-fading

channels, which does not require channel estimation. Consider again the signal model (9.19).

Assume that the transmitted symbols {sn} are the outputs of a differential encoder, i.e.,

sn = ansn−1, (9.49)

where {an} is a sequence of PSK information symbols. In simple differential detection, the

complex plane is divided into M disjoint sectors, where M is the size of the PSK signal-

ing alphabet. The detected information symbol ân is determined by the sector into which

the complex number
(
rnr

∗
n−1

)
falls. Such a simple differential detection rule incurs a 3dB

performance loss compared with coherent detection in AWGN channels [388]. In flat-fading

channels, however, it exhibits an irreducible error floor in the high SNR region [218]. For

example, for binary DPSK, we have

lim
Es
σ2 →∞

Pe

(
Es/σ

2
)

=
1 − ρ

2
, (9.50)

where ρ is the correlation coefficient between the fading gains at two consecutive symbol

intervals.

Multiple-symbol decision-feedback differential detection was developed in [432]. This

method makes use of the correlation function of the channel, and can significantly reduce

the error floor of simple differential detection. In multiple-symbol differential detection

[96, 97, 175, 227], an observation interval of length N is introduced. Define the following

quantities:

rn = [rn rn−1 . . . rn−N+1]
T ,

αn = [αn αn−1 . . . αn−N+1]
T ,
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vn = [vn vn−1 . . . vn−N+1]
T ,

Sn = diag{sn, sn−1, . . . , sn−N+1},
and an = [an an−1 . . . an−N+2]

T .

Similarly to (9.24)-(9.25), we can write the log-likelihood function as

log p(rn | an) = −rH
n Q−1

a rn − log det(Qa) −N log π, (9.51)

where

Q−1
a = E−1

s Sn

(
ΣN +

σ2

Es

IN

)−1

︸ ︷︷ ︸
T

SH
n , (9.52)

and det(Qa) = det
(
EsΣN + σ2IN

)
. (9.53)

The maximum -likelihood decision metric thus becomes

ân = arg min
an

ρ(an)
�
= rH

n SnTSH
n rn. (9.54)

Since T−1 is symmetric, so is T . That is, if we denote T = [tij], then tij = tji. Hence we

can write

ρ(an) =
N−1∑
i=0

N−1∑
j=0

tijsn−is
∗
n−jr

∗
k−irk−j

=
N−1∑
i=0

tii|sn−i|2|rn−i|2 + 2�
{

N−1∑
i=0

N−1∑
j=i+1

tijrn−jr
∗
n−i

j−1∏
l=i

an−l

}
, (9.55)

where (9.55) follows from (9.49). In decision-feedback differential detection, the previous

information symbols an−1, an−2, . . . , an−N+2 in (9.55) are assumed to take values given by the

previous decisions, i.e., ân−1, ân−2, . . . , ân−N+2, and we will make a decision on the current

information symbol an to minimize the above cost function ρ(an). To that end, such a

decision rule can be simplified to [432]

ân = arg max
an

�
{
a∗nrn

(
N−1∑
i=1

t0,irn−i

i−1∏
j=1

ân−j

)∗}
. (9.56)

Based on (9.56), we arrive at the following decision rule: divide the complex plane into M

disjoint sectors and determine ân by the sector into which the complex number

gn
�
= rn

(
N−1∑
i=1

t0,irn−i

i−1∏
j=1

ân−j

)∗

(9.57)



586CHAPTER 9. SIGNAL PROCESSING TECHNIQUES FOR FAST FADING CHANNELS

falls. The multiple-symbol decision-feedback differential detection algorithm is summarized

as follows.

Algorithm 9.2 [Multiple-symbol decision-feedback differential detection] Given the de-

cision memory order N , the fading statistics ΣN , and the signal-to-noise ratio Es

σ2 ,

• Compute the feedback filter coefficients from T =
(
ΣN + σ2

Es
IN

)−1

.

• Estimate the initial information symbols â1, . . . , âN−1 by simple differential detection.

• For n = N,N + 1, . . .,

– Estimate ân according to (9.55).

The corresponding multiple-symbol decision-feedback differential receiver structure is shown

in Fig. 9.1, where the coefficients of the feedback filter are given by the metric coefficients

tj = t0,j, 1 ≤ j ≤ N − 1. Note that when N = 2, this receiver reduces to the simple

differential detector.

T T T T

(  )*

a[k]

t_1 t_2 t_3 t_N-1

...

...

r[k]

g[k]

Figure 9.1: Structure of the multiple-symbol decision-feedback differential detector.
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Simulation Examples

For all simulation results presented below, a DQPSK constellation is used. The feedback

metric coefficients are obtained from the sample autocorrelation of the simulated fading

process. Fig. 9.2, Fig. 9.3 and Fig. 9.4 show the BER performance of the decision-feedback

differential detector in flat-fading channels with normalized Doppler frequencies BdT equal

to 0.003, 0.0075 and 0.01, respectively. It is seen that the error floors of the simple differential

detector (N = 2) are reduced by the decision-feedback differential detector with N = 3 and

N = 4.
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Figure 9.2: BER performance of the decision-feedback differential detector in a flat-fading

channel with BdT = 0.003.

9.4.2 Decision Feedback Space-Time Differential Decoding

In what follows, we extend the decision-feedback differential detection method to systems

employing multiple transmit antennas and space-time differential block coding, and develop



588CHAPTER 9. SIGNAL PROCESSING TECHNIQUES FOR FAST FADING CHANNELS

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
E

R

DF−DD QDPSK (BfT=0.0075)

DF−DD(N=2)
DF−DD(N=3)
DF−DD(N=4)

Figure 9.3: BER performance of the decision-feedback differential detector in a flat-fading

channel with BdT = 0.0075.
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Figure 9.4: BER performance of the decision-feedback differential detector in a flat-fading

channel with BdT = 0.01.
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a decision-feedback space-time differential decoding technique for flat-fading channels. The

material presented here was developed in [280].

Space-Time Differential Block Coding

As noted in Chapter 6, space-time differential block coding was developed in [200, 465].

Consider a communication system with two transmit antennas and one receive antenna. Let

the information PSK symbols at time n be

an ∈ A �
=

{
1√
2
e

2πk
M , k = 0, 1, . . . ,M − 1

}
.

Define the following matrices:

An
�
=

[
a2n a2n+1

−a∗2n+1 a∗2n

]
, (9.58)

Gn
�
= AnA

H
n−1. (9.59)

It is easy to see that An is an orthogonal matrix, i.e., AnA
H
n = AH

n An = I2. Hence given Gn

and An−1, An can be obtained by

An = GnAn−1. (9.60)

This is essentially the two-dimensional differential decoding rule. The space-time differential

block code is recursively defined as follows

X0 = A0, (9.61)

Xn = GnXn−1, n = 1, 2, . . . , (9.62)

By a simple induction, it is easy to show that the matrix Xn has the following form

Xn
�
=

[
x2n x2n+1

−x∗2n+1 x∗2n

]
, (9.63)

where x2n ∈ A and x2n+1 ∈ A. Hence Xn is also an orthogonal matrix, and by (9.62), we

have

XnX
H
n−1 = Gn. (9.64)
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At time slot 2n, the symbols on the first row of Xn, x2n and x2n+1 are transmitted

simultaneously from antenna 1 and antenna 2, respectively. At time slot 2n+1, the symbols

on the second row of Xn, −x∗2n+1 and x∗2n are transmitted simultaneously from the two

antennas. We first consider the case where the channel is static. Let α1 and α2 be the

respective complex fading gains between the two transmit antennas and the receive antenna.

The received signals in time slots 2n and 2n+ 1 are the given respectively by

y2n = α1 x2n + α2 x2n+1 + v2n, (9.65)

and y2n+1 = −α1 x
∗
2n+1 + α2 x

∗
2n + v2n+1, (9.66)

where v2n and v2n+1 are independent complex Gaussian noise samples. Note that from (9.65)

and (9.66), in the absence of noise, we can write the following:[
y∗2n y∗2n+1

y2n+1 −y2n

]
︸ ︷︷ ︸

Y n

=

[
α∗

1 α∗
2

α2 −α1

]
︸ ︷︷ ︸

H

[
x∗2n −x2n+1

x∗2n+1 x2n

]
︸ ︷︷ ︸

XH
n

. (9.67)

Since

HHH =
(|α1|2 + |α2|2

)
I2, (9.68)

then using (9.67) and (9.64), we have

Y H
n Y n−1 =

(|α1|2 + |α2|2
)
XnX

H
n−1

=
(|α1|2 + |α2|2

)
Gn. (9.69)

Based on the above discussion, we arrive at the following differential space-time decoding

algorithm.

Algorithm 9.3 [Differential space-time decoding] Given the initial information symbol

matrix A0, let Â0 = A0. Form Y 0 according to (9.67) using y0 and y1. For n = 1, 2, . . .,

• Form the matrix Y n according to (9.67) using y2n and y2n+1.

• Obtain an estimate Ĝn of Gn that is closest to Y H
n Y n−1.

• Perform differential decoding according to Ân = ĜnÂn−1.
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Decision-Feedback Space-Time Differential Decoding in Flat-Fading Channels

We now consider decoding of the space-time differential block code in flat-fading channels.

In such channels, the received signals become

y2n = α
(1)
2n x2n + α

(2)
2n x2n+1 + v2n, (9.70)

and y2n+1 = −α(1)
2n+1 x

∗
2n+1 + α

(2)
2n+1 x

∗
2n + v2n+1, (9.71)

where {α(1)
n } and {α(2)

n } are the fading processes associated with the channels between the

two transmit antennas and the receive antenna, which as before, are modelled as mutually

independent complex Gaussian processes with Jakes’ correlation structure. In order to sim-

plify the receiver structure, we make the assumption that the channels remain constant over

two consecutive symbol intervals, i.e., α
(1)
2n = α

(1)
2n+1 and α

(2)
2n = α

(2)
2n+1. Then (9.70) and (9.71)

can be written as[
y2n

y2n+1

]
︸ ︷︷ ︸

Y n

=

[
x2n x2n+1

−x∗2n+1 x∗2n

]
︸ ︷︷ ︸

Xn

[
α

(1)
2n

α
(2)
2n

]
︸ ︷︷ ︸

αn

+

[
v2n

v2n+1

]
︸ ︷︷ ︸

vn

. (9.72)

As before, denote

yn =
[
yT

n
yT

n−1
. . . yT

n−N+1

]T

,

αn =
[
αT

n α
T
n−1 . . . α

T
n−N+1

]T
,

vn =
[
vT

n v
T
n−1 . . . v

T
n−N+1

]T
,

Xn = diag{Xn, Xn−1, . . . , Xn−N+1},
and Gn = [Gn Gn−1 . . . Gn−N+2].

Then we have

yn = Xnαn + vn. (9.73)

The conditional log-likelihood function is given by

log p(yn | Gn) = −yH
n Q−1

G yn − log det(QG) − 2N log π, (9.74)

where

QG
�
= E

{
yny

H
n

}
= XnE

{
αnα

H
n

}
XH

n + σ2I2N

= Es Xn (ΣN ⊗ I2) XH
n + σ2I2N , (9.75)
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where ⊗ denotes the Kronecker matrix product. Note that XnX
H
n = XH

n Xn = I2N , and

hence we have

Q−1
G = E−1

s Xn

[(
ΣN +

σ2

Es

IN

)
⊗ I2

]−1

XH
n , (9.76)

and det(QG) = det(EsΣN ⊗ I2 + σ2I2N). (9.77)

As before, denote T
�
=

(
ΣN + σ2

Es
IN

)−1

, then we have

[(
ΣN +

σ2

Es

IN

)
⊗ I2

]−1

= T ⊗ I2. (9.78)

The maximum likelihood decoding metric becomes

Ĝn = arg min
Gn

ρ(Gn)
�
= yH

n Xn(T ⊗ I2)X
H
n yn. (9.79)

Note that since T = [tij] is symmetric, the above cost function ρ(Gn) can be written as

ρ(Gn) =
N−1∑
i=0

N−1∑
j=0

ti,jy
H

n−i
Xn−iX

H
n−jyn−j

=
N−1∑
i=0

ti,iy
H

n−i
Xn−iX

H
n−iyn−i

+
N−1∑
i=0

∑
j �=i

ti,jy
H

n−i
Xn−iX

H
n−jyn−j

=
N−1∑
i=0

ti,i‖yn−i
‖2 + 2�

{
N−1∑
i=0

N−1∑
j=i+1

ti,jy
H

n−i

(
j−1∏
l=i

Gn−l

)
y

n−j

}
, (9.80)

where (9.80) follows from (9.62). Since the first term in (9.80) is independent of Gn, the

decision rule (9.79) becomes

Ĝn = arg max
Gn

�
{

N−1∑
i=0

N−1∑
j=i+1

ti,jy
H

n−i

(
j−1∏
l=i

Gn−l

)
y

n−j

}
. (9.81)

Finally, by replacing the previous symbol matrices Gn−1, . . . , Gn−N+2 by their estimates

Ĝn−1, . . . , Ĝn−N+2, we obtain the following decision-feedback decoding rule for Gn:

Ĝn = arg max
Gn

�
{
yH

n
Gn

N−1∑
j=1

t0,j

(
j−1∏
l=1

Ĝn−l

)
y

n−j

}
. (9.82)

The decision-feedback space-time differential decoding algorithm is summarized as follows.
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Algorithm 9.4 [Multiple-symbol decision-feedback space-time differential decoding]

Given the initial information symbol matrix A0, let Â0 = A0.

• Based on the decision memory order N , the fading statistics Σn, and the signal-to-

noise ratio Es

σ2 , compute the feedback metric coefficients from T =
(
ΣN + σ2

Es
IN

)−1

.

• Estimate the initial symbol matrices: for n = 1, 2, . . . , N − 1,

– Estimate Ĝn by simply quantizing Y H
n Y n−1.

– Perform differential decoding according to Ân = ĜnÂn−1.

• For n = N,N + 1, . . .,

– Estimate Ĝn according to (9.82).

– Perform differential decoding according to Ân = ĜnÂn−1.

The structure of a decision-feedback space-time differential decoder is shown in Fig. 9.5.

T T T T

t_1 t_2 t_3 t_N-1

...

...

Y_k

Z_k

G_k

  arg max Re{Y_k
H

 G_kZ_k}
G_k

Figure 9.5: Structure of a decision-feedback space-time differential decoder.

Simulation Examples

Assume two transmit antennas and one receive antenna. By assuming that the fading

process remains constant over the duration of two symbol intervals, Fig. 9.6, Fig. 9.7 and
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Fig. 9.8 show the BER performance of the decision-feedback space-time differential decoder

in flat-fading channels with normalized Doppler BdT =0.003, 0.0075 and 0.01, respectively.

The performance of a single-antenna system is also shown. It is seen that space-time cod-

ing provides diversity gains over single-antenna systems. Moreover, the multiple-symbol

decision-feedback decoding scheme reduces the error floor exhibited by the simple space-

time differential decoding method in fading channels. Although the above multiple-symbol

decoding scheme is derived based on the assumption that the fading remains constant over

two consecutive symbols, little performance degradation is incurred when the channels ac-

tually vary from symbol to symbol. This is illustrated in Fig. 9.9, Fig. 9.10 and Fig. 9.11,

where the simulation conditions are the same as before except that the fading processes now

vary from symbol to symbol. It is seen that the performance degradation due to such a

modelling mismatch is negligible for practical Doppler frequencies.
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Figure 9.6: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.003. (Channels vary every two symbols.)
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Figure 9.7: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.0075. (Channels vary every two symbols.)
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Figure 9.8: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.01. (Channels vary every two symbols.)
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Figure 9.9: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.003. (Channels vary every symbol..)
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Figure 9.10: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.0075. (Channels vary every symbol.)
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Figure 9.11: BER performance of decision-feedback space-time differential decoding in flat-

fading channels with normalized Doppler BdT = 0.01. (Channels vary every symbol.)



9.5. ADAPTIVE DETECTION/DECODING IN FLAT-FADING CHANNELS VIA SEQUENTIAL MON

9.5 Adaptive Detection/Decoding in Flat-Fading

Channels via Sequential Monte Carlo

In section, we describe an adaptive receiver technique for signal reception and decoding

in flat-fading channels based on a Bayesian formulation of the problem and the sequential

Monte Carlo filtering technique outlined in Chapter 8. The techniques presented in this

section were first developed in [72]. The basic idea is to treat the transmitted signals as

“missing data” and to sequentially impute multiple samples of them based on the current

observation. The importance weight for each of the imputed signal sequences is computed

according to its relative ability in predicting the future observation. Then the imputed signal

sequences, together with their importance weights, can be used to approximate the Bayesian

estimates of the transmitted signals and the fading coefficients of the channel. The novel

features of such an approach include the following:

• The algorithm is self-adaptive and no training/pilot symbols or decision feedback is

needed.

• The tracking of fading channels and the estimation of data symbols are naturally

integrated.

• The ambient channel noise can be either Gaussian or impulsive.

• If the system employs channel coding, the coded signal structure can be easily exploited

to substantially improve the accuracy of both channel and data estimation.

• The resulting receiver structure exhibits massive parallelism and is ideally suited for

high-speed parallel implementation using VLSI systolic array technology.

9.5.1 System Description

We consider a channel-coded communication system signaling through a flat-fading channel

with additive ambient noise. The block diagram of such a system is shown in Fig. 9.12.

The input binary information bits {dt} are encoded using some channel code, resulting in a

code bit stream {bt}. The code bits are passed to a symbol mapper, yielding complex data
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ytst

α t nt

btdt

encoder
channel

mapper
symbol x +

Figure 9.12: A coded communication system signaling through a flat-fading channel.

symbols {st}, which take values from a finite alphabet set A = {a1, . . . , a|A|}. Each symbol

is then transmitted through a flat-fading channel whose input-output relationship is given

by

yt = αtst + nt, t = 0, 1, . . . , (9.83)

where yt, αt, st and nt are the received signal, the fading channel coefficient, the transmitted

symbol, and the ambient additive noise at time t, respectively. The processes {αt}, {st},
and {nt} are assumed to be mutually independent.

It is assumed that the additive noise {nt} is a sequence of independent and identically

distributed (i.i.d.) zero-mean complex random variables. In this section we consider two

types of noise distributions. In the first type, nt assumes a complex Gaussian distribution,

nt ∼ Nc(0, σ
2); (9.84)

whereas in the second type, nt follows a two-term mixture Gaussian distribution,

nt ∼ (1 − ε)Nc(0, σ
2
1) + εNc(0, σ

2
2), (9.85)

where 0 < ε < 1 and σ2
2 > σ

2
1. Here the term Nc(0, σ

2
1) represents the nominal ambient noise,

and the term Nc(0, σ
2
2) represents an impulsive component. The probability that impulses

occur is ε. Note that the overall variance of the noise is (1 − ε)σ2
1 + εσ2

2.

It is further assumed that the channel-fading process is Rayleigh. That is, the fading

coefficients {αt} form a complex Gaussian process that can be modeled by the output of a

lowpass Butterworth filter of order r driven by white Gaussian noise,

{αt} =
Θ(D)

Φ(D)
{ut}, (9.86)

where D is the back-shift operator Dk ut
�
= ut−k;

Φ(z)
�
= φrz

r + . . .+ φ1z + 1, (9.87)

Θ(z)
�
= θrz

r + . . .+ θ1z + θ0, (9.88)
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and {ut} is a white complex Gaussian noise sequence with unit variance and independent

real and complex components. The coefficients {φi} and {θi}, as well as the order r of the

Butterworth filter, are chosen so that the transfer function of the filter matches the power

spectral density of the fading process, which in turn is determined by the channel Doppler

frequency. In this section, we assume that the statistical properties of the fading process

is known a priori. Consequently, the order and the coefficients of the Butterworth filter in

(9.86) are known.

We next write system (9.83) and (9.86) in the state-space model form, which is instru-

mental in developing the adaptive Bayesian receiver. Define

{xt} �
= Θ−1(D){αt} =⇒ Φ(D){xt} = {ut}. (9.89)

Denote xt
�
= [xt, . . . , xt−r+1]

T . By (9.86) we then have

xt = Fxt−1 + gut, ut
i.i.d.∼ Nc(0, 1), (9.90)

where

F
�
=



−φ1 −φ2 . . . −φr 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


, and g

�
=


1

0
...

0

 .

Because of (9.89), the fading coefficient sequence {αt} can be written as

αt = hHxt, where h
�
= [θ0 θ1 . . . θr]

H . (9.91)

If the additive noise in (9.83) is Gaussian, i.e., nt ∼ Nc(0, σ
2), then we have the following

state-space model for the system defined by (9.83) and (9.86):

xt = Fxt−1 + gut, (9.92)

yt = sth
Hxt + σvt, (9.93)

where {vt} in (9.93) is a white complex Gaussian noise sequence with unit variance and

independent real and imaginary components.
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On the other hand, if the additive noise in (9.83) is impulsive and is modelled by (9.85),

we introduce an indicator random variable It, t = 0, 1, . . .,

It
�
=

{
1 if nt ∼ Nc(0, σ

2
1),

2 if nt ∼ Nc(0, σ
2
2),

(9.94)

with P (It = 1) = ε and P (It = 2) = 1− ε. Because nt is an i.i.d. sequence, so is It. We then

have the state-space signal model for this case given by

xt = Fxt−1 + gut, (9.95)

yt = sth
Hxt + σItvt. (9.96)

We now look at the problem of on-line estimation of the symbol st and the channel

coefficient αt based on the received signals up to time t, {yi}t
i=0. Consider the simple case

when the ambient channel noise is Gaussian and the symbols are independent and identically

distributed uniformly a priori, i.e. p(si) = 1/|A|. Then the problem becomes one of making

Bayesian inference with respect to the posterior distribution

p(x0, . . . , xt, s0, . . . , st | y0, . . . , yt) ∝
t∏

j=1

p(xj | xj−1)p(sj)p(yj | xj, sj)

∝
t∏

j=1

exp

(
−‖xj +

r∑
i=1

φixj−i‖2 − 1

σ2
‖yj − sjhT xj‖2

)
, t = 0, 1, . . . . (9.97)

For example, an on-line symbol estimation can be obtained from the marginal posterior

distribution p(st|y0, . . . , yt), and an on-line channel state estimation can be obtained from the

marginal posterior distribution p(xt|y0, . . . , yt). Although the joint distribution (9.97) can

be written out explicitly up to a normalizing constant, the computation of the corresponding

marginal distributions involves very high dimensional integration and is infeasible in practice.

An effective approach to this problem is the sequential Monte Carlo filtering technique.

9.5.2 Adaptive Receiver in Fading Gaussian Noise Channels -

Uncoded Case

MKF-based Sequential Monte Carlo Receiver

Consider the flat-fading channel with additive Gaussian noise, given by (9.92) and (9.93).

Denote Y t
�
= (y0, . . . , yt) and St

�
= (s0, . . . , st). We first consider the case of uncoded system,
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where the transmitted symbols are assumed to be independent, i.e.,

P (st = ai | St−1) = P (st = ai), ai ∈ A. (9.98)

When no prior information about the symbols is available, the symbols are assumed to take

each possible value in A with equal probability, i.e., P (st = ai) = 1
|A| for i = 1, . . . , |A|. We

are interested in estimating the symbol st and the channel coefficient αt = hHxt at time

t based on the observation Y t. The Bayes solution to this problem requires the posterior

distribution

p(xt, st | Y t) =

∫
p(xt | St,Y t) p(St | Y t) dSt−1. (9.99)

Note that with a given St, the state-space model (9.92)-(9.93) becomes a linear Gaussian

system. Hence,

p(xt | St,Y t) ∼ Nc

(
µt(St),Σt(St)

)
, (9.100)

where the mean µt(St) and covariance matrix Σt(St) can be obtained by a Kalman filter

with the given St.

In order to implement the MKF, we need to obtain a set of Monte Carlo samples of the

transmitted symbols,
{

(S
(j)
t , w

(j)
t )

}m

j=1
, properly weighted with respect to the distribution

p(St|Y t). Then for any integrable function h(xt, st), we can approximate the quantity of

interest E{h(xt, st)|Y t} as follows:

E {h(xt, st) | Y t} =

∫ ∫
h(xt, st) p(xt, st | Y t) dxtdst

=

∫ ∫
h(xt, st) p(xt | St,Y t) p(St | Y t)dxtdSt (9.101)

=

∫ [∫
h(x, st)φ (x; µt(St),Σt(St)) dx

]
︸ ︷︷ ︸

ξ(St)

p(St | Y t)dSt(9.102)

∼= 1

Wt

m∑
j=1

ξ
(
S

(j)
t

)
w

(j)
t , (9.103)

with Wt =
m∑

j=1

w
(j)
t , (9.104)
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where (9.101) follows from (9.99); (9.102) follows from (9.100); and in (9.102), φ(·; µ,Σ)

denotes a complex Gaussian density function with mean µ and covariance matrix Σ. In

particular, the MMSE channel estimate is given by

E{αt | Y t} = hH E{xt | Y t}
∼= 1

Wt

hH

[
m∑

j=1

µt

(
S

(j)
t

)
w

(j)
t

]
. (9.105)

In other words, we can let h(xt, st)
�
= hHxt, implying that ξ(St)

�
= hHµt(St) in (9.102).

Moreover, the a posteriori symbol probability can be estimated as

P (st = ai | Y t) = E{δ(st = ai) | Y t}
∼= 1

Wt

m∑
j=1

δ(s
(j)
t = ai)w

(j)
t , i = 1, . . . , |A|, (9.106)

where δ(·) is an indicator function such that δ(st = ai) = 1 if st = ai and δ(st = ai) = 0,

otherwise. This corresponds to having h(xt, st)
�
= δ(st = ai) and ξ(St)

�
= δ(st = ai).

Note that a hard decision on the symbol st is obtained by

ŝt = arg max
ai∈A

P (st = ai | Y t)

∼= arg max
ai∈A

m∑
j=1

δ(s
(j)
t = ai)w

(j)
t . (9.107)

When MPSK signals are transmitted - i.e., ai = exp
(
2πi
|A|

)
for i = 0, . . . , |A| − 1, where

 =
√−1 - the estimated symbol ŝt may have a phase ambiguity. For instance, for BPSK

signals, st ∈ {+1,−1}. It is easily seen from (9.83) that if both the symbol sequence {st}
and the channel value sequence {αt} are phase-shifted by π (resulting in {−st} and {−αt}
respectively), no change is incurred on the observed signal {yt}. Alternatively, in the state-

space model (9.92)-9.93), a phase-shift of π on both the symbol sequence {st} and the state

sequence {xt} yields the same model for the observations. Hence such a phase ambiguity

necessitates the use of differential encoding and decoding.

Hereafter, we let µ
(j)
t

�
= µt

(
S

(j)
t

)
, Σ

(j)
t

�
= Σt

(
S

(j)
t

)
, and κ

(j)
t

�
=

[
µ

(j)
t ,Σ

(j)
t

]
. By

applying the MKF techniques outlined in Section 8.3 to the flat-fading channel system,

we describe the following algorithm for generating properly weighted Monte Carlo samples{
(S

(j)
t , κ

(j)
t , w

(j)
t )

}m

j=1
.
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Algorithm 9.5 [SMC for adaptive detection in flat-fading channels - Gaussian noise]

• Initialization: Each Kalman filter is initialized as κ
(j)
0 =

(
µ

(j)
0 ,Σ

(j)
0

)
, with µ

(j)
0 = 0,

Σ
(j)
0 = 2Σ, j = 1, . . . ,m, where Σ is the stationary covariance of xt and is computed

analytically from (9.89). (The factor 2 is to accommodate the initial uncertainty). All

importance weights are initialized as w
(j)
0 = 1, j = 1, . . . ,m. Since the data symbols

are assumed to be independent, initial symbols are not needed.

Based on the state-space model (9.92)-(9.93), the following steps are implemented at

time t to update each weighted sample. For j = 1, . . . ,m,

• Compute the one-step predictive update of each Kalman filter κ
(j)
t−1:

K
(j)
t = FΣ

(j)
t−1F

H + ggH , (9.108)

γ
(j)
t = hHK

(j)
t h + σ2, (9.109)

η
(j)
t = hHFµ

(j)
t−1. (9.110)

• Compute the trial sampling density: For each ai ∈ A, compute

ρ
(j)
t,i

�
= P

(
st = ai | S

(j)
t−1,Y t

)
∝ p

(
yt,Y t−1, st = ai,S

(j)
t−1

)
= p

(
yt | st = ai,S

(j)
t−1,Y t−1

)
P

(
st = ai | S

(j)
t−1,Y t−1

)
= p

(
yt | st = ai,S

(j)
t−1,Y t−1

)
P (st = ai), (9.111)

where (9.111) holds because st is independent of St−1 and Y t−1. Furthermore, we

observe that

p
(
yt | st = ai,S

(j)
t−1,Y t−1

)
∼ Nc

(
aiη

(j)
t , γ

(j)
t

)
. (9.112)

• Impute the symbol st: Draw s
(j)
t from the set A with probability

P
(
s
(j)
t = ai

)
∝ ρ

(j)
t,i , ai ∈ A. (9.113)

Append s
(j)
t to S

(j)
t−1 and obtain S

(j)
t .
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• Compute the importance weight:

w
(j)
t = w

(j)
t−1 · p

(
yt | S

(j)
t−1,Y t−1

)
= w

(j)
t−1 ·

∑
ai∈A

p
(
yt | st = ai,S

(j)
t−1,Y t−1

)
P (st = ai)

∝ w
(j)
t−1 ·

∑
ai∈A

ρ
(j)
t,i , (9.114)

where (9.114) follows from (9.111).

• Compute the one-step filtering update of the Kalman filter κ
(j)
t−1: Based on the imputed

symbol s
(j)
t and the observation yt, complete the Kalman filter update to obtain κ

(j)
t =[

µ
(j)
t ,Σ

(j)
t

]
, as follows:

µ
(j)
t = Fµ

(j)
t−1 +

1

γ
(j)
t

(
yt − s(j)t η

(j)
t

)
K

(j)
t h s

(j)
t , (9.115)

Σ
(j)
t = K

(j)
t − 1

γ
(j)
t

K
(j)
t hhHK

(j)
t . (9.116)

• Do resampling according to Algorithm 8.9 when m̄t in (8.103) is below a threshold.

The correctness of the above algorithm is stated by the following result, whose proof is found

in the Appendix (Section 9.6.1).

Proposition 9.1 The samples
{

(S
(j)
t , κ

(j)
t , w

(j)
t )

}m

j=1
drawn by Algorithm (9.5) are properly

weighted with respect to p(St|Y t), provided that
{

(S
(j)
t−1, κ

(j)
t−1, w

(j)
t−1)

}m

j=1
are proper at time

(t− 1).

The above algorithm is depicted in Fig. 9.13. It is seen that at any time t, the only

quantities that need to be stored are
{
κ

(j)
t , w

(j)
t

}m

j=1
. At each time t, the dominant compu-

tation in this receiver involves the m one-step Kalman filter updates. Since the m samplers

operate independently and in parallel, such a sequential Monte Carlo receiver is well suited

for massively parallel implementation using the VLSI systolic array technology [238].
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Figure 9.13: An adaptive Bayesian receiver in flat-fading Gaussian noise channels based on

mixture Kalman filtering.

9.5.3 Delayed Estimation

Since the fading process is highly correlated, the future received signals contain information

about current data and channel state. A delayed estimate is usually more accurate than the

concurrent estimate. This is true for any channel with memory, and is especially prominent

when the transmitted symbols are coded, in which case not only the channel states but also

the data symbols are highly correlated. In delayed estimation, instead of making inference on

(xt, st) instantaneously with the posterior distribution p(xt, st|Y t), we delay this inference

to a later time (t + ∆), ∆ ≥ 0, with the distribution p(xt, st|Y t+∆). Here we discuss two

methods for delayed estimation: the delayed-weight method and the delayed-sample method.

Delayed-Weight Method

From Algorithm 9.5.2, we note by induction that if the set
{

(S
(j)
t , w

(j)
t )

}m

j=1
is properly

weighted with respect to p(St|Y t), then the set
{

(S
(j)
t+δ, w

(j)
t+δ)

}m

j=1
is properly weighted with

respect to p(St+δ|Y t+δ), δ > 0. Hence, if we focus our attention on St at time (t + δ) and

let h(xt, st) = δ(st = ai) as in (9.106), we obtain a delayed estimate of the symbol

P (st = ai | Y t+δ) ∼= 1

Wt+δ

m∑
j=1

δ
(
s
(j)
t = ai

)
w

(j)
t+δ, i = 1, . . . , |A|. (9.117)

Since the weights
{
w

(j)
t+δ

}m

j=1
contain information about the signals (yt+1, . . . , yt+δ), the es-

timate in (9.117) is usually more accurate. Note that such a delayed estimation method

incurs no additional computational cost (i.e., cpu time), but it requires some extra memory
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for storing
{

(s
(j)
t+1, . . . , s

(j)
t+δ)

}m

j=1
. As will be seen in the simulation examples, for uncoded

systems this simple delayed-weight method is quite effective for improving the detection

performance over the concurrent method. However, for coded systems, this method is not

sufficient for exploiting the constraint structures of both the channel and the symbols, and

we must resort to the delayed-sample method, which is described next.

Delayed-Sample Method

An alternative method is to generate both the delayed samples and the weights{
(s

(j)
t , w

(j)
t )

}m

j=1
based on the signals Y t+∆, hence making p(St|Y t+∆) the target distri-

bution at time (t + ∆). This procedure will provide better Monte Carlo samples since it

utilizes the future information (yt+1, . . . , yt+∆) in generating the current sample of st. But

the algorithm is also more demanding both analytically and computationally because of the

need of marginalizing out st+d for d = 1, . . . , ∆.

For each possible “future” symbol sequence at time t+∆− 1, i.e. (st, st+1, . . . , st+∆−1) ∈
A∆ (a total of |A|∆ possibilities), we keep the value of a ∆-step Kalman filter{
κ

(j)
t+τ (s

t+τ
t )

}∆−1

τ=0
, where

κ
(j)
t+τ (s

t+τ
t )

�
=

[
µt+τ

(
S

(j)
t−1, s

t+τ
t

)
, Σt+τ

(
S

(j)
t−1, s

t+τ
t

)]
, τ = 0, 1, . . . , ∆− 1,

with sba
�
= (sa, sa+1, . . . , sb). Denote

κ
(j)
t−1

�
=

{
κ

(j)
t−1;

{
κ

(j)
t+τ (s

t+τ
t )

}∆−1

τ=0
: st+τ

t ∈ Aτ+1

}
.

The following is the delayed-sample algorithm for adaptive detection in flat fading channels

with Gaussian noise

Algorithm 9.6 [Delayed-sample SMC algorithm for adaptive detection in flat fading chan-

nels - Gaussian noise]

• Initialization: Each Kalman filter is initialized as κ
(j)
0 =

(
µ

(j)
0 ,Σ

(j)
0

)
, with µ

(j)
0 = 0 and

Σ
(j)
0 = 2Σ, j = 1, . . . ,m, where Σ is the stationary covariance of xt. All importance

weights are initialized as w
(j)
0 = 1, j = 1, . . . ,m. Since the data symbols are assumed

to be independent, initial symbols are not needed.
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At time (t+∆), we perform the following updates for j = 1, . . . ,m to propagate from

the sample
{

(S
(j)
t−1, κ

(j)
t−1, w

(j)
t−1)

}m

j=1
, properly weighted for p(St−1|Y t+∆−1), to that for

p(St−1|Y t+∆).

• Compute the one-step predictive update for each of the |A|∆ Kalman filters: For each

st+∆−1
t ∈ A∆, perform the update on the Kalman filter κ

(j)
t+∆−1

(
st+∆−1

t

)
, according to

equations (9.108)-(9.110) to obtain K
(j)
t+∆

(
st+∆−1

t

)
, γ

(j)
t+∆

(
st+∆−1

t

)
and η

(j)
t+∆

(
st+∆−1

t

)
.

[Here we make it explicit that these quantities are functions of st+∆−1
t .]

• Compute the trial sampling density: For each ai ∈ A, compute

ρ
(j)
t,i

�
= P

(
st = ai | S

(j)
t−1,Y t+∆

)
∝ p

(
Y t+∆,S

(j)
t−1, st = ai

)
=

∑
st+∆
t+1 ∈A∆

p
(
Y t+∆,S

(j)
t−1, st = ai, s

t+∆
t+1

)

∝
∑

st+∆
t+1 ∈A∆

∆∏
τ=0

p
(
yt+τ | Y t+τ−1,S

(j)
t−1, st = ai, s

t+τ
t+1

)
︸ ︷︷ ︸

Nc

(
st+τ γ

(j)
t+τ (st+τ−1

t ), η
(j)
t+τ (st+τ−1

t )
)

·p(st = ai) ·
∆∏

τ=0

p(st+τ ).

(9.118)

• Impute the symbol st : Draw s
(j)
t with probability

P
(
s
(j)
t = ai

)
∝ ρ

(j)
t,i , ai ∈ A. (9.119)

Append s
(j)
t to S

(j)
t−1 and obtain S

(j)
t .

• Compute the importance weight:

w
(j)
t = w

(j)
t−1 ·

p
(
S

(j)
t | Y t+∆

)
p
(
S

(j)
t−1 | Y t+∆−1

)
p
(
s
(j)
t | S

(j)
t−1,Y t+∆

)
= w

(j)
t−1 ·

p
(
S

(j)
t−1 | Y t+∆

)
p
(
S

(j)
t−1 | Y t+∆−1

) (9.120)

∝ w
(j)
t−1 ·

p
(
Y t+∆,S

(j)
t−1

)
p
(
Y t+∆−1,S

(j)
t−1

)
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= w
(j)
t−1 ·

∑
st+∆
t ∈A∆+1

p
(
st+∆

t ,S
(j)
t−1,Y t+∆

)
∑

st+∆−1
t ∈A∆

p
(
st+∆−1

t ,S
(j)
t−1,Y t+∆−1

)

∝ w
(j)
t−1 ·

∑
st+∆
t ∈A∆+1

[
∆∏

τ=0

p
(
yt+τ | Y t+τ−1,S

(j)
t−1, s

t+τ
t

)
·

∆∏
τ=0

p(st+τ )

]
∑

st+∆−1
t ∈A∆

[
∆−1∏
τ=0

p
(
yt+τ | Y t+τ−1,S

(j)
t−1, s

t+τ
t

)
·

∆−1∏
τ=0

p(st+τ )

](9.121)

where

p
(
yt+τ | Y t+τ−1,S

(j)
t−1, s

t+τ
t

)
∼ Nc

(
st+τ γ

(j)
t+τ (s

t+τ−1
t ), η

(j)
t+τ (s

t+τ−1
t )

)
. (9.122)

• Compute the one-step filtering update for each of the |A|∆ Kalman filters: Using the

values of s
(j)
t and yt+∆, for each st+∆

t+1 ∈ A∆ perform a one-step filtering update on the

Kalman filter κ
(j)
t+∆−1(s

t+∆−1
t ) according to equations (9.115)-(9.116) to obtain

κ
(j)
t+∆

(
st+∆

t+1

) �
=

[
µt+∆

(
S

(j)
t , s

t+∆
t+1

)
, Σt+∆

(
S

(j)
t , s

t+∆
t+1

)]
.

With this and the subset of
{
κ

(j)
t+τ (s

t+τ
t+1)

}∆−1

τ=0
corresponding to the sample s

(j)
t , which

has been obtained in the previous iteration, we form the new filter class κ
(j)
t .

• Do resampling according to Algorithm 8.9 when m̄t in (8.103) is below a threshold.

The dominant computation of the above delayed-sample method at each time t involves

the
(
m |A|∆)

one-step Kalman filter updates, which - as before - can be carried out in

parallel. Finally we note that we can use the delayed-sample method in conjunction with

the delayed-weight method. For example, using the delayed-sample method, we generate

delayed samples and weights
{

(s
(j)
t , w

(j)
t )

}m

j=1
based on the signals Y t+∆. Then with an

additional delay δ, we can use the following delayed-weight method to estimate the symbol

a posteriori probability

P (st = ai | Y t+∆+δ) ∼= 1

Wt+δ

m∑
j=1

δ
(
s
(j)
t = ai

)
w

(j)
t+δ, i = 1, . . . , |A|. (9.123)
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Simulation Examples

The fading process is modeled by the output of a Butterworth filter of order r = 3 driven

by a complex white Gaussian noise process. The cutoff frequency of this filter is 0.05,

corresponding to a normalized Doppler frequency (with respect to the symbol rate 1
T
) fdT =

0.05, which is a fast fading scenario. Specifically, the fading coefficients {αt} is modeled by

the following ARMA(3,3) process:

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3

= 10−2(0.89409ut + 2.68227ut−1 + 2.68227ut−2 + 0.89409ut−3), (9.124)

where ut ∼ Nc(0, 1). The filter coefficients in (9.124) are chosen such that Var{αt} = 1. It is

assumed that BPSK modulation is employed, i.e., the transmitted symbols st ∈ {+1,−1}.
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δ=0           
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genie−aided bound        
differential detection    

Figure 9.14: BER performance of the sequential Monte Carlo receiver in a fading channel

with Gaussian noise and without coding. The delayed-weight method is used. The BER

curves corresponding to delays δ = 0, δ = 1 and δ = 2 are shown. Also shown in the same

figure are the BER curves for the known channel lower bound, the genie-aided lower bound

and the differential detector.
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In order to demonstrate the high performance of the Monte Carlo adaptive receiver, in

the following simulation examples we compare the performance (in terms of bit error rate)

of the Monte Carlo receivers with that of the following three receiver schemes:

• Known channel lower bound: In this case, we assume that the fading coefficients {αt}
are known to the receiver. Then by (9.83), the optimal coherent detection rule is given

by ŝt = sign (�{α∗
t yt}) for both the Gaussian noise case (9.84) and the impulsive noise

case (9.85).

• Genie-aided lower bound: In this case, we assume that a genie provides the receiver

with an observation of the modulation-free channel coefficient corrupted by additive

noise with the same variance, i.e., ỹt = αt + ñt, where ñt ∼ Nc(0, σ
2) for the Gaussian

noise case and ñt ∼ Nc(0, σ
2
It
) for the impulsive noise case. In case of impulsive noise,

the genie also provides the receiver with the noise indicator It. The receiver then

uses a Kalman filter to track the fading process based on the information provided

by the genie; i.e., it computes α̂t = E
{
αt | Ỹ t, I t

}
. The transmitted symbols are

then demodulated according to ŝt = sign (�{α̂∗
t yt}). It is clear that such a genie-aided

bound is lower bounded by the known channel bound. It should also be noted that the

genie is used only for calculating the lower bound. Our proposed algorithms estimate

the channel and the symbols simultaneously with no help from the genie.

• Differential detector: In this case, no attempt is made to estimate the fading channel.

Instead the receiver detects the phase difference in two consecutively transmitted bits

by using the simple rule of differential detection: b̂tbt−1 = sign (�{y∗t yt−1}).

We consider the performance of the sequential Monte Carlo receiver in a fading Gaussian

noise channel without coding. In this case differential encoding and decoding are employed

to resolve the phase ambiguity. The adaptive receiver implements Algorithm 9.5 described

in Section 9.5.2. The number of Monte Carlo samples drawn at each time was empirically

set as m = 50. Simulation results showed that the performance did not improve much when

m was increased to 100, while it degraded notably when m was reduced to 20. Algorithm

8.9 for resampling was employed to maintain the efficiency of the algorithm, in which the

effective sample size threshold is m̄t = m/10. The delayed-weight method discussed in Section

9.5.3 was used to extract further information from future received signals, which resulted
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in an improved performance compared with concurrent estimation. In each simulation,

the sequential Monte Carlo algorithm was run on 10000 symbols, (i.e., t = 1, . . . , 10000).

In counting the symbol detection errors, the first 50 symbols were discarded to allow the

algorithm to reach the steady state. In Fig. 9.14, the bit error rate (BER) performance

versus the signal-to-noise ratio (defined as Var{αt}/Var{nt}) corresponding to delay values

δ = 0 (concurrent estimate), δ = 1, and δ = 2 is plotted. In the same figure, we also

plot the known channel lower bound, the genie-aided lower bound, and the BER curve of

the differential detector. From this figure it is seen that for the uncoded case - with only

a small amount of delay - the performance of the sequential Monte Carlo receiver can be

significantly improved by the delayed-weight method compared with the concurrent estimate.

Even with the concurrent estimate, the proposed adaptive receiver does not exhibit an error

floor, as does the differential detector. Moreover, with a delay δ=2, the proposed adaptive

receiver essentially achieves the genie-aided lower bound. We have also implemented the

delayed-sample method for this case and found that it offers little improvement over the

delayed-weight method.

9.5.4 Adaptive Receiver in Fading Gaussian Noise Channels

- Coded Case

So far we have considered the problem of detecting uncoded independent symbols in flat-

fading channels. In what follows we extend the adaptive receiver technique presented in

Section 9.5.2 and address the problem of sequential decoding of information bits in a convo-

lutionally coded system signaling through a flat-fading channel.

Consider a binary rate k0

n0
convolutional encoder of overall constraint length k0ν0. Suppose

the encoder starts with an all-zero state at time t = 0. The input to the encoder at time t is a

block of information bits dt = (dt,1, . . . , dt,k0); the encoder output at time t is a block of code

bits bt = (bt,1, . . . , bt,n0). For simplicity here we assume that BPSK modulation is employed.

Then the transmitted symbols at time t are st = (st,1, . . . , st,n0), where st,l = 2bt,l − 1,

l = 1, . . . , n0. (That is, st,l = 1 if bt,l = 1, and st,l = −1 if bt,l = 0.) Since bt is determined

by (dt,dt−1, . . . ,dt−ν0), so is st. Hence we can write

st = ψ(dt,dt−1, . . . ,dt−ν0) (9.125)
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for some function ψ(·) which is determined by the structure of the encoder.

Let yt = (yt,1, . . . , yt,n0) be the received signals at time t and let αt = (αt,1, . . . , αt,n0) be

the channel states corresponding to bt and dt. Recall that αt−1,n0 = hHxt−1,n0 . Denote also

Dt
�
= (d0, . . . ,dt); St

�
= (s0, . . . , st); Y t

�
= (y0, . . . ,yt). The Monte Carlo samples recorded

at time (t− 1) are
{

(D
(j)
t−1, κ

(j)
t−1,n0

, w
(j)
t−1)

}m

j=1
where κ

(j)
t−1,n0

�
=

[
µ

(j)
t−1,n0

,Σ
(j)
t−1,n0

]
contains the

mean and covariance matrix of the state vector channel xt−1,n0 conditioned on D
(j)
t−1 and

Y t−1. That is,

p
(
xt−1,n0 | D

(j)
t−1,Y t−1

)
∼ Nc

(
µ

(j)
t−1,n0

,Σ
(j)
t−1,n0

)
. (9.126)

As before, given the information bit sequence D
(j)
t−1, the corresponding κ

(j)
t−1,n0

is obtained by

a Kalman filter. Our algorithm is as follows.

Algorithm 9.7 [SMC algorithm for adaptive decoding in flat-fading channels - Gaussian

noise]

• Initialization: Each Kalman filter is initialized as κ
(j)
0,n0

=
(
µ

(j)
0,n0
,Σ

(j)
0,n0

)
, with µ

(j)
0,n0

= 0

and Σ
(j)
0,n0

= 2Σ, j = 1, . . . ,m, where Σ is the stationary covariance of xt. All

importance weights are initialized as w
(j)
0 = 1, j = 1, . . . ,m. The initial D

(j)
0 are

randomly generated from the set {0, 1}k0, j = 1, . . . ,m.

At time t, we implement the following steps to update each sample j, j = 1, . . . ,m.

• Compute the n0-step update of the Kalman filter: For each possible code vector dt =

ai ∈ {0, 1}k0, compute the corresponding symbol vector st using (9.125) to obtain

s
(j)
t (ai) = ψ

(
dt = ai,d

(j)
t−1, . . . ,d

(j)
t−ν0

)
. (9.127)

Let Σ
(j)
t,0(ai)

�
= Σ

(j)
t−1,n0

and µ
(j)
t,0(ai)

�
= µ

(j)
t−1,n0

. Perform n0 steps of Kalman filter

update, using s
(j)
t (ai) and yt, as follows: for l = 1, . . . , n0, compute

K
(j)
t,l (ai) = FΣ

(j)
t,l−1(ai)F

H + ggH , (9.128)

γ
(j)
t,l (ai) = hHK

(j)
t,l (ai)h + σ2, (9.129)

η
(j)
t,l (ai) = hHFµ

(j)
t,l−1(ai), (9.130)
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µ
(j)
t,l (ai) = Fµ

(j)
t,l−1(ai) +

1

γ
(j)
t,l (ai)

[
yt,l − s(j)t,l (ai)η

(j)
t,l (ai)

]
K

(j)
t,l (ai)h, (9.131)

Σ
(j)
t,l (ai) = K

(j)
t,l (ai) − 1

γ
(j)
t,l (ai)

K
(j)
t,l (ai)hhHK

(j)
t,l (ai). (9.132)

In (9.127)-(9.132) it is made explicit that the quantity on the left side of each equation

is a function of the code bit vector ai. We therefore obtain
{
γ

(j)
t,l (ai), η

(j)
t,l (ai)

}n0

l=1
and[

µ
(j)
t,n0

(ai),Σ
(j)
t,n0

(ai)
]

for each ai ∈ {0, 1}k0.

• Compute the trial sampling density: For each ai ∈ {0, 1}k0, compute

ρ
(j)
t,i

�
= P

(
dt = ai | D

(j)
t−1,Y t

)
∝ p

(
yt,Y t−1,dt = ai,D

(j)
t−1

)
∝ p

(
yt,dt = ai | D

(j)
t−1,Y t−1

)
(9.133)

= P
(
dt = ai | D

(j)
t−1,Y t−1

)
p
(
yt | dt = ai,D

(j)
t−1,Y t−1

)
= P (dt = ai) p

[
yt | s

(j)
t (ai) = ψ

(
dt = ai,d

(j)
t−1, . . . ,d

(j)
t−ν0

)
,S

(j)
t−1,Y t−1

]
(9.134)

∝ P (dt = ai)

n0∏
l=1

p
[
yt,l | S

(j)
t−1, s

(j)
t,1(ai), . . . , s

(j)
t,l (ai),Y t−1, yt,1, . . . , yt,l−1

]
︸ ︷︷ ︸

Nc

(
s
(j)
t,l (ai) η

(j)
t,l (ai), γ

(j)
t,l (ai)

)
,

(9.135)

where (9.134) follows from the fact that dt is independent of Dt−1 and Y t−1.

• Impute the code bit vector dt: Draw d
(j)
t from the set {0, 1}k0 with probability

P
(
d

(j)
t = ai

)
∝ ρ

(j)
t,i , ai ∈ {0, 1}k0 . (9.136)

Append d
(j)
t to D

(j)
t−1 and obtain D

(j)
t . Pick the updated Kalman filter values µ

(j)
t,n0

�
=

µ
(j)
t,n0

(
d

(j)
t

)
and Σ

(j)
t,n0

= Σ
(j)
t,n0

(
d

(j)
t

)
from the results in the first step, according to the

value of the sample d
(j)
t . We obtain κ

(j)
t,n0

=
[
µ

(j)
t,n0
,Σ

(j)
t,n0

]
.

• Compute the importance weight:

w
(j)
t = w

(j)
t−1 · p

(
yt | D

(j)
t−1,Y t−1

)
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= w
(j)
t−1 ·

∑
ai∈{0,1}k0

p
(
yt,dt = ai | D

(j)
t−1,Y t−1

)
∝ w

(j)
t−1

∑
ai∈{0,1}k0

ρ
(j)
t,i , (9.137)

where (9.137) follows from (9.133).

• Do resampling according to Algorithm 8.9 when m̄t in (8.103) is below a threshold.

Following the same line of proof as in Section 9.6.1, it can be shown that{
(D

(j)
t , κ

(j)
t,n0
, w

(j)
t )

}m

j=1
drawn by the above procedure are properly weighted with respect to

p(Dt|Y t) provided that the samples
{

(D
(j)
t−1, κ

(j)
t−1,n0

, w
(j)
t−1)

}m

j=1
are properly weighted with

respect to p(Dt−1|Y t−1). Note that in the coded case, the phase ambiguity is prevented by

the code constraint (9.125), and differential encoding is not needed.

At each time t, the major computation involved in the above adaptive decoding algorithm

is the
(
mn0 2k0

)
one-step Kalman filter updates, which can be carried out by

(
m 2k0

)
process-

ing units, each computing an n0-step update. (Note that dt contains k0 bits of information.)

Furthermore, if the delayed-sample method outlined in Section 9.5.3 is employed for delayed

estimation, then for a delay of ∆ time units, a total of
(
mn0 2k0(∆+1)

)
one-step Kalman filter

updates are needed at each time t, which can be distributed among
(
m 2k0(∆+1)

)
processing

units, each computing an n0-step update.

Simulation Examples

We next show the performance of the proposed sequential Monte Carlo receiver in a coded

system. The information bits are encoded using a rate 1
2

constraint length 5 convolutional

code (with generators 23 and 25 in octal notation). The receiver implements the adap-

tive decoding algorithm discussed in Section 6 with a combination of delayed-sample and

delayed-weight method. That is, the information bits samples
{

d
(j)
t

}m

j=1
are drawn by using

the delayed-sample method with delay ∆, whereas the importance weights
{
w

(j)
t+δ

}m

j=1
are

obtained after a further delay of δ. The coded BER performance of this adaptive receiver

with different delays - together with that of the known channel lower bound, the genie-aided

lower bound, and the differential detector - is plotted in Fig. 9.15. It is seen that unlike the

uncoded case, for coded systems the delayed-sample method is very effective in improving
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Figure 9.15: BER performance of the sequential Monte Carlo receiver in a fading channel

with Gaussian noise for a convolutionally coded system. The convolutional code has rate 1/2

and constraint length five. A combination of delayed-sample (with delay ∆) and delayed-

weight (with delay δ) method is used. The BER curves corresponding to delays ∆ = 1,

∆ = 3 and ∆ = 5 are shown. Also shown in the same figure are the BER curves for the

known channel lower bound, the genie-aided lower bound and the differential detector.
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the receiver performance. With a sample delay of ∆ = 5 and weight delay δ = 10, the

receiver performance is close to the genie-aided lower bound.

9.5.5 Adaptive Receivers in Fading Impulsive Noise Channels

As noted in Chapter 4, the ambient noise in many mobile communication channels is im-

pulsive, due to various natural and man-made impulsive sources. In [537], a technique is

developed for signal detection in fading channels with impulsive noise based on the Masreliez

nonlinear filtering [304] and making use of pilot symbols and decision feedback. In this sec-

tion, we discuss an adaptive receiver for flat-fading channels with impulsive ambient noise,

using the sequential Monte Carlo technique.

As in the case of Gaussian noise fading channels, we first develop adaptive receivers for

uncoded systems. Consider the state-space system given by (9.95)-(9.96). Note that given

both the symbol sequence St
�
= (s0, . . . , st), and the noise indicator sequence I t

�
= (I0, . . . , It),

this system is linear and Gaussian. Hence,

p(xt | St, I t,Y t) ∼ Nc

(
µt(St, I t),Σt(St, I t)

)
, (9.138)

where the mean µt(St, I t) and the covariance matrix Σt(St, I t) can be obtained by a

Kalman filter with given St and I t. As before, we seek to obtain properly weighted samples{
S

(j)
t , I

(j)
t , κ

(j)
t , w

(j)
t

}m

j=1
, with respect to the distribution p(St, I t|Y t). These samples are

then used to estimate the transmitted symbols and channel parameters.

Algorithm 9.8 [SMC algorithm for adaptive detection in flat fading channels - impulsive

noise]

• Initialization: This step is the same as that in the Gaussian case. Note that no initial

values for I
(j)
0 are needed due to independence.

At time t, the following updates are implemented for each sample j, j = 1, . . . ,m.

• Compute the one-step predictive update of the Kalman filter κ
(j)
t−1:

K
(j)
t = FΣ

(j)
t−1F

H + ggH , (9.139)

γ̃
(j)
t = hHK

(j)
t h, (9.140)

η
(j)
t = hHFµ

(j)
t−1. (9.141)
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Conditioned on S
(j)
t and I

(j)
t , the predictive distribution is then given by

p
(
yt | S

(j)
t , I

(j)
t ,Y t−1

)
∼ Nc

(
s
(j)
t η

(j)
t , γ̃

(j)
t + σ2

I
(j)
t

)
. (9.142)

• Compute the trial sampling density: For each (a, δ)i ∈ A × {1, 2}, compute

ρ
(j)
t,i

�
= P

[
(st, It) = (a, δ)i | S

(j)
t−1, I

(j)
t−1,Y t

]
∝ p

[
yt,Y t−1, (st, It) = (a, δ)i,S

(j)
t−1, I

(j)
t−1

]
= p

[
yt | (st, It) = (a, δ)i,S

(j)
t−1, I

(j)
t−1,Y t−1

]
︸ ︷︷ ︸

Nc

(
st η

(j)
t , γ̃

(j)
t +σ2

I
(j)
t

)
P
[
(st, It) = (a, δ)i

]
. (9.143)

• Impute the symbol and the noise indicator (st, It): Draw
[
s
(j)
t , I

(j)
t

]
from the set

A × {1, 2} with probability

P
[
(s

(j)
t , I

(j)
t ) = (a, δ)i

]
∝ ρ

(j)
t,i , (a, δ)i ∈ A × {1, 2}. (9.144)

Append
(
s
(j)
t , I

(j)
t

)
to

(
S

(j)
t−1, I

(j)
t−1

)
and obtain

(
S

(j)
t , I

(j)
t

)
.

• Compute the importance weight:

w
(j)
t = w

(j)
t−1 · p

(
yt | S

(j)
t−1, I

(j)
t−1,Y t−1

)
= w

(j)
t−1 ·

∑
(a,δ)i∈A×{1,2}

p
[
yt | (st, It) = (a, δ)i,S

(j)
t−1, I

(j)
t−1,Y t−1

]
P
[
(st, It) = (a, δ)i

]
= w

(j)
t−1 ·

∑
(a,δ)i∈A×{1,2}

ρ
(j)
t,i , (9.145)

where (9.145) follows from (9.143).

• Compute the one-step filtering update of the Kalman filter: Based on the imputed

symbol and indicator
(
s
(j)
t , I

(j)
t

)
, and the observation yt, complete the Kalman filter

update to obtain κ
(j)
t =

[
µ

(j)
t ,Σ

(j)
t

]
according to (9.115) and (9.116) with γ

(j)
t = γ̃

(j)
t +

σ2
It

(j).

• Do resampling according to Algorithm 8.9 when the effective sample size m̄t in (8.103)

is below a threshold.
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The proof that the above algorithm gives the properly weighted samples is similar to that for

the Gaussian fading channels in Section 9.6.1. The dominant computation involved in the

above algorithm at each time t includes m one-step Kalman filter updates. If the delayed-

sample method is employed for delayed estimation with a delay of ∆ time units, then at each

time t,
(
m (2|A|)∆

)
one-step Kalman filter updates are needed because |A × {1, 2}| = 2|A|,

which can be implemented in parallel.

Moreover, we can also develop the adaptive receiver algorithm for coded systems in

impulsive noise flat-fading channels, similar to the one discussed in Section 9.5.4. For a rate
k0

n0
convolutional code, if the delayed-sample method is used with a delay of ∆ time units,

then at each time t a total of
(
mn0 2(k0+n0)(∆+1)

)
one-step Kalman filter updates are needed,

which can be distributed among
(
m 2(k0+n0)(∆+1)

)
processors, each computing one n0-step

update. (With a delay of ∆ units, there are 2k0(∆+1) possible code vectors, and there are

2n0(∆+1) possible noise indicator vectors.)

Simulation Examples

The uncoded BER performance of the proposed adaptive receiver, together with that of the

other three receiver schemes, in a fading channel with impulsive ambient noise is shown in

Fig. 9.16. The noise distribution is given by the two-term Gaussian mixture model (9.85)

with κ = 100 and ε = 0.1. As mentioned earlier in this case for the genie-aided bound,

the genie not only provides the observation of the noise-corrupted modulation-free channel

coefficients, but also the true noise indicator {It} to the channel estimator. It is seen from

this figure that, again, the delayed-weight method offers significant improvement over the

concurrent estimate, although in this case the BER curve for δ = 2 is slightly off the genie-

aided lower bound. Furthermore, the proposed adaptive receiver does not have the error

floor exhibited by the simple differential detector.

In summary, in this section, we have discussed adaptive receiver algorithms for both

uncoded and coded systems, where the delayed-weight method, the delayed-sample method,

and a combination of both are employed to improve estimation accuracy. The Monte Carlo

receiver techniques can also handle the impulsive ambient noise. The computational com-

plexities of the various algorithms discussed in this paper are summarized in Table 9.1. Fi-

nally we note that although the delayed-sample SMC estimation method offers a significant
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Figure 9.16: BER performance of the sequential Monte Carlo receiver in a fading channel

with impulsive noise and without coding. ε = 0.1, κ = 100. The delayed-weight method

is used. The BER curves corresponding to delays δ = 0, δ = 1 and δ = 2 are shown.

Also shown in the same figure are the BER curves for the known channel lower bound, the

genie-aided lower bound and the differential detector.
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performance gain over the simple SMC method, it has a higher computational complexity.

In [533], a number of alternative delayed estimation methods based on SMC are developed,

which trade-off between performance and complexity. Finally, note that the adaptive SMC

receivers developed in this section requires the knowledge of the second-order statistics of

the fading process. In [162], a nonparametric SMC receiver was developed that is based on

wavelet modelling of the fading process and does not require knowledge of channel statistics.

Uncoded system Coded system

Complexity Deg. of Parallelism Complexity Deg. of Parallelism

Gaussian m |A|∆ m |A|∆ mn0 2k0(∆+1) m 2k0(∆+1)

impulsive m (2|A|)∆ m (2|A|)∆ mn0 2(k0+n0)(∆+1) m 2(k0+n0)(∆+1)

Table 9.1: The computational complexities of the proposed sequential Monte Carlo receiver

algorithms under different conditions in terms of the number of one-step Kalman filter up-

dates needed at each time t. The degree of parallelism refers to the maximum number of

computing units that can be employed to implement the algorithm in parallel. It is assumed

that the delayed-sample method is used with a delay of ∆ time units. The number of samples

drawn at each time is m. For uncoded system, the cardinality of the symbol alphabet is

|A|. For coded system, a k0

n0
convolutional code is used. The impulsive noise is modeled by

a two-term Gaussian mixture.

9.6 Appendix

9.6.1 Proof of Proposition 9.1 in Section 9.5.2

To show that the sample (s
(j)
t , w

(j)
t ) given by (9.113) and (9.114) is a properly weighted

sample with respect to p(St|Y t), we need to verify that (9.114) gives the correct weight.

Assume that at time (t−1), we have a properly weighted sample (s
(j)
t−1, w

(j)
t−1) with respect to

p(St−1|Y t−1). That is, assume that s
(j)
t−1 is drawn from some trial distribution q(St−1 | Y t−1),

and that importance weight is given by w
(j)
t−1 = ωt−1(S

(j)
t−1|Y t−1), with

ωt−1(St−1 | Y t−1)
�
=
p(St−1 | Y t−1)

q(St−1 | Y t−1)
. (9.146)



9.6. APPENDIX 625

By (9.111) and (9.113), s
(j)
t is drawn from the distribution p(st|S(j)

t−1,Y t). Hence, the sam-

pling distribution for S
(j)
t is given by q(St−1|Y t−1) p(st|St−1,Y t). Since the target distribu-

tion is p(St|Y t), the weight function at time t is then give by

ωt(St | Y t) =
p(St | Y t)

q(St−1 | Y t−1) p(st | St−1,Y t)

=
p(St−1 | Y t−1)

q(St−1 | Y t−1)
· p(St−1 | Y t)

p(St−1 | Y t−1)

= ωt−1(St−1 | Y t−1) · p(yt | Y t−1,St−1) p(Y t−1 | St−1) p(St−1)/p(Y t)

p(Y t−1|St−1) p(St−1)/p(Y t−1)

∝ ωt−1(St−1 | Y t−1) · p(yt | Y t−1,St−1)

= ωt−1(St−1 | Y t−1) ·
∑
ai∈A

p(yt | st = ai,St−1,Y t−1)p(st = ai | St−1,Y t−1)

= ωt−1(St−1 | Y t−1) ·
∑
ai∈A

ρt,i. (9.147)

Hence, w
(j)
t = ωt(S

(j)
t | Y t) = w

(j)
t−1

∑
ai∈A ρ

(j)
t,i . This verifies that (9.114) gives the correct

importance weight at time t.
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Chapter 10

Advanced Signal Processing for

Coded OFDM Systems

10.1 Introduction

Orthogonal frequency-division multiplexing (OFDM) is a bandwidth-efficient signaling

scheme for wideband digital communications. The main difference between frequency di-

vision multiplexing (FDM) and OFDM is that in OFDM, the spectrum of the individual

carriers mutually overlap. Nevertheless, the OFDM carriers exhibit orthogonality on a sym-

bol interval if they are spaced in frequency exactly at the reciprocal of the symbol interval,

which can be accomplished by utilizing the discrete Fourier transform (DFT). With the de-

velopment of modern digital signal processing technology, OFDM has become practical to

implement and has been proposed as an efficient modulation for applications ranging from

modems, digital audio broadcast, to next-generation high-speed wireless data communica-

tions.

One of the principal advantages of OFDM is that it effectively converts a frequency-

selective fading channel into a set of parallel flat-fading channels. Both the intersymbol

interference and intercarrier interference can be completely eliminated by inserting between

symbols a small time interval known as a guard interval. The length of the guard interval

is made equal to or greater than the delay spread of the channel. If the symbol signal

waveform is extended periodically in the guard interval (cyclic prefix), then orthogonality

627
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of the carrier is maintained over the symbol period, and thus eliminating ICI. Also ISI is

eliminated because successive symbols do not overlap due to the guard interval. Hence at the

receiver there is no need to perform channel equalization and the complexity of the receiver

is quite low.

In this chapter, we discuss receiver design for OFDM systems signaling through unknown

frequency-selective fading channels. In particular, we focus on the design of turbo receivers

in a number of OFDM systems, including an OFDM system with frequency offset, a space-

time block coded OFDM system, and an LDPC-based space-time coded OFDM system. This

chapter is organized as follows. In Section 10.2, we introduce the OFDM communication

system. In Section 10.3, we present MCMC-based blind turbo receiver for OFDM systems

with unknown frequency offset and frequency-selective fading. In Section 10.4, we discuss

pilot-symbol-aided turbo receiver for space-time block coded OFDM systems. In Section

10.5, we present an LDPC-based space-time coded OFDM system and the corresponding

turbo receiver structure.

The following is a list of the algorithms appeared in this chapter.

• Algorithm 10.1: MCMC-based OFDM blind demodulator in the presence of frequency

offset and frequency-selective fading;

• Algorithm 10.2: Metropolis-Hasting sampling of frequency offset;

• Algorithm 10.3: Gibbs sampling of frequency offset;

• Algorithm 10.4: LDPC decoding algorithm.

10.2 The OFDM Communication System

Fig. 10.1 illustrates a block diagram of an orthogonal frequency-division multiplexing

(OFDM) communication system. A serial-to-parallel buffer segments the information se-

quence into frames of Q symbols. An OFDM word at time n consists of Q data symbols

X0[n], X1[n], · · · , XQ−1[n]. An inverse discrete Fourier transform (IDFT) is first applied to

the OFDM word, to obtain

xm[n] =
1

Q

Q−1∑
k=0

Xk[n] exp

(

2πkm

Q

)
, m = 0, 1, . . . , Q− 1. (10.1)
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Figure 10.1: Block diagram of a simple OFDM transmitter

A guard interval with cyclic prefix is then inserted to prevent possible intersymbol inter-

ference between OFDM words. After pulse shaping and parallel-to-serial conversion, the

signals are then transmitted through a frequency-selective fading channel. The time-domain

channel impulse response can be modelled as a tapped-delay line, given by

h(τ ; t) =
L−1∑
l=0

hl[t]δ

(
τ − l

K∆f

)
. (10.2)

where L
�
= �τm∆f + 1	 denotes the maximum number of resolvable channel taps, with τm

being the maximum multipath spread and ∆f being the carrier spacing. Assume that the

channel taps remain constant over the interval of one OFDM word, i.e., hl[t] ≡ hl[n], for

(n− 1)T ≤ t < nT , where T is the duration of one OFDM word. At the receiver end, after

matched-filtering and removing the cyclic prefix, the sampled received signal corresponding

to the nth OFDM word becomes

ym[n] = xm[n] � hm[n] + vm[n] (10.3)

=
L−1∑
l=0

hl[n]xm−l[n] + vm[n], m = 0, 1, . . . , Q− 1, (10.4)

where � denotes the convolution; and {vm[n]}m are i.i.d. complex white Gaussian noise sam-

ples. A DFT is then applied to the received signals {ym[n]}m to demultiplex the multicarrier

signals

Yk[n] =

Q−1∑
m=0

ym[n] exp

(
−2πkm

Q

)
, k = 0, 1, . . . , Q− 1. (10.5)
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For OFDM systems with proper cyclic extensions and proper sample timing, with tolerable

leakage, the received signal after demultiplexing at the kth subcarrier can be expressed as

Yk[n] = Xk[n]Hk[n] + Vk[n], k = 0, 1, . . . , Q− 1, (10.6)

where {Vk[n]}k contains the DFT of the noise samples {vm[n]}m, and Vk
i.i.d.∼ Nc(0, σ

2); and

{Hk[n]}k contains the DFT of channel impulse response {hm[n]}m, i.e.,

Hk[n] =
L−1∑
m=0

hm[n] exp

(
−2πkm

Q

)
, k = 0, 1, . . . , Q− 1. (10.7)

Assume that for each l, 0 ≤ l < L, {hl[n]}n is a complex Gaussian process with an

autocorrelation following the Jakes’ model, i.e.,

E {hl[n]hl[n+m]∗} = Pl J0(2πfdTm), (10.8)

where Pl is the average power of the lth tap; fd is the Doppler spread. Assume further that

the L fading processes are mutually independent. Since {Hk[n]}k are linear transformations

of {hl[n]}l, then for each k, 0 ≤ k < Q, {Hk[n]}n is also a complex Gaussian process with

the following autocorrelation

E {Hk[n]Hk[n+m]∗} = E

{
L−1∑
l=0

hl[n] exp

(
−2πkl

Q

) L−1∑
l=0

hl[n+m]∗ exp

(

2πkl

Q

)}

= E

{
L−1∑
l=0

hl[n]hl[n+m]∗
}

=
L−1∑
l=0

E {hl[n]hl[n+m]∗}

= J0(2πfdTm)
L−1∑
l=0

Pl. (10.9)

Hence from (10.6) and (10.9) it is seen that the received frequency-domain signal at each

subcarrier k follows a flat-fading model with the same fading autocorrelation function as that

in the time domain. Hence the OFDM system effectively transforms a frequency-selective

fading channel into a set of parallel flat-fading channels. However, note that the frequency-

domain channel responses of different carriers are correlated. In fact, we have

E {Hk1 [n]Hk2 [n+m]∗} = E

{
L−1∑
l=0

hl[n] exp

(
−2πk1l

Q

) L−1∑
l=0

hl[n+m]∗ exp

(

2πk2l

Q

)}
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= E

{
L−1∑
l=0

hl[n]hl[n+m]∗ exp

(

2π(k2 − k1)l

Q

)}

= J0(2πfdTm)
L−1∑
l=1

Pl exp

(

2π(k2 − k1)l

Q

)
. (10.10)

10.3 Blind MCMC Receiver for Coded OFDM with

Frequency Offset and Frequency-selective Fading

In practical OFDM systems, the existence of frequency offset, which is caused by the mis-

match between the oscillator in the transmitter and that in the receiver, destroys the or-

thogonality among OFDM subcarriers and leads to a performance degradation [370]. Sev-

eral schemes of frequency offset estimation in OFDM systems have been investigated in

[80, 85, 240, 291, 336, 431, 491, 498]. For OFDM applications over additive Gaussian white

noise (AWGN) channels, the maximum likelihood (ML) frequency offset estimates are de-

rived in [85, 240, 291, 498]. Given that wireless channels typically exhibit frequency-selective

fading, these methods designed for AWGN channels are not applicable in wireless OFDM

systems. On the other hand, frequency offset estimators in frequency-selective fading chan-

nels are developed in [80, 336, 431], which require some particular form of data redundancy,

e.g., data repetition [336] or pilot insertion [80, 431]. In [491], a blind subspace method for

frequency offset estimation is proposed.

In wireless OFDM systems, in addition to the frequency offset, the frequency-selective

fading channel states are also unknown to the receiver. The problem of channel estima-

tion in OFDM systems has been studied in many previous works. The methods pro-

posed in [257, 497] estimate the fading channel based on the pilot symbols; while blind

estimation schemes based on the second-order or high-order statistics are proposed in

[106, 340, 604]. Moreover, in [201, 363], subcarrier phase estimators are proposed by em-

ploying the expectation-maximization (EM) algorithm.

As an important remark, we note that the ultimate objective of the receiver is to recover

the information-bearing data symbols from the received signals. Although the prevailing

receiver-design paradigm is to estimate the unknown parameters first, and then to use these

estimated parameters in the detector, such an “estimate-then-plug-in” approach is ad hoc
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and bears no theoretical optimality. In this section, we treat the problem of blind receiver

design for coded OFDM systems in the presence of unknown frequency offset and frequency-

selective fading, under the Markov chain Monte Carlo (MCMC) framework for Bayesian

computation (cf. Chapter 8) and the principle of turbo processing (cf. Chapter 6). The

techniques in this section were developed in [288].

10.3.1 System Description

Channel Model with Frequency Offset

When there is a carrier frequency offset in the OFDM channel, the received time-domain

signal in (10.4) becomes [336]

ym[n] =
1

Q

Q−1∑
k=0

XkHk exp

(
−2πm(k + ε)

Q

)
+ vm[n], m = 0, 1, . . . , Q− 1,(10.11)

where ε is the relative frequency offset of the channel (the ratio of the actual frequency offset

to the intercarrier spacing). Note that for practical purpose, we assume that the absolute

value of the frequency offset is no larger than half of the OFDM subcarrier spacing, i.e.,

|ε| < 0.5. That is, the large frequency offset has been already compensated, e.g., by an

automatic frequency control (AFC) circuit [117], and what remains is the residual frequency

offset. We next write the signal model (10.11) in a matrix form. Denote

h[n]
�
=

[
h0[n] h1[n] . . . hL−1[n] 0 . . . 0︸ ︷︷ ︸

(Q− L) 0’s

]T

H [n]
�
=

[
H0[n] H1[n] . . . HQ−1[n]

]T

y[n]
�
=

[
y0[n] y1[n] . . . yQ−1[n]

]T

Y [n]
�
=

[
Y0[n] Y1[n] . . . YQ−1[n]

]T

v[n]
�
=

[
v0[n] v1[n] . . . vQ−1[n]

]T

V [n]
�
=

[
V0[n] V1[n] . . . VQ−1[n]

]T

X[n]
�
= diag

{
X0[n] X1[n] . . . XQ−1[n]

}
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W =


1, 1, . . . , 1

1, exp[−2π/Q], . . . exp[−2π(Q− 1)/Q]
...

...
. . .

...

1, exp[−2π(Q− 1)/Q], . . . , exp[−2π(Q− 1)(Q− 1)/Q]


and F ε

�
= diag

{
1, exp[2πε/Q], . . . , exp[2πε(Q− 1)/Q]

}
.

Note that W is the DFT matrix and 1
Q
W H is the inverse DFT matrix, i.e., W ( 1

Q
W H) =

( 1
Q
W H)W = IQ. Hence H [n] = Wh[n], and V [n] = Wv[n].

Then upon applying a DFT on {ym[n]}m in (10.4) we obtain the following signal model

Y [n] =
1

Q
WF εW

HX[n]Wh[n] + V [n]. (10.12)

For a better understanding of the effect of the frequency offset, we now take a closer look

at the matrix Ψ
�
= 1

Q
WF εW

H in (10.12). When |ε| < 0.5, after some simple algebra, the

(i, j)th element of the matrix Ψ can be expressed as

ψ(i, j)
�
=


1 − exp [2π(i− j + ε)]

Q {1 − exp [2π(i− j + ε)/Q]} , ε �= 0, ∀i, j,
δ(i− j), ε = 0, ∀i, j;

with |ψ(i, j)| ≤ 1,∀i, j; and |ψ(i, j)| ≥ |ψ(i′, j′)|, if |i− j| ≤ |i′ − j′| .

Hence Ψ �= I, when ε �= 0; and the spillovers to off-diagonal elements of Ψ , which correspond

to the inter-subcarrier interference (ICI) [336], increase as ε increases.

Bayesian Formulation of Optimal Demodulation

We consider a coded OFDM system with Q subcarriers, signaling through a frequency-

selective fading channel in the presence of frequency offset. The system model, which has

taken into account the frequency offset, is illustrated in Fig. 10.2. Each signal frame contains

the information to be transmitted in one OFDM slot. The information bits of each signal

frame are first encoded by a channel encoder; the encoded bits are then interleaved. After

interleaving, the code bits {bn} are mapped into MPSK symbols {ck}. Finally, the differen-

tially encoded MPSK symbols {Xk} are transmitted at the Q OFDM subcarriers. Note that

the receiver processes each OFDM word independently, and hence in the remainder of this

section, we drop the word index n in the signal model (10.12).
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Figure 10.2: The block diagram of a coded OFDM system, including the transmitter, the

effect of frequency offset, the frequency-selective fading channel and the receiver.

Since the receiver design problem addressed here is blind in nature, differential encod-

ing is employed to resolve the phase ambiguity. For each signal frame, a block of MPSK

symbols {c1, . . . , cQ−1} is input to the differential encoder, and the output MPSK symbols

{X0, . . . , XQ−1}, with

Xk =

{
1, k = 0,

ckXk−1, k = 1, · · · , K − 1,
(10.13)

are then transmitted from the Q OFDM subcarriers. As will be seen in in the following

section, the decoding of the differentially encoded MPSK symbols is carried out implicitly

in the Bayesian demodulator.

As the first step in the receiver, the code bits b
�
= {bm} are demodulated [cf. Fig. 10.2].

The optimal demodulator computes the a posteriori probabilities of the code bits as

P
(
bm = +1 | Y

)
∝

∑
b:bm=+1

∫
p(Y | b,h, ε)P (b) p(h)p(ε) dh dε, ∀m , (10.14)

where p(Y |b,h, ε) is a complex Gaussian density function [cf. Eq.(10.12)]. The above com-

putation is prohibitive and we therefore resort to the Markov chain Monte Carlo (MCMC)

techniques introduced in Chapter 8 to numerically calculate P (bm = +1|Y ) in (10.14).

10.3.2 Bayesian MCMC Demodulator

In this section, we focus on the design of the MCMC demodulator for OFDM systems in

the presence of frequency offset and frequency-selective fading. The receiver algorithm is
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summarized as follows.

Algorithm 10.1 [MCMC-based OFDM blind demodulator in the presence of frequency

offset and frequency-selective fading] Given the initial samples
{

X(0),h(0), ε(0)
}

drawn from

their prior distributions, proceed as follows. For n = 1, 2, . . .

• Draw a sample of h(n) from p
(
h|Y ,X(n−1), ε(n−1)

)
.

• For k = 0, 1, · · · , Q− 1

Draw a sample of X
(n)
k from P

(
Xk |Y ,h(n), ε(n−1), X

(n)
0 , . . . , X

(n)
k−1, X

(n−1)
k+1 , . . . , X

(n−1)
Q−1

)
.

• Draw a sample of ε(n) from p
(
ε |Y ,h(n),X(n)

)
.

We next elaborate on each step of the above MCMC blind demodulator.

Prior Distributions

The prior distributions of {X,h, ε} are assigned as follows.

1. The data sequence X = {Xk}, which is differentially encoded from c = {ck}, forms a

Markov chain. Its prior distribution can be expressed as

P (X) = P (X0)

Q−1∏
k=1

P (Xk |Xk−1)

= P (X0)

Q−1∏
k=1

P (ck = XkX
∗
k−1). (10.15)

In (10.15), P (ck = XkX
∗
k−1) can be computed from the extrinsic information fed from

the channel decoder; and we set P (X0) = 1
|Ω| to count for the phase ambiguity in X0,

where Ω represents the constellation of MPSK symbols.

2. For the unknown frequency-selective fading channel response h, a complex Gaussian

prior distribution is assumed,

p(h) ∼ Nc(h0,Σ0) . (10.16)

We set h0 = 0 and Σ0 = αIL, where α usually takes a large value corresponding to a

non-informative prior of h.
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3. For the unknown frequency offset ε, a uniform prior distribution is assumed,

p (ε) ∼ uniform[−#,#] , (10.17)

where # denotes the prior range of ε, which is a real number that satisfies # > ε, and

# ∈ (0, 0.5).

Conditional Posterior Distributions

The following conditional posterior distributions are required in the MCMC blind demodu-

lation algorithm.

1. The conditional posterior distribution of channel response h given Y , X and ε, as

derived in the Appendix A, is given by

p (h |Y ,X, ε) ∼ Nc(h∗,Σ∗), (10.18)

with Σ−1
∗

�
=

Q

σ2
IL + Σ−1

0 ≈ Q

σ2
IL , (10.19)

and h∗
�
= Σ∗

[
1

Qσ2
W HXHWF H

ε W HY + Σ−1
0 h0

]
≈ 1

Q2
W HXHWF H

ε W HY , (10.20)

where the approximations in (10.19) and (10.20) follow from the fact that α in (10.16)

is large and hence Σ−1
0 can be neglected. Moreover, it is seen that due to the orthogo-

nality property of the OFDM modulation, no matrix inversion is involved in generating

the Monte Carlo samples of h; therefore the computational complexity is low.

2. The conditional posterior distribution of the data symbol Xk is obtained by

conditioning on Y , h, ε and the samples of other data symbols X [−k]
�
={

X0, . . . , Xk−1, Xk+1, . . . , XQ−1

}
. As shown in the Appendix A, the conditional pos-

terior distribution of Xk is given by

P
(
Xk = aj |Y ,h, ε,X [−k]

)
∝ exp

[
− 2

σ2
�
(
Ỹ ∗

k ajHk

)]
P

(
ck = ajX

∗
k−1

)
P

(
ck+1 = a∗jXk+1

)
≈ exp

[
− 2

σ2
�
(
Ỹ ∗

k ajHk

)]
P

(
ck = ajX

∗
k−1

)
, j = 1, . . . , |Ω|, (10.21)
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where aj ∈ Ω, and Ỹk is the kth element of Ỹ
�
= WF εY . The term P (ck = ajX

∗
k−1)

in (10.21) is the a priori probability of the MPSK symbol ck, which is delivered by the

channel decoder. Through this term, the channel coding constraint that embedded in

{ck} is exploited in the demodulator.

Note that in the final step of (10.21), the term P
(
ck+1 = a∗jXk+1

)
is dropped.

This is because any random samples of the data sequence X must satisfy the dif-

ferential coding constraint [cf. Eq.(10.15)]; since the conditioned data sequence{
X

(n)
0 , . . . , X

(n)
k−1, Xk, X

(n−1)
k+1 , . . . , X

(n−1)
Q−1

}
in (10.21) may not satisfy this constraint,

it is not a valid sample of the data sequence X. To avoid this problem, we propose

to compute the conditional posterior probability of Xk by conditioning only on those

data samples drawn in the current Gibbs iteration as
{
X

(n)
0 , . . . , X

(n)
k−1

}
, and corre-

spondingly to drop the term related to the sample of the previous Gibbs iteration, i.e.,

P
(
ck+1 = a∗jXk+1

)
. Our simulation results confirm that by neglecting this term, the

Bayesian blind turbo receiver can yield much better performance through the turbo

iterations.

3. The conditional posterior distribution of ε can be expressed as

p
(
ε |Y ,h,X

)
∝ p

(
Y |h,X,F ε

)
∝ exp

{
− 1

σ2

∥∥∥Y − 1

Q
WF εW

HXWh
∥∥∥2}

, (10.22)

Due to the nonlinear signal model of ε in (10.12), the conditional posterior distribution

of ε in (10.22) is not a commonly used distribution (e.g., Gaussian, Chi-square, etc.),

hence generally there does not exist an efficient way to draw the random samples of ε

directly from such a distribution function, as what we did above for h and X. As an

important component in the Bayesian demodulator, we next discuss three methods for

drawing samples of the frequency offset ε.

Sampling the Frequency Offset

We consider three methods for drawing samples of the frequency offset ε. The first two meth-

ods are within the Bayesian MCMC framework, i.e., the Metropolis-Hastings algorithm and

the Gibbs sampler with local linearization. The third method simply ignores the frequency

offset, i.e., it sets ε(n) = 0, ∀n.
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Method I: Metropolis-Hastings Algorithm - The Metropolis-Hastings algorithm has been

briefly introduced in Section 9.3.1. For the problem considered here, the target distribution

is as p(ε |Y ,h,X); and the transition function is chosen as T (ε, ε′) = 1. Note that such a

transition function is by no means the optimal choice, but it has been widely adopted in

practice due to its simplicity [415]. Following the Metropolis-Hastings algorithm, and by

using the prior distribution (10.17) as well as posterior distribution (10.22), the procedure

for drawing random samples of the frequency offset is as follows:

Algorithm 10.2 [Metropolis-Hasting sampling of frequency offset]

• Draw a sample ε′ ∼ uniform[−#,#].

• Compute the Metropolis ratio

r(ε, ε′) =
p(ε′ |Y ,h,X)

p(ε |Y ,h,X)
= exp

{
− 2

Qσ2
� [

Y HW (F ε − F ε′)W
HXWh

]}
. (10.23)

• Generate u ∼ uniform(0, 1), and let

ε(m+1) =

{
ε′, if u ≤ r(ε, ε′),

ε(m), otherwise.
(10.24)

Method II: Gibbs Sampler with Local Linearization - As seen in (10.22), due to the nonlinear

signal model of ε, we cannot directly apply the Gibbs sampler to draw samples of ε. However,

following an idea appeared in [99], we can first linearize the received signal model at its mode

(the maximum value) with respect to ε; then based on the linearized signal model, we obtain

a locally linear conditional posteriori distribution of ε. Specifically, apply an inverse DFT

on both sides of (10.12) we obtain

y =
1

Q
F εW

HXWh + v. (10.25)

A Taylor series expansion is applied around the mode of the signal model in (10.25) and the

linearized signal model is given by

y ∼= 1

Q
F ε̂W

HXWh +
∂y

∂ε

∣∣∣
ε=ε̂

(ε− ε̂) + v

= F ε̂h + F ε̂h(ε− ε̂) + v , (10.26)

with F ε̂
�
= diag

{
0,
2π

Q
exp[2πε̂/Q], . . . ,

2π(Q− 1)

Q
exp[2πε̂(Q− 1)/Q]

}
,

h
�
=

1

Q
W HXWh,
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Based on the above locally linearized signal model (10.26), as derived in the Appendix A,

the conditional posterior distribution of ε is Gaussian, given by

p
(
ε |Y ,h,X

)
∼ N

(
µε, σ

2
ε

)
, (10.27)

with µε = ε̂+ �
[
(y − F ε̂h)HF ε̂h

](
h

H
F

H

ε̂ F ε̂h
)−1

,

σ2
ε =

σ2

2Q

(
h

H
F

H

ε̂ F ε̂h
)−1

,

Note that µε and σ2
ε are real numbers. Using (10.22) and (10.27), the procedure of the

frequency offset sampling is as follows:

Algorithm 10.3 [Gibbs sampling of frequency offset]

• Search for the mode ε̂ of p(ε |Y ,h,X) from ε ∈ [−#,#].

• Draw a sample of ε from its linearized conditional posterior distribution:

p(ε |Y ,h,X) ∼ N (µε, σ
2
ε ).

Method III: Null Sampling - In this method, we simply ignore the frequency offset by setting

ε(n) = 0, ∀n. Although bearing no theoretical optimality, this method can be used to test the

robustness of the Bayesian demodulator against a modelling mismatch. That is, when ε = 0

is assumed, we essentially ask the Gibbs sampler to fit an OFDM model with no frequency

offset into an actual OFDM system with a certain frequency offset.

We consider a special case and see how the blind receiver behaves in the presence of a

modelling mismatch. Let us revisit the system model in (10.12) and define

h̃
�
=

1

Q
FW HXWh. (10.28)

The vector h̃ can be seen as the time response of a “composite” channel with zero frequency

offset, which incorporates the effect of the frequency offset, the data symbols and the original

frequency-selective fading channel. It is easy to see that, when X = I, h̃ = Fh preserves

the same statistics as h. In other words, no matter how large the frequency offset is, the

blind receiver derived based on the statistics of h can also adapt to that zero-frequency-offset

“composite” channel with response of h̃, by setting ε(m) = 0, ∀m, in the Gibbs sampler.

When X �= I, the statistics of h̃ are usually different from that of h and the receiver will

suffer from a performance loss. The quantitative evaluation of such a performance loss due

to the modelling mismatch is given by computer simulations later in this section.
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Computing Data Posterior Probabilities

After collecting J random samples of the differentially encoded MPSK symbols {X(n)}, the a

posteriori probabilities of the MPSK symbols c and the code bits b are computed, as follows.

First, the a posteriori probabilities of c are computed from J random samples of {X(n)} as

P
(
ck = aj | Y

) ∼= 1

J

J0+J∑
n=J0+1

δ
(n)
k , k = 1, · · · , Q− 1, j = 1, . . . , |Ω|, (10.29)

where δ
(n)
k is an indicator such that

δ
(n)
k =

{
1, if X

(n)
k X

(n)∗
k−1 = aj,

0, otherwise.
(10.30)

Furthermore, the a posteriori probabilities of code bits b can be easily obtained from

the a posteriori probabilities of MPSK symbols c in (10.29). Assume that the symbol ck is

modulated from the code bits {b1k, . . . , bSk}, with S = log2 |Ω|, then the a posteriori probability

of code bit bik is given by

P
(
bik = +1 |Y

)
∝

∑
a∈Ai

+

P (ck = a |Y ) , i = 1, · · · , S , (10.31)

where Ai
+ ⊂ Ω denotes all symbols in Ω that are modulated from the code bits with the ith

bit as “+1”.

So far, the Bayesian demodulator fulfills the soft demodulation of code bits b. In order

to further exploit the channel coding constraints that embedded in code bits b, we resort

to a turbo receiver structure, which iteratively exchanges the information of b between

the Bayesian demodulator developed above and the channel decoder to achieve successively

improved receiver performance.

Bayesian Blind Turbo Receiver

The Bayesian blind turbo receiver consists of two stages: the Bayesian demodulator as

developed in the previous section followed by a MAP channel decoder, and these two stages

are separated by an interleaver and a deinterleaver. The a posteriori log-likelihood ratios

(LLR’s) of the channel code bits b are iteratively exchanged between these two stages, to

successively refine the receiver performance.
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The Bayesian demodulator takes as input the interleaved a priori LLR’s of code bits

{λ2[bπ(m)]} from the MAP channel decoder in the previous turbo iteration as well as the

received signals Y , where π(·) denotes the interleaving function. And it computes as output

the a posteriori LLR’s of the code bits

Λ1[bπ(m)]
�
= log

P (bπ(m) = +1 |Y )

P (bπ(m) = −1 |Y )
, (10.32)

where P (bπ(m) = +1 |Y ) is the a posteriori probability of code bit bπ(m) as computed in

(10.31). Note that, according to the original form of the turbo principle, the a priori LLR’s

{λ2[bπ(m)]} are supposed to be deducted from the a priori LLR’s {Λ1[bπ(m)]} to yield the so-

called “extrinsic” information. However, the posterior distribution delivered by the Gibbs-

sampler-based Bayesian demodulator only takes a quantized value as P (ck = aj |Y ) ∈
{0, 1

J
, 2

J
, . . . , 1} due to the finite samples of X [cf. Eq.(10.29)]. Hence, in order to enhance

the numerical stability and the iterative receiver performance, for this particular receiver

structure, we feed the whole posterior information {Λ1[bπ(m)]} to the MAP channel decoder.

The MAP channel decoder employs the standard MAP decoding algorithm to compute

the a posteriori LLR’s of code bits

Λ2[bm]
�
= log

P (bm = +1 | {Λ1(bm)})
P (bm = −1 | {Λ1(bm)}) = λ2(bm) + Λ1(bm) . (10.33)

It (10.33), the extrinsic information {λ2(bm)} is obtained by subtracting the prior information

{Λ1(bm)} from the posterior information {Λ2(bm)}. After being interleaved, this extrinsic

information is feedback to the Bayesian demodulator as a prior information for the next

iteration; and thus we complete one turbo iteration. At the last turbo iteration, the LLR’s

and hard decisions of information bits are computed and then output.

In addition to exchanging the extrinsic information with Bayesian demodulator, the chan-

nel decoder also can help the Gibbs-sampler-based Bayesian demodulator to assess its con-

vergence, as discussed in Section 8.4.4. The number of bit corrections made by the MAP

channel decoder is monitored, where the number of corrections is counted by comparing

the signs of the code-bit LLR’s at the input and output of the MAP channel decoder. If

this number exceeds some predetermined threshold, then we decide the convergence of the

Gibbs-sampler-based Bayesian demodulator is not achieved. In that case, the Bayesian de-

modulator will be applied again to the same received data.
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Simulation Examples

In this section, we provide computer simulation results to illustrate the performance of the

MCMC blind turbo receiver for coded OFDM systems with frequency offset and frequency-

selective fading. In simulations the available bandwidth is 1MHz and Q = 256 subcarriers

are used for OFDM modulation. These correspond to a subcarrier symbol rate of 3.9KHz

and OFDM word duration of 1
∆f

= 256µs. For each OFDM word, a guard interval of 40µs is

added to combat the effect of inter-symbol interference. Simulations are carried out through

an equal-power 4-tap frequency-selective fading channel, where the delays of these taps are

τl = l
Q∆f

, l = 0, . . . , 3. The modulator employs QPSK constellation. And a 4-state, rate-1/2

convolutional code with generator (5,7) in octal notation is chosen as the channel code. For

each OFDM slot, J0 + J = 100 samples are drawn by the MCMC demodulator, with the

first J0 = 50 samples discarded. After completing 100 MCMC iterations, the convergence

is tested by counting the number of corrections made by the decoders. In few cases, when

convergence is not reached, it gets restarted for another round of 100 MCMC iterations.

In the following, the performance is demonstrated in terms of the bit-error-rate (BER) and

OFDM word-error-rate (WER) versus the signal-noise-ratio (SNR), defined as SNR
�
= ‖h‖2

σ2 .

Performance Degradation Due to Frequency Offset:

First, we demonstrate the performance degradation due to the frequency offset in the

coded OFDM system simulated here. The ideal channel state information (CSI), i.e., the

channel response h, is assumed known at the receiver. In Fig. 10.3, the performance of

the turbo receiver under perfect CSI is shown for the coded OFDM system with different

frequency offset, ε = {0.00, 0.09, 0.18}. The results confirm the analysis in previous works,

e.g., [370], that the receiver performance degrades rapidly as the frequency offset increases.

Hence, appropriate measures should be taken to combat the frequency offset.

Performance of Various Frequency Offset Sampling Methods:

In Fig.’s 10.4–10.11, the impact of different methods for drawing samples of the frequency

offset on the overall Bayesian blind turbo receiver performance is compared. For Method I

and Method II, the impact of the prior range (# = {0.1, 0.5}) on the receiver performance

is compared as well. In particular, in Method II, the mode of the conditional posterior

distribution of the frequency offset is found by a global search with a step size of δε = 0.05.
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Figure 10.3: BER and WER in a coded OFDM system with frequency offset ε =

{0.00, 0.09, 0.18}. The perfect CSI, i.e., the channel response h, is assumed at the receiver.

Hence, the computational complexity of Method II is still acceptable; and simulations show

that only marginal performance improvement is obtained by using smaller step sizes.

The performance of the receiver, when it employs Method I or Method II, is demonstrated

through the BER and WER after the first, third and fifth turbo iterations; whereas when

Method III is employed, for clarity, only the performance after the fifth turbo iteration is

shown, denoted by “WER,Iter#5,3rd” and “BER,Iter#5,3rd” in the figures. Moreover, for

comparison, the ideal-CSI-performance of the system with zero frequency offset, which is

approximately the best performance we can achieve in this system, is shown again in these

figures and denoted by “WER,CSI,ε=0” and “BER,CSI,ε=0”.

Example 1: Small Frequency Offset - In Fig.’s 10.4–10.7, we present the performance of the

MCMC blind turbo receiver in a coded OFDM system with frequency offset ε = 0.09. From

the simulation results, several conclusions can be drawn. First, the receiver performance

is significantly improved through turbo iterations and can approach the performance under
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perfect CSI at the BER of 10−3 and WER of 2 × 10−2, as can be seen from the performance

curves when the receiver employs either Method I or Method II for frequency offset sampling.

Secondly, the receiver performance is not sensitive to the prior range # of Method I or

Method II, which can be seen by the comparison between Fig. 10.4 and Fig. 10.5 or between

Fig. 10.6 and Fig. 10.7. This is a favorable fact for the receiver design, as we can always set

the largest prior range of ε as [−0.5, 0.5]. Thirdly, the robustness of the receiver is tested

by employing Method III in the Bayesian demodulator. Compared with the performance of

the receiver that explicitly samples the frequency offset (i.e., by Method I or Method II),

we do not see any performance loss when the receiver samples null frequency offset (i.e., by

Method III). In other words, the MCMC blind turbo receiver is robust against a modelling

mismatch.
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ε=0.09, Metropolis algorithm, [−0.5,0.5]
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Figure 10.4: BER and WER in a coded OFDM system with frequency offset ε = 0.09. The

Metropolis-Hastings algorithm is employed to generate the Monte Carlo sampling of the

frequency offset, where the prior range # = 0.5.

Example 2: Large Frequency Offset - In Fig.’s 10.8–10.11, in a same form as the previous



10.3. BLIND MCMC RECEIVER FOR CODED OFDM WITH FREQUENCY OFFSET AND FREQUEN

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

ε=0.09, Metropolis algorithm, [−0.1,0.1]

B
E

R
, W

E
R

SNR (dB)

WER,Iter#1
WER,Iter#3
WER,Iter#5
WER,Iter#5,3rd

WER,CSI,ε=0
BER,Iter#1
BER,Iter#3
BER,Iter#5
BER,Iter#5,3rd

BER,CSI,ε=0

Figure 10.5: BER and WER in a coded OFDM system with frequency offset ε = 0.09. The

Metropolis-Hastings algorithm is employed to generate the Monte Carlo sampling of the

frequency offset, where the prior range # = 0.1.
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Figure 10.6: BER and WER in a coded OFDM system with frequency offset ε = 0.09. The

Gibbs sampler with local linearization is employed to generate the Monte Carlo sampling of

the frequency offset, where the prior range # = 0.5 and the search step size δε = 0.05.
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Figure 10.7: BER and WER in a coded OFDM system with frequency offset ε = 0.09. The

Gibbs sampler with local linearization is employed to generate the Monte Carlo sampling of

the frequency offset, where the prior range # = 0.1 and the search step size δε = 0.05.
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example, we present the receiver performance in a coded OFDM system with a larger fre-

quency offset ε = 0.18. Recall that from Fig. 10.3, when no proper methods are employed

to combat the frequency offset, the receiver assuming perfect CSI completely fails in the

presence of such a large frequency offset.

From Fig.’s 10.8–10.11, in addition to the conclusions drawn in the previous example,

some new observations are made. When Method I or Method II is employed, it is seen

from the figures that the receiver still performs very well and can approach the performance

under perfect CSI after 3-5 turbo iterations, in the presence of such a large frequency offset.

However, when Method III is employed, the receiver performance mildly degrades by about

1.5 dB due to the modelling mismatch, as compared to the performance in a smaller frequency

offset system (i.e., the performance shown in Fig.’s 10.4–10.7).

Finally, based on all the simulation results shown above, we compare the efficiency of

all the three methods for frequency offset sampling in terms of both the performance and

complexity. Method III has the lowest complexity by ignoring the frequency offset, but it

leads to a noticeable receiver performance degradation as the frequency offset becomes large.

Method I has lower complexity than Method II, and it can yield almost the same receiver

performance as method II. Moreover, since no approximation has been made in deriving

Method I, its convergence is guaranteed by the theory of MCMC. Therefore, we advocate

the use of Method I, the Metropolis-Hastings algorithm, to draw the samples of frequency

offset in the MCMC blind turbo receiver.

10.4 Pilot-symbol-aided Turbo Receiver for Space-

Time Block Coded OFDM Systems

In the previous section, we have treated the problem of blind receiver design based on MCMC

methods for OFDM systems. In this section, we discuss the design of pilot-symbol-aided

receiver for OFDM communication systems over frequency-selective fading channels. Here

we treat a general scenario where multiple transmit and receive antennas are employed. It

is assumed that space-time block coding is adopted at the transmitter end. The techniques

in this section were developed in [289].
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Figure 10.8: BER and WER in a coded OFDM system with frequency offset ε = 0.18. The

Metropolis-Hastings algorithm is employed to generate the Monte Carlo sampling of the

frequency offset, where the prior range # = 0.5.
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Figure 10.9: BER and WER in a coded OFDM system with frequency offset ε = 0.18. The

Metropolis-Hastings algorithm is employed to generate the Monte Carlo sampling of the

frequency offset, where the prior range # = 0.2.
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Figure 10.10: BER and WER in a coded OFDM system with frequency offset ε = 0.18. The

Gibbs sampler with local linearization is employed to generate the Monte Carlo sampling of

the frequency offset, where the prior range # = 0.5 and the search step size δε = 0.05.
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Figure 10.11: BER and WER in a coded OFDM system with frequency offset ε = 0.18. The

Gibbs sampler with local linearization is employed to generate the Monte Carlo sampling of

the frequency offset, where the prior range # = 0.2 and the search step size δε = 0.05.
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10.4.1 System Descriptions

We consider an STBC-OFDM system with Q subcarriers, N transmitter antennas and M

receiver antennas, signalling through frequency- and time-selective fading channels. As il-

lustrated in Fig. 10.12, the information bits are first modulated by an MPSK modulator;

then the modulated MPSK symbols are encoded by an STBC encoder. Each STBC code

word consists of (PN) STBC symbols, which are transmitted from N transmitter antennas

and across P consecutive OFDM slots at a particular OFDM subcarrier. The STBC code

words at different OFDM subcarriers are independently encoded, therefore, during P OFDM

slots, altogether Q STBC code words [or (QPN) STBC code symbols] are transmitted. It

is assumed that the fading processes remain static during each OFDM word (one time slot)

but it varies from one OFDM word to another; and the fading processes associated with

different transmitter-receiver antenna pairs are uncorrelated.
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Figure 10.12: Transmitter and receiver structure for an STBC-OFDM system.

At the receiver, the signals are received fromM receiver antennas. After matched filtering

and symbol-rate sampling, the discrete Fourier transform (DFT) is then applied to the
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received discrete-time signals to obtain

yi[p] =
N∑

j=1

Xj[p]H i,j[p] + zi[p]

= X[p]H i[p] + zi[p] , i = 1, . . . ,M, p = 1, . . . , P , (10.34)

with X[p]
�
=

[
X1[p], . . . ,XN [p]

]
Q×(NQ)

,

Xj[p]
�
= diag

{
xj[p, 0], . . . , xj[p,Q− 1]

}
Q×Q

,

H i[p]
�
=

[
HH

i,1[p, 0], . . . ,HH
i,N [p,Q− 1]

]H

(NQ)×1

,

H i,j[p]
�
=

[
Hi,j[p, 0], . . . , Hi,j[p,Q− 1]

]T

Q×1

,

where H i[p] is the (NQ)-vector containing the complex channel frequency responses between

the ith receiver antenna and all N transmitter antennas at the pth OFDM slot, which is

explained below; xj[p, k] is the STBC symbol transmitted from the jth transmitter antenna

at the kth subcarrier and at the pth OFDM slot; yi[p] is the Q-vector of received signals from

the ith receiver antenna and at the pth time slot; zi[p] is the ambient noise, which is circularly

symmetric complex Gaussian with covariance matrix σ2
zI. Here we restrict our attention to

MPSK signal constellation, i.e., xj[p, k] ∈ Ω �
= {e0, e 2π

|Ω| , . . . , e
2π
|Ω| (|Ω|−1)}.

Consider the channel response between the jth transmitter antenna and the ith receiver

antenna. Following [388], the time-domain channel impulse response can be modelled as a

tapped-delay line, given by

hi,j(τ ; t) =
L−1∑
l=0

αi,j(l; t)δ

(
τ − l

Q∆f

)
, (10.35)

where δ (·) is the Kronecker delta function; L
�
= �τm∆f + 1	 denotes the maximum number

of resolvable taps, with τm being the maximum multipath spread and ∆f being the tone

spacing of the OFDM system; αi,j(l; t) is the complex amplitude of the lth tap, whose delay

is l/∆f . For OFDM systems with proper cyclic extension and sample timing, with tolerable

leakage, the channel frequency response between the jth transmitter antenna and the ith

receiver antenna at the pth time slot and at the kth subcarrier can be expressed as [497]

Hi,j[p, k]
�
= Hi,j(pT, k∆f ) =

L−1∑
l=0

hi,j[l; p]e
−2πkl/Q = wH

f (k)hi,j(p) , (10.36)
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where hi,j[l; p]
�
= αi,j(l; pT ), T is the duration of one OFDM slot; hi,j(p)

�
= [αi,j(0; pT ),

. . . , αi,j(L− 1; pT )]T is the L-vector containing the time responses of all the taps; and

wf (k)
�
= [e−0, e−2πk/Q, . . . , e−2πk(L−1)/Q]H contains the corresponding DFT coefficients.

Using (10.36), the signal model in (10.34) can be further expressed as

yi[p] = X[p]Whi[p] + zi[p] , i = 1, . . . ,M, p = 1, . . . , P , (10.37)

with W
�
= diag

{
W f , . . . ,W f

}
(NQ)×(NL)

,

W f
�
= [wf (0),wf (1), . . . ,wf (Q− 1)]H

Q×L
,

hi[p]
�
=

[
hH

i,1(p), . . . ,h
H
i,N(p)

]H

(NL)×1
.

The STBC was first proposed in [12] and was later generalized systematically in [466].

Following [466], the STBC is defined by a (P × N) code matrix G, where N denotes the

number of transmitter antennas or the spatial transmitter diversity order, and P denotes

the number of time slots for transmitting an STBC code word or the temporal transmitter

diversity order. Each row of G is a permuted and transformed (i.e., negated and/or conju-

gated) form of the N -dimensional vector of complex data symbols x. As a simple example,

we consider a 2 × 2 STBC (i.e., P = 2, N = 2). Its code matrix G1 is defined by

G1 =

[
x1 x2

−x∗2 x∗1

]
. (10.38)

The input to this STBC is the data vector x = [x1, x2]
T . During the first time slot, the

two symbols in the first row [x1, x2] of G1 are transmitted simultaneously from the two

transmitter antennas; during the second time slot, the symbols in the second row [−x∗2, x∗1]
of G1 are transmitted.

In an STBC-OFDM system, we apply the above STBC encoder to data symbols trans-

mitted at different subcarriers independently. For example, by using the STBC defined by

G1, at the kth subcarrier, during the first OFDM slot, two data symbols
[
x1[1, k], x2[1, k]

]
are transmitted simultaneously from two transmitter antennas; during the next OFDM slot,

symbols
[
x1[2, k], x2[2, k]

]
≡

[
− x∗2[1, k], x∗1[1, k]

]
are transmitted.

Simplified System Model

From the above description, it is seen that decoding in an STBC-OFDM system involves the

received signals over P consecutive OFDM slots. To simplify the problem, we assume that
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channel time responses hi[p], p = 1, . . . , P, remain constant over the duration of one STBC

code word (i.e., P consecutive OFDM slots). As will be seen, such an assumption significantly

simplifies the receiver design. Using the channel model in (10.37) and considering the coding

constraints of the STBC, the received signals over the duration of each STBC code word is

obtained as

y
i

= X Whi + zi , i = 1, . . . ,M , (10.39)

with y
i

=
[
yH

i [1], . . . ,yH
i [P ]

]H

(PQ)×1

,

X
�
=

[
XH [1], . . . ,XH [P ]

]H

(PQ)×(NQ)

,

zi
�
=

[
zH

i [1], . . . ,zH
i [P ]

]H

(PQ)×1

,

hi
�
= hi[1] = hi[2] = · · · = hi[P ] .

According to the definitions of W in (10.37) and X in (10.39), we have

W HXHX W = W H

(
P∑

p=1

XH [p]X[p]

)
W , (10.40)

where (
∑P

p=1 XH [p]X[p]) is an (NQ)×(NQ) matrix, which is composed of N2 sub-matrices

of dimension (Q×Q) of the form

P∑
p=1

XH
j [p]Xj′ [p] = diag

{[ P∑
p=1

x∗j [p, 1]xj′ [p, 1]
]
, . . . ,

[ P∑
p=1

x∗j [p,Q]xj′ [p,Q]
]}

=

{
P · I, j = j′

0
¯
, j �= j′

, j = 1, . . . , N, j′ = 1, . . . , N ,(10.41)

where the last equality follows from the constant modulus property of the symbols

{xj[p, k]}j,p,k, and the orthogonality property of the STBC [466] as well as the OFDM mod-

ulation. Hence, (10.40) reduces to

W HXHX W = (PQ) I. (10.42)

As will be seen in the following sections, (10.42) is the key equation in designing the low-

complexity iterative receivers for STBC-OFDM systems.
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10.4.2 ML Receiver based on the EM Algorithm

We next consider the ML receiver design for STBC-OFDM systems. With ideal channel state

information (CSI), the optimal decoder has been derived in [467]. However, in practice, CSI

must be estimated by the receiver. We next develop the EM-based ML receiver for STBC-

OFDM systems in unknown fast fading channels. As in a typical data communication

scenario, communication is carried out in a burst manner. A data burst is illustrated in

Fig. 10.13. It consists of (Pq + 1) OFDM words, with the first OFDM word (p = 0)

containing known pilot symbols and the rest (Pq) OFDM words spanning over the duration

of q STBC code words.

... ...... ...0 1 P

Pilot

Pq

one STC wordone STC word

q STC words

2 P(q-1)+1P(q-1)+2

Figure 10.13: OFDM time slots allocation in data burst transmission. A data burst consists

of (Pq + 1) OFDM words, with the first OFDM word containing known pilot symbols and

the rest (Pq) OFDM words spanning over the duration of q STBC code words.

EM-based STBC-OFDM Receiver

Without CSI, the maximum likelihood (ML) detection problem is written as,

X̂ = arg max
X

M∑
i=1

log p(y
i
|X)

= arg max
X

M∑
i=1

log

∫
p(y

i
|X,hi)p(hi)dhi , (10.43)

where the summation of log-probabilities from all M receiver antennas follows from the

assumption that the ambient noise at different receiver antennas are independent. It is seen

in (10.43) that the direct computation of the optimal ML detection involves multidimensional

integral over the unknown random vector hi, and hence is of prohibitive complexity. Next,

we resort to the expectation-maximization (EM) algorithm to solve (10.43).
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The basic idea of the EM algorithm is to solve problem (10.43) iteratively according to

the following two steps:

1. E-step: Compute Q(X|X(κ)) = E

{[
M∑
i=1

log p(y
i
|X,hi)

] ∣∣∣∣yi
,X(κ)

}
; (10.44)

2. M-step: Solve X(κ+1) = arg max
X
Q(X|X(κ)) ; (10.45)

where X(κ) denotes hard decisions of the data symbols at the κth EM iteration, and

X(κ) satisfies the STBC coding constraints. It is known that the likelihood function∑M
i=1 log p(y

i
|X(κ)) is nondecreasing as a function of κ, and under regularity conditions

the EM algorithm converges to a local stationary point [310].

In the E-step, the expectation is taken with respect to the “hidden” channel response hi

conditioned on y
i
and X(κ). It is easily seen that, conditioned on y

i
and X(κ), hi is complex

Gaussian distributed. Using (10.39) and (10.42), its distribution is expressed as

hi|(yi
,X(κ)) ∼ Nc(ĥi, Σ̂hi

) , i = 1, . . . ,M , (10.46)

with ĥi
�
= (W HX(κ)HΣ−1

z X(κ)W + Σ†
hi

)−1W HX(κ)HΣ−1
z y

i

= (W HX(κ)HX(κ)W + σ2
zΣ

†
hi

)−1W HX(κ)Hy
i

= [(PQ)I + σ2
zΣ

†
hi

]−1W HX(κ)Hy
i
, (10.47)

Σ̂hi

�
= Σhi

− (W HX(κ)HΣ−1
z X(κ)W + Σ†

hi
)−1W HX(κ)HΣ−1

z X(κ)WΣhi

= Σhi
− (W HX(κ)HX(κ)W + σ2

zΣ
†
hi

)−1W HX(κ)HX(κ)WΣhi

= Σhi
− (PQ)[(PQ)I + σ2

zΣ
†
hi

]−1Σhi
, (10.48)

where Σz and Σhi
denote respectively the covariance matrix of the ambient white Gaussian

noise zi and channel responses hi. According our assumptions made earlier, both of them

are diagonal matrices as

Σz
�
= E(ziz

H
i ) = σ2

zI, (10.49)

and Σhi

�
= E(hih

H
i ) = diag

{
β2

1,0, . . . , β
2
1,L−1, . . . . . . , β

2
N,0, . . . , β

2
N,L−1

}
, (10.50)

where β2
j,l is the average power of the lth tap associated with the jth transmitter antenna;

β2
j,l = 0 if the channel response at this tap is zero. Assuming that Σhi

is known (or measured

with the aid of pilot symbols), then

Σ†
hi

�
= diag {γ1,0, . . . , γ1,L−1, . . . . . . , γN,0, . . . , γN,L−1} , (10.51)
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with γj,l
�
=

{
1/β2

j,l, β
2
j,l �= 0

0, β2
j,l = 0

, l = 0, . . . , L− 1 j = 1, . . . , N. (10.52)

It is seen that in the E-step, due to the orthogonality property of the STBC as well as the

OFDM modulation (10.42), no matrix inversion is involved. Therefore, the computational

complexity of the E-step is reduced from O(MN3L3) to O(MNL) and the computation is

also numerically more stable. Using (10.39) and (10.46), Q(X|X(κ)) is computed as

Q(X|X(κ)) = − 1

σ2
z

M∑
i=1

{
E

hi|(y
i
,X (κ)

)

[
‖y

i
− X W hi‖2

]}
+ const.

= − 1

σ2
z

M∑
i=1

{
E

hi|(y
i
,X (κ)

)

[
‖(y

i
− X W ĥi) + (X W ĥi − X W hi)‖2

]}
+ const.

= − 1

σ2
z

M∑
i=1

{
‖y

i
− X W ĥi‖2 + tr{X W Σ̂hi

W HXH}
}

+ const.

= − 1

σ2
z

M∑
i=1

P∑
p=1

{
‖yi[p] − X[p] W ĥi‖2 + tr{X[p] W Σ̂hi

W HXH [p]}
}

+ const.

= − 1

σ2
z

M∑
i=1

P∑
p=1

Q−1∑
k=0

{[
yi[p, k] − xH [p, k]W ′

f (k)ĥi

]2

+
[
xH [p, k]Σ̂hi

(k)x[p, k]
]}

︸ ︷︷ ︸
q
(κ)
i (x[p, k])

+const. ,

(10.53)

with x[p, k]
�
= [x1[p, k], . . . , xN [p, k]]H

N×1
,

W ′
f (k)

�
= diag[wH

f (k), . . . ,wH
f (k)]

N×(NL)
,

[Σ̂hi
(k)](i′,j′)

�
= [WΣ̂hi

W H ]((i′−1)Q+k+1,(j′−1)Q+k+1) , i′ = 1, . . . , N , j′ = 1, . . . , N ,

where tr(A) denotes the trace of matrix A; [A](i′,j′) denotes the (i′, j′)th element of matrix

A.

Next, based on (10.53), the M-step in (10.45) proceeds as follows

X(κ+1) = arg max
X
Q(X|X(κ))

=

Q−1∑
k=0

arg min
{x[p,k]}p

[
M∑
i=1

P∑
p=1

q
(κ)
i (x[p, k])

]
. (10.54)

It is seen from (10.54) that the M-step can be decoupled into Q independent minimization

problems, each of which can be solved by enumerating over all possible x[p, k] ∈ ΩN , ∀p;
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and the coding constraints of STBC are taken into account when solving the M-step, i.e.,

x[p, k], ∀p, are different permutations and/or transformations of x[1, k] as defined in (10.38).

Hence the complexity of the M-step is O(Q|Ω|N); and the total complexity of the EM

algorithm is [O(MNL) + O(Q|Ω|N)] per EM iteration.

Initialization of the EM Algorithm

The performance of the EM algorithm (and hence the overall receiver) is closely related to the

quality of the initial value of X(0) [cf. Eq.(10.44)]. The initial estimate of X(0) is computed

based on the method proposed in [257, 261] by the following steps. First, a linear estimator

is used to estimate the channel with the aid of the pilot symbols or the decision-feedback

of the data symbols. Secondly, the resulting channel estimate is refined by a temporal filter

to further exploit the time-domain correlation of the channel. Finally, conditioned on the

temporally filtered channel estimate, X(0) is obtained through the ML detection. We next

elaborate on the linear channel estimator as well as the temporal filtering.

Least-Square Channel Estimator - In (10.47), by assuming the perfect knowledge of Σhi
,

ĥi is simply the minimum mean-square error (MMSE) estimate of the channel response hi.

When Σhi
is not known to the receiver, a least-square estimator can be applied to estimate

the channel and to measure Σhi
as well. We next derive the least-square channel estimator in

STBC-OFDM systems. By treating hi as an unknown vector without any prior information

and using (10.39) and (10.42), the least-square estimate ĥi is expressed as,

ĥi =
(
W HXHX W

)−1

W HXHy
i

= Q−1W H

(
P∑

p=1

XH [p]yi[p]

)

=
1

PQ
W H

(
P∑

p=1

XH [p]yi[p]

)
, (10.55)

with Q
�
= W HXHX W = (PQ)I .

It is seen that in (10.55), unlike a typical least-square estimator, no matrix inversion is

involved here. Hence, its complexity is reduced from O(N3L3) to only O(NL) and the

computation is numerically more stable, which is very attractive in systems using more

transmitter antennas (large N) and/or communicating in highly dispersive fading channels

(large L).
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Finally, the procedure for initializing the EM algorithm is listed in Table 10.1. In Ta-

ble 10.1, the ML detection in (�) takes into account of the STBC coding constraints of X.

Freq-filter denotes the least-square estimator, where X[0] represents the pilot symbols and

X(I)[m], m = 0, . . . , q − 1 , represents hard-decisions of the data symbols X[m] which is

provided by the EM algorithm after a total of I EM iterations. And Temp-filter denotes the

temporal filter [257, 261], which is used to further exploit the time-domain correlation of the

channel within one OFDM data burst [i.e., (Pq + 1) OFDM slots],

Temp-filter
{

ĥi[p− 1], ĥi[p− 2], . . . , ĥi[p− ι]
}

�
=

ι∑
j=1

ajĥi[p− j] , i = 1, . . . ,M ,

(10.56)

where ĥi[p − j] , j = 1, . . . , ι , is computed from (��); {aj}ι
j=1 denotes the coefficients of an

ι-length (ι ≤ Pq) temporal filter, which can be pre-computed by solving the Wiener equation

or from the robust design as in [257, 261]. Furthermore, as suggested in [261], after receiving

all the (Pq + 1) OFDM words in a burst, an enhanced temporal filter can be applied as

Temp-filterp

{
ĥi[Pq], ĥi[Pq − 1], . . . , ĥi[0]

}
�
=

Pq∑
j=0

ap,jĥi[Pq − j] , i = 1, . . . ,M ,

(10.57)

where Temp-filterp computes h̃i[p] by temporally filtering the “past” channel estimate ĥi[p−
ι], ι = 1, 2, . . . ; the “current” channel estimate ĥi[p] and the “future” channel estimate

ĥi[p+ ι], ι = 1, 2, . . . . From the above discussions, it is seen that the computation involved

in initializing X(0) mainly consists of the ML detection of X(0) in (�) and the estimation of

ĥi in (��), with a total complexity [O(Q|Ω|N) + O(MNL)].

10.4.3 Pilot-symbol-aided Turbo Receiver

In practice, in order to impose the coding constraints across the different OFDM subcarriers

and further improve the receiver performance, an outer channel code (e.g., convolutional code

or turbo code) is usually applied in addition to the STBC. As illustrated in Fig. 10.14, the

information bits are encoded by an outer-channel-code encoder and then interleaved. The

interleaved code bits are modulated by an MPSK modulator. Finally, the modulated MPSK
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y
i
[m]

�
=

[
yH

i [mP + 1], . . . ,yH
i [mP + P ]

]H

{y
i
[m]}i

�
=

{
y

1
[m], . . . ,y

M
[m]

}
X[m]

�
=

[
XH [mP + 1], . . . ,XH [mP + P ]

]H

pilot slot: ĥi[0] = Freq-filter
{

yi[0],X[0]
}
, i = 1, . . . ,M,

data slots: for m = 0, 1, . . . , q − 1

for n = 1, 2, . . . , P

h̃i[mP + n] = Temp-filter
{

ĥi[mP + n− 1], ĥi[mP + n− 2], . . . ,

ĥ[mP + n− ι]
}
, i = 1, . . . ,M,

end

X(0)[m] = arg maxX

{∑M
i=1

∑P
n′=1 log p

[
yi[mP + n′]|X, h̃i[mP + n′]

]}
, (�)

X(I)[m] = EM
{
{y

i
[m]}i,X

(0)[m]
}
, [cf. Eq.(10.44)-(10.45)]

for n = 1, 2, . . . , P

ĥi[mP + n] = Freq-filter
{

y
i
[m],X(I)[m]

}
, i = 1, . . . ,M, (��)

end

end

Table 10.1: Procedure for computing X(0) for the EM algorithm.
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symbols are encoded by an STBC encoder and transmitted from N transmitter antennas

across the P consecutive OFDM slots at a particular OFDM subcarrier. During P OFDM

slots, altogether Q STBC code words [or (QPN) STBC symbols] are transmitted.

.

.

.

.

.

.

.

.

.

.

.

.

IFFT

IFFT

Encoder
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Modulator

MPSK STBC

Encoder

FFT

FFT Decoder

(0)X

MAP Channel

(p=0)oEM Alg.

Initial. Pilot
(p=0)

o

Decoder

Channel

λ

λMAP-EM STBC 1

2

Π

Π

-1

Figure 10.14: Transmitter and receiver structure for an STBC-OFDM system with outer

channel coding. Π denotes the interleaver and Π−1 denotes the corresponding deinterleaver.

In what follows we discuss a turbo receiver employing the maximum a posteriori (MAP)-

EM STBC decoding algorithm and the MAP outer-channel-code decoding algorithm for this

concatenated STBC-OFDM system, as depicted in Fig. 10.14. It consists of a soft MAP-EM

STBC decoder and a soft MAP outer-channel-code decoder. The MAP-EM STBC decoder

takes as input the fast Fourier transform (FFT) of the received signals from M receiver

antennas, and the interleaved extrinsic log likelihood ratio’s (LLR’s) of the outer-channel-

code bits {λe
2} [cf. Eq.(10.62)], (which is fed back by the outer-channel-code decoder). It

computes as output the extrinsic a posteriori LLR’s of the outer-channel-code bits {λe
1} [cf.

Eq.(10.62)]. The MAP outer-channel-code decoder takes as input the deinterleaved LLR’s of

the outer-channel-code bits from the MAP-EM STBC decoder and computes as output the

extrinsic LLR’s of the outer-channel-code bits, as well as the hard decisions of the information

bits at the last turbo iteration.
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STBC-OFDM Receiver based on the MAP-EM Algorithm

Without CSI, the maximum a posteriori (MAP) detection problem is written as,

X̂ = arg max
X

M∑
i=1

log p(X|y
i
) . (10.58)

The MAP-EM algorithm solves problem (10.58) iteratively according to the following two

steps:

1. E-step: Compute Q(X|X(κ)) = E

{[
M∑
i=1

log p(y
i
|X,hi)

] ∣∣∣∣yi
,X(κ)

}
; (10.59)

2. M-step: Solve X(κ+1) = arg max
X

[Q(X|X(κ)) + logP (X)] ; (10.60)

Compare the MAP-EM algorithm in (10.59)–(10.60) with the maximum likelihood EM al-

gorithm in (10.44)–(10.45), the E-step is exactly the same; but the M-step of the MAP-EM

algorithm includes an extra term P (X), which represents the a priori probability of X which

is fed back by the outer-channel-code decoder from the previous turbo iteration.

Similar to (10.54), the M-step for the MAP-EM can be written as

X(κ+1) = arg max
X

[
Q(X|X(κ)) + logP (X)

]
=

K−1∑
k=0

arg min
{x[p,k]}p

M∑
i=1

P∑
p=1

[
1

σ2
z

q
(κ)
i (x[p, k]) − logP (x[p, k])

]

=
K−1∑
k=0

arg min
{x[p,k]}p

{
M∑
i=1

P∑
p=1

[
1

σ2
z

q
(κ)
i (x[p, k])

]
− logP (x[1, k])

}
, (10.61)

where the second equality in (10.61) holds by assuming that the outer-channel-code bits are

ideally interleaved and hence x[p, k] at different OFDM subcarriers are independent; the last

equality in (10.61) follows the fact that x[p, k], p = 2, . . . , P, are uniquely determined by

x[1, k] according to the STBC coding constraints. Note that, when computing the M-step

in (10.61), we only consider the coding constraints of STBC, the coding constraints induced

by the outer channel code are exploited by the MAP outer-channel-code decoder and the

turbo processing.

Within each turbo iteration, the above E-step and M-step are iterated I times. At the

end of the Ith EM iteration, the extrinsic a posteriori LLR’s of the outer-channel-code bits
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are computed, and then fed to the MAP outer-channel-code decoder. Recall that only the

STBC symbols at the first OFDM slot are obtained from the MPSK modulation of outer-

channel-code bits; the STBC symbols transmitted at the rest (P −1) OFDM slots are simply

the permutations and/or transformations of the STBC symbols at the first OFDM slot, as

defined in (10.38). At each OFDM subcarrier, N transmitter antennas transmit N STC

symbols, which correspond to (N log2 |Ω|) outer-channel-code bits. Based on (10.61), after I

EM iterations, the extrinsic a posteriori LLR of the jth (j = 1, . . . , N log2 |Ω|) outer-channel-

code bit at the kth subcarrier dj(k) is computed at the output of MAP-EM STBC decoder

as follows,

λ1(d
j[k]) = log

∏M
i=1 P [dj(k) = +1|y

i
]∏M

i=1 P (dj[k] = −1|y
i
)
− log

P (dj[k] = +1)

P (dj[k] = −1)

=
M∑
i=1

log

∑
{x̄[p]}p∈C+

j,p
P
(
x[p, k] = x̄[p]|y

i

)
∑

{x̄[p]}p∈C−
j,p
P
(
x[p, k] = x̄[p]|y

i

) − λ2(d
j[k])

=
M∑
i=1

log

∑
{x̄[p]}p∈C+

j,p

{
exp

[
− 1

σ2
z

∑P
p=1 q

(I)
i (x̄[p])

]
· P (x̄[1])

}
∑

{x̄[p]}p∈C−
j,p

{
exp

[
− 1

σ2
z

∑P
p=1 q

(I)
i (x̄[p])

]
· P (x̄[1])

}
︸ ︷︷ ︸

Λ1(d
j[k])

−λ2(d
j[k]) ,

(10.62)

where C+
j,p is the set of x̄[p] for which the jth outer-channel-code bit is “+1”, and C−

j,p is

similarly defined; {x̄[p]}p satisfy the STBC coding constraints. The extrinsic a priori LLR’s

{λ2(d
j[k])}j,k are provided by the MAP outer-channel-code decoder at the previous turbo

iteration Finally, the extrinsic a posteriori LLR’s {λ1(d
j[k])}j,k are sent to the MAP outer-

channel-code decoder, which in turn computes the extrinsic LLR’s {λ2(d
j[k])}j,k and then

feeds them back to the MAP-EM STBC decoder, and thus completes one turbo iteration.

At the end of the last turbo iteration, hard decisions of the information bits are output by

the MAP outer-channel-code decoder.

The MAP-EM algorithm needs to be initialized at each turbo iteration. Except for the

first turbo iteration, X(0) is simply taken as X(I) given by (10.61) from the previous turbo

iteration. And the procedure for computing X(0) at the first turbo iteration is similar to

what described in Table 10.1.
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Simulation Examples

In this section, we provide computer simulation results to illustrate the performance of

the proposed iterative receivers for STBC-OFDM systems, with or without outer channel

coding. The receiver performance is simulated in three typical channel models with different

delay profiles, namely the two-ray, the typical urban (TU) and the hilly terrain (HT) model

with 50Hz and 200Hz Doppler frequencies [261]. In the following simulations the available

bandwidth is 800 KHz and is divided into 128 subcarriers. These correspond to a subcarrier

symbol rate of 5 KHz and OFDM word duration of 160µs. In each OFDM word, a cyclic

prefix interval of 40µs is added to combat the effect of inter-symbol interference, hence the

duration of one OFDM word T = 200µs. For all simulations, two transmitter antennas and

two receiver antennas are used; and the G1 STBC is adopted [cf. Eq.(10.38)]. The modulator

uses QPSK constellation. The OFDM system transmits in a burst manner as illustrated in

Fig. 10.13. Each data burst includes 11 OFDM words (q = 5, P = 2), the first OFDM word

contains the pilot symbols and the rest 10 OFDM words span over the duration of 5 STBC

code words. Simulation results are shown in terms of the OFDM word-error-rate (WER)

versus the signal-noise-ratio (SNR).

Performance of the EM-based ML Receiver:

In an STBC-OFDM system without outer channel coding, 512 information bits are trans-

mitted from 128 subcarriers during two (P = 2) OFDM slots, therefore the information rate

is 2 × 160
200

= 1.6 bits/sec/Hz, with 160
200

being the factor induced by the cyclic prefix inter-

val. In Fig.’s10.15–10.17, when ideal CSI is assumed available at the receiver side, the ML

performance is shown in dashed lines, denoted by Ideal CSI. (Note that the ML performance

difference between the 50Hz and the 200Hz Doppler fading channels is unnoticeable, hence,

we only present the ML performance when fd = 50Hz.) Without the CSI, the EM-based ML

receiver is employed. The performance after each EM iteration is demonstrated in curves

denoted by EM Iter#1, EM Iter#2 and EM Iter#3. From the figures, it is seen that the

receiver performance is significantly improved through the EM iterations. Furthermore, al-

though the receiver is designed under the assumption that the fading channels remain static

over one STBC code word (whereas the actual channels vary within one STBC code word),

it can perform close to the ML performance with ideal CSI after two or three EM iterations
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for all three types of channels with a Doppler frequency as high as 200Hz.

In Fig.10.18, the performance are compared between an EM-based ML receiver employing

the causal temporal filtering scheme (denoted by C-T) and that employing the non-causal

temporal filtering scheme (denotes by N-T) in two-ray fading channels. It is seen that

applying a second-round non-causal temporal filtering in addition to the first-round causal

temporal filtering [261] does not bring much performance improvement to the EM-based ML

receiver considered here, which is also true for the TU and the HT fading channels. Because

in the proposed EM-based ML receiver, the performance improvement is mainly achieved by

the EM iterations, we conclude that only causal temporal filtering is needed in initializing

the EM algorithm.
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Figure 10.15: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system in two-ray fading channels with Doppler frequencies fd = 50Hz and fd = 200Hz.

Performance of the MAP-EM-based Turbo Receiver:

A 4-state, rate-1/2 convolutional code with generator (5,7) in octal notation is adopted as

the outer channel code, as depicted in Fig.10.14. The overall information rate for this system
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Figure 10.16: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system in typical urban (TU) fading channels with Doppler frequencies fd = 50Hz and

fd = 200Hz.
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Figure 10.17: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system in hilly terrain (HT) fading channels with Doppler frequencies fd = 50Hz and fd =

200Hz.
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Figure 10.18: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system in two-ray fading channels with Doppler frequency fd = 200Hz. Comparison of

different temporal filtering schemes in initializing the EM algorithm.



10.4. PILOT-SYMBOL-AIDED TURBO RECEIVER FOR SPACE-TIME BLOCK CODED OFDM SYST

is 0.8 bits/sec/Hz. Fig.’s 10.19–10.21 show the performance of the turbo receiver employing

the MAP-EM algorithm for this concatenated STBC-OFDM system. The performance of

the turbo receiver after the first, the third and the fifth turbo iteration is demonstrated

respectively in curves denoted by Turbo Iter#1, Turbo Iter#3 and Turbo Iter#5. During

each turbo iteration, three EM iterations are carried out in the MAP-EM STBC decoder.

Ideal CSI denotes the approximated ML lower bound, which is obtained by performing the

MAP STBC decoder with ideal CSI and iterating sufficient number of turbo iterations (3-4

iterations are shown to be enough for the systems simulated here) between the MAP STBC

decoder and the MAP convolutional decoder. From the simulation results, it is seen that by

employing outer channel coding, the receiver performance is significantly improved (at the

expense of lowering spectral efficiency). Moreover, without CSI, after 3-5 turbo iterations,

the turbo receiver performs close to the approximated ML lower bound in all three types of

channels with a Doppler frequency as high as 200Hz.
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Figure 10.19: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system with outer convolutional coding in two-ray fading channels with Doppler frequencies

fd = 50Hz and fd = 200Hz.
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Figure 10.20: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system with outer convolutional coding in typical urban (TU) fading channels with Doppler

frequencies fd = 50Hz and fd = 200Hz.

10.5 LDPC-based Space-Time Coded OFDM Systems

In this section, we first analyze the STC-OFDM system performance in correlated fad-

ing channels in terms of channel capacity and pairwise error probability (PEP). In [359],

information-theoretic aspects of a two-ray propagation fading channel are studied. In

[119, 470], the channel capacity of a multiple-antenna system in fading channels is inves-

tigated; and in [38], the limiting performance of a multiple-antenna system in block-fading

channels is studied, under the assumption that the fading channels are uncorrelated and the

channel state information (CSI) is known to both the transmitter and the receiver. Here, we

analyze the channel capacity of a multiple-antenna OFDM system over correlated frequency-

and time-selective fading channels, assuming that the CSI is known only to the receiver. As

a promising coding scheme to approach the channel capacity, STC is employed as the chan-
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Figure 10.21: Word error rate (WER) of a multiple-antenna (N = 2,M = 2) STBC-OFDM

system with outer convolutional coding in hilly terrain (HT) fading channels with Doppler

frequencies fd = 50Hz and fd = 200Hz.
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nel code in this system. The pairwise error probability (PEP) analysis of the STC-OFDM

system is also given. Moreover, based on the analysis of the channel capacity and the PEP,

some STC design principles for the system under consideration are suggested. Since the STC

based on the state-of-the-art low-density parity-check (LDPC) codes [124, 298, 299, 408, 407]

turns out to be a good candidate to meet these design principles, we then discuss an LDPC-

based STC-OFDM system and a turbo receiver for this system. The materials in this section

first appeared in [290]. Note that a simple space-time trellis code design method for OFDM

systems is given in [287].

10.5.1 Capacity Considerations for STC-OFDM Systems

System Model

We consider an STC-OFDM system with Q subcarriers, N transmitter antennas and M

receiver antennas, signaling through frequency- and time-selective fading channels, as illus-

trated in Fig. 10.22. Each STC code word spans P adjacent OFDM words; and each OFDM

word consists of (NQ) STC symbols, transmitted simultaneously during one time slot. Each

STC symbol is transmitted at a particular OFDM subcarrier and a particular transmitter

antenna.

...
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. . .

. . .
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#1 #3 #P#2
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Figure 10.22: System description of a multiple-antenna STC-OFDM system over correlated

fading channels. Each STC code word spans K subcarriers and P time slots in the system;

at a particular subcarrier and at a particular time slot, STC symbols are transmitted from

N transmitter antennas and received by M receiver antennas.
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As in the previous section, it is assumed that the fading process remains static during

each OFDM word (one time slot) but varies from one OFDM word to another; and the

fading processes associated with different transmitter-receiver antenna pairs are uncorrelated.

(However, as will be shown below, in a typical OFDM system, for a particular transmitter-

receiver antenna pair, the fading processes are correlated in both frequency and time.)

At the receiver, the signals are received fromM receiver antennas. After matched filtering

and sampling, the discrete Fourier transform (DFT) is applied to the received discrete-time

signal to obtain

y[p, k] = H [p, k]x[p, k] + z[p, k] , k = 0, . . . , Q− 1, p = 1, . . . , P , (10.63)

where H [p, k] ∈ C
M×N is the matrix of complex channel frequency responses at the kth

subcarrier and at the pth time slot, which is explained below; x[p, k] ∈ C
N and y[p, k] ∈ C

M

are respectively the transmitted signals and the received signals at the kth subcarrier and at

the pth time slot; z[p, k] ∈ C
M is the ambient noise, which is circularly symmetric complex

Gaussian with unit variance.

Consider the channel response between the jth transmitter antenna and the ith receiver

antenna. Following [388], the time-domain channel impulse response can be modelled as a

tapped-delay line. With only the non-zero taps considered, it can be expressed as

hi,j(τ ; t) =

Lf∑
l=1

αi,j(l; t)δ

(
τ − nl

K∆f

)
, (10.64)

where δ (·) is the Dirac delta function; Lf denotes the number of non-zero taps; αi,j(l; t) is the

complex amplitude of the lth non-zero tap, whose delay is nl/(K∆f ), where nl is an integer

and ∆f is the tone spacing of the OFDM system. In mobile channels, for the particular

(i, j)th antenna pair, the time-variant tap coefficients αi,j(l; t), ∀l,∀t, can be modelled as

wide-sense stationary random processes with uncorrelated scattering (WSSUS) and with

band-limited Doppler power spectrum [388]. For the signal model in (10.63), we only need

to consider the time responses of αi,j(l; t) within the time interval t ∈ [0, PT ], where T is the

total time duration of one OFDM word plus its cyclic extension, and PT is the total time

involved in transmitting P adjacent OFDM words. Following [560], for the particular lth

tap of the (i, j)th antenna pair, the dimension of the band- and time-limited random process

αi,j(l; t), t ∈ [0, PT ] (defined as the number of significant eigenvalues in the Karhunen-Loeve
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expansion of this random process), is approximately equal to Lt
�
= �2fdPT + 1	, where fd

is the maximum Doppler frequency. Hence, ignoring the edge effects, the time response of

αi,j(l; t) can be expressed in terms of the Fourier expansion as

αi,j(l; t) #
fdPT∑

n=−fdPT

βi,j(l, n)e
2πnt/(PT ) , (10.65)

where {βi,j(l, n)}n is a set of independent circularly symmetric complex Gaussian random

variables, indexed by n.

For OFDM systems with proper cyclic extension and sample timing, with tolerable leak-

age, the channel frequency response between the jth transmitter antenna and the ith receiver

antenna at the pth time slot and at the kth subcarrier, which is exactly the (i, j)th element

of H [p, k] in (10.63), can be expressed as [497]

Hi,j[p, k]
�
= Hi,j(pT, k∆f ) =

Lf∑
l=1

αi,j(l; pT )e−2πknl/Q = hH
i,j(p)wf (k) , (10.66)

where hi,j(p)
�
= [αi,j(1; pT ), . . . , αi,j(Lf ; pT )]H is the Lf -sized vector containing the time

responses of all the non-zero taps; and wf (k)
�
= [e−2πkn1/Q, . . . , e−2πknLf

/Q]T contains the

corresponding DFT coefficients.

Using (10.65), αi,j(l; pT ) can be simplified as

αi,j(l; pT ) =

fdPT∑
n=−fdPT

βi,j(l, n)e
2πnp/P = βH

i,j(l)wt(p) , (10.67)

where βi,j(l)
�
= [βi,j(l,−fdPT ), · · · , βi,j(l, 0), · · · , βi,j(l, fdPT )]H is an Lt-sized vector; and

wt(p)
�
=

[
e−2πpfdT , . . . , e0, . . . , e2πpfdT

]T
contains the corresponding inverse DFT coeffi-

cients. Substituting (10.67) into (10.66), we get

Hi,j[p, k] = gH
i,jW

′
t(p)wf (k) , (10.68)

with gi,j
�
=

[
βH

i,j(1), . . . ,βH
i,j(Lf )

]H

L×1
,

W ′
t(p)

�
= diag{wt(p), . . . ,wt(p)}L×Lf

.

From (10.68), it is seen that due to the close spacing of OFDM subcarriers and the limited

Doppler frequency, for a specific antenna pair (i, j), the channel responses {Hi,j[p, k]}p,k are

different transformations [specified by wt(p) and wf (k)] of the same random vector gi,j, and

hence they are correlated in both frequency and time.
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Channel Capacity

In this section, we consider the channel capacity of the system described above. Assuming

that the channel state information (CSI) is only known at the receiver and the transmitter

power is constrained as trace
{
E

[
x[p, k]xH [p, k]

]} ≤ γ, the instantaneous channel capacity

of this system, which is defined as the mutual information conditioned on the correlated

fading channel values H �
= {H [p, k]} P Q−1

p=1,k=0 , is computed as [38, 359]

I|H(γ)
�
= I({y[p, k]}p,k; {x[p, k]}p,k|H, γ)

=
1

PQ

P∑
p=1

K−1∑
k=0

m∑
i=1

log2 (1 + λi(p, k)γ/N) bits/sec/Hz, (10.69)

wherem
�
= min(N,M), and λi(p, k) is the ith non-zero eigenvalue of the non-negative definite

Hermitian matrix H [p, k]HH [p, k]. The maximization of I|H(γ) is achieved when {x[p, k]}p,k

consists of independent circularly symmetric complex Gaussian random variables with identi-

cal variances [38, 359]. (When the CSI is known to both the transmitter and the receiver, the

instantaneous channel capacity is maximized by “water-filling” [39].) The ergodic channel

capacity is defined as I(γ)
�
= EH{I|H(γ)}. In the system considered, the concept of ergodic

channel capacity I(γ) is of less interest, because the fading processes are not ergodic due to

the limited number of antennas and the limited Lf and Lt.

Since I|H(γ) is a random variable, whose statistics are jointly determined by (γ,N,M) and

the characteristics of correlated fading channels, we turn to another important concept —

outage capacity, which is closely related to the code word error probability, as averaged over

the random coding ensemble and over all channel realizations [38]. The outage probability

is defined as the probability that the channel cannot support a given information rate R,

Pout(R, γ) = P (I|H(γ) < R) . (10.70)

Since it is difficult to get an analytical expression for (10.70), we resort to Monte Carlo

integration for its numerical evaluation.

In the following, we give some numerical results of the outage probability in (10.70)

obtained by Monte Carlo integration. For simplicity, we assume that all elements in {gi,j}i,j

have the same variances. Define the selective-fading diversity order L as the product of
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Figure 10.23: Outage probability versus information rate in a correlated fading OFDM sys-

tem with M = 1, Q = 256, P = 1, SNR=20 dB, where dashed lines represent the system

with one transmitter antenna (N = 1) and solid lines represent the system with four trans-

mitter antennas (N = 4). The vertical dash-dot line represents the AWGN channel capacity

(when SNR=20 dB). The fading channels are frequency-selective and time-nonselective with

Lt = 1, L = Lf = {1, 2, 3, 6}.
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Figure 10.24: Outage probability versus information rate in a correlated fading OFDM

system with N = 2,M = 1, Q = 256, P = 10, SNR=20 dB. Dashed lines represent the

frequency-selective and time-nonselective channels with Lt = 1, L = Lf = {2, 6, 10}. Dotted

lines represent the frequency- and time-selective channels with Lf = 2, L = 2Lt = {2, 6, 10}.
Note that for the same L, the dashed lines and the dotted lines overlap each other, which

shows the equivalent impacts of the frequency- and time-selective fading on the outage

probability.
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the number of non-zero delay taps Lf and the dimension of Doppler fading process Lt, i.e.,

L
�
= LfLt. The following observations can be made from the numerical evaluations of (10.70).

1. From Fig.’s 10.23–10.24, it is seen that at a practical outage probability (e.g.,

Pout = 1%), for fixed (N,M, γ), the highest achievable information rate increases as the

selective-fading diversity order L increases, but the increase slows down as L becomes

larger. Eventually, as L → ∞, the highest achievable information rate converges to

the ergodic capacity. [Note that the ergodic capacity is the area above each curve in

the figure as I(γ) =
∫∞

0
P (I|H(γ) > R)dR.]

2. Fig. 10.24 compares the impacts of the frequency selectivity order Lf and the time

selectivity order Lt on the outage capacity. It shows that the frequency selectivity and

the time selectivity are essentially equivalent in terms of their impacts on the outage

capacity. In other words, the selective-fading diversity order L = LfLt ultimately

affects the outage capacity.

3. From Fig. 10.23, it is seen that as the area above each curve, the ergodic channel ca-

pacity is irrelevant of the selective-fading diversity order L (which is the key parameter

in determining the correlation characteristics of the fading channels) and it is deter-

mined only by the spatial diversity order (N,M) and the transmitted signal power γ

[119, 470]. Moreover, it is seen that both the outage capacity and the ergodic capacity

can be increased by fixing the number of receiver antennas and only increasing trans-

mitter antennas (or vice versa), (e.g., by fixing M = 1, and let N → ∞, the ergodic

capacity converges to the capacity of AWGN channels [348]).

In summary, we have seen the different impacts of two diversity resources — the spatial

diversity and the selective-fading diversity, on the channel capacity of a multiple-antenna

correlated fading OFDM system. Increasing the spatial diversity order (i.e., N,M) can

always bring capacity (outage capacity and/or ergodic capacity) increase at the expense of

extra physical costs. By contrast, the selective-fading diversity is a free resource, but its effect

on improving the channel capacity becomes less as L becomes larger. Since both diversity

resources can improve the capacity of a multiple-antenna OFDM system, it is crucial to

have an efficient channel coding scheme, which can take advantage of all available diversity

resources of the system.
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Pairwise Error Probability

In order to obtain more insights on coding design, we further analyze the pairwise error

probability (PEP) of this system with coded modulation.

With perfect CSI at the receiver, the maximum likelihood (ML) decision rule of the signal

model (10.63) is given by

x̂ = arg min
x

M∑
i=1

P∑
p=1

Q−1∑
k=0

∣∣∣∣∣yi[p, k] −
N∑

j=1

Hi,j[p, k]xj[p, k]

∣∣∣∣∣
2

, (10.71)

where the minimization is over all possible STC codeword x = {xj[p, k]}j,p,k. Assuming

equal transmitted power at all transmitter antennas, using the Chernoff bound, the PEP of

transmitting x and deciding in favor of another codeword x̄ at the decoder is upper bounded

by

P (x → x̄|H) ≤ exp

(
−d

2(x, x̄)γ

8N

)
, (10.72)

where γ is the total signal power transmitted from all N transmitted antennas (Recall that

the noise at each receiver antenna is assumed to have unit variance). Using (10.66)–(10.68),

d2(x, x̄) is given by

d2(x, x̄) =
M∑
i=1

P∑
p=1

Q−1∑
k=0

∣∣∣∣∣
N∑

j=1

Hi,j[p, k]ej[p, k]

∣∣∣∣∣
2

=
M∑
i=1

P∑
p=1

Q−1∑
k=0

[
gH

i,1 . . . gH
i,N

]
1×(NL)

{
W t(p)

[
W f (k)e[p, k]

eH [p, k]W H
f (k)

]
W H

t (p)

}
(NL)×(NL)

[
gH

i,1 . . . gH
i,N

]H

(NL)×1

=
M∑
i=1

ḡH
i Dḡi , (10.73)

with ej[p, k]
�
= xj[p, k] − x̄j[p, k] ,

e[p, k]
�
= [e1[p, k], . . . , eN [p, k]]TN×1 ,

W f (k)
�
= diag {wf (k), . . . ,wf (k)}(NLf )×N

,

W t(p)
�
= diag {W ′

t(p), . . . ,W
′
t(p)}(NL)×(NLf )

,

D
�
=

{ P∑
p=1

Q−1∑
k=0

W t(p)W f (k)e[p, k]eH [p, k]W H
f (k)W H

t (p)

}
(NL)×(NL)

,(10.74)
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ḡi
�
= [gH

i,1, . . . , g
H
i,N ]H(NL)×1 . (10.75)

In (10.74), (e[p, k]eH [p, k]) is a rank-one matrix, which equals to a zero matrix if the entries

of codewords x and x̄ corresponding to the kth subcarrier and the pth time slot are same. Let

D denote the number of instances when e[p, k]eH [p, k] �= 0
¯
, ∀p,∀k; similarly as in [429], Deff ,

which is the minimum D over every two possible codeword pair, is called the effective length

of the code. Denote r
�
= rank(D), it is easily seen that minx,x̄ r ≤ min(Deff , NL). Since

wf (k) and wt(p) vary with different multipath delay profiles and Doppler power spectrum

shapes, the matrix D is also variant with different channel environments. However, it is

observed that D is a non-negative definite Hermitian matrix, by an eigendecomposition, it

can be written as

D = V ΛV H , (10.76)

where V is a unitary matrix and Λ
�
= diag {λ1, . . . , λr, 0, . . . , 0}, with {λj}r

j=1 being the

positive eigenvalues of D. Moreover by assumption, all the (NML) elements of {gi,j}i,j are

i.i.d. (independent and identically distributed) circularly symmetric complex Gaussian with

zero-means. Then (10.72) can be re-written as

P (x → x̄|H) ≤
M∏
i=1

exp

(
− γ

8N

r∑
j=1

λj|β̃i(j)|2
)
, (10.77)

where β̃i(j)
�
=

[
V H ḡi

]
j

is the jth element of V H ḡi. Since V is unitary, {β̃i(j)}i,j are

also i.i.d. circularly symmetric complex Gaussian with zero-means, and their magnitudes

{|β̃i(j)|}i,j are i.i.d. Rayleigh distributed. By averaging the conditional PEP in (10.77) over

the Rayleigh pdf (probability density function), the PEP of a multiple-antenna STC-OFDM

system over correlated fading channels is finally written as

P (x → x̄) ≤

 1
r∏

j=1

(
1 +

λjγ

8N

)


M

≤
(

r∏
j=1

λj

)−M ( γ

8N

)−rM

. (10.78)

It is seen from (10.78) that the highest possible diversity order the STC-OFDM system can

provide is (NML), i.e., the product of the number of transmitter antennas, the number
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of receiver antennas and the number of selective-fading diversity order in the channels. In

other words, the attractiveness of the STC-OFDM system lies in its ability to exploit all the

available diversity resources. However, note that although in the analysis of PEP, the three

parameters (N,M,L) appear equivalent in improving the system performance, they actually

play different roles from the capacity viewpoint, as indicated above.

10.5.2 Low-Density Parity-Check Codes

First proposed by Gallager in 1962 [124] and recently re-examined in [298, 299, 408, 407],

low-density parity-check (LDPC) codes have been shown to be a very promising coding

technique for approaching the channel capacity in AWGN channels. For example, a carefully

constructed rate 1/2 irregular LDPC code with long block-length has a bit error probability

of 10−6 at just 0.04dB away from Shannon capacity of AWGN channels [78].

As the name suggests, a low density parity check (LDPC) code is a linear block code

specified by a very sparse parity check matrix as seen in Fig. 10.25. The parity check matrix

H of a regular (N,K, s, t) LDPC code of rate R = K/N is a (N−K)×N matrix, which has s

ones in each column and t > s ones in each row where s� N . Apart from these constraints,

the ones are typically placed at random in the parity check matrix. When the number of ones

in every column is not the same, the code is known as an irregular LDPC code. It should be

noted that the parity check matrix is not constructed in systematic form. Consequently, to

obtain the generator matrix G, we first apply Gaussian elimination to reduce the parity check

matrix to a form H = [IN−K |P T ], where IN−K is an (N −K) × (N −K) identity matrix.

Then, the generator matrix is given by G = [P |IK ]. In contrast to P , the generator matrix

G is dense. Consequently, the number of bit operations required to encoder is O(n2) which is

larger than that for other linear codes. Similar to turbo codes, LDPC codes can be efficiently

decoded by a sub-optimal iterative belief propagation algorithm which is explained in detail

in [124]. At the end of each iteration, the parity check is performed. If the parity check is

correct, the decoding is terminated; otherwise, the decoding continues until it reaches the

maximum number of iterations (e.g., 30).

The code with parity check matrix H can be represented by a bipartite graph which

consists of two types of nodes - variable nodes and check codes. Each code bit is a variable

node while each parity check or each row of the parity check matrix represents a check node.



684CHAPTER 10. ADVANCED SIGNAL PROCESSING FOR CODED OFDM SYSTEMS

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Figure 10.25: Example of a parity-check matrix P for an (n, k, t, j) = (20, 5, 3, 4) regular

LDPC code with code rate 1/4, block-length n = 20, column weight t = 3, and row weight

j = 4.

An edge in the graph is placed between variable node i and check node j if Hj,i = 1. That

is, each check node is connected to code bits whose sum modulo-2 should be zero. Irregular

LDPC codes are specified by two polynomials λ(x) =

dlmax∑
i=1

λi x
i−1 and ρ(x) =

drmax∑
i=1

ρi x
i−1,

where λi is the fraction of edges in the bipartite graph that are connected to variable nodes

of degree i, and ρi is the fraction of edges that are connected to check nodes of degree i.

Equivalently, the degree profiles can also be specified from the node perspective, i.e., two

polynomials λ̃(x) =

dlmax∑
i=1

λ̃i x
i−1 and ρ̃(x) =

drmax∑
i=1

ρ̃i x
i−1, where λ̃i is the fraction of variable

nodes of degree i, and ρ̃i is the fraction of check nodes of degree i. The parity check matrix

for an irregular (7, 4) code and its associated bipartite graph is shown in Fig. 10.26 as an

example. The degree profiles for this code from the edge perspective are λ(x) = 1
4
+ 1

2
x+ 1

2
x2

and ρ(x) = x3. The degree profiles from the node perspective are λ̃(x) = 3
7

+ 3
7
x + 1

7
x2 and

ρ̃(x) = x3.

Before we discuss the LDPC decoding algorithm, we first establish the following notations.

All extrinsic messages (information) are in log-likelihood (LLR) form and the variable L is

used to refer to extrinsic messages. Superscript p is used to denote quantities during the

pth iteration of LDPC decoding. A subscript b → c or b ← c denotes quantities passed

between the bit nodes and the check nodes of the LDPC code. The variable (bit) nodes in

the bipartite graph of the LDPC code are numbered from 1 to N , the check nodes from 1 to
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Figure 10.26: A bipartite graph representing the parity check nodes and the bit nodes of an

irregular LDPC code.

N −K (in any order). The degree of the ith bit node is denoted by νi and the degree of the

ith check node is denoted by ∆i. Denote by {ebi,1, ebi,2, . . . , ebi,νi
} the set of edges connected

to the ith bit node and by {eci,1, eci,2, . . . , eci,∆i
} the set of edges connected to the ith check

node. That is, ebi,k denotes the kth edge connected to the ith bit node, and eci,k denotes the

kth edge connected to the ith check node. The particular edge or bit associated with an

extrinsic information is denoted as the argument of L. For example, Lp
b→c(e

b
i,j) denotes the

extrinsic LLR passed from a bit node to a check node along the jth edge connected to the

ith bit node, during the pth iteration within the LDPC decoder.

The LDPC decoding algorithm is summarized as follows.

Algorithm 10.4 [LDPC decoding algorithm] Initially, all extrinsic messages are assumed

to be zeros, i.e., L0,0
b←c(e

b
i,k) = 0,∀(i, k).

• Iterate between bit node update and check node update: For p = 1, 2, . . . , P

– Bit node update: For each of the bit nodes i = 1, 2, . . . , N , for every edge connected

to the bit node, compute the extrinsic message passed from the bit node to the check

node along the edge, given by

Lp,q
b→c(e

b
i,j) = Lq

eq→L(bi) +

νi∑
k=1,k �=j

Lp−1,q
b←c (ebi,k). (10.79)

– Check node update: For each of the check nodes i = 1, 2, . . . , N −K, for all edges

that are connected to the check node, compute the extrinsic message passed from

the check node to the bit node, given by

Lp,q
b←c(e

c
i,j) = 2 tanh−1

[
∆i∏

k=1,k �=j

tanh

(
Lp,q

b→c(e
c
i,k)

2

)]
. (10.80)
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• Final hard decisions on information and parity bits:

b̂i = sign

[
νi∑

k=1

LP,q
b←c(e

b
i,k)

]
. (10.81)

10.5.3 LDPC-based STC-OFDM System

In this subsection, we consider coding design for STC-OFDM systems. We assume that the

CSI is known only at the receiver.

Coding Design Principles

The capacity and PEP analyses of a general STC-OFDM system, shed some lights on the

STC coding design problem:

1. The dominant exponent in the PEP (10.78) that is related to the structure of the code is

r, the rank of the matrix D. Recall that minx,x̄ r ≤ min(Deff , NL), in order to achieve

the maximum diversity (NML), it is necessary that Deff ≥ NL, i.e., the effective

length of the code must be larger than the dimension of matrix D in (10.74). Since L

is associated with the channel characteristic, which is not known to the transmitter (or

the STC encoder) in advance, it is preferable to have an STC code with large effective

length.

2. Another factor in the PEP is
∏r

j=1 λj, the product of eigenvalues of matrix D. Since

D changes with different channel setup, the optimal design of
∏r

j=1 λj is not feasible.

However, as observed in [468], the space-time trellis codes (STTC’s) with higher state

numbers (and essentially larger effective length) have better performance, which sug-

gests that increasing the effective length of the STC beyond the minimum requirement

(e.g, NL, in our system) may help to improve the factor
∏r

j=1 λj.

3. Also as seen from (10.69), to achieve the channel capacity, all the (NKP ) transmitted

STC symbols are required to be independent. Therefore, after introducing the cod-

ing constraints to the coded symbols, an interleaver is needed to scramble the coded

symbols in order to satisfy the independence condition. From the standpoint of PEP

analysis, such an interleaver helps to improve the factor
∏r

j=1 λj as well.
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In summary, in the system considered here, because of the diverse fading profiles of the wire-

less channels and the assumption that the CSI is known only at the receiver, the systematic

coding design (e.g., by computer-search) is less helpful; instead, two general principles should

be met in choosing STC codes in order to robustly exploit the rich diversity resources in this

system, namely, large effective length and ideal interleaving.

Space-time trellis codes (STTC’s) have been proposed for multiple-antenna systems over

flat-fading channels [468]. However, the complexity of the STTC increases dramatically as

the effective length increases, and therefore it may not be a good candidate for the OFDM

system considered here. Another family of STC’s is turbo-code based STC’s [279, 450], but

their decoding complexity is high and they are not flexible in terms of scalability (e.g., when

employed in systems with different requirements of the information rate). Here, we propose

a new STC scheme — low-density parity-check (LDPC)-based STC.

LDPC-based STC

The LDPC codes have the following advantages for the STC-OFDM system considered

here: (1) The LDPC decoder usually has a lower computational complexity than the turbo-

code decoder. In addition to this, since the decoding complexity of each iteration in an

LDPC decoder is much less than a turbo-code decoder, a finer resolution in the performance-

complexity trade-off can be obtained by varying the maximum number of iterations. More-

over, the decoding of LDPC is highly parallelizable. (2) The minimum distance of binary

LDPC codes increases linearly with the block-length with probability close to 1 [124]. (3) It

is easier to design a competitive LDPC code with any block-length and any code rate, which

makes it easier for the LDPC-based STC to scale according to different system requirements

(e.g., different number of antennas or different information rate). (4) LDPC codes do not

typically show an error floor, which is suitable for short-frame applications. (5) Due to the

random generation of parity-check matrix (or equivalently the encoder matrix), the coded

bits have been effectively interleaved; therefore, no extra interleaver is needed.

The transmitter structure of an LDPC-based STC-OFDM system is illustrated in

Fig. 10.27. Denote Ω the set of all possible STC symbols, which is up to a constant
√
γ

of the traditional constellation, e.g., MPSK or MQAM (Recall that the additive noise is

assumed to have unit variance). The (PK log2 |Ω|) information bits are first encoded by a
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rate R = 1/N LDPC encoder into (NPK log2 |Ω|) coded bits, and then the binary LDPC

coded bits are modulated into (NPK) STC symbols by an MPSK (or MQAM) modula-

tor. These (NPK) STC symbols, which correspond to an STC code word, are split into N

streams; the (PK) STC symbols of each stream are transmitted from one particular trans-

mitter antenna at K subcarriers and over P adjacent OFDM slots. Note that, in such a

bit-interleaved coded-modulation system proposed above, the built-in random interleaver of

the LDPC codes is also helpful to minimize the loss in the effective length between the binary

LDPC code bits and the modulated STC code symbols, which is caused by the MPSK (or

MQAM) modulation.

As an example, consider a regular binary LDPC code with column weight t = 3, rate

R = 1/2, and block-length n = 1024, the minimum distance is around 100 [124]. The

STC based on this LDPC code is configured with a QPSK modulator and two transmitter

antennas, therefore the effective length of this LDPC-based STC is at least 25, which is

more than enough to satisfy the minimum effective length requirement for a two transmitter

antenna (N = 2) OFDM system in a six-tap (L = 6) frequency-selective fading channel.

Together with its built-in random interleaver, this LDPC code can well satisfy the two coding

design principles mentioned earlier and therefore is an empirically good STC for the OFDM

system considered in this paper. Since the minimum distance of binary LDPC codes increase

linearly with the block-length, further performance improvement is possible by increasing

the block-length. Note that, we do not claim the optimality of the proposed LDPC-based

STC; but rather, we argue that with its low decoding complexity, flexible scalability and high

performance, the LDPC-based STC is a promising coding technique for reliable high-speed

data communication in multiple-antenna OFDM systems with frequency- and time-selective

fading.

Data Burst Structure

As in a typical data communication scenario, communication is carried out in a burst manner.

A data burst is illustrated in Fig. 10.28. It spans (Pq + 1) OFDM words, with the first

OFDM word containing known pilot symbols. The rest (Pq) OFDM words contain q STC

code words.
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Figure 10.27: Transmitter structure of an LDPC-based STC-OFDM system with multiple

antennas.

... ...... ...0 1 P
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Figure 10.28: OFDM time slots allocation in data burst transmission. A data burst consists

of (Pq + 1) OFDM words, with the first OFDM word containing known pilot symbols. The

rest (Pq) OFDM words contain q STC code words.

10.5.4 Turbo Receiver

We next consider receiver design for the proposed LDPC-based STC-OFDM system. Even

with ideal CSI, the optimal decoding algorithm for this system has an exponential complex-

ity. Hence we resort to the turbo receiver structure. As a standard procedure, in order to

demodulate each STC code word, the turbo receiver consists of two stages, the soft demod-

ulator and the soft LDPC decoder, and the so-called “extrinsic” information is iteratively

exchanged between these two stages to successively improve the receiver performance.

However, in practice, the channel state information (CSI) must be estimated by the

receiver. In the following we discuss a turbo receiver for unknown fast fading channels

based on the MAP-EM algorithm. The turbo receiver for the LDPC-based STC-OFDM

system is illustrated in Fig. 10.29. It consists of a soft maximum a posteriori expectation-

maximization (MAP-EM) demodulator and a soft LDPC decoder, both of which are iterative

devices themselves. The soft MAP-EM demodulator takes as input the FFT of the received

signals from M receiver antennas, and the extrinsic log likelihood ratio’s (LLR’s) of the

LDPC coded bits {λ2} [cf. Eq.(10.62)] (which is fed back by the soft LDPC decoder).
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It computes as output the extrinsic a posteriori LLR’s of the LDPC coded bits {λe
1} [cf.

Eq.(10.62)]. (As an important issue in the EM algorithm, the initialization of the MAP-EM

demodulator will be specifically discussed later in this section.) The soft LDPC decoder takes

as input the LLR’s of the LDPC coded bits from the MAP-EM demodulator and computes

as output the extrinsic LLR’s of the LDPC coded bits, as well as the hard decisions of the

information bits at the last turbo iteration. It is assumed that the q STC words in a data

burst are independently encoded. Therefore, each STC word (consisting of P OFDM words)

is decoded independently by turbo processing. We next describe each component of the

receiver in Fig. 10.29.

...

FFT

FFT

FFT

Initial

MAP-EM

Value of

1

2

M

Turbo iterative detection & decoding

Demod.

Soft MAP-EM LDPC

Decoder
Decision

Info. Bits

λ

λ1

(p=0)
oo

X(0)

Pilot
(p=1,..,Pq)

X(I)

2

Figure 10.29: The turbo receiver structure, which employs an MAP-EM demodulator and

a soft LDPC decoder, for multiple-antenna LDPC-based STC-OFDM systems in unknown

fading channels.

MAP-EM Demodulator

For notational simplicity, here we consider an LDPC-based STC-OFDM system with two

transmitter antennas and one receiver antenna. The results can be easily extended to a

system with N transmitter antennas and M receiver antennas. Note that for the purpose

of performance analysis, the hi,j(p) defined in (10.66) only contains the time responses of

Lf non-zero taps; whereas for the purpose of receiver design, especially when the CSI is
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not available, the hi,j(p) needs to be re-defined to contain the time responses of all the

taps within the maximum multipath spread. That is, hi,j(p)
�
=

[
hi,j[1; p], . . . , hi,j[L

′
f ; p]

]T
,

with L′
f

�
= �τmQ∆f + 1	 ≥ Lf and τm being the maximum multipath spread; and wf (k) is

correspondingly re-defined as wf (k)
�
=

[
e0, . . . , e−2πk(L′

f−1)/Q
]H

. The received signal during

one data burst can be written as

y[p] = X[p]Wh[p] + z[p] , p = 0, 1, . . . , P q , (10.82)

with X[p]
�
= [X1[p],X2[p]]K×(2K)

,

Xj[p]
�
= diag {xj[p, 0], xj[p, 1], . . . , xj[p,Q− 1]}

K×K
, j = 1, 2,

W
�
= diag[W f ,W f ](2Q)×(2L′

f ) ,

W f
�
= [wf (0),wf (1), . . . ,wf (Q− 1)]H

Q×L′
f
,

h[p]
�
=

[
hH

1,1(p),h
H
1,2(p)

]H

(2L′
f )×1

,

where y[p] and z[p] are Q-sized vectors which contain respectively the received signals and

the ambient Gaussian noise at allQ subcarriers and at the pth time slot; the diagonal elements

of Xj[p] are the Q STC symbols transmitted from the jth transmitter antenna and at the

pth time slot.

Without CSI, the maximum a posteriori (MAP) detection problem is written as,

X̂[p] = arg max
X[p]

log p(X[p]|y[p]) , p = 1, 2, . . . , P q . (10.83)

(Recall that X[0] contains pilot symbols.) As in the previous section, we use the EM

algorithm to solve (10.83).

In the E-step, the expectation is taken with respect to the “hidden” channel response h

conditioned on y and X(i). It is easily seen that, conditioned on y and X(i), h is complex

Gaussian distributed as

h|(y,X(i)) ∼ Nc(ĥ, Σ̂h) , (10.84)

with ĥ
�
= (W HX(i)HΣ−1

z X(i)W + Σ†
h)

−1W HX(i)HΣ−1
z y

= (W HX(i)HX(i)W + Σ†
h)

−1W HX(i)Hy ,

Σ̂h
�
= Σh − (W HX(i)HΣ−1

z X(i)W + Σ†
h)

−1W HX(i)HΣ−1
z X(i)WΣh

= Σh − (W HX(i)HX(i)W + Σ†
h)

−1W HX(i)HX(i)WΣh ,
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where Σz and Σh denote respectively the covariance matrix of the ambient white Gaussian

noise z and channel responses h. As before, by assumption, both of them are diagonal

matrices as Σz
�
= E(zzH) = I and Σh

�
= E(hhH) = diag

{
σ2

1,1, . . . , σ
2
1,L′

f
, σ2

2,1, . . . , σ
2
2,L′

f

}
,

where σ2
j,l is the average power of the lth tap related with the jth transmitter antenna; σ2

j,l = 0

if the channel response at this tap is zero. Assuming that Σh is known (or measured with

the aid of pilot symbols), Σ†
h

�
= diag

{
γ1,1, . . . , γ1,L′

f
, γ2,1, . . . , γ2,L′

f

}
is defined as the pseudo

inverse of Σh as

γj,l =

{
1/σ2

j,l σ2
j,l �= 0

0 σ2
j,l = 0

, l = 1, . . . , L′
f , j = 1, 2 . (10.85)

Using (10.82) and (10.84), Q(X|X(i)) is computed as

Q(X|X(i)) = −E
h|(y,X (i)

)

{‖y − XWh‖2
}

+ const.

= −E
h|(y,X (i)

)

{
‖(y − XWĥ) + (XWĥ − XWh)‖2

}
+ const.

= −‖y − XWĥ‖2 − E
h|(y,X (i)

)

{
(h − ĥ)HW HXHXW (h − ĥ)

}
+ const.

= −‖y − XWĥ‖2 − trace{XWΣ̂hW
HXH} + const.

= −
K−1∑
k=0

{[
y[k] − xH [k]W ′

f (k)ĥ
]2

+
[
xH [k]Σ̂h(k)x[k]

]}
︸ ︷︷ ︸

q(x[k])

+const. , (10.86)

with x[k]
�
= [x1[k], x2[k]]

H
2×1

,

W ′
f (k)

�
=

[
wH

f (k) 0

0 wH
f (k)

]
2×(2L′

f )

,

Σ̂h(k)
�
=

[
[WΣ̂hW

H ](k+1,k+1) [WΣ̂hW
H ](Q+k+1,k+1)

[WΣ̂hW
H ](k+1,Q+k+1) [WΣ̂hW

H ](Q+k+1,Q+k+1)

]
2×2

,

where [WΣ̂hW
H ](i,j) denotes the (i, j)th element of the matrix [WΣ̂hW

H ].

Next, based on (10.86), the M-step proceeds as follows

X(i+1) = arg max
X

[
Q(X|X(i)) + logP (X)

]
= arg max

X

[
−

Q−1∑
k=0

q(x[k]) +

Q−1∑
k=0

logP (x[k])

]
(10.87)



10.5. LDPC-BASED SPACE-TIME CODED OFDM SYSTEMS 693

=

Q−1∑
k=0

arg min
x[k]

[q(x[k]) − logP (x[k])] ,

or x(i+1)[k] = arg min
x[k]

[q(x[k]) − logP (x[k])] , k = 0, 1, . . . , Q− 1 , (10.88)

where (10.87) follows from the assumption that X contains independent symbols. It is seen

from (10.88) that the M-step can be decoupled into Q independent minimization problems,

each of which can be solved by enumeration over all possible x ∈ Ω × Ω (Recall that Ω

denotes the set of all STC symbols). Hence the total complexity of the maximization step

is O(Q|Ω|2).
Within each turbo iteration, the above E-step and M-step are iterated I times. At

the end of the Ith EM iteration, the extrinsic a posteriori LLR’s of the LDPC code bits

are computed, and then fed to the soft LDPC decoder. At each OFDM subcarrier, two

transmitter antennas transmit two STC symbols, which correspond to (2 log2 |Ω|) LDPC

code bits. Based on (10.88), after I EM iterations, the extrinsic a posteriori LLR of the jth

(j = 1, . . . , 2 log2 |Ω|) LDPC code bit at the kth subcarrier dj[k] is computed at the output

of the MAP-EM demodulator as follows,

λ1(d
j[k]) = log

P (dj[k] = +1|y)

P (dj[k] = −1|y)
− log

P (dj[k] = +1)

P (dj[k] = −1)

= log

∑
x∈C+

j
P
(
x[k] = x|y

)
∑

x∈C−
j
P
(
x[k] = x|y

) − λ2(d
j[k])

= log

∑
x∈C+

j
exp

[
− q(x) + logP (x)

]
∑

x∈C−
j

exp
[
− q(x) + logP (x)

]
︸ ︷︷ ︸

Λ1(d
j[k])

−λ2(d
j[k]) , (10.89)

where C+
j is the set of x for which the jth LDPC coded bit is “+1”; and C−

j is similarly defined.

The extrinsic a priori LLR’s {λ2(d
j[k])}j,k are provided by the soft LDPC decoder at the

previous turbo iteration Finally, the extrinsic a posteriori LLR’s {λ1(d
j[k])}j,k are sent to the

soft LDPC decoder, which in turn iteratively computes the extrinsic LLR’s {λ2(d
j[k])}j,k and

then feeds them back to the MAP-EM demodulator, and thus completes one turbo iteration.

At the end of the last turbo iteration, hard decisions of the information bits are output by

the LDPC decoder. For details of the soft LDPC decoder, see [124].
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Initialization of MAP-EM Demodulator

The performance of the MAP-EM demodulator (and hence the overall receiver) is closely

related to the quality of the initial value of X(0)[p] [cf. Eq.(10.44)]. At each turbo iteration,

X(0)[p] needs to be specified to initialize the MAP-EM demodulator. Except for the first

turbo iteration, X(0)[p] is simply taken as X(I)[p] given by (10.87) from the previous turbo

iteration. We next discuss the procedure for computing X(0)[p] at the first turbo iteration.

The initial estimate of X(0)[p] is based on the method proposed in [257, 261], which makes

use of pilot symbols and decision-feedback as well as spatial and temporal filtering for channel

estimates. The procedure is listed in Table 10.2. In Table 10.2, Freq-filter denotes either the

least-square estimator (LSE) or the minimum mean-square-error estimator (MMSE) as

LSE: Freq-filter
{

y,X
}

�
= (W HXHXW )−1W HXHy ,

MMSE: Freq-filter
{

y,X
}

�
= (W HXHXW + Σ†

h)
−1W HXHy ,

(10.90)

where X represents either the pilot symbols or X(I) provided by the MAP-EM demodulator.

Comparing these two estimators, the LSE does not need any statistical information of h,

but the MMSE offers better performance in terms of mean-square-error (MSE). Hence, in

the pilot slot, the LSE is used to estimate channels and to measure Σh; and in the rest data

slots, the MMSE is used. In Table 10.2, Temp-filter denotes the temporal filter, which is used

to further exploit the time-domain correlation of the channel,

Temp-filter
{

ĥ[p− 1], ĥ[p− 2], . . . , ĥ[p− ι]
}

�
=

ι∑
j=1

ajĥ[p− j] , (10.91)

where ĥ[p−j], j = 1, . . . , ι , is computed from (��) [cf. Tab.1]; {aj}ι
j=1 denotes the coefficients

of an ι-length (ι ≤ Pq) temporal filter, which can be obtained by solving the Wiener equation

or from the robust design as in [257, 261]. From the above discussions, it is seen that the

computation involved in initializing X(0)[p] mainly consists of the ML detection of X(0)[p] in

(�) and the estimation of ĥ[p] in (��). In general, for an STC-OFDM system with parameters

(N,M,Q,L′
f ), the total complexity in initializing X(0)[p] is O[(Q|Ω|N) +M(NL′

f )
3].

Simulation Examples

In this section, we provide computer simulation results to illustrate the performance of the

proposed LDPC-based STC-OFDM system in frequency- and time-selective fading channels.
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pilot slot: ĥ[0] = Freq-filter
{

y[0],X[0]
}

data slots: for p = 1, 2, . . . , P q

h̃[p] = Temp-filter
{

ĥ[p− 1], ĥ[p− 2], . . . , ĥ[p− ι]
}

X(0)[p] = arg maxX

{
log p

[
y[p]

∣∣∣X, h̃[p]
]}

(�)

X(I)[p] = MAP-EM
{

y[p],X(0)[p]
}

[cf. Eq.(10.44)-(10.45)]

ĥ[p] = Freq-filter
{

y[p],X(I)[p]
}

(��)

end

Table 10.2: Procedure for computing X(0)[p] for the MAP-EM demodulator (at the first

turbo iteration).

The correlated fading processes are generated by using the methods in [176]. In the following

simulations the available bandwidth is 1 MHz and is divided into 256 subcarriers. These cor-

respond to a subcarrier symbol rate of 3.9 KHz and OFDM word duration of 256µs. In each

OFDM word, a guard interval of 40µs is added to combat the effect of inter-symbol interfer-

ence, hence T = 296µs. For all simulations, 512 information bits are transmitted from 256

subcarriers at each OFDM slot, therefore the information rate is 2× 256
296

= 1.73 bits/sec/Hz.

Unless otherwise specified, all the LDPC codes used in simulations are regular LDPC codes

with column weight t = 3 in the parity-check matrices and with appropriate block-lengths

and code rates. The modulator uses QPSK constellation. Simulation results are shown in

terms of the OFDM word-error-rate (WER) versus the signal-noise-ratio (SNR) γ.

Performance with Ideal CSI:

Fig.’s 10.30–10.31 show the performance of multiple-antenna (N transmitter antennas

and one receiver antenna) LDPC-based STC-OFDM systems by using turbo detection and

decoding with ideal CSI. Performance is compared for systems with different fading profiles

and different number of transmitter antennas. Namely, Ch1 denotes a channel with a single

tap at 0µs, Ch2a denotes a channel with two equal-power taps at 0µs and 5µs, Ch2b denotes

a channel with two equal-power taps at 0µs and 40µs, and Ch6a denotes a channel with

six equal-power taps which equally spaced from 0µs to 40µs. Suffix N2 denotes a system

with two transmitter antennas (N = 2), and similarly denotes N3; suffix P1 denotes that
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each STC code word spans one OFDM slot (P = 1), and similarly denote P5 and P10.

Unless otherwise specified, all the STC-OFDM systems are assumed to use two transmitter

antennas (N = 2) and each STC code word spans one OFDM slot (P = 1).

First, Fig. 10.30 shows the performance of the LDPC-based STC-OFDM system in

frequency-selective and time-nonselective channels. The dash-dot curves represent the per-

formance after the first turbo iteration; and the solid curves represent the performance after

the fifth iteration. It is seen that the receiver performance is significantly improved through

turbo iterations. During each turbo iteration, in the LDPC decoder, the maximum number

of iterations is 30; and as observed in simulations, the average number of iterations needed

in LDPC decoding is less than 10 when WER is less than 10−2. Compared with the con-

ventional trellis-based STC-OFDM system (see figures in [8]), the LDPC-based STC-OFDM

system significantly improves performance, (e.g., there is around 5 dB performance improve-

ment in Ch2a/Ch2b channels and even more improvement in Ch6a channels). Moreover, due

to the inherent interleaving in LDPC encoder, the proposed LDPC-based STC narrows the

performance difference between Ch2a and Ch2b channels (essentially the outage capacity

of these two channels are same). As the selective-fading diversity order L increases from

Ch1 to Ch6a, LDPC-based STC can efficiently take advantage of the available diversity re-

sources and hence can significantly improve the system performance. Moreover, in a highly

frequency-selective channel Ch6a, the LDPC-based STC performs only 3.0 dB away from

the outage capacity of this channel (at high information rate 1.73 bits/sec/Hz) at WER of

2 × 10−4.

Next, Fig. 10.31 shows the performance of the LDPC-based STC-OFDM system in

frequency- and time-selective (P ≥ 1) fading channels. The maximum Doppler frequency is

200 Hz (i.e., the normalized Doppler frequency is fdT = 0.059). Again, it is seen that the

performance of the system improves as the selective-fading diversity order L (including both

the frequency-selectivity and time-selectivity) increases.

Finally, Fig. 10.30 also compares the performance of LDPC-based STC-OFDM systems

with same multipath delay profiles (Ch2a) but with different number of transmitter anten-

nas (N = 2 or N = 3). Since Ch2bN3 has larger outage capacity than Ch2bN2, it is seen

that at medium to high SNR’s Ch2bN3 starts to perform better than Ch2bN2 with a steeper

slope, which shows that the LDPC-based STC can be flexiblely scaled according to different
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number of transmitter antennas and can still improve the performance by exploiting the in-

creased spatial diversity, especially at low WER, (which is attractive in data communication

applications).
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Figure 10.30: Word error rate (WER) of an LDPC-based STC-OFDM system with multiple

antennas (N = {2, 3},M = 1) in frequency-selective and time-nonselective fading channels,

with ideal CSI.

Performance with Unknown CSI:

In the following simulations, the receiver performance with unknown CSI is shown. The

system transmits in a burst manner as illustrated in Fig. 10.28. Each data burst includes 10

OFDM words (q = 9, P = 1), the first OFDM word contains the pilot symbols and the rest

9 OFDM words contain the information data symbols. Simulations are carried out in two-

tap (two equal-power taps at 0 µs and 1 µs) frequency- and time-selective fading channels.

The maximum Doppler frequency of fading channels is 50 Hz or 150 Hz (with normalized

Doppler frequencies 0.015 and 0.044 respectively). Note that in Fig.’s 10.32-10.33, the energy

consumption of transmitting pilot symbols is not taken into account in computing SNR’s.
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Figure 10.31: Word error rate (WER) of an LDPC-based STC-OFDM system with multiple

antennas (N = 2,M = 1) in frequency-selective and time-selective fading channels, with

ideal CSI.
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The turbo receiver performance of a regular LDPC-based STC-OFDM system is shown

in Fig. 10.32; whereas that of an irregular LDPC-based STC-OFDM system is shown in

Fig. 10.33 (The average column weight in the parity-check matrix of the irregular LDPC

code is 2.30). TurboDD denotes the turbo receiver as before, except that the perfect CSI is

replaced by the pilot/decision-directed channel estimates as proposed in [260]; and TurboEM

denotes the turbo receiver with the MAP-EM demodulator as proposed in Section 10.5.4.

The temporal filter parameters are taken from [257]. The performance of these two receiver

structures are compared when using either the regular LDPC codes or the irregular LDPC

codes. From the simulations, it is seen that with ideal CSI the receiver performance is close

between the regular LDPC-based STC-OFDM system and the irregular LDPC-based STC-

OFDM system. When the CSI is not available, the proposed TurboEM receiver significantly

reduces the error floor. Moreover, it is observed that by using the irregular LDPC codes,

both the TurboDD receiver and the TurboEM receiver improve their performance, and the

TurboEM receiver can even approach the receiver performance with ideal CSI in low to

medium SNR’s. Although, we believe that the reason for the better performance of irregular

LDPC-based STC than regular LDPC-based STC in the presence of non-ideal CSI is due to

the better performance of the irregular LDPC codes at low SNR’s, a full explanation for this

behavior is beyond the scope of this paper. In simulations, the turbo receiver takes 3 turbo

iterations; and at each turbo iteration, the MAP-EM demodulator takes 3 EM iterations. At

the cost of 10% pilot insertion and a modest complexity, the proposed turbo receiver with

the MAP-EM demodulator is shown to be a promising receiver technique, especially in fast

fading applications.

10.6 Appendix

10.6.1 Derivations in Section 10.3

Note that the parameters with one-to-one mapping relationships, such as b⇔c⇔X, ε ⇔F ε,

or Y ⇔y, are equivalent to be conditioned on, e.g., p(·|Y ) ≡ p(·|y).

Derivation of (10.18)–(10.20):

p(h |Y ,X, ε) ∝ p(Y |h,X, ε) p(h)
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Figure 10.32: Word error rate (WER) of a regular LDPC-based STC-OFDM system with

multiple antennas (N = 2,M = 1) in two-tap (L = 2) frequency-selective fading channels,

without CSI.
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Figure 10.33: Word error rate (WER) of an irregular LDPC-based STC-OFDM system with

multiple antennas (N = 2,M = 1) in two-tap (L = 2) frequency-selective fading channels,

without CSI.
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Ỹ ∗

k ajHk

})
P (ck = ajX

∗
k−1)P (ck+1 = a∗jXk+1), (10.93)

with X̃k,j
�
= diag

{
X

(n)
0 , . . . , X

(n)
k−1, aj, X

(n−1)
k+1 , . . . , X

(n−1)
Q−1

}
,

Ỹ
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[357] T. Ojanperä and R. Prasad. Wideband CDMA for Third Generation Mobile Commu-

nications. Artech: Norwood, MA, 1998.
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