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Note to the instructor:  These slides are provided solely for classroom use in academic 
institutions by the instructor using the text, Advance Digital Design with the Verilog HDL by 
Michael Ciletti, published by Prentice Hall. This material may not be used in off-campus 
instruction, resold, reproduced or generally distributed in the original or modified format for any 
purpose without the permission of the Author.  This material may not be placed on any server or 
network, and is protected under all copyright laws, as they currently exist. I am providing these 
slides to you subject to your agreeing that you will not provide them to your students in 
hardcopy or electronic format or use them for off-campus instruction of any kind.  Please email 
to me your agreement to these conditions. 
 
 I will greatly appreciate your assisting me by calling to my attention any errors or any other 
revisions that would enhance the utility of these slides for classroom use. 
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COURSE OVERVIEW 

 
 
• Review of combinational and sequential logic design 
• Modeling and verification with hardware description languages 
• Introduction to synthesis with HDLs 
• Programmable logic devices 
• State machines, datapath controllers, RISC CPU 
• Architectures and algorithms for computation and signal processing 
• Synchronization across clock domains 
• Timing analysis 

Fault simulation and testing, JTAG, BIST 
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Synthesis of Sequential Logic with Flip-Flops 
 

 
Note: Flip-flops are synthesized only from edge-sensitive cyclic behaviors 
 
Questions: 
 
• What determines the outcome of synthesis from an edge-sensitive behavior?  

• How does a synthesis tool infer the need for a flip-flop? 

• When does a register variable that is assigned value within an edge-

sensitive behavior automatically synthesize to a flip-flop? 

• How does the synthesis tool distinguish the synchronizing signal (clock) from 

other signals in the event control expression of a cyclic behavior? 

• How can multiple flip-flops or registers be modeled to operate concurrently? 
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Inference of Flip-Flops 
 

 
Each of the following conditions imply the need for memory and will synthesize a 
register variable to a flip flop: 
 
• The variable is referenced outside of the behavior 

• The variable is referenced within the behavior before it is assigned value 

• The variable is assigned value in only some of the branches of activity within 

the behavior 



 Copyright 2001, 2003 MD Ciletti    6

 

Flip-Flops or Latches? 
 

 

• Memory inferred for an edge-sensitive cyclic behavior will be synthesized as 
a flip flop 

 
• Memory inferred for a level-sensitive cyclic behavior or a continuous 

assignment with feedback will be synthesized as a latch 
 
• Note: an incomplete conditional statement (if...else ) or a case statement in 

a level-sensitive cyclic behavior will synthesize to a latch.  
 
• Note: an incomplete conditional statement statement (if...else ) or a case 

statement in an edge-sensitive cyclic behavior will synthesize to a flip-flop 
with circuitry effectively implementing clock enable.  
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Synchronizing Signal (1 of 2) 
 

 
 

• The order in which signals appear in the event control expression of an 

edge-sensitive cyclic behavior does not determine which signal is the 

synchronizing signal 
 

• The sequence in which signals are decoded in the statement that follows the 

event control expression of an edge-sensitive cyclic behavior determines 

which of the edge-sensitive signals are control signals and which is the clock 

(i.e., the synchronizing signal).  
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Synchronizing Signal (2 of 2) 
 

 
 

Note: If the event control expression is sensitive to the edge of more than one 

signal, an if statement must be the first statement in the behavior.   

 

• The control signals that appear in the event control expression must be 

decoded explicitly in the branches of the if statement (e.g., decode the reset 

condition first).    

 

• The synchronizing signal is not tested explicitly in the body of the if 

statement, but, by default, the last branch must describe the synchronous 

activity, independently of the actual names given to the signals. 
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Synthesis of a flip-flop 
 

 
 

SYNTHESIS TIP

A variable that is referenced within an edge-sensitive
behavior before it is assigned value by the behavior will be
synthesized as the output of a flip-flop.

 



 Copyright 2001, 2003 MD Ciletti    10

 

Example 6.23  
module swap_synch (data_a, data_b, set1, set2, clk); // Typo at text 
  output   data_a, data_b;      // Typo at text 
  input   clk, set1, set2; 
  reg   data_a, data_b;  
 
  always @  (posedge clk) 
    begin     
      if (set1) begin data_a <= 1; data_b <= 0; end else 
        if (set2) begin data_a <= 0; data_b <= 1; end else 
          else 
            begin 
              data_b <= data_a; 
              data_a <= data_b; 
            end 
    end 
endmodule  
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• The statements assigning value to data_a and data_b execute non-blocking 

assignments concurrently 

• Both variables are sampled (referenced) before receiving value 

• Both are synthesized as the output of a flip-flop 

•   Notice that set1 and set2 are explicitly decoded first.  The last clause of the 

if statement assigns values to data_a and data_b.  Those (non-blocking) 

assignments are synchronized to the rising edge of clk, which is not 

referenced explicitly in the if statement.   
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Synthesis result: 
 

data_b

data_aset2

esdpupd

esdpupd

clk

set1
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Example: Synthesis of a 4-bit Parallel Load Data Register 
 

 
Example 6.24  

  

module D_reg4_a  (Data_out, clock, reset, Data_in); 
  output   [3: 0]  Data_out; 
  input   [3: 0]  Data_in; 
  input    clock, reset; 
  reg   [3: 0]  Data_out; 
 
  always @  (posedge clock or posedge reset)   
    begin  
      if (reset == 1'b1) Data_out <= 4'b0; 
        else Data_out <= Data_in; 
      end 
endmodule 
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Note: 

• The positive edge of reset appears in the event control expression and 

appears in the first clause of the if statement 

• The positive edge of clock also appears in the event control expression, but 

is not explicitly decoded by the branch statement that follows the event 

control expression.   
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Synthesis Result: 

 

clock

Data_in[3]

R

QD

R

QD

R

QD

R

QD

Data_in[2] Data_in[1] Data_in[0]

reset

Data_out[3] Data_out[2] Data_out[1] Data_out[0]  
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Rules for Synchronizing Signals 
 

 

• Synchronize an edge-sensitive cyclic behavior to a single edge (posedge or 

negedge, but not both) of a single clock (synchronizing signal) 

• Multiple behaviors need not have the same synchronizing signal, or be 

synchronized by the same edge of the same signal 

• All of the synchronizing signals (clocks) must have the same period 
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SYNTHESIS TIP

A variable that is assigned value by a cyclic behavior before
it is referenced within the behavior, but is not referenced
outside the behavior, will be eliminated by the synthesis
process.

 
  

 

 

 

SYNTHESIS TIP

A variable that is assigned value by an edge-sensitive
behavior and is referenced outside the behavior will be
synthesized as the output of a flip-flop.
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Example (6.16): 

module or4_behav (y, x_in); 

  parameter  word_length = 4; 
  output        y; 
  input   [word_length - 1: 0]  x_in; 
  reg        y; 
  integer       k; 
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  always @  x_in 
    begin: check_for_1 
      y = 0; 
      for (k = 0; k <= word_length -1; k = k+1) 
        if (x_in[k] == 1) begin 
            y = 1; 
            disable check_for_1; 
        end 
    end 
endmodule 

 

Synthesis result: 4-input OR gate 

Note: The register variable k is eliminated by the synthesis process. 
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Example 6.25    

D_out is not referenced outside the scope of the behavior 

A synthesis tool will eliminate D_out.  output of a flip-flop. 

 

module empty_circuit (D_in, clk); 
  input  D_in; 
  input clk; 
  reg D_out; 
 
  always @ (posedge clk)  begin 
    D_out <= D_in; 
  end 
endmodule 
 

Note: If empty_circuit is modified to declare D_out as an output port, D_out will 

be synthesized as the output of a flip-flop. 
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Synthesis of Explicit State Machines 
 

 
Features of explicit state machines: 

• Explicitly declared state register 

• Explicit logic or state evolution 

 

Explicit machines can be described by two behaviors 

• Edge-sensitive behavior that synchronizes the evolution of the state 

• Level-sensitive behavior that describes the next state and output logic. 
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Example: BCD-to-Excess-3 Code Converter (Mealy) 
 

 
See Example 3.2 for manual design 

• A serially-transmitted BCD (8421 code) word is to be converted into an 
Excess-3 code 

• An Excess-3 code word is obtained by adding 3 to the decimal value and 
taking the binary equivalent.  Excess-3 code is self-complementing  
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Decimal 8-4-2-1 Excess-3
Digit Code Code

(BCD)

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100
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Excess-3
Code

Converter

clk

Bout = 8Excess-3

1 0 0 0
+

1 1 10

Bin = 8 bcd

Bout

0 0 1 1
1 0 1 1

LSBMSB

0 0 0 1
t

LSB MSB

t

MSB
Bin
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S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

reset
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module BCD_to_Excess_3b (B_out, B_in, clk, reset_b); 
  output  B_out; 
  input  B_in, clk, reset_b; 
  parameter  S_0 = 3'b000,   // State assignment 
   S_1 = 3'b001,  
   S_2 = 3'b101,  
   S_3 = 3'b111, 
   S_4 = 3'b011,  
   S_5 = 3'b110,  
   S_6 = 3'b010, 
   dont_care_state = 3'bx, 
   dont_care_out = 1'bx; 
 
  reg[2: 0] state, next_state; 
  reg  B_out; 
 
  always @ (posedge clk or negedge reset_b)  
    if (reset_b == 0) state <= S_0; else state <= next_state; 
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 always @ (state or B_in) begin 
    B_out = 0; 
    case (state) 
      S_0: if (B_in == 0) begin next_state = S_1; B_out = 1; end 
 else if (B_in == 1) begin next_state = S_2; end 
 
      S_1: if (B_in == 0) begin next_state = S_3; B_out = 1; end 
 else if (B_in == 1) begin next_state = S_4; end 
 
      S_2: begin next_state = S_4; B_out = B_in; end 
      S_3: begin next_state = S_5; B_out = B_in; end 
 
      S_4: if (B_in == 0) begin next_state = S_5; B_out = 1; end 
 else if (B_in == 1) begin next_state = S_6; end 
 
      S_5: begin next_state = S_0; B_out = B_in; end 
 
      S_6: begin next_state = S_0; B_out = 1; end 
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/*  Omitted for BCD_to_Excess_3b version 
          Included for BCD_to_Excess_3c version 
      default: begin next_state = dont_care_state;  

  B_out = dont_care_out; end 
      */   
    endcase 
  end 
endmodule 
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Simulation results for BCD_to_Excess_3b 

 
 



 Copyright 2001, 2003 MD Ciletti    30

ASIC circuit synthesized from BCD_to_Excess_3b  

Note:  Latches result from failure to provide default state assignments 

Note: Default values for B_out are hard-wired to 0  
 

clk

esdpupd

dffrpqb_a

reset_b

latrnqb_a dffrpqb_a

latrnqb_a dffrpqb_a latrnqb_a

B_in

B_out

nand2_a
inv_a

oai31_a

inv_a
oai21_a

mux2_a
inv_a nand3_a

mux2_a
mux2_a

nand2_a

  



 Copyright 2001, 2003 MD Ciletti    31

ASIC circuit synthesized from BCD_to_Excess_3c 
 

clk
dffrpqb_a

reset_b

B_in

B_out

dffrpqb_a

dffrpqb_a
inv_a

oai21_a

inv_a

mux2_a

nor2_a

mux2_a inv_a

xor2_a

xor2_a
oai2_a

inv_a

 
 

Note: The model includes default don't care state assignments and default don't 
care assignments to B_out 
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Post-synthesis simulation results 
 

 
 

Note: The circuits have same functionality, and simulation results match the manual design, 

but BCD_to_Excess_3c wastes hardware 
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SYNTHESIS TIP

Use two cyclic behaviors to describe an explicit state
machine: a level-sensit ive behavior to describe the
combinational logic for the next state and outputs, and an
edge-sensitive behavior to synchronize the state transitions.
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SYNTHESIS TIP

Use the procedural assignment operator (= ) in the level-
sensitive cyclic behaviors describing the combinational logic
of a finite state machine.

 

SYNTHESIS TIP

Use the non-blocking assignment operator (<= ) in the edge-
sensitive cyclic behaviors describing the state transitions of
a finite state machine and the register transfers of the
datapath of a sequential machine.
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SYNTHESIS TIP

Decode all possible states in a level-sensitive behavior
describing the combinational next state and output logic of
an explicit state machine.
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Additional Rules for Synthesis 
 

 

• Assign value to the entire state vector (no bit or part select allowed) 

• Asynchronous control signals (e.g., set and reset) in the event control 

expression must be scalars 

• The value that is assigned to the state register must be either a constant or a 

variable that evaluates to a constant after static evaluation (i.e., the state 

transition diagram must specify a fixed relationship) 
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Example: Mealy-Type NRZ-to-Manchester Line Code Converter  
 

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in

 

See Chapter 3 
 

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1  
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module NRZ_2_Manchester_Mealy (B_out, B_in, clock, reset_b); 

  output   B_out; 
  input  B_in; 
  input  clock, reset_b; 
  reg [1: 0] state, next_state; 
  reg  B_out; 
  parameter S_0 = 0, 
   S_1 = 1, 
   S_2 = 2, 

dont_care_state = 2'bx, 
dont_care_out = 1'bx; 

 
  always @ (negedge clock or negedge reset_b) 
   if (reset_b == 0) state <= S_0; else state <= next_state; 
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  always @ (state or B_in ) begin 
    B_out = 0; 
    case (state)      // Partially decoded 
      S_0: if (B_in == 0) next_state = S_1;   
         else if (B_in == 1) begin next_state = S_2; B_out = 1; end 
      S_1: begin next_state = S_0; B_out = 1;  end 
      S_2: begin next_state = S_0;  end 
      default:  begin next_state = dont_care_state;  

   B_out = dont_care_out;  end 
    endcase 
  end  
endmodule 
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Note: 

• B_in is switching on active edges of clock_1 (alternate active edges of clock_2) 
• B_in changes at the same time as the state 
• General rule: avoid having the inputs change at the same time that the state changes 

unless it happens that the inputs are treated as don't-cares at those edges 
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Synthesis Netlist 
module NRZ_2_Manchester_Mealy ( B_out, B_in, clock, reset ); 
input  B_in, clock, reset; 
output B_out; 
wire \next_state<1> , \next_state<0> , \state<1> , \state<0> , n80, n81, n82, n83; 
   buff101 U26 ( .A1(n81), .O(n80) ); 
   norf201 U27 ( .A1(n81), .B1(n82), .O(\next_state<1> ) ); 
   norf201 U28 ( .A1(B_in), .B1(n80), .O(\next_state<0> ) ); 
   blf00101 U29 ( .A1(n83), .B2(\state<1> ), .C2(n82), .O(B_out) ); 
   nanf251 U30 ( .A1(\state<1> ), .B2(n83), .O(n81) ); 
   invf101 U31 ( .A1(B_in), .O(n82) ); 
   invf101 U32 ( .A1(\state<0> ), .O(n83) ); 
   dfrf301 \state_reg<1>  ( .DATA1(\next_state<1> ), .CLK2(clock), .RST3( 
        reset), .Q(\state<1> ) ); 
   dfrf301 \state_reg<0>  ( .DATA1(\next_state<0> ), .CLK2(clock), .RST3( 
        reset), .Q(\state<0> ) ); 
endmodule 
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Synthesized Circuit (Compared to Chapter 3 result) 

reset_b
clock

B_in
B_out

dffrf301dffrf301
nanf251 buff101 norf201 invf101

invf101 blf00101

norf201

 

q0'

B_in'

D

Q

Q

D

Q

Q

Bout
clk q1'

q1

q0

q0'

q1'

q0'

Bin

q1'
Bin

reset  
Note: Errata for missing reset on flip-flop 
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Moore-Type NRZ-to-Manchester Line Code Converter 
 

 

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in

 

 
 
 
 
 
 
 

0S_0
0

S_1
0

S_3
1

S_2
11

0 011

<00> <01>

<10><11>

state code
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module NRZ_2_Manchester_Moore (B_out, B_in, clock, reset_b); 
  output   B_out; 
  input  B_in; 
  input  clock, reset_b; 
  reg [1: 0] state, next_state; 
  reg  B_out; 
  parameter S_0 = 0, 
  S_1 = 1, 
  S_2 = 2, 
  S_3 = 3; 
 
 always @ (negedge clock or negedge reset_b) 
   if (reset_b == 0) state <= S_0; else state <= next_state; 
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always @ (state or B_in ) begin 
    B_out = 0; 
    case (state)     // Fully decoded 
      S_0: begin if (B_in == 0) next_state = S_1; else next_state = S_3; end 
      S_1: begin next_state = S_2; end 
      S_2: begin B_out = 1; if (B_in == 0) next_state = S_1; else next_state = 
S_3; end 
      S_3: begin B_out = 1; next_state = S_0; end 
   endcase 
  end  
endmodule 
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Simulation Results: 

 



 Copyright 2001, 2003 MD Ciletti    47

Synthesis Results (Compared to Chapter 3): 
 

reset_b

clock

B_in

B_out

mux2_a

dffrpb_a

dffrpb_a

inv_a

 
 

q0

D

Q

Q

D

Q

Q Bout

clk
q0'

q0

q1

q1'

q1'

q0'

Bin

reset  
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Example: Sequence Recognizer 
 

 
Detect three successive 1s 
 

Sequence
Recognizer

clk

D_in
D_out

clk
reset

En

clk

 
 

• Assert D_out when a given pattern of consecutive bits has been received in 

its serial input stream, D_in  

• Apply data on the rising edge of the clock if the state transitions are to occur 

on the falling edge of the clock, and visa-versa.   
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Conventions: 

• The output of a Mealy machine is valid immediately before the active edge of 

the clock controlling the machine 

• Successive values inputs are received in successive clock cycles. 

• A non-resetting machine continues to assert its output if the input bit pattern 

is overlapping 

• A resetting machine asserts for one cycle after detecting the input sequence, 

and then de-asserts for one cycle before detecting the next sequence of bits 
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S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

1

1

D_out

Mealy
Machine

 

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine
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module Seq_Rec_3_1s_Mealy (D_out, D_in, En, clk, reset);       

  output   D_out;       
  input   D_in, En; 
  input   clk, reset; 
 
  parameter  S_idle = 0;   // Binary code 
  parameter  S_0 =  1; 
  parameter  S_1 =  2; 
  parameter  S_2 =  3; 
  reg  [1: 0] state, next_state; 
          
  always @ (negedge clk)  
    if (reset == 1) state <= S_idle; else state <= next_state; 
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  always @ (state or D_in or En) begin 
    case (state)      // Partially decoded 
      S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else  
                     if ((En  == 1) && (D_in == 0))  next_state = S_0;  
   else       next_state = S_idle; 
 
      S_0:  if (D_in == 0)    next_state = S_0; else  
   if (D_in == 1)    next_state = S_1;  
   else      next_state = S_idle; 
 
      S_1:  if (D_in == 0)    next_state = S_0; else  
   if (D_in == 1)    next_state = S_2;   
   else      next_state = S_idle; 
 
      S_2:  if (D_in == 0)    next_state = S_0; else   
   if (D_in == 1)    next_state = S_2;  
   else      next_state = S_idle; 
      default:         next_state = S_idle;   
    endcase 
  end 
 
  assign D_out = ((state == S_2) && (D_in == 1 )); // Mealy output 
endmodule 
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module Seq_Rec_3_1s_Moore (D_out, D_in, En, clk, reset);       
  output   D_out;  
  input   D_in, En; 
  input   clk, reset; 
      
  parameter  S_idle = 0;  // Binary code 
  parameter  S_0 =  1; 
  parameter  S_1 =  2; 
  parameter  S_2 =  3; 
  parameter S_3 =  4; 
 
  reg  [2: 0]  state, next_state; 
          
  always @ (negedge clk)  
    if (reset == 1) state <= S_idle; else state <= next_state; 
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  always @ (state or D_in) begin 
    case (state)  
      S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else  
                     if ((En  == 1) && (D_in == 0))  next_state = S_0;  
   else       next_state = S_idle; 
 
      S_0:  if (D_in == 0)    next_state = S_0; else  
   if (D_in == 1)    next_state = S_1;  
   else      next_state = S_idle; 
 
      S_1:  if (D_in == 0)    next_state = S_0; else  
   if (D_in == 1)    next_state = S_2;   
   else      next_state = S_idle; 
 
      S_2, S_3: if (D_in == 0)    next_state = S_0; else   
   if (D_in == 1)    next_state = S_3;  
   else      next_state = S_idle; 
      default:         next_state = S_idle;   
    endcase 
  end 
 
  assign D_out = (state == S_3);   // Moore output 
endmodule 
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module t_Seq_Rec_3_1s (); 
  reg D_in_NRZ, D_in_RZ, En, clk, reset;   
     
  wire Mealy_NRZ; 
  wire Mealy_RZ; 
  wire Moore_NRZ; 
  wire Moore_RZ; 
 
  Seq_Rec_3_1s_Mealy M0 (Mealy_NRZ, D_in_NRZ, En, clk, reset);       
  Seq_Rec_3_1s_Mealy M1 (Mealy_RZ, D_in_RZ, En, clk, reset);       
  Seq_Rec_3_1s_Moore M2 (Moore_NRZ, D_in_NRZ, En, clk, reset);       
  Seq_Rec_3_1s_Moore M3 (Moore_RZ, D_in_RZ, En, clk, reset);       
 
  initial #275 $finish; 
 
  initial begin #5 reset = 1; #1 reset = 0; end 
  initial begin 
    clk = 0; forever #10 clk = ~clk;   
  end 
  initial begin 
    #5 En = 1; 
   #50 En = 0; 
  end 
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 initial fork  
    begin #10 D_in_NRZ = 0;    #25 D_in_NRZ = 1;    #80 D_in_NRZ = 0; end 
    begin #135 D_in_NRZ = 1; #40 D_in_NRZ = 0; end 
    begin #195 D_in_NRZ = 1'bx; #60 D_in_NRZ = 0; end 
   join 
 
  initial fork 
    #10 D_in_RZ = 0;     
    #35 D_in_RZ = 1;    #45 D_in_RZ = 0;  
    #55 D_in_RZ = 1;    #65 D_in_RZ = 0; 
    #75 D_in_RZ = 1;    #85 D_in_RZ = 0;  
    #95 D_in_RZ = 1;    #105 D_in_RZ = 0;  
    #135 D_in_RZ = 1; #145 D_in_RZ = 0; #155 D_in_RZ = 1; #165 D_in_RZ = 0;  
    #195 D_in_RZ = 1'bx; #250 D_in_RZ = 0;  
  join 
endmodule 
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Note:   

The Mealy machine is non-resetting 

The Moore machine does not anticipate D_in  

The Mealy machine anticipates D_in and  asserts D_out before the third clock 

The Mealy machine asserts D_out in the state reached after the third active edge 

of the clock 



 Copyright 2001, 2003 MD Ciletti    58

Simulation results 

• Testbench includes RZ and NRZ input formats 

• The Mealy machine has an invalid assertion of its output when the input has 

an RZ format, an apparent glitch   

• Mealy glitch occurs immediately after the second clock and persists until 

D_in is de-asserted 

• The valid Mealy output is 0, which is the value of Mealy_RZ immediately 

before the second clock 

• The value of Mealy_RZ immediately before the third clock is 1(valid output) 

• Notice behavior if B_in = x 
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Valid output Mealy
glitch

Mealy
 glitch
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Synthesis Result: Mealy Machine 
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Synthesis Result: Moore Machine 
 Note: Circuit includes logic to default to S_idle if En is de-asserted 

reset

D_in

En

D_out

esdpupd

aoi211_a
inv_a

  dffrpb_a

  dffrpb_a

nor2_a
  dffrpb_a
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inv_a

inv_a
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    (b)
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Alternative approach: Shift input bits through a register and detect contents 

 

Note: The Mealy machine below differs from the previous implementation by 

gating the datapath with En 

D_out

QD

clk

QD

clk

clk

D_in
En
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Moore Machine: 
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QD

clk

D_in

D_out

QD

clk

QD

clk

clk

reset

En

 
 

Note: an explicit state machine implementation of a sequence recognizer is not 

necessarily the most efficient implementation   
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 module Seq_Rec_3_1s_Mealy_Shft_Reg (D_out, D_in, En, clk, reset);       

  output   D_out;       
  input   D_in, En; 
  input   clk, reset; 
  parameter Empty = 2'b00; 
  reg [1: 0]  Data; 
          
  always @ (negedge clk)  
    if (reset == 1) Data <= Empty; else if (En  == 1) Data <= {D_in, Data[1]};  
 
  assign D_out = ((Data == 2'b11) && (D_in == 1 )); // Mealy output 
endmodule 
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module Seq_Rec_3_1s_Moore_Shft_Reg (D_out, D_in, En, clk, reset);       
  output   D_out;  
  input   D_in, En; 
  input   clk, reset; 
  parameter Empty = 2'b00; 
  reg [2: 0]  Data; 
          
  always @ (negedge clk)  
    if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[2:1]};  
 
  assign D_out = (Data == 3'b111);     // Moore output 
endmodule 
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reset
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Mealy glitch Mealy glitchValid output
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Registered Logic 
 

 

• Variables whose values are assigned synchronously with a clock signal are 

said to be registered.    

• Registered signals are updated at the active edges of the clock and are 

stable otherwise 
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Example: Registered Logic 
 

 
module mux_reg (y, a, b, c, d, select, clock); 
  output  [7: 0]  y; 
  input  [7: 0]  a, b, c, d; 
  input [1: 0]  select; 
  input  clock; 
  reg  [7: 0]  y; 

 
always @ (posedge clock) 
  case (select) 
      0: y <= a; // non-blocking 
      1: y <= b;          
      2: y <= c; 
      3: y <= d; 
      default y <= 8'bx; 
    endcase 
endmodule 

 
select

yq

clk

data_in

a
b
c
d

clock

8
8

8
8

8 8

 



 Copyright 2001, 2003 MD Ciletti    72

mux41_c

dffrpb_a

mux41_c

dffrpb_a

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_d[7:0]

select[1:0
]

a[7:0]
b[7:0]
c[7:0]

clock

y[7:0]

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a
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Sequential Machines with Registered Outputs 
 

 

• Outputs can be registered to prevent glitches from affecting the logic driven 

by the outputs of the machine. 

• Several options 
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 Combinational
Logic Forming

Next State and Outputs

Inputs

State
Register

Outputs

clock

Mealy machine

Registered
Outputs

Registered
Mealy
Outputs
for
Previous
State and
Inputs

Mealy
Combinational
Outputs

clock

Note:  

• The output of the storage register lags the combinational values by one 

clock cycle 

• The output of the register corresponds to the state of the machine in the 

previous cycle 
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Next State
Combinational

Logic

Inputs
State

Register
Outputs

Output
Combinational

Logic

clock

Moore machine

Registered
Outputs

Registered
Moore
Outputs
for Previous
State

clock

Combinational
Outputs

Note:  

• The output of the storage register lags the combinational values by one 

clock cycle 

• The output of the register corresponds to the state of the machine in the 

previous cycle 
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Combinational
Logic Forming

Next State

Inputs

State
Register

Next State

clock

Registered
Outputs

Registered
Mealy
Outputs
for Present
State and
Inputsclock

Combinational
Logic Forming

Outputs

 

Note:  

• The registered outputs are formed in the same cycle as the state 

• The Mealy outputs are formed from the next state and the inputs at the 
active edge of the clock 

• The value stored in the output register corresponds to the state reached at 
the clock transition and the inputs that caused the transition 

•  
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Next State
Combinational

Logic

Inputs
State

Register

Output
Combinational

Logic

clock

Registered
Outputs

Registered
Moore
Outputs
for Present
State

clock

Next_State

 

Note: The value stored in the output register will correspond to the state that is 

stored in the state register 
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Example: Sequence Recognizer with Registered Outputs 
 

 
Include the following code in Seq_Rec_3_1s_Mealy:1 

 

reg D_out_reg; 
always @ (negedge clk)  
  if (reset == 1) D_out_reg <= 0;  
  else D_out_reg <= ((state == S_2) && (next_state == S_2) && (D_in 
== 1 )); 

 

Notice that the clause (state == S_2) is included in the logic to prevent a 

premature assertion while the state of the machine is S_1 (see the ASM 

chart in Figure 6.38b). 

                                                           
1 The port declarations of each machine must be modified to include the registered output. 
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 Include the following code in Seq_Rec_3_1s_Moore: 

 reg D_out_reg; 
  always @ (negedge clk)  
    if (reset == 1) D_out_reg <= 0; else D_out_reg <= (next_state == 
S_3); 
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Simulation Results:  
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Note: 

• Registered and unregistered outputs for NRZ and RZ formatted serial 
inputs  

• The unregistered output of the Mealy machine changes with the input 

• The registered output does not change with the input to the machine 

• The value of the registered Mealy output corresponds to the value 
implied by the input and next state at the active (falling) edge of the 
clock 

• The unregistered output anticipates the clock 

• The output of the registered machine does not   

• The waveforms of the registered and unregistered Moore outputs are 
identical 

• The output of the unregistered machine is formed by combinational logic 

• The output of the registered machine the output is the output of a 
register 
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State Encoding 
 

 
 

0 0000 0000000000000001 0000 00000000
1 0001 0000000000000010 0001 00000001
2 0010 0000000000000100 0011 00000011
3 0011 0000000000001000 0010 00000111
4 0100 0000000000010000 0110 00001111
5 0101 0000000000100000 0111 00011111
6 0110 0000000001000000 0101 00111111
7 0111 0000000010000000 0100 01111111
8 1000 0000000100000000 1100 11111111
9 1001 0000001000000000 1101 11111110
10 1010 0000010000000000 1111 11111100
11 1011 0000100000000000 1110 11111000
12 1100 0001000000000000 1010 11110000
13 1101 0010000000000000 1011 11100000
14 1110 0100000000000000 1001 11000000
15 1111 1000000000000000 1000 10000000

# Binary         One-Hot Gray Johnson
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Note:  

• A binary coded decimal format (BCD uses the minimal number of flip-flops, 
but does not necessarily lead to an optimal realization of the combinational 
logic used to decode the next state and output of the machine.  

 
• If a machine has more than 16 states, a binary code will result in a relatively 

large amount of next-state logic; the machine's speed will also be slower 
than alternative encoding.  

 
• A Gray code uses the same number of bits as a binary code, but has the 

feature that two adjacent codes differ by only one bit, which can reduce the 
electrical noise in a circuit.   

 
• A Johnson code has the same property, but uses more bits.    

• A code that changes by only one bit between adjacent codes will reduce the 
simultaneous switching of adjacent physical signal lines in a circuit, thereby 
minimizing the possibility of electrical crosstalk.   

 
• These codes also minimize transitions through intermediate states. 
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One-Hot Codes 
 

 
 

• One flip-flop for each state 

• Reduces the decoding logic for next state and output 

• Complexity does not increase as states are added to the machine 

• Tradeoff: speed is not compromised by the time required to decode the state 

• Cost: area of the additional flip flops and  signal routing 

• A one-hot encoding with an if statement that tests individual bits might 

provide simpler decoding logic than decoding with a case statement 

• One-hot encoding usually does not correspond to the optimal state 

assignment 

• Use one-hots in Xilinx to reduce the use of CLBs 
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• Note: in large machines, one-hot encoding will have several unused states, 

in addition to requiring more registers than alternative encoding 

• Gray encoding is recommended for machines having more than 32 states 

because it requires fewer flip-flops than one-hot encoding, and is more 

reliable than binary encoding because fewer bits change simultaneously. 

• Caution: if a state assignment does not exhaust the possibilities of a code, 

then additional logic will be required to detect and recover from transitions 

into unused states.   
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