
 Copyright 2001, 2003 MD Ciletti 1

Advanced Digital Design with the Verilog HDL

M. D. Ciletti

Department

of
Electrical and Computer Engineering

University of Colorado
Colorado Springs, Colorado

ciletti@vlsic.uccs.edu

Draft: Chap 6b: Synthesis of Combinational and Sequential Logic

Copyright 2001, 2003. These notes are solely for classroom use by the instructor. No part of
these notes may be copied, reproduced, or distributed to a third party, including students, in any
form without the written permission of the author. (Rev 9/17/2003)

 Copyright 2001, 2003 MD Ciletti 2

Note to the instructor: These slides are provided solely for classroom use in academic
institutions by the instructor using the text, Advance Digital Design with the Verilog HDL by
Michael Ciletti, published by Prentice Hall. This material may not be used in off-campus
instruction, resold, reproduced or generally distributed in the original or modified format for any
purpose without the permission of the Author. This material may not be placed on any server or
network, and is protected under all copyright laws, as they currently exist. I am providing these
slides to you subject to your agreeing that you will not provide them to your students in
hardcopy or electronic format or use them for off-campus instruction of any kind. Please email
to me your agreement to these conditions.

 I will greatly appreciate your assisting me by calling to my attention any errors or any other
revisions that would enhance the utility of these slides for classroom use.

 Copyright 2001, 2003 MD Ciletti 3

COURSE OVERVIEW

• Review of combinational and sequential logic design
• Modeling and verification with hardware description languages
• Introduction to synthesis with HDLs
• Programmable logic devices
• State machines, datapath controllers, RISC CPU
• Architectures and algorithms for computation and signal processing
• Synchronization across clock domains
• Timing analysis

Fault simulation and testing, JTAG, BIST

 Copyright 2001, 2003 MD Ciletti 4

Synthesis of Sequential Logic with Flip-Flops

Note: Flip-flops are synthesized only from edge-sensitive cyclic behaviors

Questions:

• What determines the outcome of synthesis from an edge-sensitive behavior?

• How does a synthesis tool infer the need for a flip-flop?

• When does a register variable that is assigned value within an edge-

sensitive behavior automatically synthesize to a flip-flop?

• How does the synthesis tool distinguish the synchronizing signal (clock) from

other signals in the event control expression of a cyclic behavior?

• How can multiple flip-flops or registers be modeled to operate concurrently?

 Copyright 2001, 2003 MD Ciletti 5

Inference of Flip-Flops

Each of the following conditions imply the need for memory and will synthesize a
register variable to a flip flop:

• The variable is referenced outside of the behavior

• The variable is referenced within the behavior before it is assigned value

• The variable is assigned value in only some of the branches of activity within

the behavior

 Copyright 2001, 2003 MD Ciletti 6

Flip-Flops or Latches?

• Memory inferred for an edge-sensitive cyclic behavior will be synthesized as
a flip flop

• Memory inferred for a level-sensitive cyclic behavior or a continuous

assignment with feedback will be synthesized as a latch

• Note: an incomplete conditional statement (if...else) or a case statement in

a level-sensitive cyclic behavior will synthesize to a latch.

• Note: an incomplete conditional statement statement (if...else) or a case

statement in an edge-sensitive cyclic behavior will synthesize to a flip-flop
with circuitry effectively implementing clock enable.

 Copyright 2001, 2003 MD Ciletti 7

Synchronizing Signal (1 of 2)

• The order in which signals appear in the event control expression of an

edge-sensitive cyclic behavior does not determine which signal is the

synchronizing signal

• The sequence in which signals are decoded in the statement that follows the

event control expression of an edge-sensitive cyclic behavior determines

which of the edge-sensitive signals are control signals and which is the clock

(i.e., the synchronizing signal).

 Copyright 2001, 2003 MD Ciletti 8

Synchronizing Signal (2 of 2)

Note: If the event control expression is sensitive to the edge of more than one

signal, an if statement must be the first statement in the behavior.

• The control signals that appear in the event control expression must be

decoded explicitly in the branches of the if statement (e.g., decode the reset

condition first).

• The synchronizing signal is not tested explicitly in the body of the if

statement, but, by default, the last branch must describe the synchronous

activity, independently of the actual names given to the signals.

 Copyright 2001, 2003 MD Ciletti 9

Synthesis of a flip-flop

SYNTHESIS TIP

A variable that is referenced within an edge-sensitive
behavior before it is assigned value by the behavior will be
synthesized as the output of a flip-flop.

 Copyright 2001, 2003 MD Ciletti 10

Example 6.23
module swap_synch (data_a, data_b, set1, set2, clk); // Typo at text
 output data_a, data_b; // Typo at text
 input clk, set1, set2;
 reg data_a, data_b;

 always @ (posedge clk)
 begin
 if (set1) begin data_a <= 1; data_b <= 0; end else
 if (set2) begin data_a <= 0; data_b <= 1; end else
 else
 begin
 data_b <= data_a;
 data_a <= data_b;
 end
 end
endmodule

 Copyright 2001, 2003 MD Ciletti 11

• The statements assigning value to data_a and data_b execute non-blocking

assignments concurrently

• Both variables are sampled (referenced) before receiving value

• Both are synthesized as the output of a flip-flop

• Notice that set1 and set2 are explicitly decoded first. The last clause of the

if statement assigns values to data_a and data_b. Those (non-blocking)

assignments are synchronized to the rising edge of clk, which is not

referenced explicitly in the if statement.

 Copyright 2001, 2003 MD Ciletti 12

Synthesis result:

data_b

data_aset2

esdpupd

esdpupd

clk

set1

 Copyright 2001, 2003 MD Ciletti 13

Example: Synthesis of a 4-bit Parallel Load Data Register

Example 6.24

module D_reg4_a (Data_out, clock, reset, Data_in);
 output [3: 0] Data_out;
 input [3: 0] Data_in;
 input clock, reset;
 reg [3: 0] Data_out;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1) Data_out <= 4'b0;
 else Data_out <= Data_in;
 end
endmodule

 Copyright 2001, 2003 MD Ciletti 14

Note:

• The positive edge of reset appears in the event control expression and

appears in the first clause of the if statement

• The positive edge of clock also appears in the event control expression, but

is not explicitly decoded by the branch statement that follows the event

control expression.

 Copyright 2001, 2003 MD Ciletti 15

Synthesis Result:

clock

Data_in[3]

R

QD

R

QD

R

QD

R

QD

Data_in[2] Data_in[1] Data_in[0]

reset

Data_out[3] Data_out[2] Data_out[1] Data_out[0]

 Copyright 2001, 2003 MD Ciletti 16

Rules for Synchronizing Signals

• Synchronize an edge-sensitive cyclic behavior to a single edge (posedge or

negedge, but not both) of a single clock (synchronizing signal)

• Multiple behaviors need not have the same synchronizing signal, or be

synchronized by the same edge of the same signal

• All of the synchronizing signals (clocks) must have the same period

 Copyright 2001, 2003 MD Ciletti 17

SYNTHESIS TIP

A variable that is assigned value by a cyclic behavior before
it is referenced within the behavior, but is not referenced
outside the behavior, will be eliminated by the synthesis
process.

SYNTHESIS TIP

A variable that is assigned value by an edge-sensitive
behavior and is referenced outside the behavior will be
synthesized as the output of a flip-flop.

 Copyright 2001, 2003 MD Ciletti 18

Example (6.16):

module or4_behav (y, x_in);

 parameter word_length = 4;
 output y;
 input [word_length - 1: 0] x_in;
 reg y;
 integer k;

 Copyright 2001, 2003 MD Ciletti 19

 always @ x_in
 begin: check_for_1
 y = 0;
 for (k = 0; k <= word_length -1; k = k+1)
 if (x_in[k] == 1) begin
 y = 1;
 disable check_for_1;
 end
 end
endmodule

Synthesis result: 4-input OR gate

Note: The register variable k is eliminated by the synthesis process.

 Copyright 2001, 2003 MD Ciletti 20

Example 6.25

D_out is not referenced outside the scope of the behavior

A synthesis tool will eliminate D_out. output of a flip-flop.

module empty_circuit (D_in, clk);
 input D_in;
 input clk;
 reg D_out;

 always @ (posedge clk) begin
 D_out <= D_in;
 end
endmodule

Note: If empty_circuit is modified to declare D_out as an output port, D_out will

be synthesized as the output of a flip-flop.

 Copyright 2001, 2003 MD Ciletti 21

Synthesis of Explicit State Machines

Features of explicit state machines:

• Explicitly declared state register

• Explicit logic or state evolution

Explicit machines can be described by two behaviors

• Edge-sensitive behavior that synchronizes the evolution of the state

• Level-sensitive behavior that describes the next state and output logic.

 Copyright 2001, 2003 MD Ciletti 22

Example: BCD-to-Excess-3 Code Converter (Mealy)

See Example 3.2 for manual design

• A serially-transmitted BCD (8421 code) word is to be converted into an
Excess-3 code

• An Excess-3 code word is obtained by adding 3 to the decimal value and
taking the binary equivalent. Excess-3 code is self-complementing

 Copyright 2001, 2003 MD Ciletti 23

Decimal 8-4-2-1 Excess-3
Digit Code Code

(BCD)

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

 Copyright 2001, 2003 MD Ciletti 24

Excess-3
Code

Converter

clk

Bout = 8Excess-3

1 0 0 0
+

1 1 10

Bin = 8 bcd

Bout

0 0 1 1
1 0 1 1

LSBMSB

0 0 0 1
t

LSB MSB

t

MSB
Bin

 Copyright 2001, 2003 MD Ciletti 25

S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

reset

 Copyright 2001, 2003 MD Ciletti 26

module BCD_to_Excess_3b (B_out, B_in, clk, reset_b);
 output B_out;
 input B_in, clk, reset_b;
 parameter S_0 = 3'b000, // State assignment
 S_1 = 3'b001,
 S_2 = 3'b101,
 S_3 = 3'b111,
 S_4 = 3'b011,
 S_5 = 3'b110,
 S_6 = 3'b010,
 dont_care_state = 3'bx,
 dont_care_out = 1'bx;

 reg[2: 0] state, next_state;
 reg B_out;

 always @ (posedge clk or negedge reset_b)
 if (reset_b == 0) state <= S_0; else state <= next_state;

 Copyright 2001, 2003 MD Ciletti 27

 always @ (state or B_in) begin
 B_out = 0;
 case (state)
 S_0: if (B_in == 0) begin next_state = S_1; B_out = 1; end
 else if (B_in == 1) begin next_state = S_2; end

 S_1: if (B_in == 0) begin next_state = S_3; B_out = 1; end
 else if (B_in == 1) begin next_state = S_4; end

 S_2: begin next_state = S_4; B_out = B_in; end
 S_3: begin next_state = S_5; B_out = B_in; end

 S_4: if (B_in == 0) begin next_state = S_5; B_out = 1; end
 else if (B_in == 1) begin next_state = S_6; end

 S_5: begin next_state = S_0; B_out = B_in; end

 S_6: begin next_state = S_0; B_out = 1; end

 Copyright 2001, 2003 MD Ciletti 28

/* Omitted for BCD_to_Excess_3b version
 Included for BCD_to_Excess_3c version
 default: begin next_state = dont_care_state;

 B_out = dont_care_out; end
 */
 endcase
 end
endmodule

 Copyright 2001, 2003 MD Ciletti 29

Simulation results for BCD_to_Excess_3b

 Copyright 2001, 2003 MD Ciletti 30

ASIC circuit synthesized from BCD_to_Excess_3b

Note: Latches result from failure to provide default state assignments

Note: Default values for B_out are hard-wired to 0

clk

esdpupd

dffrpqb_a

reset_b

latrnqb_a dffrpqb_a

latrnqb_a dffrpqb_a latrnqb_a

B_in

B_out

nand2_a
inv_a

oai31_a

inv_a
oai21_a

mux2_a
inv_a nand3_a

mux2_a
mux2_a

nand2_a

 Copyright 2001, 2003 MD Ciletti 31

ASIC circuit synthesized from BCD_to_Excess_3c

clk
dffrpqb_a

reset_b

B_in

B_out

dffrpqb_a

dffrpqb_a
inv_a

oai21_a

inv_a

mux2_a

nor2_a

mux2_a inv_a

xor2_a

xor2_a
oai2_a

inv_a

Note: The model includes default don't care state assignments and default don't
care assignments to B_out

 Copyright 2001, 2003 MD Ciletti 32

Post-synthesis simulation results

Note: The circuits have same functionality, and simulation results match the manual design,

but BCD_to_Excess_3c wastes hardware

 Copyright 2001, 2003 MD Ciletti 33

SYNTHESIS TIP

Use two cyclic behaviors to describe an explicit state
machine: a level-sensit ive behavior to describe the
combinational logic for the next state and outputs, and an
edge-sensitive behavior to synchronize the state transitions.

 Copyright 2001, 2003 MD Ciletti 34

SYNTHESIS TIP

Use the procedural assignment operator (=) in the level-
sensitive cyclic behaviors describing the combinational logic
of a finite state machine.

SYNTHESIS TIP

Use the non-blocking assignment operator (<=) in the edge-
sensitive cyclic behaviors describing the state transitions of
a finite state machine and the register transfers of the
datapath of a sequential machine.

 Copyright 2001, 2003 MD Ciletti 35

SYNTHESIS TIP

Decode all possible states in a level-sensitive behavior
describing the combinational next state and output logic of
an explicit state machine.

 Copyright 2001, 2003 MD Ciletti 36

Additional Rules for Synthesis

• Assign value to the entire state vector (no bit or part select allowed)

• Asynchronous control signals (e.g., set and reset) in the event control

expression must be scalars

• The value that is assigned to the state register must be either a constant or a

variable that evaluates to a constant after static evaluation (i.e., the state

transition diagram must specify a fixed relationship)

 Copyright 2001, 2003 MD Ciletti 37

Example: Mealy-Type NRZ-to-Manchester Line Code Converter

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in

See Chapter 3

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1

 Copyright 2001, 2003 MD Ciletti 38

module NRZ_2_Manchester_Mealy (B_out, B_in, clock, reset_b);

 output B_out;
 input B_in;
 input clock, reset_b;
 reg [1: 0] state, next_state;
 reg B_out;
 parameter S_0 = 0,
 S_1 = 1,
 S_2 = 2,

dont_care_state = 2'bx,
dont_care_out = 1'bx;

 always @ (negedge clock or negedge reset_b)
 if (reset_b == 0) state <= S_0; else state <= next_state;

 Copyright 2001, 2003 MD Ciletti 39

 always @ (state or B_in) begin
 B_out = 0;
 case (state) // Partially decoded
 S_0: if (B_in == 0) next_state = S_1;
 else if (B_in == 1) begin next_state = S_2; B_out = 1; end
 S_1: begin next_state = S_0; B_out = 1; end
 S_2: begin next_state = S_0; end
 default: begin next_state = dont_care_state;

 B_out = dont_care_out; end
 endcase
 end
endmodule

 Copyright 2001, 2003 MD Ciletti 40

Note:

• B_in is switching on active edges of clock_1 (alternate active edges of clock_2)
• B_in changes at the same time as the state
• General rule: avoid having the inputs change at the same time that the state changes

unless it happens that the inputs are treated as don't-cares at those edges

 Copyright 2001, 2003 MD Ciletti 41

Synthesis Netlist
module NRZ_2_Manchester_Mealy (B_out, B_in, clock, reset);
input B_in, clock, reset;
output B_out;
wire \next_state<1> , \next_state<0> , \state<1> , \state<0> , n80, n81, n82, n83;
 buff101 U26 (.A1(n81), .O(n80));
 norf201 U27 (.A1(n81), .B1(n82), .O(\next_state<1>));
 norf201 U28 (.A1(B_in), .B1(n80), .O(\next_state<0>));
 blf00101 U29 (.A1(n83), .B2(\state<1>), .C2(n82), .O(B_out));
 nanf251 U30 (.A1(\state<1>), .B2(n83), .O(n81));
 invf101 U31 (.A1(B_in), .O(n82));
 invf101 U32 (.A1(\state<0>), .O(n83));
 dfrf301 \state_reg<1> (.DATA1(\next_state<1>), .CLK2(clock), .RST3(
 reset), .Q(\state<1>));
 dfrf301 \state_reg<0> (.DATA1(\next_state<0>), .CLK2(clock), .RST3(
 reset), .Q(\state<0>));
endmodule

 Copyright 2001, 2003 MD Ciletti 42

Synthesized Circuit (Compared to Chapter 3 result)

reset_b
clock

B_in
B_out

dffrf301dffrf301
nanf251 buff101 norf201 invf101

invf101 blf00101

norf201

q0'

B_in'

D

Q

Q

D

Q

Q

Bout
clk q1'

q1

q0

q0'

q1'

q0'

Bin

q1'
Bin

reset
Note: Errata for missing reset on flip-flop

 Copyright 2001, 2003 MD Ciletti 43

Moore-Type NRZ-to-Manchester Line Code Converter

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in

0S_0
0

S_1
0

S_3
1

S_2
11

0 011

<00> <01>

<10><11>

state code

 Copyright 2001, 2003 MD Ciletti 44

module NRZ_2_Manchester_Moore (B_out, B_in, clock, reset_b);
 output B_out;
 input B_in;
 input clock, reset_b;
 reg [1: 0] state, next_state;
 reg B_out;
 parameter S_0 = 0,
 S_1 = 1,
 S_2 = 2,
 S_3 = 3;

 always @ (negedge clock or negedge reset_b)
 if (reset_b == 0) state <= S_0; else state <= next_state;

 Copyright 2001, 2003 MD Ciletti 45

always @ (state or B_in) begin
 B_out = 0;
 case (state) // Fully decoded
 S_0: begin if (B_in == 0) next_state = S_1; else next_state = S_3; end
 S_1: begin next_state = S_2; end
 S_2: begin B_out = 1; if (B_in == 0) next_state = S_1; else next_state =
S_3; end
 S_3: begin B_out = 1; next_state = S_0; end
 endcase
 end
endmodule

 Copyright 2001, 2003 MD Ciletti 46

Simulation Results:

 Copyright 2001, 2003 MD Ciletti 47

Synthesis Results (Compared to Chapter 3):

reset_b

clock

B_in

B_out

mux2_a

dffrpb_a

dffrpb_a

inv_a

q0

D

Q

Q

D

Q

Q Bout

clk
q0'

q0

q1

q1'

q1'

q0'

Bin

reset

 Copyright 2001, 2003 MD Ciletti 48

Example: Sequence Recognizer

Detect three successive 1s

Sequence
Recognizer

clk

D_in
D_out

clk
reset

En

clk

• Assert D_out when a given pattern of consecutive bits has been received in

its serial input stream, D_in

• Apply data on the rising edge of the clock if the state transitions are to occur

on the falling edge of the clock, and visa-versa.

 Copyright 2001, 2003 MD Ciletti 49

Conventions:

• The output of a Mealy machine is valid immediately before the active edge of

the clock controlling the machine

• Successive values inputs are received in successive clock cycles.

• A non-resetting machine continues to assert its output if the input bit pattern

is overlapping

• A resetting machine asserts for one cycle after detecting the input sequence,

and then de-asserts for one cycle before detecting the next sequence of bits

 Copyright 2001, 2003 MD Ciletti 50

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

1

1

D_out

Mealy
Machine

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine

 Copyright 2001, 2003 MD Ciletti 51

module Seq_Rec_3_1s_Mealy (D_out, D_in, En, clk, reset);

 output D_out;
 input D_in, En;
 input clk, reset;

 parameter S_idle = 0; // Binary code
 parameter S_0 = 1;
 parameter S_1 = 2;
 parameter S_2 = 3;
 reg [1: 0] state, next_state;

 always @ (negedge clk)
 if (reset == 1) state <= S_idle; else state <= next_state;

 Copyright 2001, 2003 MD Ciletti 52

 always @ (state or D_in or En) begin
 case (state) // Partially decoded
 S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else
 if ((En == 1) && (D_in == 0)) next_state = S_0;
 else next_state = S_idle;

 S_0: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_1;
 else next_state = S_idle;

 S_1: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_2;
 else next_state = S_idle;

 S_2: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_2;
 else next_state = S_idle;
 default: next_state = S_idle;
 endcase
 end

 assign D_out = ((state == S_2) && (D_in == 1)); // Mealy output
endmodule

 Copyright 2001, 2003 MD Ciletti 53

module Seq_Rec_3_1s_Moore (D_out, D_in, En, clk, reset);
 output D_out;
 input D_in, En;
 input clk, reset;

 parameter S_idle = 0; // Binary code
 parameter S_0 = 1;
 parameter S_1 = 2;
 parameter S_2 = 3;
 parameter S_3 = 4;

 reg [2: 0] state, next_state;

 always @ (negedge clk)
 if (reset == 1) state <= S_idle; else state <= next_state;

 Copyright 2001, 2003 MD Ciletti 54

 always @ (state or D_in) begin
 case (state)
 S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else
 if ((En == 1) && (D_in == 0)) next_state = S_0;
 else next_state = S_idle;

 S_0: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_1;
 else next_state = S_idle;

 S_1: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_2;
 else next_state = S_idle;

 S_2, S_3: if (D_in == 0) next_state = S_0; else
 if (D_in == 1) next_state = S_3;
 else next_state = S_idle;
 default: next_state = S_idle;
 endcase
 end

 assign D_out = (state == S_3); // Moore output
endmodule

 Copyright 2001, 2003 MD Ciletti 55

module t_Seq_Rec_3_1s ();
 reg D_in_NRZ, D_in_RZ, En, clk, reset;

 wire Mealy_NRZ;
 wire Mealy_RZ;
 wire Moore_NRZ;
 wire Moore_RZ;

 Seq_Rec_3_1s_Mealy M0 (Mealy_NRZ, D_in_NRZ, En, clk, reset);
 Seq_Rec_3_1s_Mealy M1 (Mealy_RZ, D_in_RZ, En, clk, reset);
 Seq_Rec_3_1s_Moore M2 (Moore_NRZ, D_in_NRZ, En, clk, reset);
 Seq_Rec_3_1s_Moore M3 (Moore_RZ, D_in_RZ, En, clk, reset);

 initial #275 $finish;

 initial begin #5 reset = 1; #1 reset = 0; end
 initial begin
 clk = 0; forever #10 clk = ~clk;
 end
 initial begin
 #5 En = 1;
 #50 En = 0;
 end

 Copyright 2001, 2003 MD Ciletti 56

 initial fork
 begin #10 D_in_NRZ = 0; #25 D_in_NRZ = 1; #80 D_in_NRZ = 0; end
 begin #135 D_in_NRZ = 1; #40 D_in_NRZ = 0; end
 begin #195 D_in_NRZ = 1'bx; #60 D_in_NRZ = 0; end
 join

 initial fork
 #10 D_in_RZ = 0;
 #35 D_in_RZ = 1; #45 D_in_RZ = 0;
 #55 D_in_RZ = 1; #65 D_in_RZ = 0;
 #75 D_in_RZ = 1; #85 D_in_RZ = 0;
 #95 D_in_RZ = 1; #105 D_in_RZ = 0;
 #135 D_in_RZ = 1; #145 D_in_RZ = 0; #155 D_in_RZ = 1; #165 D_in_RZ = 0;
 #195 D_in_RZ = 1'bx; #250 D_in_RZ = 0;
 join
endmodule

 Copyright 2001, 2003 MD Ciletti 57

Note:

The Mealy machine is non-resetting

The Moore machine does not anticipate D_in

The Mealy machine anticipates D_in and asserts D_out before the third clock

The Mealy machine asserts D_out in the state reached after the third active edge

of the clock

 Copyright 2001, 2003 MD Ciletti 58

Simulation results

• Testbench includes RZ and NRZ input formats

• The Mealy machine has an invalid assertion of its output when the input has

an RZ format, an apparent glitch

• Mealy glitch occurs immediately after the second clock and persists until

D_in is de-asserted

• The valid Mealy output is 0, which is the value of Mealy_RZ immediately

before the second clock

• The value of Mealy_RZ immediately before the third clock is 1(valid output)

• Notice behavior if B_in = x

 Copyright 2001, 2003 MD Ciletti 59

Valid output Mealy
glitch

Mealy
 glitch

 Copyright 2001, 2003 MD Ciletti 60

Synthesis Result: Mealy Machine

reset_b

clk

En
D_out

dffrpb_a

inv_a

D_in

esdpupd

inv_a

aoi21_a

dffrpb_a

dffrpb_a

nor2_a
aoi211_a

and2i_a

and3_a

 Copyright 2001, 2003 MD Ciletti 61

Synthesis Result: Moore Machine
 Note: Circuit includes logic to default to S_idle if En is de-asserted

reset

D_in

En

D_out

esdpupd

aoi211_a
inv_a

 dffrpb_a

 dffrpb_a

nor2_a
 dffrpb_a

and2i_a

aoi211_a
inv_a

inv_a

nand2_a inv_a
nor2_a

mux2_a
nand2_a

inv_aclk

 (b)

 Copyright 2001, 2003 MD Ciletti 62

Alternative approach: Shift input bits through a register and detect contents

Note: The Mealy machine below differs from the previous implementation by

gating the datapath with En

D_out

QD

clk

QD

clk

clk

D_in
En

 Copyright 2001, 2003 MD Ciletti 63

Moore Machine:

 Copyright 2001, 2003 MD Ciletti 64

QD

clk

D_in

D_out

QD

clk

QD

clk

clk

reset

En

Note: an explicit state machine implementation of a sequence recognizer is not

necessarily the most efficient implementation

 Copyright 2001, 2003 MD Ciletti 65

 module Seq_Rec_3_1s_Mealy_Shft_Reg (D_out, D_in, En, clk, reset);

 output D_out;
 input D_in, En;
 input clk, reset;
 parameter Empty = 2'b00;
 reg [1: 0] Data;

 always @ (negedge clk)
 if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[1]};

 assign D_out = ((Data == 2'b11) && (D_in == 1)); // Mealy output
endmodule

 Copyright 2001, 2003 MD Ciletti 66

module Seq_Rec_3_1s_Moore_Shft_Reg (D_out, D_in, En, clk, reset);
 output D_out;
 input D_in, En;
 input clk, reset;
 parameter Empty = 2'b00;
 reg [2: 0] Data;

 always @ (negedge clk)
 if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[2:1]};

 assign D_out = (Data == 3'b111); // Moore output
endmodule

 Copyright 2001, 2003 MD Ciletti 67

reset

clk

En

D_outmux2i_a

inv_a

dffrpb_a
dffrpb_a

nor2_a
nor2_a

esdpupd

D_in

mux2i_a

and3_a

 Copyright 2001, 2003 MD Ciletti 68

reset

clk

En
D_out

dffrpb_a

nor2_a

esdpupd

D_in
inv_a

and3_aaoi22_a

and2i_a
inv_a

aoi22_a inv_a

dffrpb_a aoi22_a inv_a

dffrpb_a

 Copyright 2001, 2003 MD Ciletti 69

Mealy glitch Mealy glitchValid output

 Copyright 2001, 2003 MD Ciletti 70

Registered Logic

• Variables whose values are assigned synchronously with a clock signal are

said to be registered.

• Registered signals are updated at the active edges of the clock and are

stable otherwise

 Copyright 2001, 2003 MD Ciletti 71

Example: Registered Logic

module mux_reg (y, a, b, c, d, select, clock);
 output [7: 0] y;
 input [7: 0] a, b, c, d;
 input [1: 0] select;
 input clock;
 reg [7: 0] y;

always @ (posedge clock)
 case (select)
 0: y <= a; // non-blocking
 1: y <= b;
 2: y <= c;
 3: y <= d;
 default y <= 8'bx;
 endcase
endmodule

select

yq

clk

data_in

a
b
c
d

clock

8
8

8
8

8 8

 Copyright 2001, 2003 MD Ciletti 72

mux41_c

dffrpb_a

mux41_c

dffrpb_a

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_

es
dp

up
d_d[7:0]

select[1:0
]

a[7:0]
b[7:0]
c[7:0]

clock

y[7:0]

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

mux41_c

dffrpb_a

 Copyright 2001, 2003 MD Ciletti 73

Sequential Machines with Registered Outputs

• Outputs can be registered to prevent glitches from affecting the logic driven

by the outputs of the machine.

• Several options

 Copyright 2001, 2003 MD Ciletti 74

 Combinational
Logic Forming

Next State and Outputs

Inputs

State
Register

Outputs

clock

Mealy machine

Registered
Outputs

Registered
Mealy
Outputs
for
Previous
State and
Inputs

Mealy
Combinational
Outputs

clock

Note:

• The output of the storage register lags the combinational values by one

clock cycle

• The output of the register corresponds to the state of the machine in the

previous cycle

 Copyright 2001, 2003 MD Ciletti 75

Next State
Combinational

Logic

Inputs
State

Register
Outputs

Output
Combinational

Logic

clock

Moore machine

Registered
Outputs

Registered
Moore
Outputs
for Previous
State

clock

Combinational
Outputs

Note:

• The output of the storage register lags the combinational values by one

clock cycle

• The output of the register corresponds to the state of the machine in the

previous cycle

 Copyright 2001, 2003 MD Ciletti 76

Combinational
Logic Forming

Next State

Inputs

State
Register

Next State

clock

Registered
Outputs

Registered
Mealy
Outputs
for Present
State and
Inputsclock

Combinational
Logic Forming

Outputs

Note:

• The registered outputs are formed in the same cycle as the state

• The Mealy outputs are formed from the next state and the inputs at the
active edge of the clock

• The value stored in the output register corresponds to the state reached at
the clock transition and the inputs that caused the transition

•

 Copyright 2001, 2003 MD Ciletti 77

Next State
Combinational

Logic

Inputs
State

Register

Output
Combinational

Logic

clock

Registered
Outputs

Registered
Moore
Outputs
for Present
State

clock

Next_State

Note: The value stored in the output register will correspond to the state that is

stored in the state register

 Copyright 2001, 2003 MD Ciletti 78

Example: Sequence Recognizer with Registered Outputs

Include the following code in Seq_Rec_3_1s_Mealy:1

reg D_out_reg;
always @ (negedge clk)
 if (reset == 1) D_out_reg <= 0;
 else D_out_reg <= ((state == S_2) && (next_state == S_2) && (D_in
== 1));

Notice that the clause (state == S_2) is included in the logic to prevent a

premature assertion while the state of the machine is S_1 (see the ASM

chart in Figure 6.38b).

1 The port declarations of each machine must be modified to include the registered output.

 Copyright 2001, 2003 MD Ciletti 79

 Include the following code in Seq_Rec_3_1s_Moore:

 reg D_out_reg;
 always @ (negedge clk)
 if (reset == 1) D_out_reg <= 0; else D_out_reg <= (next_state ==
S_3);

 Copyright 2001, 2003 MD Ciletti 80

Simulation Results:

 Copyright 2001, 2003 MD Ciletti 81

Note:

• Registered and unregistered outputs for NRZ and RZ formatted serial
inputs

• The unregistered output of the Mealy machine changes with the input

• The registered output does not change with the input to the machine

• The value of the registered Mealy output corresponds to the value
implied by the input and next state at the active (falling) edge of the
clock

• The unregistered output anticipates the clock

• The output of the registered machine does not

• The waveforms of the registered and unregistered Moore outputs are
identical

• The output of the unregistered machine is formed by combinational logic

• The output of the registered machine the output is the output of a
register

 Copyright 2001, 2003 MD Ciletti 82

State Encoding

0 0000 0000000000000001 0000 00000000
1 0001 0000000000000010 0001 00000001
2 0010 0000000000000100 0011 00000011
3 0011 0000000000001000 0010 00000111
4 0100 0000000000010000 0110 00001111
5 0101 0000000000100000 0111 00011111
6 0110 0000000001000000 0101 00111111
7 0111 0000000010000000 0100 01111111
8 1000 0000000100000000 1100 11111111
9 1001 0000001000000000 1101 11111110
10 1010 0000010000000000 1111 11111100
11 1011 0000100000000000 1110 11111000
12 1100 0001000000000000 1010 11110000
13 1101 0010000000000000 1011 11100000
14 1110 0100000000000000 1001 11000000
15 1111 1000000000000000 1000 10000000

Binary One-Hot Gray Johnson

 Copyright 2001, 2003 MD Ciletti 83

Note:

• A binary coded decimal format (BCD uses the minimal number of flip-flops,
but does not necessarily lead to an optimal realization of the combinational
logic used to decode the next state and output of the machine.

• If a machine has more than 16 states, a binary code will result in a relatively

large amount of next-state logic; the machine's speed will also be slower
than alternative encoding.

• A Gray code uses the same number of bits as a binary code, but has the

feature that two adjacent codes differ by only one bit, which can reduce the
electrical noise in a circuit.

• A Johnson code has the same property, but uses more bits.

• A code that changes by only one bit between adjacent codes will reduce the
simultaneous switching of adjacent physical signal lines in a circuit, thereby
minimizing the possibility of electrical crosstalk.

• These codes also minimize transitions through intermediate states.

 Copyright 2001, 2003 MD Ciletti 84

One-Hot Codes

• One flip-flop for each state

• Reduces the decoding logic for next state and output

• Complexity does not increase as states are added to the machine

• Tradeoff: speed is not compromised by the time required to decode the state

• Cost: area of the additional flip flops and signal routing

• A one-hot encoding with an if statement that tests individual bits might

provide simpler decoding logic than decoding with a case statement

• One-hot encoding usually does not correspond to the optimal state

assignment

• Use one-hots in Xilinx to reduce the use of CLBs

 Copyright 2001, 2003 MD Ciletti 85

• Note: in large machines, one-hot encoding will have several unused states,

in addition to requiring more registers than alternative encoding

• Gray encoding is recommended for machines having more than 32 states

because it requires fewer flip-flops than one-hot encoding, and is more

reliable than binary encoding because fewer bits change simultaneously.

• Caution: if a state assignment does not exhaust the possibilities of a code,

then additional logic will be required to detect and recover from transitions

into unused states.

	M. D. Ciletti
	
	Copyright 2001, 2003. These notes are solely for classroom use by the instructor. No part of these notes may be copied, reproduced, or distributed to a third party, including students, in any form without the written permission of the author. (Rev 9
	COURSE OVERVIEW
	Synthesis of Sequential Logic with Flip-Flops

	Note: Flip-flops are synthesized only from edge-sensitive cyclic behaviors
	
	
	
	Inference of Flip-Flops
	Flip-Flops or Latches?

	Memory inferred for an edge-sensitive cyclic behavior will be synthesized as a flip flop
	Synchronizing Signal (1 of 2)
	Synchronizing Signal (2 of 2)
	Synthesis of a flip-flop
	Example: Synthesis of a 4-bit Parallel Load Data Register
	Rules for Synchronizing Signals
	Synthesis of Explicit State Machines

	Explicit machines can be described by two behaviors
	
	
	
	Example: BCD-to-Excess-3 Code Converter (Mealy)

	Note: Latches result from failure to provide default state assignments
	Note: Default values for B_out are hard-wired to 0
	ASIC circuit synthesized from BCD_to_Excess_3c
	Note: The model includes default don't care state assignments and default don't care assignments to B_out
	Note: The circuits have same functionality, and simulation results match the manual design, but BCD_to_Excess_3c wastes hardware
	Additional Rules for Synthesis
	Example: Mealy-Type NRZ-to-Manchester Line Code Converter

	�
	Moore-Type NRZ-to-Manchester Line Code Converter
	Example: Sequence Recognizer
	Detect three successive 1s

	Note:
	The Mealy machine is non-resetting
	
	
	
	Testbench includes RZ and NRZ input formats
	Registered Logic
	Example: Registered Logic
	Sequential Machines with Registered Outputs
	Example: Sequence Recognizer with Registered Outputs
	State Encoding
	One-Hot Codes

