Queuing theory and teletraffic systems

Lecture 2
Stochastic processes, Poisson Process, Markov chains

Syed Abdullah Nauroze
University of Engineering and Technology, Taxila
Outline

• Stochastic processes
• Poisson process
• Markov process
• Markov chains
 – Discrete time Markov chains
 – Continuous time Markov chains
• Transient solution
• Stationary solution
• Balance equations
Lecture 1 review

• Queuing theory: performance evaluation of resource sharing system
• Block diagram of queuing system

![Block diagram of queuing system]

- Arrival
- Buffer/queue
- Exit system
- Server
- Interrupted service
- Finished task
- Blocking
Description of queuing system

• System parameters
 – Number of servers (tasks processed in parallel)
 – Buffer capacity
 • Infinite (no jobs will be blocked)
 • Finite (some jobs will be blocked)
 – Order of service (FIFO, priority, random)

• Service demand (stochastic, given by probability distributions)
 – Arrival process: how customers arrive to the system
 – Service process: how much service a customer demands
Performance measures

• Number of customers in the system (N)
 – Number of customers in queue (N_q)
 – Number of customers in server (N_s)
• System time
 – Waiting time (W)
 – Service time (x)
• Probability of blocking
• Utilization of the server
• Transient measures
 – How will the system change in the near future
• Stationary measures
 – How does the system behave in the long run
 – Average measure
 – We will encounter these kind of measures in this course
Stochastic process

• **Stochastic process / random process** \(\{ X_t \text{ or } X(t) \} \)

 – A system that evolves in time (e.g. length of queue, temperature of a city)

 – Family of random variables

 – Realization: \(X_t(e) \) associated with a given value ‘e’

 • Example: \(X_t(1) = x_0 \) or \(X(t_0) = x_0 \)

 – State space: \(S = \{ x_0, x_1, \ldots \} \)

 – Parameter space: set of all values of \(t \)

 – Both state space and parameter space could be discrete or continuous

 – Depending on parameter space, we can classify stochastic processes as **discrete-time** or **continuous-time** stochastic process

 – Discrete-time stochastic processes are also called **random sequences**
Stochastic process (contd.)

• Important quantities

 – **Time-dependant distribution**: probability that the stochastic process $X(t)$ takes a value in particular subset of S at a given instant t

 – **Stationary distribution**: probability that the stochastic process $X(t)$ takes a value in particular subset of S as $t \to \infty$

 – **Hitting probability**: probability that a given state in S will ever be entered

 – **First passage time**: time when the stochastic process first enters a given state or set of states starting from a given initial state

 – **Covariance and correlation**: defines the relation between two stochastic processes (X_t and X_s) for different times s and t

• Nth order statistics

 – For a complete characterization of a stochastic process, we require the knowledge of all nth order statistics
 • **1st order statistics**: Stationary distribution, expectation (at time t)
 • **2nd order statistics**: Covariance (auto covariance), Correlation
Stochastic process (contd.)

• **Stationary process**
 - all \(n \) order statistics are translational invariant

• **Stationary in wide sense**
 - Only 1\(^{st}\) and 2\(^{nd}\) order (mean and covariance respectively) statistics are translation invariant

• **Process of stationary increments**
 \(X_{t+T} - X_t \) is a stationary process for all \(T \)

• **Ergodic process**
 the whole statistics (usually 1\(^{st}\) and 2\(^{nd}\) order are sufficient) of the process can be determined from a single (infinitely long) realization
Poisson process

- Is used to describe arrival process of customer/call (the population is considered infinite)
- A counter process $N(t_1, t_2)$: describes number of arrivals in the interval $(t_1, t_2]$

- Definition
 - A pure birth process (for a infinitesimal time interval, only one arrival may occur)
 - $N(t)$ obeys Poisson(λt) distribution: where λ is arrival intensity (mean arrival rate, probability of arrival per unit time)
 - Interarrival times are independent and obeys exponential distribution
- Memoryless property of exponential distribution
Group work

• Hitchhiker waiting for a car
 – Car arrivals can be modeled as Poisson process
 – Mean interval between the cars is 10 min.
 – If hitchhiker arrives to the roadside at random instant of time
 – What will be mean waiting time?
 – What will be the mean waiting time for the same hitchhiker if he is standing on a bus station that arrives after every 10 min. ?

• Hitchhiker paradox
Properties of Poisson process

• **Superposition**: the superposition of two Poisson processes with intensities λ_1 and λ_2 is a Poisson process with intensity $\lambda_1 + \lambda_2$

• **Random selection**: For a Poisson process with intensity λ, a random selection of arriving process with probability p (independent of others) results in a Poisson process with intensity $p\lambda$

• **Random split**: A random split of a Poisson process (λ) with probability p_i ($\sum p_i$) results in Poisson sub-processes of intensities λp_i

• **Poisson arrival see time averages (PASTA)**: customers with Poisson arrivals see the system as if they came into the system at a random instant of time

• **Palm theorem**: superposition of renewal processes tend to a Poisson process
 – Renewal process – independent, identically distributed (iid) inter-arrival times
Markov process

• Stochastic process with the property
 – \(P(X(t_{n+1}) = j \mid X(t_n) = i, X(t_{n-1}) = l, \ldots, X(t_0) = m) = P(X(t_{n+1}) = j \mid X(t_n) = i) \)
 – The current state \(X(t_{n+1}) \) doesn’t depend on future or previous state (future path of the Markov process only depends on the current state not how it is reached)

• Homogenous Markov process
 – \(P(X(t_{n+1}) = j \mid X(t_n) = i) = P(X(t+(t_{n+1}-t_n)) = j \mid X(t)=i) = p_{ij}(t_{n+1}-t_n) \)
 – Probability values will always be the same at \(\Delta t \) time interval

• Markov chain: if state space is discrete a Markov process can be represented by graph
 – States: nodes
 – State changes: edges
Discrete-time Markov chains

• Discrete-time Markov-chain: the time of state change is discrete as well (discrete time, discrete space stochastic process)
 – State transition probability: the probability of moving from state i to state j in one time unit.

• We will not consider them in this course!!!!
Continuous-time Markov chains (homogeneous case)

- Continuous time, discrete space stochastic process, with Markov property
- State transition can happen at any point in time
- The time spent in a state has to be exponential to ensure Markov property
- The Markov chain is characterized by the state transition matrix Q – the probability of i to j state transition in Δt time is:

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t+\Delta t)=j|X(t)=i), t=j}{\Delta t}$$

$$q_{ii} = -\sum_{i \neq j} q_{ij}$$

$$q_i = \sum_{i \neq j} q_{ij}$$ - time spent in state i (holding time) : $\exp(q_i)$

- Transition rate matrix:

$$Q = \begin{bmatrix}
q_{00} & \cdots & q_{0M} \\
\vdots & \ddots & \vdots \\
q_{M0} & \cdots & q_{MM}
\end{bmatrix}$$

$$Q = \begin{bmatrix}
-4 & 4 \\
6 & -6
\end{bmatrix}$$
Continuous-time Markov chains (homogeneous case)

- Transition rate matrix:

\[Q = \begin{bmatrix}
q_{00} & \cdots & q_{0M} \\
\vdots & \ddots & \vdots \\
q_{M0} & \cdots & q_{MM}
\end{bmatrix} \]

- \(q_{01} = 12 \)
- \(q_{10} = 10 \)

\[Q = \begin{bmatrix}
-12 & 12 \\
10 & -10
\end{bmatrix} \]
Transient solution

- The transient - time dependent – state probability distribution
- \(\mathbf{p}(t) = \{p_1(t), p_2(t), p_3(t), \ldots\} \) – probability of being in state \(i \) at time \(t \), given \(\mathbf{p}(0) \).

\[
p_i(t + \Delta t) = p_i(t) - p_i(t) \sum_{j \neq i} q_{ij} \Delta t + \sum_{j \neq i} p_j(t)q_{ji} \Delta t + o(\Delta t), \quad \lim_{\Delta t \to 0} \frac{o(\Delta t)}{\Delta t} = 0
\]

leaves the state \(i \) \quad arrives to the state \(j \)

\[
\mathbf{p}(t + \Delta t) = \mathbf{p}(t)(I + Q\Delta t) + o(\Delta t)
\]

\[
\frac{\mathbf{p}(t + \Delta t) - \mathbf{p}(t)}{\Delta t} \to \frac{d\mathbf{p}(t)}{dt} = \mathbf{p}(t)Q
\]

\[
\mathbf{p}(t) = \mathbf{p}(0) \cdot e^{Qt}
\]

Transient solution
Example - Transient solution

\[
\frac{dp(t)}{dt} = p(t)Q, \quad p(t) = \{p_0(t), p_1(t)\}
\]

\[
p_0(t)' = p_0(t)q_{00} + p_1(t)q_{01} = -4p_0(t) + 6p_1(t)
\]

\[
p_1(t)' = p_0(t)q_{10} + p_1(t)q_{11} = 4p_0(t) - 6p_1(t)
\]

or: \(p_0(t) + p_1(t) = 1\)
Stationary solution (steady state)

- Def: stationary state probability distribution (stationary solution)
 - \(p = \lim_{t \to \infty} p(t) \) exists
 - \(p \) is independent from \(p(0) \)
- Stationary solution exist, if
 - The Markov chain is irreducible
 (there is a path between any two states)
 - \(pQ = p' = 0, \quad p \times 1 = 1 \) has positive solution
- Finite state, irreducible Markov chains always have stationary solution.

\[
\begin{bmatrix} p_0, p_1 \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix} = [0, 0], \quad p_0 + p_1 = 1
\]

\[
p_0 = 0.6, \quad p_1 = 0.4
\]
Ergodicity

• A Markov chain is ergodic if it has a stationary solution

• Ergodic theorem: if a process ergodic, then the statistics of the process can be determined from a single (infinitely long) realization
 – Consequence: stationary state probability
 • Probability that the process is in state i at a given point of time
 • Part of the time a single realization spends in state i
Balance equations

• Method to find stationary solution \(pQ = 0 \)
• Global balance equation
 – Conditions
 • In equilibrium (for stationary solution)
 • Flow in = Flow out

• Group work
 – Global balance equations for
 • State 1 & 2
 • Dashed circle
Balance equations

• Local balance equations
 – The flow from one part of the chain should be equal to flow back from the other part (in static state)

• Calculating the steady state distribution
 – With matrix eq. \(\mathbf{pQ} = 0, \mathbf{px}1 = 1 \)
 – With balance eq. (local/global)
 • Calculate M states
 • M-1 balance equations and \(\sum \mathbf{p} = 1 \)
Balance equations

• Calculating the steady state distribution
 – With matrix eq. $\mathbf{pQ} = 0$, $\mathbf{px1} = 1$
 – With balance eq. (local/global)
 • Calculate M states
 • M-1 balance equations and $\sum \mathbf{p} = 1$