
Richard N. Taylor is a Professor of Information and Computer
Sciences at the University of California, Irvine. He received the Ph.D.
degree in Computer Science in 1980. His research interests are
centered on software architectures, especially event-based and peer-
to-peer systems and the way they scale across organizational
boundaries and decentralized applications. Professor Taylor is the
Director of the Institute for Software Research, has served as
chairman of SIGSOFT, chairman of the ICSE Steering Committee,
and was general chair of FSE 2004. Taylor was a 1985 recipient of a
Presidential Young Investigator Award. In 1998 he was recognized
as an ACM Fellow and in 2005 was awarded the ACM SIGSOFT
Distinguished Service Award.

André van der Hoek is an associate professor in the Department of
Informatics at the University of California, Irvine. He holds a joint B.S.
and M.S. degree in Business-Oriented Computer Science from the
Erasmus University Rotterdam, the Netherlands, and a Ph.D. degree
in Computer Science from the University of Colorado at Boulder. His
research focuses on understanding and advancing the role of design,
coordination, and education in software engineering. André is the
principal designer of the new B.S. in Informatics at UC Irvine and was
honored, in 2005, as UC Irvine Professor of the Year.

Software Design and Architecture

The once and future focus of software engineering
Richard N. Taylor and André van der Hoek

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Software Design and Architecture

The once and future focus of software engineering

Richard N. Taylor

Institute for Software Research

University of California, Irvine

Irvine, California 92697-3455

taylor@ics.uci.edu

André van der Hoek

Institute for Software Research

University of California, Irvine

Irvine, California 92697-3455

andre@ics.uci.edu

Abstract

The design of software has been a focus of soft-
ware engineering research since the field’s beginning.
This paper explores key aspects of this research focus
and shows why design will remain a principal focus.
The intrinsic elements of software design, both proc-
ess and product, are discussed: concept formation, use
of experience, and means for representation, reason-
ing, and directing the design activity. Design is pre-
sented as being an activity engaged by a wide range of
stakeholders, acting throughout most of a system’s
lifecycle, making a set of key choices which constitute
the application’s architecture. Directions for design
research are outlined, including: (a) drawing lessons,
inspiration, and techniques from design fields outside
of computer science, (b) emphasizing the design of
application “character” (functionality and style) as
well as the application’s structure, and (c) expanding
the notion of software to encompass the design of
additional kinds of intangible complex artifacts.

1. Introduction

Design is the central focus of software engineering.
Design is both a verb and a noun. It is a key thing we
do and that we produce.

Such crisp statements will alternatively strike one
as obvious or, perhaps, as parochial – if not incorrect.
Yet if we consider what software engineering is,
namely a practice directed at the production of software
systems, then design is seen at its heart, as it is in any
other productive enterprise, whether the creation of
skyscrapers, automobiles, toasters, or urban regions.

Not surprisingly, then, many software engineering
researchers, or those acquainted with software devel-
opment, have studied and written about software de-

sign over the past forty years and more. Fred Brooks
included in his 1975 list of “promising attacks on the
conceptual essence” the growing of great designers
[21]. Peter Freeman, in 1976 [31], said “Design is
relevant to all software engineering activities and is the
central integrating activity that ties the others to-
gether.”

Design will remain the focus of software engineer-
ing. Herb Simon, in his classic, The Sciences of the
Artificial [75], includes a discussion of design in the
context of “artificial” fields, such as software develop-
ment, saying:

“The artificial world is centered precisely on this
interface between the inner [the means] and outer
[the task] environments; it is concerned with at-
taining goals by adapting the former to the latter.
The proper study of those who are concerned with
the artificial is the way in which that adaptation of
means to environments is brought about – and
central to that is the process of design itself.”

Put in software engineering parlance, the outer envi-
ronment is the world of requirements, goals, and
wants; the inner environment is the set of software
languages, components, and tools we have for building
systems. As software engineering researchers, we are
always “raising the floor” – creating new levels of in-
frastructure upon which new developments may be
built. In Simon’s terms, the “inner environment” or
the “means” is ever changing and expanding. As the
floor rises, however, so do our desires and aspirations.
Though achievements in improving design have been
obtained over the previous decades, new challenges for
design will thus continuously arise.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Materials, Tools, and Mechanisms

Goals and Dreams

DESIGN

"The Means"

"The Task"

Figure 1. The continuing place of design.

Nonetheless, at a suitably abstract level the chal-
lenges for software design today are the same as they
were forty years ago. They are the intrinsic challenges
of design: How to create artifacts to obtain goals, how
to represent new conceptions, and how to analyze
them. Brooks made this observation twenty years after
the original Mythical Man-Month was published. He
said the distinctive concerns of software engineering
now are exactly those he set out earlier, namely “How
to design and build a set of programs into a system;
How to design and build a program or a system into a
robust, tested, documented, supported product; How to
maintain intellectual control over complexity in large
doses.” [20] (pg. 288). Ten years after that statement it
is still true.

Arguably all the major threads of software engineer-
ing research are directed at improving our ability to
meet the challenges of designing software. Work in
requirements engineering contributes to Simon’s “outer
environment”; process research addresses the coordina-
tion of all activities focused on creating, implement-
ing, and evolving designs; empirical studies improve
our ability to assess design artifacts and the processes
by which they were created; analysis research improves
our ability to assess candidate designs; work at the
patterns and frameworks level improves our ability to
realize designs in source code; and so on.

Though a focus on design has been, and will be,
the central issue in software engineering, the type of
design on which our energies have been focused has
been rather lopsided. Our focus has largely been di-
rected at the design of software qua software. That is,
we focus on the structure of software and its attributes,
such as considering what components and connectors
comprise a system, and what constraints govern their
interactions. A lesser role in software engineering has
been assigned to the design of software as it exhibits
characteristics to its users. For instance, what “interac-
tive feel” does the application give to its users? What
“style” does it exhibit? What is its branding, or dis-
tinctive behavioral character? Using the analogy of
automotive design can make the distinction clear: de-

sign research of the first type is directed at the me-
chanical organization and structure of the vehicle; de-
sign research of the second type is directed at shaping
the car’s appearance, performance, sound, and smell.
Doing a good job of one type of design does not im-
ply doing a good job with the other, yet they are in-
trinsically interrelated. Both are important, and are
legitimately the subject of (software) design research.

Work on design of the first type has certainly
yielded a wide range of important results over the past
several decades. Numerous development methods have
been espoused, many based upon the articulation and
application of design “principles” such as modularity
and planning for change. Means for representing de-
signs have been devised; domain-specific approaches
have been created and supporting tools supplied. In
recent years, particular advances have been made with
regard to product families and the careful specification
of system architectures.

Work on design of the second type has often been
ignored by software engineering researchers, and in-
stead relegated to either other sub-disciplines of com-
puter science, especially human-computer interaction
researchers, or simply left to practicing engineers in
industry.

Design of both types is increasingly recognized as a
critical corporate and national asset. Designing of
products is seen as an activity that cannot be effec-
tively off-shored – regardless of the shore on which
one is standing. Design can be a differentiator that
determines an organization’s success. The ability to
design effectively is typically the partner of the ability
to innovate.

The remainder of this paper seeks to explore how
and where to advance from the state-of-the art. We pro-
ceed by first examining some major historical threads
of design research, then highlighting a few notable
current trends. These sections are not merely back-
ground; by straightforward implication from what we
describe, some key directions for software research
emerge. Drawing from the perspectives of these two
sections, we then examine the character of design in
more detail. The remainder of the paper explicitly lays
out a set of further research directions, and concludes
with some challenges and a “long view” of the promis-
ing future of software design.

2. Paradigms and Persuasions

The past forty plus years of design research can be
taxonomized many ways, such as by describing the
history of models, methods, and tools over time.
These topics are not independent, however. Rather, the
background or disciplinary orientation of an individual
or group tends to bring along a set of beliefs, choices,
and approaches. Any such perspective, then, drives
specific choices in a variety of areas.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Prescriptive Design Methods

Perhaps most familiar to the software engineering
researcher is the perspective of the “software method-
ologist”. Typified best, perhaps, by work in the 1970’s
and 80’s by such authors as Yourdon [81, 82], Jackson
[41, 43], and Parnas [61-65], this strand of work fo-
cuses on the first type of design discussed above, the
design of software as the artifact of interest, and is an
approach that states a principle, then prescribes how to
design based on that principle.

Much of this work has been top-down in style;
principles of design are articulated (“separate abstrac-
tions”, “use information hiding”, “refine higher-level
abstractions into a set of lower-level abstractions”, etc.)
and then either methods for employing those principles
or notations which highlight or support application of
the principles are developed.

One influential strand of work began with Russ
Abbott [8], and was then expanded upon and advocated
by authors such as Grady Booch [17]. This design
approach is, roughly, “design by simulation”, in which
the software application is straightforwardly designed
by creating software objects that correspond to entities
in the real world, and whose methods correspond to
actions in the real world. The work contributed to ob-
ject-oriented design, and became in a broader context
to be supported by methods such as the Rational Uni-
fied Process [51], with designs represented in the Uni-
fied Modeling Language (UML) [52].

Notations

Notations have been a part of software design since
the beginning. Any time design thought is external-
ized, such thought must be written down in some
structure or form that supports interpretation at a later
time by others, oneself, or a computerized program. It
is no surprise, then, that notations continue to serve as
a primary driver of research in the community.

Notations range from informal conventions that are
established on-the-fly by a group of designers engaged
in a design exercise to precise formalisms that are
standards for the field. Two primary concerns in the
formulation of new notations are expressiveness and
usability. Expressiveness concerns what aspects of a
design can be captured in the notation; usability con-
cerns the fluidity with which designers can work with
the notation. Though both factors are equally impor-
tant, the primary driving force behind the development
of most new notations has been expressiveness – add-
ing modeling capabilities, often for a particular analy-
sis purpose.

Extensibility is a required property of any modern
notation, as it is now common knowledge that no
standard notation can fulfill all modeling needs. UML
profiles are perhaps best known in this regard, with a

host of profiles publicly available that address a broad
variety of modeling concerns.

The Wisdom of Experience

Still focusing on the design of software, but com-
ing at the problem from essentially a bottom-up per-
spective, is a strand of work focused on capturing the
lessons of experience in such a way that future designs
can be guided. The work on “design patterns” is typi-
cal of this strand. While the “Gang of Four” patterns
[33] are directed at the programming language level,
the concept can be applied at any level of abstraction,
including requirements (where the experience may be
captured as “frames” [42]), whole-concept system struc-
ture (where the experience is captured as domain-
specific software architectures [10, 38, 79]), and gener-
ally at the level of system components and connectors
(where the experience is captured as styles and architec-
tural templates [9, 34]).

Methods for analysis and restructuring of software
may reflect insights from this research strand, such as
are found in refactoring analysis and reverse engineer-
ing.

Knowledge representation and design rationale re-
search may contribute to the effective employment of
design based upon the wisdom of experience.

HCI Design

Innovation in product design and distinctiveness in
product design have long been argued as contributing
to product (and corporate) success [45] – though such
innovation is no guarantee of commercial success. The
software engineering literature is relatively silent on
the matter of such design, possibly because researchers
view the subject as too domain-dependent, and hence
exclusively the focus of developers within that do-
main. Even if one assumes that, it is surprising that
software researchers have not focused on the methods
by which innovative domain-specific designs are cre-
ated.

The exception is user interface design. Often rele-
gated to (at best) the fringes of software engineering
research, human-computer interaction research includes
a focus on techniques for developing user interfaces
which effectively engage and satisfy the user. Some
lessons of such work are captured, for instance, in pat-
terns for web site design, as found in the work of Lan-
day and colleagues [80]. This work is partially bottom-
up, in the manner described above, but also reflects
cognitive understandings of how people interact with
web sites and undertake electronic commerce transac-
tions.

The importance of considering this field is indi-
cated, in no small measure, by the repeated failure,
over many years, of standard software engineering top-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

down design techniques to create pleasing and effective
user interfaces.

Design Outside of Software

The field of design, and design research, outside of
software engineering and computer science is enor-
mous. While both types of design discussed above are
within this wider world’s view, a greater emphasis is
found on the second type – user experience. Less work
is found on representational issues; since physical ob-
jects are being designed the representation means (typi-
cally sketching) is natural. More work has been di-
rected at methodological approaches, with [44] a clas-
sic example from the domain of industrial engineering.
The software patterns work, however, derives its name,
at least, from work in building architecture [11].

The relevance of lessons from design “out there” to
software design has been noted by many. Participatory
design has been advocated by some in the HCI com-
munity [35], and, arguably, software engineering’s
“agile design” draws from some of its key elements .
Less directly, the capabilities of CAD systems like
CATIA have been an inspiration throughout.

A further perspective on design exhibited by the
larger design world, but which software engineering
has mostly ignored (or scorned) is that of design as art.
While Donald Knuth unabashedly titled his monumen-
tal series, “The Art of Computer Programming” (e.g.,
[46]) and promoted “literate programming” [47], we
have not developed a practice of critiquing the aesthet-
ics of any kind of software design, of endeavoring to
instill an appreciation for elegant software design, or of
providing public forums for the promotion and recog-
nition of excellence in design

1
.

Cognitive and Social Strategies

A final strand of design research is exemplified by
the work of Donald Schön [72], and found in software
engineering in the work of, for example, Fischer. A
key perspective emerging from this work is what
Schön terms reflection: the designer reflects upon the
process and upon the product. Design in this view
emerges as a “conversation” between the materials (the
external constraints on the design, the initial sketches
attempting to develop a solution) and the designer.

Design, however, is not a solitary activity. Teams
of designers interact, varied stakeholders participate,
and broader communities of practice [29] exist within
which individual designers perform their work. De-
sign, thus, is a social process, one of information ex-
change, learning, creative and cognitive stimulation,

1
 The ACM Software Systems Award is an excep-

tion, though it is not widely promoted – certainly not
in the software engineering community.

and conversation – all aspects that must be taken into
account.

3. Contemporary Currents

Contemporary currents in design sometimes add
important perspectives to the schools of thought de-
scribed above, as well as combine, apply, and refine
them.

Agile Methods

While for some “agile methods” are a step back-
wards in the history of software design research – be-
cause the design exists only in the code –, the agile
community has emphasized three important design
practices. First, it is an example of the application of
participatory design: by involving the user throughout
the iterative development process, the product is con-
tinuously shaped to meet the user’s needs. Secondly,
test-driven development makes the design of function-
ality of equal importance to the design of system struc-
ture, which represents a rudimentary integration of the
two types of design we discussed in the Introduction.

Lastly, implicit in the agile approach is that the
process of design continues throughout development.
With little extrapolation, design can be seen to con-
tinue throughout the life of the product – a characteris-
tic not shared with many products from the realm of
physical product design.

Aspect-Oriented Software Design

The original aspect-oriented programming paper
states “A design process and a programming language
work well together when the programming language
provides abstraction and composition mechanisms that
cleanly support the kinds of units the design process
breaks the system into.” It then makes the argument
that programming languages must conceptually distin-
guish components (units of a system’s functional de-
composition) from aspects (system properties that can-
not be cleanly separated and instead crosscut compo-
nents) [54]. This view of AOP strikes an important
chord with design, as separation of concerns is one of
the leading approaches to tackling a design problem’s
complexity. Unfortunately, this design-oriented per-
spective seems to have given way to AOP language
minutiae and a focus on “aspectizing” any and all
software artifact. Nonetheless, the critical role of the
programming language in the design process persists,
and AOP has and continues to have an impact as such.

Design Analysis

One of the reasons we design is to reduce risk by
enabling prediction of system properties. Not surpris-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

ingly, the field has devised numerous ways of perform-
ing design-based analyses. Many of these have been
described, for example, in the SAVCBS workshop
series (Specification and Verification of Component-
Based Systems). Most of these analyses concern exter-
nally visible properties, such as reliability, real-time
constraints, or concurrency, although a fair amount of
work also concentrates on properties internal to a de-
sign, such as structural quality or reusability [71].

Different design representations are suited to differ-
ent kinds of analyses; new analyses may require new
notations to be used.

Component-Based Design

A desire to structure large-scale business applica-
tions in terms of standard, reusable components con-
tinues to drive a non-trivial part of the industrial soft-
ware landscape. While each guarantees somewhat dif-
ferent properties as emphasized by somewhat different
usage scenarios, component-based design, model-
driven architecture, and web services all can be grouped
as addressing this desire in a similar manner. In fact,
they can be seen as evolving from one another, with
component-based design focusing on reuse of the indi-
vidual component, model-driven architecture on stan-
dardization of components into reusable middleware
[30, 40], and web services on reuse of components and
middleware across distributed and decentralized appli-
cations.

Of course, different components do not magically
fit together. A particular challenge is to design the
“glue” that bridges mismatches in functionality, inter-
faces, and interaction paradigms.

Software Architecture

The many strands of work in software design de-
scribed thus far have most fruitfully blended and ma-
tured into the field of software architecture. With an
encompassing definition of software architecture as
“the set of principal design decisions governing a sys-
tem”[78], it engages the full range of design activities
and includes the full range of participants in the design
process. Software architecture encompasses work in
modeling and representation, design methods, analy-
sis, visualization, supporting the realization of designs
into code, experience capture and reuse, product lines,
deployment and mobility, security, adaptation, and so
on.

Software architecture research began in earnest in
the early 1990’s (e.g. [66, 73]), though the term is
decades older (it is found, for instance, in many works
from the early 70’s). Work in the 90’s was initially
focused largely on matters of design representation
[56], though the whole movement could be character-
ized by a desire to provide substance, structure, and

specificity to the historic field of software design. Ar-
guably, software architecture has been focused on the
maturation and professionalization of a field previously
best characterized as craftsman-like.

The successes achieved by software architecture over
the past fifteen years span from commercial use of
product-line architectures, such as at Philips [59], to
the architectural underpinnings of the World Wide
Web, as characterized by the REST style [27].

Architecture is a backdrop for much of the direc-
tions for software design that we characterize in the
remainder of the paper; its importance is reflected by
its inclusion in this paper’s title.

4. Design, Designing, and Designers

The careful reader will notice that we have, so far,
refrained from defining software design, or even design
itself. So it is with the contributions discussed in Sec-
tions 2 and 3, which by and large typify design accord-
ing to a certain perspective (e.g., a phase, in the code,
art, engineering) and then work within this perspective
to make their contributions.

To understand how these perspectives relate and to-
gether help or hinder in advancing the field as a whole,
it is critical that the field establishes a common basis
from which its progress can be judged. The following
summarizes a general model of design that is intended
to form such a basis [13]. The model consists of two
interrelated parts: one part capturing the essence of
design-the-product, the other part capturing the essence
of design-the-process.

When used as a noun, design normally indicates the
artifact (product) that emerges from the design process,
some physical document or other kind of representa-
tion that articulates the intent of the designer. This
product results from the choices the designer made,
choices that form an abstraction of that what is eventu-
ally desired to be realized in the real world [49].

These words are in some ways obvious, but in
other ways not sufficiently precise to help guide a
field. The general design literature has made various
characterizations that can be used as such (e.g., Simon
[74], Norman [58], Schön [72]). Figure 2 presents a
visual of the amalgamate of these characterizations as
they pertain to the design product. The figure distin-
guishes the design space from the outcome space. Dur-
ing design, we mentally operate in the design space
(where each point represents a unique set of design
decisions), but continuously make decisions that re-
flect upon the outcome space (where each point repre-
sents a unique artifact). That is, each design decision
alters the set of outcomes that are still possible (SP),
cutting away some and re-enabling others. A design,
then, is a point in the design space that represents a

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

set of decisions that together delineate a set of possi-
ble outcomes in the outcome space.

2

The customer brings into this their understanding
of what are desirable outcomes (D), which, whether or
not explicitly stated, act as constraints on the design
process. Another set of constraints is exercised by the
available materials from which an outcome is con-
structed by following a design’s blueprint: a design
should describe only outcomes that are feasible (F). A
successful design is one that restricts its still possible
outcomes to those that are desirable and feasible.

Figure 2. Design – The Product.

When used as a verb, design normally indicates the
process by which a design is achieved. It is understood
to be a human-centered process, involving varied
stakeholders. It is also understood to be strongly goal-
driven and drawing upon established knowledge of the
designer and the field at large.

The general design literature has made precise char-
acterizations of this process, which are brought to-
gether in Figure 3. The design process is one of infor-
mation manipulation (broadly construed to encompass
initial creation, transformation, and deletion), with
four types of information involved: goals, ideas, and
knowledge, which are all mental, and representations,
which are physical expressions of mental information.
Each of these types of information is phrased in one or
more languages, and tools may be used to edit and/or
interpret representations. Within this setting, designers
engage in one or more activities, through which they –
directly and indirectly – explore the design space. The
design process, then, is defined as the set of informa-
tion manipulation activities through which a success-
ful design is obtained.

2
 This discussion is not meant to imply the exis-

tence of a separate design phase. The spaces we refer to
are ephemeral and largely present as a result of the way
in which human’s think – through abstraction.

Figure 3. Design – The Process.

An important property of this general model of de-
sign is that it does not bias itself towards any individ-
ual perspective on software design. Rather, it supports
the field in giving it the ability to precisely relate dif-
ferent perspectives and understand their emphases,
strengths, and weaknesses.

The Elements of Design Research

A corollary from the preceding discussion is that
the model points toward exactly where it is possible
for a discipline as a whole to make progress in better
supporting its designers. Particularly, it can:

• Improve the materials from which a product that
is envisioned by a (finalized) design is eventually
incarnated in the real world. For example, the
availability of newer, lighter composites enabled
different kinds of planes exhibiting different
weight and aerodynamic properties to be designed.

• Improve the languages that are used for capturing
goals, ideas, and knowledge. Alexander’s design
patterns are an example of such an advance, bring-
ing together goals and ideas in a single representa-
tion that furthermore supports easy adoption.

• Improve the general knowledge the community has
about its design domain and design processes. For
instance, the human genome project is of tremen-
dous value to the design of new medicines, pro-
viding a data bank of knowledge that previously
was unattainable.

• Improve the portfolio of activities that are used in
the design process. IDEO’s focused form of brain-
storming is an example of an activity that led to
improved results, both in terms of time and out-
of-the-box solutions [45].

• Improve the tools with which design activities are
supported, particularly in creating and interpreting
representations. For example, the automotive in-
dustry has made significant leaps in their ability
to design by moving from clay models to
CAD/CAM designed 3D visualizations.

All progress, whether in the form of a new methodol-
ogy, notation, metric, or analysis algorithm, to name a
few, will eventually reduce to these five basic underly-
ing categories.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

The Community of Designers

Just as it is important to understand the fundamen-
tal elements of design, so it is important to recognize
the richness of the community of designers – those
who design, who contribute to the design, and who
must interact with design representations, designers,
and design processes. Historically, design has largely
been seen as a somewhat provincial task performed by
a small number of software specialists – perhaps one
“chief designer” – during a circumscribed period in a
project’s lifecycle, namely following requirements
analysis and preceding any implementation. Clearly,
such a simplistic notion is either counter to what really
happens in a project, or if actually followed yields sub-
par results. In truth, the number and types of individu-
als with vital interests in a project’s design represents a
broad community of interest [29]. Existence of this
community imposes some particular demands on de-
sign; recognition of the breadth of the community
highlights opportunities for improving our practice and
expanding our research agenda.

First, for a project of any significant size, more
than one designer will be involved. Existence of mul-
tiple designers thus imposes demands for communica-
tion of design concepts [21]. Communication implies
shared representations, an observation that is a natural
outflow from the general model of design. The effec-
tiveness of such communication is determined by the
language(s) used [22]. Presence of a design team also
induces requirements for coordination of its design
activities. Such coordination could involve formal
management if the task is large enough.

Second, however the design is produced, other in-
dividuals, playing other roles, are critically engaged
with the design. They must be able to understand and
use it. In traditional development practices wherein the
implementation activity is separate from the design
(more about this below), the implementers must be
able to comprehend and utilize the design. The practi-
cal challenges of this become highlighted should such
implementation be contracted to another firm, perhaps
to one on another continent. In other situations, the
customer may be desirous of participating in substan-
tive review of a design. In yet other situations end
users may be participants in the design process. All of
these engagements with design highlight the critical
role of and demands on shared representations of de-
sign.

Third, beyond just recognizing the existence of a
multiplicity of designers and “design readers”, we also
must recognize that the multiple stakeholders of a sys-
tem (can) all contribute to the design itself. The typical
perspective has been that, since software is being de-
signed, software specialists are the only ones who
properly determine the software’s design. As discussed
in detail in [57], however, both application domain

experts and business stakeholders are properly con-
tributors to a system’s architecture. Domain experts
naturally know or determine the key abstractions for a
system, acceptable strategies for meeting regulatory
requirements, or provide vital insights on what parts
and in what ways the design must be flexible to ac-
commodate potential future changes. Business-focused
stakeholders may determine key boundaries for a prod-
uct-line architecture, and hence determine critical soft-
ware interfaces. Design, thus, is not the exclusive
province of the software technologist; the multiple and
proper contributions from the wide community of
stakeholders must be accommodated. This final com-
ment is not easy to achieve, however. Separate
stakeholders likely require (or at least request) views
onto an emerging design which are idiosyncratic to
their perspectives. Supporting multiple viewpoints
while ensuring consistency among them constitutes a
current challenge towards which the community has
made progress (e.g., the 4+1 model [50], analyses to
discover inconsistencies [26], and an understanding
that certain forms of inconsistency must be tolerated
[15, 28]), but for which much work remains to be
done.

Fourth, arguably the design community increas-
ingly includes the end user. Common applications
such as spreadsheets and word processors actively in-
vite the end user to customize – i.e., design – their
working environment and the complex artifacts pro-
duced with desktop tools. At best the software engi-
neering community has barely recognized this commu-
nity of designers; after all, they are not software spe-
cialists, have little or no formal training in design, and
produce designs researchers may dismiss as trivial, or
simply as poorly done. But the enormous number of
end users, the substantial ability for customization and
design presented by desktop applications, and the po-
tential for improving the quality of end user designs
argues strongly for design researchers to turn their at-
tention to this special world. As one example, space-
craft systems designers use complex, interlocking Ex-
cel spreadsheets to design new systems and missions
[55]. These complex spreadsheets are designed, how-
ever, without any higher level of abstraction or repre-
sentation; understanding them and “verifying” them is
left to the engineer, who must interpret the macros
pervading the spreadsheets. A better way is surely pos-
sible.

5. Research Directions

The introductory section of this paper indicated
how design will remain an enduring challenge. As our
ability to design solutions to current statements of
wants and needs improves and becomes more predict-
able, our conception of what might be achieved ex-
pands. As “the means” improves and rises, “the task”

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

becomes more adventuresome and demanding. Our
ability to design must be correspondingly enhanced to
make use of the improved materials, tools, and mecha-
nisms to create solutions to the new goals and dreams.
Seen in this general light, all the elements of design
research listed in Section 4 above will persist; it is a
matter of understanding and improving:

• the materials – the conceptual building blocks –
from which designs are eventually realized as arti-
facts in the real world.

• the languages that are used for capturing goals,
ideas, and knowledge.

• the general knowledge the community has about
its design domain and design processes.

• the portfolio of activities that are used in the de-
sign process.

• the tools with which design activities are sup-
ported.

While comprehensive, this list is too generic to be
of much use in setting directions; the remainder of this
section is devoted to discussing a variety of more spe-
cific directions. Before moving to the more specific
discussion however, we consider three general issues.

First is the matter of design decisions. Designing is
fundamentally a matter of making choices – how to
accomplish something, how to represent something.
That suggests that an effective approach to design
should offer a solid understanding of choices: what
they are, recognizing when they are made, what the
alternatives were, and capturing them in such a manner
as to allow retrospection. In typical practice we are far
from having a grasp on this: decisions are often im-
plicitly made. It is not until later that we recognize
that certain functionalities or properties were precluded,
or inhibited, by an early choice. Decision support sys-
tems from the 1980’s, such as gIbis [23], offered ex-
plicit support for formally considering choices facing a
group. This type of support is needed, but must be
provided in a lightweight manner that is integral to
and supportive of design. Perhaps more important,
however, would be practices to aid in recognizing
when choices are being made.

Second is the matter of the place of design in the
software engineering process. As the discussion in the
previous section indicated, the activity of design is not
limited to one individual or one circumscribed place in
the development process. Critical decisions – design
decisions – are made throughout system development
by a variety of stakeholders. Talk of “requirements
engineering” that is wholly independent of design, for
instance, is frequently either sophistry or simply
counter-productive. As critical decisions about a sys-
tem are made – whenever they are made – design is
being done, the architecture is being established and
should be recognized as such. Similarly, implementa-
tion is improperly and unrealistically considered the

rote translation of design to code, sometimes to the
point where a design intentionally does not make a
choice of programming language so to be general in
nature. Key choices made in and about the implemen-
tation process, such as the decision to use a particular
implementation framework or programming language,
are important parts of system design, affecting future
strategies for system modification and adaptation. The
importance of such design should not be overlooked.
The challenge for design researchers is to provide prac-
tical guidance to those involved in setting system re-
quirements, in coding the system, and indeed in all
other aspects of system development for their appropri-
ate participation in design. More generally, the ques-
tion is how to structure software development proc-
esses to support a robust, modern conception of de-
sign.

Third is the matter of choice and evaluation [32,
74]. As designers confront issues, a set of choices
emerge. Beyond recognizing and recording the choices
made, designers need support for evaluating alternative
choices so to guide them towards a design’s objec-
tives. Analysis techniques may focus on functional or
non-functional system properties, and may span to
analysis based on economic arguments [12, 77]. While
development of individual techniques continues to be
needed, the field also should find ways in which such
techniques can be combined to enable multiple proper-
ties to be jointly assessed, in the manner of statistical
decision theory for example, to enable broadly in-
formed choices to be made.

Directions Reflecting Good Recent Pro-
gress

In defining a research agenda, it is important to rec-
ognize those research directions that “work”, have had
impact already, and should be explored further because
they continue to have promise in advancing the field.

The first direction we discuss as such is software
architecture. It is interesting to put architecture in light
of the five directions of design research presented in
Section 4. To date, advances have included, among
others, architectural middleware, description languages,
styles, design methods, and environments, which col-
lectively cover the five research dimensions along
which progress can be made. That is, architecture has
turned out to be a natural fit in pushing design research
forward.

Of particular importance is the focus on early de-
sign decisions. Architecture, though it can be mapped
onto code effectively, is initially about supporting the
exploratory process. Architectural styles are critical in
this regard, documenting accepted solution strategies
as sets of reusable design decisions that can be readily
adopted. Clearly-documented and well-packaged styles

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

come closest to the original definition of architecture
as “structure, form, and rationale” [66].

Architecture has also strongly influenced software
product lines. The vast majority of software product
lines are actually realized through product line architec-
tures, which are used to distinguish those parts of the
system that are shared among all products and those
parts that are variable and depend on the product at
hand [70]. The use of product lines has become suc-
cessful with several success stories emerging that detail
how this kind of domain-driven approach can be bene-
ficial and provide a competitive advantage.

That said, there is significant work left to do. De-
sign involves multiple stakeholders who may have
radically different concerns. Having focused strongly
on component-connector centric approaches, current
architectural description languages lack facilities for
specifying and relating such diverse sets of concerns.
Extensible architecture description languages are a
foundation, but their modeling capabilities must be
supported with flexible environments and design proc-
esses.

This strongly relates to the need to manage evolv-
ing architectures. When stakeholders make changes, it
is often the case that the architecture degenerates. Espe-
cially with product line architectures, it is known that
even a pungently cohesive initial definition slowly but
surely may morph into a set of disjoint product archi-
tectures. Processes have been employed to ameliorate
this problem, but overall our level of understanding is
still limited and our tool support for carrying out such
processes trails significantly.

Throughout the design process, whether it is a
high-level architecture or a low-level UML class dia-
gram, it is generally important to ensure that certain
properties are met, such as, for instance, behavioral
consistency, real-time performance constraints, reliabil-
ity, levels of security, and concurrency behavior. The
analysis community has made steady progress in pro-
viding analyses that can provide such guarantees and
continues to work on faster and more efficient analy-
ses, analyses for new properties, and general infrastruc-
tures[16, 24].

A particular challenge is to make these analyses,
and the modeling of the information that is needed to
drive them, an integral part of the design process,
rather than some activity that is performed as a “check”
when the design process has finished. Two problems
persist: the need to create precise representations, and
the need to fully, or almost fully, model a design be-
fore it can be analyzed. It is incumbent upon the field
that these two problems are overcome, so that analyses
become usable throughout and especially when it mat-
ters most: during rapid generation and evaluation of
(not necessarily precise or complete) alternatives, for
which analyses are vital in understanding the tradeoffs
inherent in the design decisions made.

As important as the externally-visible qualities of a
design are its internal qualities: is its structure sound,
is it optimal, and will it hold up over time? A recent
trend has seen attempts to assign “value” to designs,
particularly by employing economic analyses that stem
from adapting and applying established economic the-
ory to the domain of software design. Most promising
to date is the use of Design Structure Matrices [14];
with them, it is possible to visually compare different
modularizations, assign these modularizations values,
and in so doing understand design tradeoffs, such as
whether to refactor or to apply aspects. These results,
however, represent only a beginning. Values are as-
signed mostly to entire designs, not necessarily indi-
vidual design decisions (though these can be valued in
the context of given design changes). Values also are
“instant”, for the design as it is now; not how they
stand up against future design changes. A critical di-
mension of future work, then, is to find mechanisms
of valuing individual design decisions over time.

Another important aspect of this work lies in the
historical lessons it can teach. Applying Design Struc-
ture Matrices to numerous designs, both good and bad,
can build a portfolio of examples from which it fur-
thermore may be possible to deduce general principles.

Finally, we return to the topic of architectural styles
and, more generally, the capture and reuse of architec-
tural experience. Experience and "good design practice"
can be captured at different levels of abstraction (from
source code up to the highest level of system structure)
and with different degrees of generality (from useful
within all application domains to useful only within
highly specialized application domains). We need the
ability to capture the lessons from prior developments
at all points in this space, and to do so in a manner
that effectively enables other engineers to find, under-
stand, assess, and apply the lessons to the develop-
ment of new systems. In simplest terms this could
involve developing extensive catalogues of architec-
tural styles. The richness and variety of experience
demands better ways of capturing, finding, and using
knowledge, however. Other design disciplines have
matured by doing so, it is time we do so as well.

Directions From New Capabilities

Progress in computer science has often been pro-
pelled – or compelled – forward as the result of ad-
vances in hardware. So it is now with design. Ad-
vances in networking, display technology, storage, and
processor speed offer the potential for significant ad-
vances in the practice of design.

As a first instance, consider the potential of search-
ing for domain knowledge, prior designs, evaluations
of designs, “similar structures”, and so on, in the
manner of Google. That is, the ability to access infor-
mation across the Internet, and especially the ability to

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

search that information in comprehensive fashion, of-
fers the potential for exploiting experience from prior
designs in a manner far beyond anything we have yet
seen. A simple use of existing Google-like search will
not be sufficient, however. A designer will seldom be
searching, for example, for a module with a specific
textual interface. A designer will want to search based
on various architectural abstractions. Enabling search
based on architectural meta-data, for instance, is a near-
term possibility for meeting this goal. Yet any search
scheme that requires some structured meta-data as in-
put stands the risk of being overtaken by a technology
that employs a brute-force strategy that is able to pro-
vide at least as good results without requiring use of
any standard mark-up or meta-data. This, of course, is
the beauty of today’s Google search as applied to
document searches. One long-term direction, therefore,
is to develop search algorithms that perform architec-
tural abstraction automatically, and then “page-rank”
those abstractions against the user’s query, where that
query is phrased in terms of architectural properties.

The networking that is a key enabler of Internet
search is also a key enabler of improved communica-
tion between individuals and teams. As the legitimate
role of the many stakeholders in a design process is
recognized, advances in network communications can
be brought to bear to improve their participation. Col-
laboration technologies in general offer significant po-
tential for the design process [39]. Communication
technologies are, relatively-speaking, free; designers
should exploit that.

Display technology offers another basis for im-
provement in design practice. Very high resolution,
very large screen displays are now readily available.
Such displays give designers the potential of seeing
more of a design from more perspectives simultane-
ously. And why should design be confined to the flat-
land of 2-D displays? Other scientific disciplines have
already exploited high-resolution displays; it remains
for software designers to design such support for their
own discipline. Designers should have displays on
their desktops that are at least as large as the televi-
sions in their homes. Beyond the desktop, there is no
reason why teams do not have specialized design
rooms equipped with numerous touch-sensitive dis-
plays and batteries of computers that enable instant
analysis.

The continuing decline in the price of storage with
an accompanying increase in capacity suggests other
new directions for design. Why not always record de-
sign rationale – even as video? Keying video/audio
capture to the designers workstation activities, context,
and display offers unprecedented potential for retro-
spectively understanding a design and reusing the in-
sights present at the time of design. In the case of de-
sign forensics following a system failure, for example,
such storage offers the potential for identifying the root

cause of a failure, and hence for eliminating related
latent errors elsewhere in a system.

Lastly, the continuing rise in processor speeds sug-
gests that designers, and those who develop design
tools, should never be restrained by a perception of
something “taking too long”. Nor should tool devel-
opers be distracted into complicated optimizations of,
e.g., analysis procedures, when the use of simple brute
force suffices. If something seems to take too long,
just task a few dozen more processors to the problem,
or simply wait for the next generation of processors to
appear. The time to develop a reliable optimization
may well exceed the time for a doubling of processor
speed.

In summary, let us as designers exploit advances in
computation to advance the practice of design. Our
task is as worthy of innovative use of technologies as
our clients’ tasks are.

Directions From Design Imperatives

For software design and architecture to mature into
a robust discipline capable of handling the challenges
posed by emerging applications, advances in several
areas are imperative. Our list here is eclectic, reflecting
our perception of particularly poignant needs.

First is adequate support for moving from architec-
ture to implementation, and fluidly moving between
design and coding tasks. If design does not ultimately
support production of a satisfactory implementation
(assuming that the resources and the will to produce
are both present), then it is a failed effort. Many cur-
rent design approaches fall silent when it comes to
implementation. Since key design decisions may be
made in the implementation context, evolution of the
architecture must be seamlessly integrated across the
contexts. Seamless integration implies full traceability
between code and higher abstractions, and supports
accountability of design decisions.

Second is the ability to represent all stakeholders
interests, as discussed earlier. Multiple interests and
multiple perspectives impose demands for assessing or
guaranteeing consistency of design decisions (or for the
management of inconsistencies between them), as well
as demands for multiple presentations of select design
data.

Third, as software applications become ever-more
interwoven into organizations and society, we must
develop means for the co-design of software and orga-
nizational/societal systems. Introduction of a technol-
ogy into a group or organization may radically change
how the group behaves – think, for example, of how e-
mail has altered both personal and public communica-
tion patterns. While a robust literature exists describ-
ing how such organizational changes have occurred as
the result of introducing software technologies, we
need a design discipline which integrates the inten-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

tional shaping of software technology with the inten-
tional shaping of organizations (one easy example is
the integrated performance of business process reengi-
neering with design of software systems for that busi-
ness). For co-design to take place, a broad range of
expertise must be woven into the process of design. To
continue without such breadth invites organizational
“surprises” and application system failures.

Fourth is the design of applications as seen and ex-
perienced by users. This was discussed in the Introduc-
tion as the “second type” of design. The need and op-
portunity is profound; further discussion is reserved for
the Challenges section.

The next two directions are closely related and are
motivated, at least in part, by economics. The first of
these is supporting design recovery and analysis. Es-
tablished systems represent significant economic as-
sets. To the extent that such assets can be used to meet
new organizational needs, economic efficiencies are
realized. Recovering the architecture of existing sys-
tems enables assessments of potential future uses to be
made so that adaptations can be based on solid archi-
tectural understandings. While several research projects
in this field exist and have yielded promising initial
results (see, e.g., [18, 36, 37]), there is still much to
be done. The second and related direction is actively
managing design evolution – in particular mitigating
architectural decay. Here the issue is not recovering a
design to merely enable the first steps of progress to a
new or improved system, but the task of assessing an
existing design and evaluating alternatives for modify-
ing it to meet new and changing needs. Clearly to the
extent the architecture is explicit and faithful to the
implementation, this process is facilitated. But that is
only the beginning; an evaluation framework and proc-
ess to assist in comparing alternative modifications is
needed. Such evaluations must not only support exam-
ining how immediate demands can be met, but predict
likely consequences for future, as yet unspecified, de-
mands.

Lastly, emerging application needs argue for design
techniques that yield self-adaptive systems. An impor-
tant topic in its own right, we refer the reader to [48].

Directions From Examining Our Past

We learn from our successes, but we also learn from
our mistakes. This is an age-old lesson that has fueled
much progress in other design fields. Bridge design as
it is today would not be as advanced without the care-
ful study of past structural failures [76]. The study of
“why things break” has fueled the creation of newer,
stronger materials [25]. And a central theme in Pet-
roski’s well-known writings is how failure has been a
motivator for design innovation [67-69].

How do we perform in software in this regard? Un-
fortunately, the answer is “not good”. We do experi-

ence failures, but the field does not profit from them as
other disciplines do. A “we will just fix it in the code”
attitude is far too prevalent, and we seem to have been
lulled into a modus operandus in which the importance
of design is, consciously and subconsciously, under-
valued. Compare the software view of design once
again with that of bridge design. First off, one must
appreciate the effort that goes into a bridge’s design.
Except for a few systems, our discipline rarely per-
forms this much design. Second, when something fails
on a bridge, it is the design that is examined, and les-
sons are drawn from it. Such is not the practice in
software; we rarely go back, carefully study a “failed
design”, deduce lessons as to why the software (use,
deployment, or even development itself) failed, and
what we should do differently, design-wise, next time
– let alone share these lessons with the community.

Any approach to learning from the past must start
with examples. Unfortunately, no software design ex-
amples seem to be available. Textbooks contain small-
ish systems. Search the web for “Good Software De-
sign” or “Bad Software Design Examples” and not a
single system comes forward (though lots of advice on
how to create a “good” design comes forward). Com-
pare this to building architecture, where one can find
book after book in the bookstore, including books of
“great designs”. Clearly, a first challenge for the com-
munity is to begin assembling archives of good and
bad design examples. By this we do not just mean
UML diagrams, but carefully documented, multi-level
and multi-view explanations that provide in-depth in-
sight into underlying design decisions and their rami-
fications. It is interesting, in this regard, to examine
the HCI literature. In it, one can find numerous papers
that introduce novel interfaces and describe their under-
lying design motivations. Such a practice has not tran-
sitioned into the software engineering conferences as of
yet.

We must also promote excellence in design. The
SPLC product line hall of fame is an example of such
recognition, as is the aforementioned ACM Software
Systems Award. In either case, though, we note that
regrettably the actual details of the product and design
that received the award are never shared with the
broader community. Perhaps ACM or IEEE should
consider establishing an annual prize for the best soft-
ware design, requiring that winning designs are placed
in the public domain.

3

From examples, we must then deduce patterns,
principles, do’s and do not’s, and other general under-
standings that help individuals in building up a reper-
toire of knowledge that can assist them in designing.
Some of that effort is underway; we mention architec-
tural styles, software patterns and anti-patterns, design

3
 Of course, we can leave our version of the Razzies

(http://www.razzies.com) to an appropriate blog.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

critics, bad smell detection and refactoring techniques,
HCI design guidelines, and a small handful of general
design principles. This work has to continue and be
broadened to cover all aspects of the design product
and process.

Finally, we observe that we must not just under-
stand good and bad design products, but also focus
some of our efforts on understanding good and bad
design practices. By this we explicitly do not mean
high-level approaches (e.g., Agile), but rather the ap-
proaches and techniques that expert designers employ
in designing their software. For instance, it is well-
known that product designers may sketch hundreds of
alternatives before honing in on an eventual choice. Do
software design experts follow such an approach? If
not, what do they do that makes them successful? Can
these skills be explicated and communicated to others?

Overall, the undercurrent of this section is that
software design is still far removed from being an es-
tablished discipline. To move forward, it is critical the
field engages in the necessary deep scientific study of
software design and designing.

Directions From Looking Outside of CS

While the design of software is a relatively new ac-
tivity, having only been around for sixty years at the
most, design has been practiced in other fields for cen-
turies. While sometimes still taught as a craft, or
learned through apprenticeship, design is newly taking
shape as an academic discipline, even as a science.
There is a Design Research Society [1] (which spon-
sors a conference on doctorate research in design), and
a wide literature. New university programs in design
are emerging, such as Stanford’s “d-School” [7]. All
this suggests that there is much that software research-
ers can consider and draw from in order to advance
design specifically within the software field. A few
examples have already appeared in the preceding text:
we have referred to work in industrial engineering [44],
architecture [11, 19], design processes [72], and
civil/mechanical engineering. We provide a few addi-
tional examples here, most of which are inspired by
building architecture.

While architecture has already been mentioned, and
has been used for many years as, at least, an analogous
activity to building software, the richness of the build-
ing architecture discipline suggests that there are still
further insights to mine. For instance, Parnas’s dictum
about designing software for ease of change [63] is
explored, by analogy, with substantially greater rich-
ness in Stewart Brand’s “How Buildings Learn” [19].
The several layers of a building’s architecture deter-
mine the ways in which the building can be adapted to
meet new needs. Bottom-up and top-down approaches
to such design are considered and extensively illus-
trated. It is a book that, while containing no reference

to software development, can be read, appreciated, and
applied by software engineers.

Another practice from architecture is that of a de-
sign charette. A charette is related to software’s design
reviews and walkthroughs, but is closer in spirit to
agile design, for the purpose of a charette is to move a
design forward quickly, by developing and critiquing
design in a group setting. In educational settings,
charettes are part of design studios, where regular de-
sign reviews take place. The normal practice of archi-
tecture is to develop models suitable for and used in
periodic, active, productive, constructive group design
reviews.

Perhaps most inspirational from the world of archi-
tectural design is the development of computer-based
building models that enable designers and users (ten-
ants, residents) alike to fly through a proposed design,
simultaneously seeing, as desired, both the internal
structure of the building and the appearance and serv-
ices of the building. In software design these concepts
are almost always reviewed separately: how the code is
organized is considered almost independently of what
the user’s experience with the application will be. In
building architecture, the intrinsic relationship between
these two views is understood; if the residents of a
house know in advance where load-bearing beams are
they can adjust their expectations for how the building
might be modified in the future. Seeing how well, or
how poorly, the user interface is separated from the rest
of an application’s code can reveal whether managers
could sensibly direct a desktop application to be retar-
geted as a web service.

Architecture even suggests how we might rethink
the composition of our academic teaching faculty. Ar-
chitecture schools typically include many practicing
architects, just as music schools include many practic-
ing musicians. The conviction is that students can
only have an adequate understanding of their discipline
through engagement with faculty regularly acquainted
with the full breadth of disciplinary challenges. One
could examine many computer science departments and
find no faculty qualified to construct any application
larger than a compiler – a task trivial in comparison
with the challenges regularly faced by many profes-
sionals in industry. Students must also engage in the
practice, and do so repeatedly.

Many design professions have another practice from
which we could benefit: the study of designs. Design-
ers of luxury goods, buildings, machinery, and con-
sumer goods alike spend significant time assessing –
studying – existing designs. The objective is not only
to understand how something works, but to assess its
“non-functional properties” – what brand sense it con-
veys, what its aesthetic is, how it affects its user. In
contrast, most software engineering courses spend no
time studying existing design, instead plunging ahead

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

with green-field approaches, yielding a too-predictable
outcome.

Barriers To Progress

Having made a broad set of suggestions, we must
acknowledge that significant barriers persist to making
these kinds of advances a reality in practice. First, as
we observed earlier, design is seriously undervalued by
many. On the one hand, we admit that there is some
basis for such undervaluing: the tools and techniques
available to the average practitioner are not necessarily
very good, especially when put in light of the full
spectrum of considerations discussed in Section 4.
This state of affairs makes it difficult to convert the
skeptic or to provide credible evidence that proper de-
sign(ing) does make a difference. On the other hand,
such negative attitude hinders progress: the effort spent
objecting might be better spent making advances or at
least encouraging others to do so.

Second, designers are not necessarily equipped with
the right skills and, worse, they may or may not know
whether their skills match up to a project at hand. Who
is qualified and how do they acquire their skills? Cer-
tainly, some designers are simply great, whether by
experience or intuition. But a vast majority has to ac-
quire their skills somehow, yet a culture of apprentice-
ship is virtually non-existent. Granted, not all software
needs a great designer, but even the “average designer”
must learn somehow.

Compounding this problem is the remarkable toler-
ance that software professionals seem to have. If the
tools that we use to design are incomplete, inelegant,
and difficult in their use, then how can we be expected
to produce designs that are complete, elegant, and lead
to easy-to-use systems? And this does not just hold for
design tools. Poorly designed user interfaces and
clunky programs abound. Where are we to find our
inspiration for quality?

A root cause can be found in the education of soft-
ware engineers [49, 53]. Most stem from a “standard”
Computer Science program, which incorporates at best
a few software engineering courses and involves nu-
merous other courses which ignore the lessons of soft-
ware engineering altogether. Extensive practice with
significant software design problems is impossible in
this setting. The past decade has seen the emergence of
Software Engineering (e.g, [5, 6]) and Informatics
(e.g., [2-4]) majors. The focus of most such programs
is on design, a trend we welcome. Still, the materials
available from which to teach design are limited and
much innovation is necessary in this regard.

To offer hope, there is the advantage of time. Early
reports from the SIGSOFT Impact project indicate that
research advances may take up to ten or sometimes
even twenty years from initial idea to widespread prac-
tical use, as the original idea must find traction and

morph to reflect practical needs and considerations
[60]. So, in a field that is as young as software engi-
neering, perhaps we are not doing so badly?

Improvements and overcoming the barriers we men-
tioned, though, will require the community to undergo
a drastic change in mindset. Rather than following the
next hype into believing software development “can be
made easy”, a true discipline must emerge in which it
is recognized that design is a critical activity that in-
volves serious and difficult work. And herein may lay
the most difficult barrier of them all.

6. Challenges and Vision

Design and architecture as described comprises a
broad field and arguably sits at the very core of soft-
ware engineering. All of its aspects are vital: ways of
designing, architectural representations, means for per-
forming analysis, techniques for transitioning a design
into an implementation, ways of capturing design ex-
perience, and so on. Absence of progress in any one of
the areas discussed impedes progress in the others.
Thus, broadly based advancement on the whole set of
sub-topics constitutes a grand challenge for software
engineering – an appropriate, critical focus for software
engineering research. We conclude, therefore, not with
a specific design problem as a grand challenge for the
field, but rather repeat and highlight a few technical
items, providing a bit of a vision for the future, offer
some directions for community activities, and finish
with a speculation on the long future of “software”
design.

Technical Challenges

Designing a software application involves design-
ing its structure as well as its user-observable proper-
ties, functional and non-functional alike. By removing
the counterproductive boundary between requirements
and design, a holistic view of product conception
emerges. By analogy to building architecture, a build-
ing can be seen as being composed of beams, bricks,
pipes, glass, and wires, but also being composed of
living spaces, galleries, sun rooms, and cooking facili-
ties. Building architects can show clients cut-away
views of buildings, simultaneously revealing both
structure and facility, the interrelationships between
natural light and ceiling truss. Imagine now interactive
cut-aways of buildings, whereby the designer could
move skylights and see the consequences for the roof’s
structure, or change specifications on a window and
note how the quality of interior light improves.

Realizing an analogous vision for software design
requires our supporting the design and visualization of
user functionality at least as well as our supporting the
design and visualization of software structures. Not
only must we see and manipulate components and

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

connectors in an architecture, but see, as we do so,
how the user’s data display is changed, or how the
electronic commerce purchasing experience is shaped,
or how facilities for controlling the chemical plant are
set.

The community must develop the languages, tech-
niques, and tools for enabling the multitude of
stakeholders in an application design to sketch, evalu-
ate, revise, and refine design concepts for applications.
Success will be achieved when clients are able, through
working with the design team, to see their tasks in
new ways and are able to innovate new ways of meet-
ing those tasks.

Community Challenges

Achieving the technical vision will require long-
term financial support, new venues for publication and
community analysis of designs and design technology,
a new sense of who the design community comprises,
and, perhaps, some “incentives”.

The critical enabler for progress is, of course, ade-
quate funding. The centrality of design and architecture
to software development demands that significant,
stable funding be directed to these activities. The Na-
tional Science Foundation’s Science of Design pro-
gram is a good start in this direction, but support for
design research should not be limited to the NSF;
other agencies should make this field a priority as
well. Such support should also be continuing. Design
will not be “solved” after three years of work; indeed,
as we have argued, design will always be a challenge –
our aspirations will not abate.

Software design and architecture research also needs
adequate forums for the presentation and review of
research advances. Drawing from the study of design in
other fields, forums are also needed for the public pres-
entation and review of designs themselves. Such re-
view can inspire other designers, reveal properties of
new design techniques and tools, and add to the reper-
toire of design experience. Design research often does
not have the same character as research in other fields,
such as software testing and analysis. Hence traditional
forums and criteria are unlikely to be adequate or ap-
propriate for review of design advances.

New forums for the discussion of software design
would also be supportive of expanding the community
of contributors. As software design is recognized as
engaging teams of designers with expertise spanning
specific application domains, business planners, and
software specialists, a forum in which all would feel
“at home” would be productive.

Lastly, there is nothing like an incentive to spark
quick advances in a field. Building architects are annu-
ally awarded the Pritzker Prize, an award that carries
not only international fame but a $100,000 reward. In
fact, design awards are common in many fields: auto-

motive design, industrial design, fashion design, and
so on. Why not spark innovation in software design by
creation of a corresponding prize? A similar kind of
inducement for advancement is a challenge prize, such
as the Ansari X-Prize was for space flight. Establishing
appropriate criteria and processes for evaluating soft-
ware designs would be a challenge, but the effect on
the community could be significant. For instance, the
evaluation could cover the process by which the design
was produced, as well as design itself.

A Vision For The Long Future

One of the themes of this article has been that soft-
ware design and architecture has been, and will remain,
an intellectual challenge: as our abilities to effectively
design for one set of challenges become more effective,
a new set of design challenges emerge to demand yet
further advances. The limit on this cycle is simply the
definition of “software”. By expanding our sense of
what software is, in a very liberal sense, numerous
exciting opportunities for contributions from software
design researchers emerge, opportunities for which we,
as software designers, have some distinct advantages
over designers from many other fields.

Consider, for example, the interaction design prob-
lem faced by automotive designers. One could argue
that what car manufacturers are selling is not sheet
metal and rubber, but a “driving experience”. Such an
experience constitutes a structured amalgam of sights,
sounds, feelings, and smells. Driving a car involves
interaction with not only the control devices in the car,
but interaction with passengers, audio and visual in-
puts, interaction with other vehicles, laws, and traffic
control systems outside the vehicle. If the design prob-
lem is to design that interaction experience, what rep-
resentation does that design have? The interaction is
fundamentally intangible. Traditional design disci-
plines, such as automotive design, are strongly
grounded in the physical materials of their traditional
products and designers are unaccustomed to a final
reality that is intangible. Software designers, by con-
trast, have always dealt with an intangible product:
software; we are accustomed to designing, modeling,
and assessing a broader set of realities.

If we therefore extrapolate the concept of “software”
beyond the traditional confines of the computer to en-
compass radically different intangible products, such as
this example automotive interaction, an exciting fron-
tier opens up. Software designers may be able to lead
the way into conceptualizing, modeling, and building
new kinds of intangible products. Working coopera-
tively with designers from other specialties, the pros-
pect is for creating new kinds of highly complex sys-
tems that are now barely imaginable.

Software design and architecture have a long future
ahead of it.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

7. Acknowledgments

This work was supported in part by the National
Science Foundation, under grants 0438996 and
0536203.

We would like to thank Alex Baker, Eric Dashofy,
Peter Freeman, Michael Gorlick, Neno Medvidovic,
Peyman Oreizy, David Redmiles, Lee Osterweil, and
Alexander Wolf for ongoing collaborations and fruitful
discussions that have fueled the opinions expressed in
this paper.

8. References

[1] Design Research Society.
<http://www.designresearchsociety.org/>.

[2] University of California, Irvine, Donald Bren School
of Information and Computer Sciences, B.S. in In-
formatics. <http://www.ics.uci.edu/informatics>.

[3] Indiana University School of Informatics, B.S. o f
Informatics. <http://www.informatics.indiana.edu/>.

[4] University of Washington Information School, B.S.
of Science in Informatics.
<http://www.ischool.washington.edu>.

[5] Milwaukee School of Engineering, B.S. in Software
Engineering. <http://www.msoe.edu/eecs/se/>.

[6] Rochester Institute of Technology Department o f
Software Engineering, B.S in Software Engineering.
<http://www.se.rit.edu/degrees.html>.

[7] d.school – The Hasso Plattner Institute of Design a t
Stanford.
<http://www.stanford.edu/group/dschool/>.

[8] Abbott, R.J. Program Design by Informal English
Descriptions. Communications of the ACM. 26(11), p.
882-894, 1983.

[9] Abowd, G., Allen, R., and Garlan, D. Using Style to
Understand Descriptions of Software Architecture.
ACM SIGSOFT '93 Symposium on the Foundations o f
Software Engineering. p. 9-20, ACM Press. Redondo
Beach, CA, December, 1993.

[10] Agrawala, A., Krause, J., and Vestal, S. Domain-
specific software architectures for intelligent guid-
ance, navigation and control. 1992 IEEE Symposium
on Computer-Aided Control System Design. p. 110-
116, March, 1992.

[11] Alexander, C. The Timeless Way of Building. Oxford
University Press: New York, 1979.

[12] Bajcharya, S., Ngo, T., and Lopes, C.V. On Using Net
Options Value as a Value Based Design Framework.
Seventh International Workshop on Economics-
Driven Software Engineering Research at ICSE'05.
May, 2005.

[13] Baker, A. and van der Hoek, A. Examining Software
Design from a General Design Perspective. Institute
for Software Research, University of California, Ir-
vine, Technical Report UCI-ISR-06-15, October,
2006.

[14] Baldwin, C.Y. and Clark, K.B. Design Rules: The
Power of Modularity. 1, MIT Press: Cambridge,
Mass., 2000.

[15] Balzer, R. Tolerating Inconsistency. Thirteenth In-
ternational Conference on Software Engineering. p.
158-165, IEEE Computer Society Press. Austin,
Texas, 1991.

[16] Binkley, D. Source Code Analysis: A Road Map. Fu-
ture of Software Engineering 2007 Briand, L. and
Wolf, A. eds. IEEE-CS Pres, 2007.

[17] Booch, G. Object-Oriented Development. IEEE TSE.
12(2), p. 211-221, 1986.

[18] Bowman, I.T., Holt, R.C., and Brewster, N.V. Linux as a
Case Study: Its Extracted Software Architecture.
Twenty-first International Conference on Software
Engineering. Los Angeles, May 16-22, 1999.

[19] Brand, S. How Buildings Learn: What Happens After
They're Built. Penguin Books, 1994.

[20] Brooks, F.P. The Mythical Man-Month: Essays on
Software Engineering. 2 ed., Addison-Wesley, 1995.

[21] Brooks Jr., F.P. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 1975.

[22] Clark, H. and Brennan, S. Grounding in Communica-
tion. Perspectives on Socially Shared Cognition.
American Psychological Association, 1991.

[23] Conklin, J. and Begeman, M.L. gIBIS: A Hypertext
Tool for Exploratory Policy Discussion. ACM Trans-
actions on Information Systems: 6(4), p. 303-
331 1988.

[24] Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, and Vis-
ser, W. Formal Software Analysis: Emerging Trends
in Software Model Checking. Future of Software En-
gineering 2007 Briand, L. and Wolf, A. eds. IEEE-CS
Press, 2007.

[25] Eberhart, M. Why Things Break: Understanding the
World by the Way It Comes Apart. Harmony Books:
New York, 2003.

[26] Egyed, A. Consistent Adaptation and Evolution of
Class Diagrams during Refinement. Seventh Interna-
tional Conference on Fundamental Approaches to
Software Engineering. p. 37-53, Barcelona, Spain,
2005.

[27] Fielding, R.T. and Taylor, R.N. Principled Design of
the Modern Web Architecture. ACM Transactions on
Internet Technology. 2(2), p. 115-150, May, 2002.

[28] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and
Nuseibeh, B. Inconsistency Handling in Multi-
perspective Specifications. IEEE TSE. 20(8), p. 569-
578, 1993.

[29] Fischer, G. Communities of Interest: Learning
through the Interaction of Multiple Knowledge Sys-
tems. User Modeling. 2001.

[30] France, R. and Rumpe, B. Model-driven Development
of Complex Systems: A Research Roadmap. Future o f
Software Engineering 2007 Briand, L. and Wolf, A.
eds. IEEE-CS Press, 2007.

[31] Freeman, P. The Central Role of Design in Software
Engineering. Software Engineering Education Free-
man, P. and Wasserman, A. eds. Springer-Verlag: New
York, 1976.

[32] Freeman, P. The Central Role of Design in Software
Engineering: Implications for Research. In Software
Engineering: Research Directions. p. 121-132, Aca-
demic Press, 1980.

[33] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley: Reading, MA,
1995.

[34] Garlan, D., Allen, R., and Ockerbloom, J. Exploiting
Style in Architectural Design Environments. ACM
SIGSOFT '94 Second Symposium on the Foundations
of Software Engineering. p. 175-188, ACM Press.
New Orleans, LA, December, 1994..

[35] Greenbaum, J. and Madsen, K.H. Small Changes:
Starting a Participatory Design Process by Giving
Participants a Voice. Participatory Design: Princi-
ples and Practices Schuler, D. and Namioka, A. eds.
Lawrence Erlbaum Associates: Hillsdale, New Jersey,
1993.

[36] Gröne, B., Knöpfel, A., and Kugel, R. Architecture
recovery of Apache 1.3 -- A case study. 2002 Interna-
tional Conference on Software Engineering Re-
search and Practice. Las Vegas, 2002.

[37] Hassan, A.E. and Holt, R.C. Architecture recovery of
web applications. Twenty-fourth International Con-
ference on Software Engineering. May, 2002.

[38] Hayes-Roth, B., Pfleger, K., Lalanda, P., Morignot, P.,
and Balabanovic, M. A domain-specific software ar-
chitecture for adaptive intelligent systems. IEEE TSE.
21(4), p. 288-301, April, 1995.

[39] Herbsleb, J. Global Software Engineering: The Future
of Socio-technical Coordination. Future of Software
Engineering 2007 Briand, L. and Wolf, A. eds. IEEE-
CS Press, 2007.

[40] Issarny, V., Caporuscio, M., and Georgantas, N. A
Perspective on the Future of Middleware-Based Soft-
ware Engineering Future of Software Engineering
2007 Briand, L. and Wolf, A. eds. IEEE-CS Press,
2007.

[41] Jackson, M. System Development. Prentice Hall:
Englewood Cliffs, N.J., 1983.

[42] Jackson, M. Problem Frames. Addison-Wesley Pro-
fessional: Reading, MA, 2001.

[43] Jackson, M.A. Principles of Program Design. Aca-
demic Press, 1975.

[44] Jones, J.C. Design Methods: Seeds of Human Futures.
John Wiley & Sons, Ltd.: New York, 1970.

[45] Kelley, T., Littman, J., and Peters, T. The Art of Inno-
vation: Lessons in Creativity from IDEO, America's
Leading Design Firm. Currency/Doubleday: New
York, 2001.

[46] Knuth, D.E. The Art of Computer Programming, Vol-
ume 3: Sorting and Searching. Addison-Wesley,
1973.

[47] Knuth, D.E. Literate Programming. CSLI Lecture
Notes, no. 27., Stanford, California: Center for the
Study of Language and Information, 1992.

[48] Kramer, J. and Magee, J. Self-Managed Systems: An
Architectural Challenge Future of Software Engi-
neering 2007 Briand, L. and Wolf, A. eds. IEEE-CS
Press, 2007.

[49] Kramer, J. Is Abstraction the Key to Computing?
Communications of the ACM. 2007. To appear.

[50] Kruchten, P. The 4+1 View Model of Architecture.
IEEE Software. 12(6), p. 42-50, November, 1995.

[51] Kruchten, P. The Rational Unified Process: An Intro-
duction. Addison-Wesley: Reading, MA, 2000.

[52] Larman, C. Applying UML and Patterns. An introduc-
tion to object-oriented analysis and design and the
Unified Process. 2nd ed. Prentice-Hall PTR, 2002.

[53] Lethbridge, T., Diaz-Herrera, J., LeBlanc, R., and
Thompson, J. Improving Software Practice through
Education: Challenges and Future Trends Future o f
Software Engineering 2007 Briand, L. and Wolf, A.
eds. IEEE-CS Press, 2007.

[54] Lopes, C.V., Kiczales, G., Mendhekar, A., Maeda, C.,
Loingtier, J.-M., and Irwin, J. Aspect-Oriented Pro-
gramming. European Conference on Object-Oriented
Programming. Finland, 1997.

[55] Mark, G., Abrams, S., and Nassif, N. Group-to-Group
Distance Collaboration: Examining the “Space Be-
tween”. Eighth European Conference of Computer-
Supported Cooperative Work. p. 99-118, Helsinki,
Finland, September 14-18, 2003.

[56] Medvidovic, N. and Taylor, R.N. A Classification and
Comparison Framework for Software Architecture De-
scription Languages. IEEE TSE. 26(1), p. 70-93, Janu-
ary, 2000.

[57] Medvidovic, N., Dashofy, E., and Taylor, R.N. Moving
Architectural Description from Under the Technology
Lamppost. Information and Software Technology.
49(1), p. 12-31, 2007.

[58] Norman, D.A. The Design of Everyday Things. 1st
Basic paperback ed., Basic Books: New York, 2002.

[59] Ommering, R.v., Linden, F.v.d., Kramer, J., and Magee,
J. The Koala Component Model for Consumer Elec-
tronics Software. IEEE Computer. 33(3), p. 78-85,
March, 2000.

[60] Osterweil, L., Ghezzi, C., Kramer, J., and Wolf, A. Edi-
torial ACM TOSEM. 14(4), p. 381-382, 2005.

[61] Parnas, D.L. On the Criteria to be Used in Decompos-
ing Systems into Modules. Communications of the
ACM. 15(12), p. 1053-1058, 1972.

[62] Parnas, D.L. On the Design and Development of Pro-
gram Families. IEEE TSE. 2(1), p. 1-9, 1976.

[63] Parnas, D.L. Designing Software for Ease of Extension
and Contraction. IEEE TSE. 5(2), p. 128-137, 1979.

[64] Parnas, D.L., Clements, P.C., and Weiss, D.M. The
Modular Structure of Complex Systems. IEEE TSE.
11(3), p. 259-266, March, 1985.

[65] Parnas, D.L. and Clements, P.C. A Rational Design
Process: How and Why to Fake It. IEEE TSE. 12(2), p.
251-257, February, 1986.

[66] Perry, D.E. and Wolf, A.L. Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes. 17(4), p. 40-52, October, 1992.

[67] Petroski, H. To Engineer is Human. St. Martin's Press
1985.

[68] Petroski, H. The Evolution of Useful Things. Alfred
A. Knopf, Inc., 1992.

[69] Petroski, H. Invention by Design: How engineers get
from thought to thing. Harvard University Press,
1996.

[70] Pohl, K., Böckle, G., and van der Linden, F.J. Software
Product Line Engineering: Foundations, Principles
and Techniques. 1 ed., Springer, 2005.

[71] Sarkar, S., Rama, G.M., and Kak, A.C. API-Based and
Information-Theoretic Metrics for Measuring the
Quality of Software Modularization. IEEE TSE. 33(1),
p. 14-32, January, 2007.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[72] Schön, D. The Reflective Practitioner: How Profes-
sionals Think in Action., Basic Books, Inc. Publish-
ers: New York, 1983.

[73] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., and Zelesnik, G. Abstractions for Software Ar-
chitecture and Tools to Support Them. IEEE TSE.
21(4), p. 314-335, April, 1995.

[74] Simon, H.A. The Sciences of the Artificial. 1st ed.
The MIT Press, 1969.

[75] Simon, H.A. The Sciences of the Artificial. 2nd ed.
The MIT Press, 1981.

[76] Spector, A. and Gifford, D. A Computer Science Per-
spective of Bridge Design. Communications of the
ACM. 29(4), p. 267-283, April, 1986.

[77] Sullivan, K.J., Chalasani, P., Jha, S., and Sazawal, V.
Software Design as an Investment Activity: A Real
Options Perspective. Real Options and Business

Strategy: Applications to Decision Making Trigeor-
gis, L. ed. Risk Books, 1999.

[78] Taylor, R.N., Medvidovic, N., and Dashofy, E.M.
Software Architecture: Foundations, Theory, and
Practice. John Wiley & Sons, 2008. In press.

[79] Tracz, W. DSSA (Domain-Specific Software Architec-
ture): Pedagogical Example. ACM SIGSOFT Software
Engineering Notes. 20(3), July, 1995.

[80] Van Duyne, D.K., Landay, J.A., and Hong, J.I. The De-
sign of Sites : Patterns, Principles, and Processes
for Crafting a Customer-centered Web Experience.
Addison-Wesley: Boston, 2003.

[81] Yourdon, E. Techniques of Program Structure and
Design. Prentice-Hall: Englewood Cliffs, N.J., 1975.

[82] Yourdon, E. and Constantine, L.L. Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. Prentice-Hall, Inc., 1979.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

