University of Engineering and Technology, Taxila Department of Civil Engineering

Course Title		Envir	onme	ntal Engineering-I
Pre-requisite		1.	Hydro	logy & Water Resources
		2.	Fluid N	Mechanics-I
		3.	Fluid N	Mechanics-II
Credit Hours		Theory	7	02 Hours
		Practic	al	01 Hour
Contact Hou	rs	Theory	7	02 Hours
		Practic	al	03 Hours
Text Books	1. Cornw	Introdu ell, Mc	uction to Graw H	o Environmental Engineering Third Edition by Davis & [ill
	2. Edition	Water Supply & Sewerage by E.W Steel and McGhee 4th, 5th, on (whichever available)		& Sewerage by E.W Steel and McGhee 4th, 5th, 6th vailable)
3.		Enviro	nmenta	l Engineering Laboratory, by Dr. Khurshid Ahmad

Reference Books

- Waste Water Engineering, Treatment, disposal, Reuse by Metcalf and Eddy, 3rd Edition.
- Environmental Assessment in Practice by D. Owen Harrop & J. Ashley Nixon
- Integrated Solid Waste Management by George Techobanoglous, Hilary Theisen & Samuel A. Vigil
- Elements of public health engineering by K.N Duggal
- Water and Waste water Engineering by Fair & Gayer
- Water and Wastewater Technology by Mark J, Hammer

Catalog Data CE-306

Course Objectives:

- To introduce the concept of environmental pollution, contamination and its sources particularly in context to water.
- Provide an overview of key topics and relevent field issues in environmental engineering

- Gain an understanding of the underlying scientific, engineering, and regulatory concepts in each topical area
- Learn several quantitative approaches for environmental assessment and problem solving
- To learn principles of environmental engineering applied to the design and implementation of water supply schemes.

Course Contents:

CE-306 Environmental Engineering-I

- Introduction to the Environmental Engineering.
- Core environmental science concepts
- Hydrology and earth sciences
- Water quality
- Water treatment
- Water supply systems
- Wastewater collection systems
- Global environmental issues
- National environmental issues
- Wastewater treatment
- Introduction to Air pollution control
- Introduction to Solid waste management
- Introduction to Hazardous and industrial waste management
- Introduction to Environmental impact assessment
- Introduction to Water quality modeling
- Introduction to Noise pollution control

Course Learning Outcomes (CLOs):

- 1. Students will be able to formulate and identify basic and complex environmental issues in the field of environmental engineering.
- 2. Students will learn to design water supply and treatment systems.
- 3. Students will also be able to communicate environmental issues and solutions through environmental assessment reports.

PLO's(Theory)

Student Learning Outcomes:

To learn about basic environmental issues in developing and developed world

To design simple and complex water supply systems along with advance water treatment options.

To understand the environmental management plan for different environmental issues

Course Professional Outcome/Industrial Usage:

The Engineers will be able to plan and execute a water supply and treatment options for small town and metropolitans.

The graduates will be able to design and formulate complex environmental issues in the real life according to the local and international standards.

The students will also be able to prepare environmental study reports as well.

CLO's	CLO-1	CLO-2	CLO-3
PLO's			
1	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	
3	\checkmark	\checkmark	\checkmark
4	\checkmark		\checkmark
5		\checkmark	
6			✓
7	\checkmark	\checkmark	\checkmark
8	\checkmark		\checkmark
9	\checkmark	\checkmark	\checkmark
10			\checkmark
11			\checkmark
12	\checkmark	\checkmark	\checkmark

MAPPING (Theory)

CLO's	CLO-1	CLO-2	CLO-3
Assign.			
Modules			
Assignment	\checkmark	\checkmark	\checkmark
Quizzes	\checkmark		
Midterm	\checkmark	\checkmark	
Final Term	\checkmark	\checkmark	

Mapping of CLOs to La	ab PracticalEnv	CLOs	ering-1
Lab Practical	CLO-1	CLO-2	CLO-3
To prepare the normal and moral solutions in the laboratory.	\checkmark	√	
To determine the pH values for the given samples	✓	✓	✓
To determine the EC and salinity of water samples	\checkmark	~	√
To determine the amount of turbidity in given water sample	\checkmark	✓	
To determine the total hardness of given water samples by EDTA method	\checkmark	~	√
To determine calcium and magisum hardness of given water sample by EDTA method	\checkmark		\checkmark
To determine the total hardness of given water sample by kit method	\checkmark	√	
To determine the alkalinity of given water sample	\checkmark	✓	
To determine the chlorine concentration in different water samples	\checkmark	✓	\checkmark

Mapping (LAB)

г

CLO's(LAB)

Course Learning Outcomes:

At the end of this practical work , the students will:

- CLO:1 Learn to analyses the water and apply practical principles to maintain good standards of public health.
- CLO:2 Learn fundamentals of EC, turbidity, hardness, alkalinity, chlorides, pH and salinity
- CLO:3 Be able to analyses different concentration of hazardous material in water

Practical List

- 1. To prepare the normal and moral solutions in the laboratory
- 2. To determine the pH values for the given samples
- 3. To determine the EC and salinity of water samples
- 4. To determine the amount of turbidity in given water sample
- 5. To determine the total hardness of given water samples by EDTA method
- 6. To determine calcium and magisum hardness of given water sample by EDTA method
- 7. To determine the total hardness of given water sample by kit method
- 8. To determine the alkalinity of given water sample
- 9. To determine the chlorine concentration in different water samples

PLO's(LAB)

Student Learning Outcome:

To learn to analyses the water and apply practical principles to maintain good standards of public health.

To determine the amount of EC, turbidity, hardness, alkalinity, chlorides, pH and salinity Be able to analyses different concentration of hazardous material in water

Course Professional Outcome/Industrial Usage:

The Engineers will be able to plan parameters for fresh water after removing hazardous materials

The graduates will be able to maintain different concentration of different parameter in water which is required according to international standard

Weekly Lesson Plan:

Weeks	Activities/Topics Studied	Details	Extra Activities
1st Week	Introduction to Environmental Engineering & Sciences	 Environmental systems Possible contamination scenarios Environmental ethics Environmental engineering-a global perspective The major environmental problems Environmental groundwater hydrology ground water resources - quantity Ground water resources - quality Ground water: a valuable resource Aquifer characteristics Ground water hydraulics 	Allocation of presentation topics and sessional briefing
2 rd Week	Overview of Environmental Policy, Law, and Regulation	 ✓ Common Environmental Values ✓ Historical Stages of U.S. Environmental Protection Efforts ✓ Looking Ahead: Outcomes-based Environmental Protecting Human Health: the Risk Assessment/ Risk Management Model ✓ Risk Assessment/Risk Management Model ✓ Risk Assessment/Risk Management Model ✓ Environmental Protection Programs in the U.S. ✓ Primary Environmental Laws ✓ Enforcement ✓ Environmental Code of Ethics 	
3 th Week	Chemical View Of Environmental Quality	 ✓ Environmental Chemistry ✓ Stoichiometry ✓ Oxygen Demand ✓ CHEMICAL KINETICS ✓ Reaction Order ✓ Half-Life 	Submission of Assignment No.01

4 th Week	Chemical Concentrations in Water, Air and Soil	 ✓ Air ✓ Water ✓ Water Cycle ✓ Water Distribution ✓ ECOSYSTEMS AND NUTRIENT CYCLES ✓ Human Influences on Ecosystems ✓ Role of Energy ✓ Food Webs ✓ Carbon Cycle ✓ Nitrogen Cycle ✓ Phosphorus Cycle ✓ Sulfur Cycle 	
5 th Week	Population Dynamics abd forcasting	 ✓ Perspective ✓ Bacterial growth requirements ✓ Growth in pure cultures ✓ Mathematics of growth ✓ Mixed cultures ✓ Human population dynamics 	Submission of Assignment No.02
6 th Week	Lake Ecosystem	 ✓ Lake ecosystems ✓ Productivity ✓ Limiting nutrients ✓ Succession or eutrophication ✓ A simple phosphorus model ✓ Acidification of lakes ✓ Effects of acid rain ✓ Bicarbonate buffering ✓ Pollution of streams and lakes ✓ Eutrophication ✓ 	Presentations
7 th Week	Risk Perception, Assessment and Management	 Environmental risk Definitions Risk perspectives Risk assessment model Dose-response assessment Extending dose-response data to environmentally relevant doses Carcinogens Non-carcinogens Exposure assessment Key steps in exposure assessment Elimination of pathways Concentrations in environmental media that are contacted Calculate chemical intake risk Rick characterization 	Submission of Assignment No.03

		✓ Rational method✓ Time of concentration	
		✓ Rainfall intensity	
	Presentations	✓ Presentations	Presentations
			& 7
			Surprise Quiz
	Sewage	✓ Definitions of some terms in sewage	2 nd Quiz
8 th Week	Characteristics	characterization	
vv cen		 ✓ BOD ✓ Significance of BOD 	
		✓ Derivation of BOD	
		✓ Chemical oxygen	
		demand	
		characteristics	
		✓ Water resources	
		✓ Determining water	
		demand	
		water usage	
		✓ Examples of water	
		✓ Environmental	
		impacts	
	Duration	/ Procentations	D
	Presentations	• Presentations	Presentations
	Environmental	 ✓ Hydrologic Cycle ✓ Mass Balance in 	Surprise Quiz
9 th	Aspects of	Hydrologic Systems	
Week	Surface Water	✓ Mass Balance	
	Hydrology	✓ Water Sheds	
		✓ Hydrologic	
		Continuity Equation	
	Presentations	✓ Presentations	Presentations
	Watar	✓ River and Lake	
1 oth	vvaler Pollutants and	Pollutants	
10 th Week	their Sources	 ✓ Effects of Pollutants ✓ Point sources 	
	men bources	 ✓ Non-point sources 	
		✓ Oxygen-Demanding	
		Material ✓ Nutrients	
		✓ Salts	
		 ✓ Suspended Solids ✓ Pathogenic 	
		Organisms	

	Wator Quality	 ✓ Toxic and Hazardous Substances ✓ Volatile Organic Compounds ✓ Chlorinated solvents ✓ Hydrophobic Organics/ Chlorinated Aromatics ✓ Some Other Categories ✓ Arsenic 	
11 th Week	Management in Rivers	Depletion ✓ Biochemical Oxygen Demand Measurement ✓ Modeling BOD Reactions ✓ Ultimate Biochemical Oxygen Demand ✓ Biological Oxygen Demand: Temperature Dependence ✓ Nitrogenous Oxygen Demand ✓ Other Measures Of Oxygen Demand ✓ Mass Balance Approach ✓ Steps in Developing the DO Sag Curve	
	Presentations	✓ Presentations	Presentations
12 th Week	Drinking Water Quality and Health	 ✓ Engineered Water Systems ✓ Water and Health ✓ Drinking Water Regulation in the U.S ✓ Sizes of Particles in Water ✓ Palatable vs. Potable ✓ Sources of Drinking Water ✓ Ground- vs. Surface Water ✓ Surface Water Treatment ✓ Groundwater Treatment 	
13 th Week	Water Treatment	 ✓ Surface Water Treatment ✓ Removal of turbidity ✓ Rapid Mixing ✓ Coagulation and 	

		Flocculation ✓ Coagulant ✓ Flocculation ✓ Softening ✓ Aerators ✓ Oxidation of reduced metals ✓ Hardness ✓ Groundwater Treatment	
14 th Week	Water Treatment: Sedimentation, Filtration and Disinfection	 ✓ Sedimentation/Settling ✓ Circular Clarifiers ✓ Overflow rate ✓ Types of Particle Settling ✓ Filtration ✓ Filter Design ✓ Rapid Sand Filtration ✓ Disinfection ✓ Chlorine Reactions in Water ✓ Other Disinfectants ✓ Design of Disinfection Systems ✓ Disinfection By-products ✓ Advanced Treatment Processes ✓ Residuals Management 	
15 th Week	Wastewater Treatment: Characteristics and Systems	 ✓ Disposal of waste material on land and water bodies ✓ Assimilative capacity ✓ On-land disposal of wastewater ✓ Reuse of treated wastewater ✓ Rapid infiltration ✓ Ground water recharge ✓ Overland runoff / flow ✓ Use of treated sewage for irrigation ✓ Advantages of wastewater irrigation ✓ Scenario of wastewater irrigation in Pakistan ✓ Public health risk associated with raw sewage waste water ✓ Effective wastewater treatment ✓ Significance of wastewater contaminants ✓ Characteristics of domestic wastewater 	Presentations

16 ^h Week	Wastewater Treatment: Primary and Secondary Treatment	 Municipal wastewater treatment systems Pretreatment of industrial wastewaters Bar racks Grit chambers Primary Settling Basins Primary Settling Tank Design Secondary Treatment Diverse Microbial Community Basic Ingredients Dispersed growth vs Fixed Growth Activated Sludge Activated Sludge Design F/M Parameter Trickling Filters Trickling Filter Plant Layout Rotating Biological Contactors Anaerobic Ponds Land and Wetland Application 	
17 ^h Week	Wastewater Treatment: Disinfection And Sludge Management	 ✓ Advanced wastewater treatment ✓ Secondary wastewater treatment ✓ Filtration ✓ Carbon adsorption ✓ Membrane processes ✓ Phosphorus, eutrophication ✓ Phosphorus removal ✓ Nitrogen removal ✓ Air stripping ✓ Sludge treatment ✓ Sludge treatment: thickening ✓ Sludge treatment: stabilization ✓ Sludge treatment: conditioning ✓ Sludge treatment: determent: ✓ Sludge treatment: 	

18 th Week	Air Pollution: Origin, Fate and Effects of Pollutants	 Air Pollution Air Pollution and Public Opinion Air Pollution Standards Control of "Criteria" Air Pollutants Carbon Monoxide Oxides of Nitrogen Photochemical Smog Ozone: Health Effects Ozone: Environmental Effects Sulfur Oxides Sulfur Dioxide: Health Effects Sulfur Dioxide: Health Effects Particulate Matter Health Effects of Particulate Matter Lead Lead: Health Effects 	
Lectures	Meteorology and Dispersion Modeling	Meteorology ✓ Stability ✓ Neutral Conditions ✓ Unstable Conditions ✓ Stable Conditions ✓ Temperature Inversions ✓ Effect of Lanse Pate on	
		 Plumes Point Source Gaussian Plume Model Model Structure and Assumptions 	
Makeup Lectures	Air Pollution: Indoor Air Quality and Air Pollution Control	 ✓ Indoor air quality ✓ Sources and types of indoor air pollutants ✓ Movement of air into / out of buildings ✓ Infiltration ✓ Ventilation ✓ Indoor air quality model ✓ Radon risk assessment ✓ Air pollution control 	