UNIVERSITY OF ENGINEERING AND TECHNOLOGY TAXILA CIVIL ENGINEERING DEPARTMENT OUTCOME BASED EDUCATION CE-308: FLUID MECHANICS II

Course Contents:

Fluid flow in pipes

Reynold's number and its significance. Instability of viscous flow. Viscous flow through circular pipes.

Turbulence flow through circular pipes. Semi-empirical theories of turbulence. Velocity profile in turbulent flow. Pipe roughness. Nikurades's experiments. Moody's diagrams, Introduction to pipe networks.

Dimensional Analysis

Rayleigh and Buckingham's Pi-theorem and their applications.

Elementary Hydro-dynamics

Ideal and real fluid. Differential equation of continuity. Rotational and irrotational flow. Stream function and velocity potential function. Circulation and vorticity. Orthogonality of streamlines and equipotential lines. Brief description of flow fields. Flow net and its limitations. Different methods of drawing a flow net.

Forces on Immersed Bodies

Theoretical concept of boundary layers. Development of boundary layer on immersed bodies. Separation of boundary layer.

Forces on Vanes and Turbo machinery.

Impulse momentum equation.

Forces on moving flat and curved vanes. Definition, similarity laws and factors for turbomachines.

Types of Turbines

Impulse turbine: Construction, features and operations, specific speed.

Reaction Turbine, Types, construction, features and operation, specific speed. Cavitation. Draft tube.

Governing of turbines.

Centrifugal Pumps: Classification. Construction features and operations, Specific speed, Cavitations.

Reciprocating Pumps. Single acting and double acting pumps. Acceleration head. Maximum suction lift. Use of air vessels.

Course Learning Objectives

The course will help the students to understand the basic principles and applications of fluid flow phenomenon and to solve relevant problems.

Course Learning Outcomes

At the end of the course the student will be able to

CLO:1 Understand the fundamental concept of dimensional analysis and its significance in research

CLO:2 Analyze the problems associated with pipe flow and pipe networks and work out their solutions

CLO:3 Have knowledge of components, working and performance of turbomachinery

CLO:4 Have understanding of hydrodynamics and forces on immersed bodies

Mapping of objectives and outcomes and mapping of contents and outcomes

CLO's	CLO 1	CLO 2	CLO 3	CLO 4
PLO's				
PLO 1				
(Engineering	\checkmark	\checkmark	\checkmark	\checkmark
Knowledge)				
PLO 2	./	√		
(Problem Analysis)	v	v		
PLO 3				
(Design/Development	\checkmark	\checkmark		
of Solutions)				
PLO 4			✓	
(Investigation)			v	
PLO 5		\checkmark		
(Modern Tool Usage)		v		
PLO 6				
(The Engineer and				
Society)				
PLO 7				
(Environment and				
Sustainability)				
PLO 8				
(Ethics)				
PLO 9				
(Individual and Team				
work)				
PLO 10				
(Communication)				
PLO 11				
(Project Management)				
PLO 12				
(Lifelong Learning)				

Weekly Lesson Plan

Week	Course Covered
1	Dimensional Analysis
	Rayleigh and Buckingham's Pi-theorem and their applications.
2	Dimensional Analysis
	Rayleigh and Buckingham's Pi-theorem and their applications.
3	Fluid flow in pipes
	Reynold's number and its significance. Instability of viscous flow. Viscous flow through
	circular pipes.
4	Fluid flow in pipes
	Reynold's number and its significance. Instability of viscous flow. Viscous flow through
_	circular pipes.
5	Turbulence flow through circular pipes. Semi-empirical theories of turbulence. Velocity
	profile in turbulent flow. Pipe roughness. Nikurades's experiments. Moody's diagrams,
6	Introduction to pipe networks.
6	Turbulence flow through circular pipes. Semi-empirical theories of turbulence. Velocity
	profile in turbulent flow. Pipe roughness. Nikurades's experiments. Moody's diagrams,
7	Introduction to pipe networks.
/	Turbulence flow through circular pipes. Semi-empirical theories of turbulence. Velocity profile in turbulent flow. Pipe roughness. Nikurades's experiments. Moody's diagrams,
	Introduction to pipe networks.
8	Turbulence flow through circular pipes. Semi-empirical theories of turbulence. Velocity
0	profile in turbulent flow. Pipe roughness. Nikurades's experiments. Moody's diagrams,
	Introduction to pipe networks.
9	Elementary Hydrodynamics
-	Ideal and real fluid. Differential equation of continuity. Rotational and irrotational flow.
	Stream function and velocity potential function. Circulation and vorticity. Orthogonality of
	streamlines and equipotential lines. Brief description of flow fields. Flow net and its
	limitations. Different methods of drawing a flow net.
10	Elementary Hydrodynamics
	Ideal and real fluid. Differential equation of continuity. Rotational and irrotational flow.
	Stream function and velocity potential function. Circulation and vorticity. Orthogonality of
	streamlines and equipotential lines. Brief description of flow fields. Flow net and its
	limitations. Different methods of drawing a flow net.
11	Forces on Immersed Bodies
	Theoretical concept of boundary layers. Development of boundary layer on immersed
	bodies. Separation of boundary layer.
12	Forces on Vanes and Turbo machinery.
	Impulse momentum equation.
	Forces on moving flat and curved vanes. Definition, similarity laws and factors for
10	turbomachines
13	Impulse turbine: Construction, features and operations, specific speed.
	Reaction Turbine, Types, construction, features and operation, specific speed. Cavitation. Draft tube.
	Governing of turbines.
	overning of turbines.

14	Impulse turbine: Construction, features and operations, specific speed.				
	Reaction Turbine, Types, construction, features and operation, specific speed. Cavitation.				
	Draft tube.				
	Governing of turbines.				
15	Centrifugal Pumps: Classification. Construction features and operations, Specific speed,				
	Cavitations. Reciprocating Pumps. Single acting and double acting pumps. Acceleration				
	head. Maximum suction lift. Use of air vessels.				
16	Centrifugal Pumps: Classification. Construction features and operations, Specific speed,				
	Cavitations. Reciprocating Pumps. Single acting and double acting pumps. Acceleration				
	head. Maximum suction lift. Use of air vessels.				

List of Reference Books/material

- ✓ Fluid Mechanics with Engineering Applications by E. John Finnemore and Joseph B. Franzini
- ✓ Fluid Mechanics Including Hydraulic Machines by Dr. A. K. Jain
- ✓ Hydraulics Machinery by S. S. Rattan
- ✓ Hydraulic Engineering by Henderson

Practicals:

- 1 Study of components, working and performance of Francis Reaction Turbine
- 2 Investigation of parts, operation and characteristic curves of Pelton Wheel Turbine
- 3 Proof of Bernoulli's Equation in Water Hammer Apparatus
- 4 Study of computer software for pipe network design
- 5 Application of computer software for water supply design
- 6 Study of parts and working of centrifugal pumps
- 7 Study of components and operation of reciprocating pumps

Mapping of CLOs to Lab Practical of Fluid Mechanics-II Engineering				
	CLOs			
Lab Practical	CLO-1	CLO-2		
	(Fluid Flows)	(Software Application)		
Study of components, working and	\checkmark			
performance of Francis Reaction Turbine				
Investigation of parts, operation and	\checkmark			
characteristic curves of Pelton Wheel				
Proof of Bernoulli's Equation in Water	\checkmark			
Hammer Apparatus				
Study of computer software for pipe		✓		
network design				
Application of computer software for		✓		
water supply design				
Study of parts and working of centrifugal	\checkmark			
pumps				
Study of components and operation of	\checkmark			
reciprocating pumps				