
ibm.com/redbooks

Introduction to Grid
Computing mputing with Globuslobus

Luis Ferreira,
Viktors Berstis,

Jonathan Armstrong,
Mike Kendzierski,

Andreas Neukoetter,
MasanobuTakagi,

Richard Bing-Wo, Adeeb Amir,
Ryo Murakawa, Olegario Hernandez,

James Magowan, Norbert Bieberstein

Fundamentals and concepts

Using the Globus Toolkit

OGSA introduction

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Introduction to Grid Computing with Globus

September 2003

International Technical Support Organization

SG24-6895-01

© Copyright International Business Machines Corporation 2002, 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (September 2003)

This edition applies to Globus Toolkit 2.2 running on Red Hat Linux Version 7.3.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Figures . ix

Tables . xi

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xv
Acknowledgements . xviii
Become a published author . xx
Comments welcome. xxi

Part 1. Fundamentals . 1

Chapter 1. Grid computing . 3
1.1 What grid computing can do . 4

1.1.1 Exploiting underutilized resources . 4
1.1.2 Parallel CPU capacity . 5
1.1.3 Applications. 5
1.1.4 Virtual resources and virtual organizations for collaboration. 6
1.1.5 Access to additional resources . 7
1.1.6 Resource balancing . 8
1.1.7 Reliability. 9
1.1.8 Management . 11

1.2 Grid concepts and components. 12
1.2.1 Types of resources . 12
1.2.2 Jobs and applications . 16
1.2.3 Scheduling, reservation, and scavenging . 17
1.2.4 Intragrid to intergrid . 18

1.3 Grid construction . 21
1.3.1 Deployment planning . 21
1.3.2 Grid software components . 22

1.4 Using a grid: A user’s perspective. 26
1.4.1 Enrolling and installing grid software. 26
1.4.2 Logging onto the grid . 27
1.4.3 Queries and submitting jobs . 27
1.4.4 Data configuration . 28
1.4.5 Monitoring progress and recovery. 29
© Copyright IBM Corp. 2003. All rights reserved. iii

1.4.6 Reserving resources . 29
1.5 Using a grid: An administrator’s perspective . 30

1.5.1 Planning . 30
1.5.2 Installation . 30
1.5.3 Managing enrollment of donors and users . 31
1.5.4 Certificate authority . 32
1.5.5 Resource management. 32
1.5.6 Data sharing . 33

1.6 Using a grid: An application developer’s perspective 33
1.7 The present and the future . 34
1.8 What the grid cannot do . 35

Part 2. Architecture . 37

Chapter 2. Application considerations . 39
2.1 Application considerations. 40

2.1.1 CPU considerations . 40
2.1.2 Data considerations . 46

Chapter 3. Security . 51
3.1 Introduction to grid security . 52

3.1.1 Security fundamentals. 52
3.1.2 Important grid security terms. 53
3.1.3 Symmetric key encryption . 54
3.1.4 Asymmetric key encryption . 55
3.1.5 The Certificate Authority . 56
3.1.6 Digital certificates . 58

3.2 Grid security infrastructure . 62
3.2.1 Getting access to the grid . 62
3.2.2 Grid security communication. 67
3.2.3 Grid security step-by-step . 69

3.3 Grid infrastructure security . 73
3.3.1 Physical security . 73
3.3.2 Operating system security. 73
3.3.3 Grid and firewalls . 74
3.3.4 Host intrusion detection. 74

3.4 Grid security policies and procedures . 75
3.4.1 Certificate Authority. 75
3.4.2 Security controls review . 77

3.5 Potential security risks. 78
3.5.1 PKI vulnerabilities . 78
3.5.2 Grid server vulnerabilities . 78

Chapter 4. Design . 81
iv Introduction to Grid Computing with Globus

4.1 Building a grid architecture . 82
4.1.1 Solution objectives . 83

4.2 Grid architecture models . 87
4.2.1 Computational grid . 87
4.2.2 Data grid . 88

4.3 Grid topologies . 89
4.3.1 Intragrid . 91
4.3.2 Extragrid . 91
4.3.3 Intergrid . 92
4.3.4 E-utilities . 93

4.4 Phases and activities. 94
4.4.1 Basic methodology . 94
4.4.2 Recommended steps . 95

4.5 A conceptual architecture . 96
4.5.1 Infrastructure . 97
4.5.2 Conceptual components . 99

Part 3. Products. 103

Chapter 5. Grid software. 105
5.1 Grid computing products overview . 106
5.2 IBM Grid Toolbox (Globus) . 106
5.3 Avaki . 107
5.4 DataSynapse. 108
5.5 Entropia . 110
5.6 Platform Computing. 111
5.7 United Devices . 113

Chapter 6. Additional components . 115
6.1 Schedulers . 116

6.1.1 Condor . 116
6.1.2 LoadLeveler . 118
6.1.3 PBS . 120

6.2 Data sharing . 121
6.2.1 Federated databases . 122
6.2.2 Distributed file systems . 124

6.3 Security . 124
6.4 Directory service . 125
6.5 License management . 127
6.6 Development tools. 128

Part 4. Globus Toolkit . 129

Chapter 7. Components . 131
 Contents v

7.1 Three pyramids . 132
7.1.1 Open standards. 133

7.2 Components of Globus Toolkit . 133
7.2.1 Grid Security Infrastructure (GSI) . 135
7.2.2 Grid Resource Allocation Manager (GRAM) 135
7.2.3 Monitoring and Discovery Service (MDS) . 138
7.2.4 GridFTP. 140
7.2.5 API and software developer's kit . 142

Chapter 8. Installation and setup . 145
8.1 How to obtain Globus Toolkit . 146
8.2 Bundles and Grid Packaging Technology (GPT) 146

8.2.1 Source bundles . 146
8.2.2 Binary bundles . 147
8.2.3 Additional bundles. 148

8.3 Grid environment. 149
8.4 Installation . 150

8.4.1 Installation of GPT. 151
8.4.2 Installation of bundles . 152
8.4.3 Uninstallation. 155

8.5 Setting up the grid environment . 156
8.5.1 Certificate Authority setup . 157
8.5.2 Services setup. 165
8.5.3 Adding a new grid server . 168

8.6 Additional configurations . 169
8.6.1 GRAM . 169
8.6.2 MDS . 172

8.7 Client interface . 173
8.7.1 Client interface for GRAM . 174
8.7.2 Client interface for MDS (GRIS and GIIS). 176
8.7.3 Client interfaces for GridFTP. 177

Chapter 9. Demo: Grid setup . 179
9.1 Required software . 180
9.2 Setting up the environment . 181

9.2.1 Naming and addressing planning . 182
9.2.2 Install Linux . 184
9.2.3 Installing Network Time Protocol (NTP) . 184
9.2.4 Set up other global items on each machine 185
9.2.5 Installing the GPT . 186
9.2.6 Installing a Globus server bundle . 187
9.2.7 Installing a Globus client bundle . 187
9.2.8 Installing the Globus Simple Certificate Authority 187
vi Introduction to Grid Computing with Globus

9.2.9 Requesting and signing gatekeeper certificates for servers 188
9.2.10 Requesting and signing user certificates 189
9.2.11 Setting up the gatekeepers . 190

9.3 Setting up MDS . 190
9.3.1 Setting up the GIIS and GRIS on the alpha machine 191
9.3.2 Setting up the GRIS on beta, gamma, and delta 192
9.3.3 Start the MDS on all of the servers . 192
9.3.4 Setting up the MDS client zeta . 193
9.3.5 Setting up a secure MDS . 193

9.4 Checking the installation . 194

Chapter 10. Demo: Application . 197
10.1 Video conversion application overview . 198
10.2 Pre-installation. 200
10.3 Installation . 201

10.3.1 Install Globus Toolkit . 201
10.3.2 Install capture software . 201
10.3.3 Test capture machine . 202
10.3.4 Install video conversion packages . 203
10.3.5 Install VideoCD creation software . 204

10.4 Setup . 205
10.4.1 Video capture setup . 205
10.4.2 Video conversion setup. 206
10.4.3 VideoCD creation setup . 207
10.4.4 Main script setup . 207

10.5 Operation. 209
10.6 Improvements . 210

Part 5. Examples . 217

Chapter 11. Grid examples . 219
11.1 Five examples . 220
11.2 Digital cancer imaging . 220

11.2.1 Needs . 221
11.2.2 Solution . 222

11.3 Spreadsheet . 223
11.3.1 Needs . 223
11.3.2 Solution . 223

11.4 ZetaGrid . 224
11.4.1 Needs . 224
11.4.2 Solution . 225

11.5 Simulation . 226
11.5.1 Needs . 226
11.5.2 Solution . 226
 Contents vii

11.6 Entertainment . 227
11.6.1 Needs . 227
11.6.2 Solution . 228

Part 6. OGSA . 231

Chapter 12. Open Grid Services Architecture . 233
12.1 Overview and directions . 234
12.2 Motivations for OGSA . 234

12.2.1 Today’s focus . 235
12.3 Basis for OGSA . 236

12.3.1 The Globus Toolkit . 237
12.3.2 Web Services . 237
12.3.3 Grid security . 242

12.4 OGSA in detail. 243
12.4.1 Needs in a grid process . 245
12.4.2 Conclusions. 248

Part 7. Appendixes . 249

Glossary . 251

Related publications . 255
IBM Redbooks . 255

Other resources . 255
Referenced Web sites . 257
How to get IBM Redbooks . 260

IBM Redbooks collections. 261

Index . 263
viii Introduction to Grid Computing with Globus

Figures

1-1 The grid virtualizes heterogeneous geographically disperse resources . 7
1-2 Jobs are migrated to less busy parts of the grid to balance loads 9
1-3 Redundant grid configuration. 10
1-4 Administrators can adjust policies to better allocate resources 12
1-5 Data striping. 14
1-6 An application is one or more jobs that are scheduled to run on grid . . 17
1-7 A simple grid . 19
1-8 A more complex “intergrid”. 21
2-1 Rearranging computations to execute in parallel 41
2-2 Simulation that cannot be made parallel but needs to run many times . 42
2-3 Redundant speculative computation to reduce latency 43
3-1 Symmetric key encryption using a shared secret key 55
3-2 Digital certificate. 59
3-3 Preparation procedure for GSI. 62
3-4 Authentication procedure . 64
3-5 Delegation procedure of user’s proxy . 66
3-6 Authentication process. 70
3-7 Certificate signed by Alice . 71
3-8 Certificate signed by CA . 71
4-1 Federated DBMS Architecture . 89
4-2 Intragrids, extragrids, and intergrids . 90
4-3 An intragrid. 91
4-4 Extragrids can exist in several organizations and security providers. . . 92
4-5 Intergrid . 93
4-6 Conceptual components . 100
5-1 Avaki . 108
5-2 DataSynapse’s LiveCluster . 109
5-3 Entropia DCGrid. 110
5-4 Platform LSF . 112
5-5 United Devices’ MetaProcessor Platform . 114
6-1 Local scheduler vs. higher level scheduler . 116
6-2 Condor . 118
6-3 LoadLeveler . 119
6-4 PBS . 121
6-5 Relational database . 122
6-6 Federated database. 123
6-7 LDAP directory tree . 126
6-8 Simple LDAP configuration . 127
© Copyright IBM Corp. 2003. All rights reserved. ix

7-1 Three pyramids . 132
7-2 The system overview of Globus Toolkit . 134
7-3 Overview of GRAM . 136
7-4 Overview of DUROC . 138
7-5 Overview of MDS . 139
7-6 Standard file transfer . 141
7-7 Third-party file transfer. 142
8-1 System overview after installation . 150
8-2 System overview after PBS installation . 170
8-3 Behavior of globus-gram-reporter . 171
8-4 Overview of a hierarchical GIIS structure and configuration files 172
8-5 The abstract figure of a hierarchical GIIS . 173
9-1 Hardware environment and software functions of each machine 182
9-2 MDS configuration . 191
10-1 Video conversion demo application . 199
10-2 Video capture example . 203
10-3 Video conversion process . 204
10-4 VideoCD creation using vcdimager . 205
10-5 Parallel video capture and date transfer . 211
12-1 Roles in the Web Services model . 238
12-2 Web Services conceptual stack . 241
12-3 XML-based messaging using SOAP . 242
x Introduction to Grid Computing with Globus

Tables

8-1 Source bundles of Globus Toolkit . 147
8-2 Binary bundles of Globus Toolkit . 147
8-3 gpt-build flavors usually used. 152
8-4 Options of globus-build command . 152
8-5 The standard combination of flavors and options 153
9-1 Host names and IP addressing . 182
9-2 CA distinguished name and passphrase . 183
9-3 User ID and group ID . 183
10-1 Software packages needed for video conversion 200
11-1 Operating systems for ZetaGrid (November 2002) 225
© Copyright IBM Corp. 2003. All rights reserved. xi

xii Introduction to Grid Computing with Globus

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AD/Cycle®
AFS®
AIX®
AS/400®
CICS®
DataJoiner®
DB2®
DFS™
e-business on demand™

eServer™
IBM eServer™
IBM®
IMS™
Informix®
LoadLeveler®
OS/2®
pSeries™
Redbooks (logo)™

Redbooks™
SP™
System/38™
SystemView®
Tivoli®
WebSphere®
xSeries™
zSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
xiv Introduction to Grid Computing with Globus

Preface

This IBM® Redbook is intended to give readers interested in the technical
aspects of grid computing a hands-on introduction using the Globus Toolkit. This
will include a discussion of the first basics of grid computing, applications to be
run on the grid, and various grid products and architectures that are currently
available.

This redbook is the first of several more books and papers on grid computing that
are yet to come, both technical and non-technical. It serves as a good starting
point and foundation before learning more about the next steps coming in grid
computing, OGSA, e-business, and IBM's vision of the on-demand era.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Luis Ferreira, also known as “Luix”, is a Software Engineer at IBM Corporation -
International Technical Support Organization, Austin Center, working on Linux
and Grid Computing projects. He has 19 years of experience with UNIX-like
operating systems, and holds a MSc. Degree in System Engineering from
Universidade Federal do Rio de Janeiro in Brazil. Before joining the ITSO, Luis
worked at Tivoli® Systems as a Certified Tivoli Consultant, at IBM Brasil as a
Certified IT Specialist, and at Cobra Computadores as a Kernel Developer and
Software Designer.

Viktors Berstis is a Senior Software Engineer at IBM Corporation currently
working on the Grid Computing Initiative in Austin Texas. His experience at IBM
includes architecting the System/38™ - AS/400®, developing various compilers,
research on high-level automated integrated circuit design, OS/2®, JavaOS, and
many other projects. He is a senior IEEE member and is an IBM Master Inventor.
He received his Bachelor of Science in Mathematics and Physics and Master of
Science in Computer Information and Control Engineering at the University of
Michigan.

Jonathan Armstrong is a software engineer for IBM Global Service's
e-Technology Center. He graduated from Texas Tech University in December of
2001 with a B.S. in Computer Engineering. He joined IBM in the e-Technology
Center's Grid Computing Initiative at its inception. He has worked with many grid
products and taken part in customer education workshops.
© Copyright IBM Corp. 2003. All rights reserved. xv

Mike Kendzierski is an IT Architect working within the Integrated Technical
Services division of IBM Global Services. His focus is on IT Infrastructure and
Security Architecture, where he has been working as an architect for over six
years across a multitude of platforms and systems from networking, distributed
systems, enterprise messaging, middleware, and security. Mike has also
published several books on e-commerce technologies and computer systems.

Andreas Neukoetter is a Software Engineer for Grid Computing working at IBM
Development Lab Boeblingen, Germany. He has a strong relationship to
Linux/UNIX, over ten years, using only Linux for day to day business over the last
five years. He joined IBM in 1995 and moved to the Boeblingen Lab in 1998. Six
month ago, he was assigned to the Grid Team; this team’s task is to drive the grid
development and deployment inside and outside of IBM. He teaches at the
University of Cooperative Education (Berufsakademie) in Stuttgart.

Masanobu Takagi is an IT Engineer at IBM Global Services Japan. He has two
years of Linux experience with project and customer support, and holds a MSc.
Degree in Social Informatics from Kyoto University, Japan.

Richard Bing-Wo is an IT Specialist with IBM Global Services, ITS, as a
Systems Management and Test Specialist. His group, Migration Services/ESS,
assists clients in managing existing systems as well as moving them to IBM
platforms. Richard has 12 years of UNIX experience, the last two of which has
been with IBM. He has a proven track record in applying technologies in various
network/distributed computing environments with client/server applications.

Adeeb Amir is a Senior IT consultant. He has fifteen years of experience in
systems management and network design and implementation. His areas of
experience also include HA clusters, performance and tuning, troubleshooting,
and server architecture. On the OS side, he is most experienced with UNIX ptx,
AIX®, Solaris, and Windows.

Ryo Murakawa is an IT Engineer. He has seven years of Linux experience and
10 years of Unix-like experience, and five years of developing system
applications. He holds a MSc. Degree in System engineering from Hiroshima
University, Japan.

Olegario Hernandez is a former IBM Advisory Systems Engineer with 30 years
of experience with IBM. He graduated as a Chemical Civil Engineer from the
Universidad de Chile. During his time in IBM, as a regular employee, he was
working in application development, disciplines of systems management, IS
Architecture, CICS® Application Interface, and business systems planning
methodology (BSP). Has been assigned for residencies at different centers of the
IBM International Technical Support Organization: ITSC Boeblingen for CICS
Application Interface, ISC Gaithersburg for AD/Cycle®, and ITSC Poughkeepsie,
twice, for Systems Management and SystemView®. After his retirement from
xvi Introduction to Grid Computing with Globus

IBM, he has been a resident in the ITSO Austin for Architecting Secure Systems
with Tivoli products and, now, for Grid Computing Architecture as an IT Systems
Consultant for IBM Business Partners.

James Magowan is an IT Specialist with the Dynamic e-Business team within
Hursley Services and Technology Department, UK. He has spent several years
working with high performance computing and installing, troubleshooting,
benchmarking, and tuning SP™ installations, before his involvement with high
performance computing lead to working with Linux clusters and then into grid
computing. James has been an active participant within the Grid Technical
Community since January 2002, both through the Global Grid Forum and grid
computing projects. His projects include European DataGrid, Open Grid Services
Database Access and Integration Project (OGSA-DAI), and internal grid
accounting investigations. His involvement with the Global Grid Forum includes
chairing two Working Groups and most recently submitting the Draft Database
Access Specification.

Norbert Bieberstein is a solution development manager at IBM Software Group
in EMEA, located in Düsseldorf, Germany working with system integrators and
ISVs for about five years. He has also worked as an IT architect at IBM's
application architecture project office in Somers, NY and, before that, as a
consultant for CASE and software engineering at IBM’s software development
labs. This work resulted in a book on CASE technology that was published in
Germany in 1993. He has organized several educational events for IBMers,
business partners, and customers on IBM SW products. In 1997, he acted as the
coordinating editor of the awarded IBM Systems Journal, 1/97 Edition. Before
joining IBM in 1989, he worked as an application and system developer for a
software vendor of CIM/ERP systems. Norbert holds a Masters degree in
mathematics from University of Technology Aachen, Germany, and developed
their evaluation systems for electron microscopes. He is currently studying for an
MBA at Henley Management School.
 Preface xvii

Figure 1 The Blue Grid-Tuxedo Team

Figure 1 shows the Blue Grid-Tuxedo Team. From left to right they are Luis,
Viktors, Jonathan, Ryo, Masanobu, Mike, Andreas, Olegario, Richard, and
Adeeb.

Acknowledgements
Thanks to the following people for their contributions to this project:

Lupe Brown, Bart Jacob, Wade Wallace, Chris Blatchley
International Technical Support Organization, Austin Center

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Cary Perkins, Candice Gilzean, Chris Reech
Grid Computing Initiative, e-Technology Center, IBM Austin, USA

Benjamin Khoo
Linux, HPC, and Grid Computing IT Specialist at the Integrated Technology
Services, IBM Singapore
xviii Introduction to Grid Computing with Globus

Dr. Sebastian Wedeniwski
Consulting IT Architect, Software Solutions and Services, IBM Lab
Boeblingen, Germany

Alan Fishman
Solution Manager, Linux Services Offerings, IBM Global Services, Seattle,
USA

Matt Newton
IT Architect, IBM Global Services, T.J. Watson Research Center, USA

Jean Pierre Prost, Pierre Sabloniere, Jean-Yves Girard
IBM Design Center for e-business on demand™, EMEA ATS Products and
Solutions Support Center Montpellier, IBM France

Atsuko Miyashita
Linux Support Center, System and Web Solution Center, IBM Japan

Eberhard Saemann, Tony Gargya, Thilo Boehm
Grid Technologies and Solutions, IBM Boeblingen Lab, Germany

Art Cannon
IBM Global e-Business Solutions Center, USA

Chris Molloy
IBM Global Services, South SDC Technology Planning Department, USA

Christine L. Miller
IBM Grid WW Sales Executive - Life Sciences Sector, USA

Dennis Carden
SDC-NE Delivery Architecture Services - Strategic Outsourcing, IBM USA

Greg Kettmann
Grid Computing Architecture, IBM Americas

James Goethals
zSeries™ Networking Offering, IBM USA

Dr. Dave Watson
Program Director, Hursley Services and Technology, IBM UK

Joshua Horton
AIX/Linux Clusters Information Development, IBM USA

Mauro Gatti
EMEA xSeries™ Solution Architects, IBM Italy
 Preface xix

Michael R. Haley
Global Solutions Executive - Grid Computing, IBM USA

Shawn Mullen
AIX - IP/Grid Security Development, IBM USA

Nina Wilner
LifeSciences TSM, Web Server Solutions Development, IBM USA

Paolo Di Napoli
IBM Learning Services, Italy

Ferry J Kubatz
EMEA - AP Curriculum Development Manager, IBM Learning Services,
Netherlands

Rob Vrablik
IBM eServer™ Grid Marketing Strategy and Planning, IBM USA

Scott S. Denham
HPC Technical Architect, Worldwide High Performance Computing, IBM
USA

Special thanks to the following people:

Ian Foster, Steve Tuecke, Lee Liming and the Argonne National Laboratory
team for supporting us during the review process.

Charles Bacon, Samuel Meder, and Larry Flon from Argonne National
Laboratory, for the excellent technical review.

Joanne Luedtke, Paul Magnone, and John Adams for the inspiration and John
Adams’ team (Grid Computing Initiative, and e-Technology Center) for all
technical support provided during the project.

IBM’s Grid Computing team in Sommers, in particular to Matt Haynos and
Andreas Hermelink.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.
xx Introduction to Grid Computing with Globus

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xxii Introduction to Grid Computing with Globus

Part 1 Fundamentals

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Introduction to Grid Computing with Globus

Chapter 1. Grid computing

Grid computing, most simply stated, is distributed computing taken to the next
evolutionary level. The goal is to create the illusion of a simple yet large and
powerful self managing virtual computer out of a large collection of connected
heterogeneous systems sharing various combinations of resources.

The standardization of communications between heterogeneous systems
created the Internet explosion. The emerging standardization for sharing
resources, along with the availability of higher bandwidth, are driving a possibly
equally large evolutionary step in grid computing.

The following major topics will be introduced to the readers in this chapter:

� What grid computing can do
� Grid concepts and components
� Grid construction
� The present and the future
� What the grid cannot do

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 What grid computing can do
When you deploy a grid, it will be to meet a set of customer requirements. To
better match grid computing capabilities to those requirements, it is useful to
keep in mind the reasons for using grid computing.

1.1.1 Exploiting underutilized resources
The easiest use of grid computing is to run an existing application on a different
machine. The machine on which the application is normally run might be
unusually busy due to an unusual peak in activity. The job in question could be
run on an idle machine elsewhere on the grid.

There are at least two prerequisites for this scenario. First, the application must
be executable remotely and without undue overhead. Second, the remote
machine must meet any special hardware, software, or resource requirements
imposed by the application.

For example, a batch job that spends a significant amount of time processing a
set of input data to produce an output set is perhaps the most ideal and simple
use for a grid. If the quantities of input and output are large, more thought and
planning might be required to efficiently use the grid for such a job. It would
usually not make sense to use a word processor remotely on a grid because
there would probably be greater delays and more potential points of failure.

In most organizations, there are large amounts of underutilized computing
resources. Most desktop machines are busy less than 5 percent of the time. In
some organizations, even the server machines can often be relatively idle. Grid
computing provides a framework for exploiting these underutilized resources and
thus has the possibility of substantially increasing the efficiency of resource
usage.

The processing resources are not the only ones that may be underutilized. Often,
machines may have enormous unused disk drive capacity. Grid computing, more
specifically, a “data grid”, can be used to aggregate this unused storage into a
much larger virtual data store, possibly configured to achieve improved
performance and reliability over that of any single machine.

If a batch job needs to read a large amount of data, this data could be
automatically replicated at various strategic points in the grid. Thus, if the job
must be executed on a remote machine in the grid, the data is already there and
does not need to be moved to that remote point. This offers clear performance
benefits. Also, such copies of data can be used as backups when the primary
copies are damaged or unavailable.
4 Introduction to Grid Computing with Globus

Another function of the grid is to better balance resource utilization. An
organization may have occasional unexpected peaks of activity that demand
more resources. If the applications are grid-enabled, they can be moved to
underutilized machines during such peaks. In fact, some grid implementations
can migrate partially completed jobs. In general, a grid can provide a consistent
way to balance the loads on a wider federation of resources. This applies to CPU,
storage, and many other kinds of resources that may be available on a grid.
Management can use a grid to better view the usage patterns in the larger
organization, permitting better planning when upgrading systems, increasing
capacity, or retiring computing resources no longer needed.

1.1.2 Parallel CPU capacity
The potential for massive parallel CPU capacity is one of the most attractive
features of a grid. In addition to pure scientific needs, such computing power is
driving a new evolution in industries such as the bio-medical field, financial
modeling, oil exploration, motion picture animation, and many others.

The common attribute among such uses is that the applications have been
written to use algorithms that can be partitioned into independently running
parts. A CPU intensive grid application can be thought of as many smaller
“subjobs,” each executing on a different machine in the grid. To the extent that
these subjobs do not need to communicate with each other, the more “scalable”
the application becomes. A perfectly scalable application will, for example, finish
10 times faster if it uses 10 times the number of processors.

Barriers often exist to perfect scalability. The first barrier depends on the
algorithms used for splitting the application among many CPUs. If the algorithm
can only be split into a limited number of independently running parts, then that
forms a scalability barrier. The second barrier appears if the parts are not
completely independent; this can cause contention, which can limit scalability.
For example, if all of the subjobs need to read and write from one common file or
database, the access limits of that file or database will become the limiting factor
in the application’s scalability. Other sources of inter-job contention in a parallel
grid application include message communications latencies among the jobs,
network communication capacities, synchronization protocols, input-output
bandwidth to devices and storage devices, and latencies interfering with real-time
requirements.

1.1.3 Applications
There are many factors to consider in grid-enabling an application. One must
understand that not all applications can be transformed to run in parallel on a grid
and achieve scalability. Furthermore, there are no practical tools for transforming
arbitrary applications to exploit the parallel capabilities of a grid. There are some
 Chapter 1. Grid computing 5

practical tools that skilled application designers can use to write a parallel grid
application. However, automatic transformation of applications is a science in its
infancy. This can be a difficult job and often requires top mathematics and
programming talents, if it is even possible in a given situation. New computation
intensive applications written today are being designed for parallel execution and
these will be easily grid-enabled, if they do not already follow emerging grid
protocols and standards.

1.1.4 Virtual resources and virtual organizations for collaboration
Another important grid computing contribution is to enable and simplify
collaboration among a wider audience. In the past, distributed computing
promised this collaboration and achieved it to some extent. Grid computing takes
these capabilities to an even wider audience, while offering important standards
that enable very heterogeneous systems to work together to form the image of a
large virtual computing system offering a variety of virtual resources, as
illustrated in Figure 1-1 on page 7. The users of the grid can be organized
dynamically into a number of virtual organizations, each with different policy
requirements. These virtual organizations can share their resources collectively
as a larger grid.

Sharing starts with data in the form of files or databases. A “data grid” can
expand data capabilities in several ways. First, files or databases can seamlessly
span many systems and thus have larger capacities than on any single system.
Such spanning can improve data transfer rates through the use of striping
techniques. Data can be duplicated throughout the grid to serve as a backup and
can be hosted on or near the machines most likely to need the data, in
conjunction with advanced scheduling techniques.

Sharing is not limited to files, but also includes many other resources, such as
equipment, software, services, licenses, and others. These resources are
“virtualized” to give them a more uniform interoperability among heterogeneous
grid participants.

The participants and users of the grid can be members of several real and virtual
organizations. The grid can help in enforcing security rules among them and
implement policies, which can resolve priorities for both resources and users.
6 Introduction to Grid Computing with Globus

Figure 1-1 The grid virtualizes heterogeneous geographically disperse resources

1.1.5 Access to additional resources
In addition to CPU and storage resources, a grid can provide access to increased
quantities of other resources and to special equipment, software, licenses, and
other services. The additional resources can be provided in additional numbers
and/or capacity. For example, if a user needs to increase his total bandwidth to
the Internet to implement a data mining search engine, the work can be split
among grid machines that have independent connections to the Internet. In this
way, the total searching capability is multiplied, since each machine has a
separate connection to the Internet. If the machines had shared the connection
to the Internet, there would not have been an effective increase in bandwidth.

Some machines may have expensive licensed software installed that the user
requires. His jobs can be sent to such machines more fully exploiting the
software licenses.

Some machines on the grid may have special devices. Most of us have used
remote printers, perhaps with advanced color capabilities or faster speeds.
 Chapter 1. Grid computing 7

Similarly, a grid can be used to make use of other special equipment. For
example, a machine may have a high speed, self feeding, DVD writer that could
be used to publish a quantity of data faster. Some machines on the grid may be
connected to scanning electron microscopes that can be operated remotely. In
this case, scheduling and reservation are important. A specimen could be sent in
advance to the facility hosting the microscope. Then the user can remotely
operate the machine, changing perspective views until the desired image is
captured.

The grid can enable more elaborate access, potentially to remote medical
diagnostic and robotic surgery tools with two-way interaction from a distance.
The variations are limited only by one’s imagination. Today, we have remote
device drivers for printers. Eventually, we will see standards for grid-enabled
device drivers to many unusual devices and resources. All of these will make the
grid look like a large virtual machine with a collection of virtual resources beyond
what would be available on just one conventional machine.

1.1.6 Resource balancing
A grid federates a large number of resources contributed by individual machines
into a greater total virtual resource. For applications that are grid-enabled, the
grid can offer a resource balancing effect by scheduling grid jobs on machines
with low utilization, as illustrated in Figure 1-2 on page 9. This feature can prove
invaluable for handling occasional peak loads of activity in parts of an larger
organization. This can happen in two ways:

� An unexpected peak can be routed to relatively idle machines in the grid.

� If the grid is already fully utilized, the lowest priority work being performed on
the grid can be temporarily suspended or even cancelled and performed
again later to make room for the higher priority work.

Without a grid infrastructure, such balancing decisions are difficult to prioritize
and execute.

Occasionally, a project may suddenly rise in importance with a specific deadline.
A grid cannot perform a miracle and achieve a deadline when it is already too
close. However, if the size of the job is known, if it is a kind of job that can be
sufficiently split into subjobs, and if enough resources are available after
preempting lower priority work, a grid can bring a very large amount of
processing power to solve the problem. In such situations, a grid can, with some
planning, succeed in meeting a surprise deadline.
8 Introduction to Grid Computing with Globus

Figure 1-2 Jobs are migrated to less busy parts of the grid to balance loads

Other more subtle benefits can occur using a grid for load balancing. When jobs
communicate with each other, the Internet, or with storage resources, an
advanced scheduler could schedule them to minimize communications traffic or
minimize the distance of the communications. This can potentially reduce
communication and other forms of contention in the grid.

Finally, a grid provides excellent infrastructure for brokering resources. Individual
resources can be profiled to determine their availability and their capacity, and
this can be factored into scheduling on the grid. Different organizations
participating in the grid can build up grid credits and use them at times when they
need additional resources. This can form the basis for grid accounting and the
ability to more fairly distribute work on the grid.

1.1.7 Reliability
High-end conventional computing systems use expensive hardware to increase
reliability. They are built using chips with redundant circuits that vote on results,
and contain much logic to achieve graceful recovery from an assortment of
hardware failures. The machines also use duplicate processors with hot
 Chapter 1. Grid computing 9

pluggability so that when they fail, one can be replaced without turning the other
off. Power supplies and cooling systems are duplicated. The systems are
operated on special power sources that can start generators if utility power is
interrupted. All of this builds a reliable system, but at a great cost, due to the
duplication of high-reliability components.

In the future, we will see a complementary approach to reliability that relies on
software and hardware. A grid is just the beginning of such technology. The
systems in a grid can be relatively inexpensive and geographically dispersed.
Thus, if there is a power or other kind of failure at one location, the other parts of
the grid are not likely to be affected. Grid management software can
automatically resubmit jobs to other machines on the grid when a failure is
detected. In critical, real-time situations, multiple copies of the important jobs can
be run on different machines throughout the grid, as illustrated in Figure 1-3.
Their results can be checked for any kind of inconsistency, such as computer
failures, data corruption, or tampering.

Figure 1-3 Redundant grid configuration

Such grid systems will utilize “autonomic computing.” This is a type of software
that automatically heals problems in the grid, perhaps even before an operator or

Job x

Job x

Job x
10 Introduction to Grid Computing with Globus

manager is aware of them. In principle, most of the reliability attributes achieved
using hardware in today’s high availability systems can be achieved using
software in a grid setting in the future.

1.1.8 Management
The goal to virtualize the resources on the grid and more uniformly handle
heterogeneous systems will create new opportunities to better manage a larger,
more disperse IT infrastructure. It will be easier to visualize capacity and
utilization, making it easier for IT departments to control expenditures for
computing resources over a larger organization.

The grid offers management of priorities among different projects. In the past,
each project may have been responsible for its own IT resource hardware and
the expenses associated with it. Often this hardware might be underutilized while
another project finds itself in trouble, needing more resources due to unexpected
events. With the larger view a grid can offer, it becomes easier to control and
manage such situations. As illustrated in Figure 1-4 on page 12, administrators
can change any number of policies that affect how the different organizations
might share or compete for resources.

Aggregating utilization data over a larger set of projects can enhance an
organization’s ability to project future upgrade needs. When maintenance is
required, grid work can be rerouted to other machines without crippling the
projects involved.

Autonomic computing can come into play here too. Various tools may be able to
identify important trends throughout the grid, informing management of those
that require attention.
 Chapter 1. Grid computing 11

Figure 1-4 Administrators can adjust policies to better allocate resources

1.2 Grid concepts and components
In this section, we introduce the various grid concepts, components, and terms in
more detail.

1.2.1 Types of resources
A grid is a collection of machines, sometimes referred to as “nodes,” “resources,”
“members,” “donors,” “clients,” “hosts,” “engines,” and many other such terms.
They all contribute any combination of resources to the grid as a whole. Some
resources may be used by all users of the grid while others may have specific
restrictions.

Computation
The most common resource is computing cycles provided by the processors of
the machines on the grid. The processors can vary in speed, architecture,
software platform, and other associated factors, such as memory, storage, and
12 Introduction to Grid Computing with Globus

connectivity. There are three primary ways to exploit the computation resources
of a grid. The first and simplest is to use it to run an existing application on an
available machine on the grid rather than locally. The second is to use an
application designed to split its work in such a way that the separate parts can
execute in parallel on different processors. The third is to run an application, that
needs to be executed many times, on many different machines in the grid.
“Scalability” is a measure of how efficiently the multiple processors on a grid are
used. If twice as many processors makes an application complete in one half the
time, then it is said to be perfectly scalable. However, there may be limits to
scalability when applications can only be split into a limited number of separately
running parts or if those parts experience some other contention for resources of
some kind.

Storage
The second most common resource used in a grid is data storage. A grid
providing an integrated view of data storage is sometimes called a “data grid.”
Each machine on the grid usually provides some quantity of storage for grid use,
even if temporary. Storage can be memory attached to the processor or it can be
“secondary storage” using hard disk drives or other permanent storage media.
Memory attached to a processor usually has very fast access but is volatile. It
would best be used to cache data or to serve as temporary storage for running
applications.

Secondary storage in a grid can be used in interesting ways to increase capacity,
performance, sharing, and reliability of data. Many grid systems use mountable
networked file systems, such as Andrew File System (AFS®), Network File
System (NFS), Distributed File System (DFS™), or General Parallel File System
(GPFS). These offer varying degrees of performance, security features, and
reliability features.

Capacity can be increased by using the storage on multiple machines with a
unifying file system. Any individual file or database can span several storage
devices and machines, eliminating maximum size restrictions often imposed by
file systems shipped with operating systems. A unifying file system can also
provide a single uniform name space for grid storage. This makes it easier for
users to reference data residing in the grid, without regard for its exact location.
In a similar way, special database software can “federate” an assortment of
individual databases and files to form a larger, more comprehensive database,
accessible using database query functions.
 Chapter 1. Grid computing 13

Figure 1-5 Data striping

More advanced file systems on a grid can automatically duplicate sets of data, to
provide redundancy for increased reliability and increased performance. An
intelligent grid scheduler can help select the appropriate storage devices to hold
data, based on usage patterns. Then jobs can be scheduled closer to the data,
preferably on the machines directly connected to the storage devices holding the
required data.

Data striping can also be implemented by grid file systems, as illustrated in
Figure 1-5. When there are sequential or predictable access patterns to data,
this technique can create the virtual effect of having storage devices that can
transfer data at a faster rate than any individual disk drive. This can be important
for multimedia data streams or when collecting large quantities of data at
extremely high rates from CAT scans or particle physics experiments, for
example.

A grid file system can also implement journaling so that data can be recovered
more reliably after certain kinds of failures. In addition, some file systems
implement advanced synchronization mechanisms to reduce contention when
data is shared and updated by many users.

Communications
The rapid growth in communication capacity among machines today makes grid
computing practical, compared to the limited bandwidth available when

High speed data Record Record Record Record Record Record

Striped virtual file system

Mirrors, Replicas, Journals...

Virtualization
Capacity
Sharing
Availability

Striping - speed

Mirrors - reliability

Replicas - remote

Journals - transactions
14 Introduction to Grid Computing with Globus

distributed computing was first emerging. Therefore, it should not be a surprise
that another important resource of a grid is data communication capacity. This
includes communications within the grid and external to the grid.
Communications within the grid are important for sending jobs and their required
data to points within the grid. Some jobs require a large amount of data to be
processed and it may not always reside on the machine running the job. The
bandwidth available for such communications can often be a critical resource that
can limit utilization of the grid.

External communication access to the Internet, for example, can be valuable
when building search engines. Machines on the grid may have connections to the
external Internet in addition to the connectivity among the grid machines. When
these connections do not share the same communication path, then they add to
the total available bandwidth for accessing the Internet.

Redundant communication paths are sometimes needed to better handle
potential network failures and excessive data traffic. In some cases, higher speed
networks must be provided to meet the demands of jobs transferring larger
amounts of data. A grid management system can better show the topology of the
grid and highlight the communication bottlenecks. This information can in turn be
used to plan for hardware upgrades.

Software and licenses
The grid may have software installed that may be too expensive to install on
every grid machine. Using a grid, the jobs requiring this software are sent to the
particular machines on which this software happens to be installed. When the
licensing fees are significant, this approach can save significant expenses for an
organization.

Some software licensing arrangements permit the software to be installed on all
of the machines of a grid but may limit the number of installations that can be
simultaneously used at any given instant. License management software keeps
track of how many concurrent copies of the software are being used and prevents
more than that number from executing at any given time. The grid job schedulers
can be configured to take software licenses into account, optionally balancing
them against other priorities or policies.

Special equipment, capacities, architectures, policies
Platforms on the grid will often have different architectures, operating systems,
devices, capacities, and equipment. Each of these items represents a different
kind of resource that the grid can use as criteria for assigning jobs to machines.
While some software may be available on several architectures, for example
PowerPC and x86, such software is often designed to run only on a particular
 Chapter 1. Grid computing 15

type of hardware and operating system. Such attributes must be considered
when assigning jobs to resources in the grid.

In some cases, the administrator of a grid may create a new artificial resource
type that is used by schedulers to assign work according to policy rules or other
constraints. For example, some machines may be designated to only be used for
medical research. These would be identified as having a medical research
attribute and the scheduler could be configured to only assign jobs that require
machines of the medical research “resource.” Others may be participate in the
grid only if they are not used for military purposes. In this situation, jobs requiring
a “military resource” would not be assigned to such machines. Of course, the
administrators would need to impose a classification on each kind of job through
some certification procedure to use this kind of approach.

1.2.2 Jobs and applications
Although various kinds of resources on the grid may be shared and used, they
are usually accessed via an executing “application” or “job.” Usually we use the
term “application” as the highest level of a piece of work on the grid. However,
sometimes the term “job” is used equivalently. Applications may be broken down
into any number of individual jobs, as illustrated in Figure 1-6 on page 17. Those,
in turn, can be further broken down into “subjobs.” The grid industry uses other
terms, such as transaction, work unit, or submission, to mean the same thing as
a job.

Jobs are programs that are executed at an appropriate point on the grid. They
may compute something, execute one or more system commands, move or
collect data, or operate machinery. A grid application that is organized as a
collection of jobs is usually designed to have these jobs execute in parallel on
different machines in the grid.
16 Introduction to Grid Computing with Globus

Figure 1-6 An application is one or more jobs that are scheduled to run on grid

The jobs may have specific dependencies that may prevent them from executing
in parallel in all cases. For example, they may require some specific input data
that must be copied to the machine on which the job is to run. Some jobs may
require the output produced by certain other jobs and cannot be executed until
those prerequisite jobs have completed executing. Jobs may spawn additional
subjobs, depending on the data they process. This work flow can create a
hierarchy of jobs and subjobs. Finally, the results of all of the jobs must be
collected and appropriately assembled to produce the ultimate answer for the
application.

1.2.3 Scheduling, reservation, and scavenging
The grid system is responsible for sending a job to a given machine to be
executed. In the simplest of grid systems, the user may select a machine suitable
for running his job and then execute a grid command that sends the job to the
selected machine. More advanced grid systems would include a job “scheduler”
of some kind that automatically finds the most appropriate machine on which to
run any given job that is waiting to be executed. Schedulers react to current
 Chapter 1. Grid computing 17

availability of resources on the grid. The term “scheduling” is not to be confused
with “reservation” of resources in advance to improve the quality of service.
Sometimes the term “resource broker” is used in place of “scheduler,” but this
term implies that some sort of bartering capability is factored into scheduling.

In a “scavenging” grid system, any machine that becomes idle would typically
report its idle status to the grid management node. This management node
would assign to this idle machine the next job which is satisfied by the machine’s
resources. Scavenging is usually implemented in a way that is unobtrusive to the
normal machine user. If the machine becomes busy with local non-grid work, the
grid job is usually suspended or delayed. This situation creates somewhat
unpredictable completion times for grid jobs, although it is not disruptive to those
machines donating resources to the grid.

To create more predictable behavior, grid machines are often “dedicated” to the
grid and are not preempted by outside work. This enables schedulers to compute
the approximate completion time for a set of jobs, when their running
characteristics are known.

As a further step, grid resources can be “reserved” in advance for a designated
set of jobs. Such reservations operate much like a calendaring system used to
reserve conference rooms for meetings. This is done to meet deadlines and
guarantee quality of service. When policies permit, resources reserved in
advance could also be scavenged to run lower priority jobs when they are not
busy during a reservation period, yielding to jobs for which they are reserved.
Thus, various combinations of scheduling, reservation, and scavenging can be
used to more completely utilize the grid.

Scheduling and reservation is fairly straightforward when only one resource type,
usually CPU, is involved. However, additional grid optimizations can be achieved
by considering more resources in the scheduling and reservation process. For
example, it would be desirable to assign executing jobs to machines nearest to
the data that these jobs require. This would reduce network traffic and possibly
reduce scalability limits. Optimal scheduling, considering multiple resources, is a
difficult mathematics problem. Therefore, such schedulers may use heuristics.
These heuristics are rules that are designed to improve the probability of finding
the best combination of job schedules and reservations to optimize throughput or
any other metric.

1.2.4 Intragrid to intergrid
There have been attempts to formulate a precise definition for what a “grid” is. In
fact, the concept of grid computing is still evolving and most attempts to define it
precisely end up excluding implementations that many would consider to be
grids. We will be pragmatic and not claim to make any definitive descriptions of
18 Introduction to Grid Computing with Globus

what a grid is and is not. Therefore, the following descriptions of various kinds of
“grids” must be taken loosely.

Grids can be built in all sizes, ranging from just a few machines in a department
to groups of machines organized as a hierarchy spanning the world. In this
section, we will describe some examples in this range of grid system topologies.

Figure 1-7 A simple grid

As presented in Figure 1-7, the simplest grid consists of just a few machines, all
of the same hardware architecture and same operating system, connected on a
local network. This kind of grid uses homogeneous systems so there are fewer
considerations and may be used just for experimenting with grid software. The
machines are usually in one department of an organization, and their use as a
grid may not require any special policies or security concerns. Because the
machines have the same architecture and operating system, choosing
application software for these machines is usually simple. Some people would
call this a “cluster” implementation rather than a “grid.”

The next progression would be to include heterogeneous machines. In this
configuration, more types of resources are available. The grid system is likely to
include some scheduling components. File sharing may still be accomplished
 Chapter 1. Grid computing 19

using networked file systems. Machines participating in the grid may include
ones from multiple departments but within the same organization. Such a grid is
also referred to as an “intragrid.”

As the grid expands to many departments, policies may be required for how the
grid should be used. For example, there may be policies for what kinds of work is
allowed on the grid and at what times. There may be a prioritization by
department or by kinds of applications that should have access to grid resources.
Also, security becomes more important as more organizations are involved.
Sensitive data in one department may need to be protected from access by jobs
running for other departments. Dedicated grid machines may be added to
increase the quality of service for grid computing, rather than depending entirely
on scavenged resources.

The grid may grow geographically in an organization that has facilities in different
cities. Dedicated communications’ connections may be used among these
facilities and the grid. In some cases, VPN tunneling or other technologies may
be used over the Internet to connect the different parts of the organization.
Security increases in importance once the bounds of any given facility are
traversed. The grid may grow to be hierarchically organized to reduce the
contention implied by central control, increasing scalability.

Over time, as illustrated in Figure 1-8 on page 21, a grid may grow to cross
organization boundaries, and may be used to collaborate on projects of common
interest. This is known as an “intergrid.” The highest levels of security are usually
required in this configuration to prevent possible attacks and spying. The intragrid
offers the prospect for trading or brokering resources over a much wider
audience. Resources may be purchased as a utility from trusted suppliers.
20 Introduction to Grid Computing with Globus

Figure 1-8 A more complex “intergrid”

1.3 Grid construction
An ad hoc grid may be installed by a few programmers in their spare time, but as
the grid grows, and as users become more dependent on it for mission-critical
work, a degree of planning is essential. It is best to understand the organization’s
requirements and choose grid technologies that best fit these requirements. This
section discussed some of the planning considerations and grid components that
address the requirements.

1.3.1 Deployment planning
The use of a grid is often born from a need for increased resources of some type.
One often looks to their neighbor who may have excess capacity in the particular
resource. One of the first considerations is the hardware available and how it is
connected via a LAN or WAN. Next, an organization may want to add additional
hardware to augment the capabilities of the grid. It is important to understand the
 Chapter 1. Grid computing 21

applications to be used on the grid. Their characteristics can affect the decisions
of how to best choose and configure the hardware and its data connectivity.

Security
Security is a much more important factor in planning and maintaining a grid than
in conventional distributed computing, where data sharing comprises the bulk of
the activity. In a grid, the member machines are configured to execute programs
rather than just move data. This makes an unsecured grid potentially fertile
ground for viruses and Trojan horse programs. For this reason, it is important to
understand exactly which components of the grid must be rigorously secured to
deter any kind of attack. Furthermore, it is important to understand the issues
involved in authenticating users and properly executing the responsibilities of a
Certificate Authority.

Organization
The technology considerations are important in deploying a grid. However,
organizational and business issues can be equally important. It is important to
understand how the departments in an organization interact, operate, and
contribute to the whole. Often, there are barriers built between departments and
projects to protect their resources in an effort to increase the probability of timely
success. However, by rethinking some of these relationships, one can find that
more sharing of resources can sometimes benefit the entire organization better.
For example, a project that finds itself behind schedule and over budget may not
be able to afford the resources required to solve the problem. A grid would give
such projects an added measure of safety, providing an extra margin of resource
capacity needed to finish the project. Similarly, a project in its early stages, when
computing resources are not being fully utilized, may be able to donate them to
other projects in need. A grid also offers the ability for the organization’s
management to see the bigger priority picture and react more quickly in shifting
resource utilization, priorities, and policies.

1.3.2 Grid software components
This section presents some of the key components that must be discussed
before designing a grid computing architecture.

Management components
Any grid system has some management components. First, there is a
component that keeps track of the resources available to the grid and which
users are members of the grid. This information is used primarily to decide where
grid jobs should be assigned.
22 Introduction to Grid Computing with Globus

Second, there are measurement components that determine both the capacities
of the nodes on the grid and their current utilization rate at any given time. This
information is used to schedule jobs in the grid. Such information is also used to
determine the health of the grid, alerting personnel to problems such as outages,
congestion, or overcommitment. This information is also used to determine
overall usage patterns and statistics, as well as to log and account for usage of
grid resources.

Third, advanced grid management software can automatically manage many
aspects of the grid. This is known as autonomic computing, or “recovery oriented
computing.” This software would automatically recover from various kinds of grid
failures and outages, finding alternative ways to get the workload processed.

Donor software
Each machine contributing resources typically needs to enroll as a member of
the grid and install some software that manages the grid’s use of its resources.
Usually, some sort of identification and authentication procedure must be
performed before a machine can join the grid. A Certificate Authority can be used
to establish the identity of the donor machine as well as the users and the grid
itself.

Some grid systems provide their own login to the grid while others depend on the
native operating systems for user authentication. In the latter case, a user ID
mapping system may be needed to match the user’s rights properly on different
machines. This typically is manually maintained by a grid administrator. He
determines which user ID a given user may possess on each grid machine and
enters these IDs in a protected database or registry. In this way, when grid jobs
are submitted to different machines for a user, the proper local machine user ID
is used for determining the users rights.

In some grid systems, it is possible to join the grid without any special
authentication. And in others, it is possible for any user to submit jobs to the grid.
Such systems may be convenient to set up, but should be discouraged in larger
deployments due to the serious security problems that they would open up.

The grid system makes information about the newly added resources available
throughout the grid. The donor machine will usually have some sort of monitor
that determines or measures how busy the machine is and the rate or amount of
resources utilized. This information is “bubbled up” to the management software
of the grid and used to schedule use of those resources accordingly. In a
scavenging system, this information tells the grid management software when
the machine is idle and available for work.

Most importantly, the software installed on a given machine can accept an
executable job from the grid management system and execute it. A user
 Chapter 1. Grid computing 23

somewhere on the grid submits a job for execution on the grid. The grid
management software must communicate with the grid donor software to send
the job there. The donor grid software must be able to receive the executable file
or select the proper one from copies pre-installed on the donor machine. The
software is executed and the output is sent back to the requester. More advanced
implementations can dynamically adjust the priority of a running job, suspend it
and resume running it later, or checkpoint it with the possibility of resuming its
execution on a different machine. These kinds of actions may be necessary to
respond to load balancing problems or priority or policy changes in the grid.

Submission software
Usually any member machine of a grid can be used to submit jobs to the grid and
initiate grid queries. However, in some grid systems, this function is implemented
as a separate component installed on “submission nodes” or “submission
clients.” When a grid is built using dedicated resources rather than scavenged
resources, separate submission software is usually installed on the user’s
desktop or workstation.

Distributed grid management
Larger grids may have a hierarchical or other type of organizational topology
usually matching the connectivity topology. That is, machines locally connected
together with a LAN form a “cluster” of machines. The grid may be organized in a
hierarchy consisting of clusters of clusters. The work involved in managing the
grid is distributed to increase the scalability of the grid. The collection and grid
operation and resource data as well as job scheduling is distributed to match the
topology of the grid. For example, a central job scheduler will not schedule a
submitted job directly to the machine which is to execute it. Instead the job is sent
to a lower level scheduler which handles a set of machines (or further clusters).
The lower level scheduler handles the assignment to the specific machine.
Similarly, the collection of statistical information is distributed. Lower level
clusters receive activity information from the individual machines, aggregate it,
and send it to higher level management nodes in the hierarchy.

Schedulers
Most grid systems include some sort of job scheduling software. This software
locates a machine on which to run a grid job that has been submitted by a user.
In the simplest cases, it may just blindly assign jobs in a round-robin fashion to
the next machine matching the resource requirements. However, there are
advantages to using a more advanced scheduler.

Some schedulers implement a job priority system. This is sometimes done by
using several job queues, each with a different priority. As grid machines become
available to execute jobs, the jobs are taken from the highest priority queues first.
Policies of various kinds are also implemented using schedulers. Policies can
24 Introduction to Grid Computing with Globus

include various kinds of constraints on jobs, users, and resources. For example,
there may be a policy that restricts grid jobs from executing at certain times of the
day.

Schedulers usually react to the immediate grid load. They use measurement
information about the current utilization of machines to determine which ones are
not busy before submitting a job. Schedulers can be organized in a hierarchy. For
example, a meta-scheduler may submit a job to a cluster scheduler or other
lower level scheduler rather than to an individual machine.

More advanced schedulers will monitor the progress of scheduled jobs managing
the overall work-flow. If the jobs are lost due to system or network outages, a
good scheduler will automatically resubmit the job elsewhere. However, if a job
appears to be in an infinite loop and reaches a maximum timeout, then such jobs
should not be rescheduled. Typically, jobs have different kinds of completion
codes, some of which are suitable for re-submission and some of which are not.

Reserving resources on the grid in advance is accomplished with a “reservation
system.” It is more than a scheduler. It is first a calendar based system for
reserving resources for specific time periods and preventing any others from
reserving the same resource at the same time. It also must be able to remove or
suspend jobs that may be running on any machine or resource when the
reservation period is reached.

Communications
A grid system may include software to help jobs communicate with each other.
For example, an application may split itself into a large number of subjobs. Each
of these subjobs is a separate job in the grid. However, the application may
implement an algorithm that requires that the subjobs communicate some
information among them. The subjobs need to be able to locate other specific
subjobs, establish a communications connection with them, and send the
appropriate data. The open standard Message Passing Interface (MPI) and any
of several variations is often included as part of the grid system for just this kind
of communication.

Observation, management, and measurement
We mentioned above the schedulers react to current loads on the grid. Usually,
the donor software will include some tools that measure the current load and
activity on a given machine using either operating system facilities or by direct
measurement. This software is sometimes referred to as a “load sensor.” Some
grid systems provide the means for implementing custom load sensors for other
than CPU or storage resources.

Such measurement information is useful not only for scheduling, but also for
discovering overall usage patterns in the grid. The statistics can show trends
 Chapter 1. Grid computing 25

which may signal the need for additional hardware. Also, measurement
information about specific jobs can be collected and used to better predict the
resource requirements of that job the next time it is run. The better the prediction,
the more efficiently the grid’s workload can be managed.

The measurement information can also be saved for accounting purposes, or to
form the basis for grid resource brokering, or to manage priorities more fairly. The
information can also be displayed in various forms to better visualize grid activity
and utilization.

1.4 Using a grid: A user’s perspective
This section describes the typical usage activities in using the grid from an user’s
perspective.

1.4.1 Enrolling and installing grid software
A user first enrolls as a grid user, and installs the provided grid software on his
own machine. He may optionally enroll his machine as a donor on the grid.

Enrolling in the grid may require authentication for security purposes. The user
positively establishes his identity with a Certificate Authority. This should not be
done solely via the Internet. The Certificate Authority must take steps to assure
that the user is in fact who he claims to be. The Certificate Authority makes a
special certificate available to software needing to check the true identity of a grid
user and his grid requests. Similar steps may be required to identify the donating
machine. The user has the responsibility of keeping his grid credentials secure.

Once the user and/or machine are authenticated, the grid software is provided to
the user for installing on his machine for the purposes of using the grid as well as
donating to the grid. This software may be automatically preconfigured by the
grid management system to know the communication address of the
management nodes in the grid and user or machine identification information. In
this way, the installation may be a one click operation with a minimum of
interaction required on the part of the user. In less automated grid installations,
the user may be asked to identify the grid’s management node and possibly other
configuration information. He may choose to limit the resources donated to the
grid, the times that his machine is usable by the grid, and other policy related
constraints. The user may also need to inform the grid administrator which user
IDs are his on other machines that exist on the grid.
26 Introduction to Grid Computing with Globus

1.4.2 Logging onto the grid
To use the grid, most grid systems require the user to log on to a system using a
user ID that is enrolled in the grid. Other grid systems may have their own grid
login ID separate from the one on the operating system. A grid login is usually
more convenient for grid users. It eliminates the ID matching problems among
different machines. To the user, it makes the grid look more like one large virtual
computer rather than a collection of individual machines. Globus, for example,
implements a proxy login model that keeps the user logged in for a specified
amount of time, even if he logs off and back on the operating system and even if
the machine is rebooted.

Once logged on, the user can query the grid and submit jobs. Some grid
implementations permit some query functions if the user is not logged into the
grid or even if the user is not enrolled in the grid.

1.4.3 Queries and submitting jobs
The user will usually perform some queries to check to see how busy the grid is,
to see how his submitted jobs are progressing, and to look for resources on the
grid. Grid systems usually provide command line tools as well as graphical user
interfaces (GUIs) for queries. Command line tools are especially useful when the
user wants to write a script that automates a sequence of actions. For example,
the user might write a script to look for an available resource, submit a job to it,
watch the progress of the job, and present the results when the job has finished.

Job submission usually consists of three parts, even if there is only one
command required. First, some input data and possibly the executable program
or execution script file are sent to the machine to execute the job. Sending the
input is called “staging the input data.” Alternatively, the data and program files
may be pre-installed on the grid machines or accessible via a mountable
networked file system. When the grid consists of heterogeneous machines, there
may be multiple executable program files, each compiled for the different
machine platforms on the grid. A nice feature provided by some grid systems is
to register these multiple versions of the program so that the grid system can
automatically choose a correctly matching version to the grid machine that will
run the program. Some grid technologies require that the program and input data
be first processed or “wrappered” in some way by the grid system. This may be
done to add protective execution controls around the application or just to simply
collect all of the data files into one.

Second, the job is executed on the grid machine. The grid software running on
the donating machine executes the program in a process on the user’s behalf. It
may use a common user ID on the machine or it may use the user’s own user ID,
depending on which grid technology is used. Some grid systems implement a
 Chapter 1. Grid computing 27

protective “sandbox” around the program so that it cannot cause any disruption
to the donating machine if it encounters a problem during execution. Rights to
access files and other resources on the grid machine may be restricted.

Third, the results of the job are sent back to the submitter. In some
implementations, intermediate results can be viewed by the user who submitted
the job. In some grid technologies that do not automatically stage the output data
back to the user, the results must be explicitly sent to the user, perhaps using a
networked file system.

Scripts are also useful for submitting a series of jobs, for a parameter space
application, for example. Some computation problems consist of a search for the
desired result based on some input parameters. The goal is to find the input
parameters that produce the best desired result. For each input parameter, a
separate job is executed to find the result for that value. The whole application
consists of many such jobs, which explore the results for a large number of input
parameter values. Scripts are usually used to launch the many subjobs, each
receiving their own particular parameter values. Parameter inputs can sometimes
be more complex than simply a number. Sometimes a different input data set
represents the “input parameter.” Scripts help automate the large variety of more
complex parameter space study problems. For simpler parameter space inputs,
some grid products provide a GUI to submit the series of subjobs, each with
different input parameter values.

When there are a large number of subjobs, the work required to collect the
results and produce the final result is usually accomplished by a single program,
usually running on the machine at the point of job submission. If there are a very
large number subjobs required for an application, the work of collecting the
results might be distributed as well. For example, the subjob that submits more
subjobs to the grid would be responsible for collecting and aggregating the
results of the subjobs it spawned.

1.4.4 Data configuration
The data accessed by the grid jobs may simply be staged in and out by the grid
system. However, depending on its size and the number of jobs, this can
potentially add up to a large amount of data traffic. For this reason, some thought
is usually given on how to arrange to have the minimum of such data movement
on the grid.

For example, if there will be a very large number of sub-jobs running on most of
the grid systems for an application that will be repeatedly run, the data they use
may be copied to each machine and reside until the next time the application
runs. This is preferable to using a networked file system to share this data,
because in such a file system, the data would be effectively moved from a central
28 Introduction to Grid Computing with Globus

location every time the application is run. This is true unless the file system
implements a caching feature or replicates the data automatically.

There are many considerations in efficiently planning the distribution and sharing
of data on a grid. This type of analysis is necessary for large jobs to better utilize
the grid and not create unnecessary bottlenecks.

1.4.5 Monitoring progress and recovery
The user can query the grid system to see how his application and its subjobs
are progressing. When the number of subjobs becomes large, it becomes too
difficult to list them all in a graphical window. Instead, there may simply be a one
large bar graph showing some averaged progress metric. It becomes more
difficult for the user to tell if any particular subjob is not running properly.

A grid system, in conjunction with its job scheduler, often provides some degree
of recovery for subjobs that fail. A job may fail due to a:

� Programming error: The job stops part way with some program fault.

� Hardware or power failure: The machine or devices being used stop working
in some way.

� Communications interruption: A communication path to the machine has
failed or is overloaded with other data traffic.

� Excessive slowness: The job might be in an infinite loop or normal job
progress may be limited by another process running at a higher priority or
some other form of contention.

It is not always possible to automatically determine if the reason for a job’s failure
is due to a problem with the design of the application or if it is due to failures of
various kinds in the grid system infrastructure. Schedulers are often designed to
categorize job failures in some way and automatically resubmit jobs so that they
are likely to succeed, running elsewhere on the grid. In some systems, the user
is informed about any job failures and the user must decide whether to issue a
command to attempt to rerun the failed jobs.

Grid applications can be designed to automate the monitoring and recovery of
their own subjobs using functions provided by the grid system software
application programming interfaces (APIs).

1.4.6 Reserving resources
To improve the quality of a service, the user may arrange to reserve a set of
resources in advance for his exclusive or high priority use. A calendaring system
analogy can be used here. Such a reservation system can also be used in
 Chapter 1. Grid computing 29

conjunction with planned hardware or software maintenance events, when the
affected resource might not be available for grid use.

In a scavenging grid, it may not be possible to reserve specific machines in
advance. Instead, the grid management systems may allocate a larger fraction of
its capacity for a given reservation to allow for the likelihood of some of the
resources becoming unavailable. This must be done in conjunction with tools that
have profiled the grid’s workload capacity sufficiently to have reliable statistics
about the grid’s ability to serve the reservation.

1.5 Using a grid: An administrator’s perspective
This section describes the typical usage activities in using the grid from an
administrator’s perspective.

1.5.1 Planning
The administrator should understand the organization’s requirements for the grid
to better choose the grid technologies that satisfy those requirements. The
following sections briefly describe the steps the administrator may take to
manage the grid. It is suggested that one should start by deploying a small grid
first, to learn about its installation and management, before having to confront
more complicated issues involved with a large grid.

1.5.2 Installation
First, the selected grid system must be installed on an appropriately configured
set of machines. These machines should be connected using networks with
sufficient bandwidth to other machines on the grid. Of prime importance is
understanding the fail-over scenarios for the given grid system so that the grid
can continue operating even if any of the management machines fails in some
way. Machines should be configured and connected to facilitate recovery
scenarios. Any critical databases or other data essential for keeping track of the
jobs in the grid, members of the grid, and machines on the grid should have
suitable backups. Furthermore, public key certificates must be backed up and the
private keys must be held in a highly secured place inaccessible by anyone else.

After installation, the grid software may need to be configured for the local
network address and IDs. The administrator will usually require root access to
the machines managing the grid. In some grid systems, he will also need root
access to the donor machines be required to install the software on those as
well. The software to be installed on the donor machines may need to be
customized so that it can find the grid management machines automatically and
30 Introduction to Grid Computing with Globus

include pre-installed public keys for the grid. This software may be provided to
potential donors on an FTP or equivalent server or be made available on physical
media.

Once, the grid is operational, there may be application software and data that
should be installed on donor machines as well. This software may have specific
licensing restrictions that should be understood and adhered to. Some grid
systems include tools to assist with grid-wide license management. This can
both help in following the rules of the licenses and most efficiently exploit those
licenses.

1.5.3 Managing enrollment of donors and users
An ongoing task for the grid administrator is to manage the members of the grid,
both the machines donating resources and the users. Users may be further
organized as project groups. The administrator is responsible for controlling the
rights of the users in the grid. Donor machines may have access rights that
require management as well. Grid jobs running on donor machines may be
executed under a special grid user ID on behalf of the users submitting the jobs.
The rights of these grid user IDs must be properly set so that grid jobs do not
allow access to parts of the donor machine to which the users are not entitled.

As users join the grid, their identity must be positively established and entered in
the Certificate Authority. The user and his certificate credentials must be added
to the user list using the software appropriate for the grid system deployed. In
some cases, the administrator must propagate the user information to several or
all grid machines. Also, when the grid system depends primarily on the operating
system for user login, the administrator may need to add entries to map the grid
user to specific operating system user IDs on the donor machines.

Similar enrollment activity is usually required to enroll donor machines into the
grid. The machine’s identity is established and registered with the Certificate
Authority. The administrator of the grid must have an agreement with the
administrator of the donor machine about user IDs, software, access rights, and
any policy restrictions. The administrator must enter the machine’s identification
credentials, addresses, and resource characteristics using the appropriate
software for enrolling the donor machine into the grid. In some cases, the
administrator may need to manually propagate this information to other machines
in the grid.

Corresponding procedures for removing users and machines must be executed
by the administrator.
 Chapter 1. Grid computing 31

1.5.4 Certificate authority
It is critical to ensure the highest levels of security in a grid because the grid is
designed to execute code and not just share data. Thus, it can be fertile ground
for viruses, Trojan horses, and other attacks if the grid system is compromised in
any way. The Certificate Authority is one of the most important aspects of
maintaining strong grid security. An organization may choose to use an external
Certificate Authority or operate one itself. You must be able to trust the Certificate
Authority to strictly adhere to its responsibilities.

The primary responsibilities of a Certificate Authority are:

� Positively identify entities requesting certificates
� Issuing, removing, and archiving certificates
� Protecting the Certificate Authority server
� Maintaining a namespace of unique names for certificate owners
� Serve signed certificates to those needing to authenticate entities
� Logging activity

Briefly, a Certificate Authority is based on the public key encryption system. In
this system, keys are generated in pairs, a public key and a private key. Either
one can be used to encrypt some data such that the other is needed to decrypt it.
The private key is guarded by the owner and never revealed to anyone. The
public one is given to anyone needing it. A Certificate Authority is used to hold
these public keys and to guarantee who they belong to. When a user uses his
private key to encrypt something, the receiver uses the corresponding public key
to decrypt it. The receiver knows that only that user’s public key can decrypt the
message correctly. However, anyone could intercept this message and decrypt it
because anyone can get the originator’s public key. If the originator instead
doubly encrypts the message with his private key and the intended recipient’s
public key, a secure communication link is formed. The receiver uses his private
key to decrypt the message and then uses the sender’s public key for the second
decryption. Now the recipient knows that if the message decrypts properly, then
only the sender could have sent it and furthermore, the sender knows that only
the intended receiver can decrypt it. The beauty of all of this is that nobody had to
securely carry an encryption key from the sender to the receiver, as must be
done for conventional encryption systems, and any tampering with the
communication is revealed. A similar exchange is used to get anyone’s public key
from the Certificate Authority, so that the user knows that he has received an
unaltered public key for the desired user.

1.5.5 Resource management
Another responsibility of the administrator is to manage the resources of the grid.
This includes setting permissions for grid users to use the resources as well as
tracking resource usage and implementing a corresponding accounting or billing
32 Introduction to Grid Computing with Globus

system. Usage statistics are useful in identifying trends in an organization that
may require the acquisition of additional hardware, reduction in excess hardware
to reduce costs, and adjustments in priorities and policies to achieve utilization
that is fairer or better achieves the overall goals of an organization.

Some grid components, usually job schedulers, have provisions for enforcing
priorities and policies of various kinds. It is the responsibility of the administrator
to configure these to best meet the goals of the overall organization. Software
license managers can be used in a grid setting to control the proper utilization.
These may be configured to work with job schedulers to prioritize the use of the
limited licenses.

1.5.6 Data sharing
For small grids, the sharing of data can be fairly easy, using existing networked
file systems, databases, or standard data transfer protocols. As a grid grows and
the users become dependent on any of the data storage repositories, the
administrator should consider procedures to maintain backup copies and replicas
to improve performance. All of the resource management concerns apply to data
on the grid.

1.6 Using a grid: An application developer’s perspective
Grid applications can be categorized in one of the following three categories:

� Applications that are not enabled for using multiple processors but can be
executed on different machines.

� Applications that are already designed to use the multiple processors of a grid
setting.

� Applications that need to be modified or rewritten to better exploit a grid.

The latter category is of interest to grid application developers. They will find a
need for tools for debugging and measuring the behavior of grid applications.
Such grid based tools are still in their infancy. It may be useful for developers to
configure a small grid of their own so that they can use debuggers on each
machine to control and watch the detailed workings of the applications. Since the
debugging process can bypass certain security precautions, it may not always be
wise to allow such debugging on a production grid.

Globus is more a developer’s toolkit for building grid components rather than a
comprehensive grid system. It has the basic components needed to build new
facilities to manage grid operations, measurement, repair, and debug grid
 Chapter 1. Grid computing 33

applications. Tools conforming to the emerging Open Grid Services Architecture
(OGSA) interfaces will be usable on various vendor grid systems.

1.7 The present and the future
The Globus Toolkit is a set of tools useful for building a grid. Its strength is a good
security model, with a provision for hierarchically collecting data about the grid,
as well as the basic facilities for implementing a simple, yet world-spanning grid.
Globus will grow over time through the work of many organizations that are
extending its capabilities. More information about Globus can be obtained at:

http://www.globus.org

Most grid systems include some job schedulers, but as grids span wider areas,
there will be a need for more meta-schedulers that can manage variously
configured collections of clusters and smaller grids. These schedulers will evolve
to better schedule jobs, considering multiple resources rather than just CPU
utilization. They will also extend their reach to implement better quality of service,
using reservations, redundancy, and history profiles of jobs and grid
performance.

Today, grid systems are still at the early stages of providing a reliable, well
performing, and automatically recoverable virtual data sharing and storage. We
will see products that take on this task in a grid setting, federating data of all
kinds, and achieving better performance, integration with scheduling, reliability,
and capacity.

Autonomic computing has the goal to make the administrator’s job easier by
automating the various complicated tasks involved in managing a grid. These
include identifying problems in real time and quickly initiating corrective actions
before they seriously impair the grid.

OGSA is an open standard at the base of all of these future grid enhancements.
OGSA will standardize the grid interfaces that will be used by the new
schedulers, autonomic computing agents, and any number of other services yet
to be developed for the grid. It will make it easier to assemble the best products
from various vendors, increasing the overall value of grid computing. More
information about OGSA can be obtained at:

http://www.globus.org/ogsa
34 Introduction to Grid Computing with Globus

http://www.globus.org
http://www.globus.org/ogsa

1.8 What the grid cannot do
A word of caution should be given to the overly enthusiastic. The grid is not a
silver bullet that can take any application and run it a 1000 times faster without
the need for buying any more machines or software. Not every application is
suitable or enabled for running on a grid. Some kinds of applications simply
cannot be parallelized. For others, it can take a large amount of work to modify
them to achieve faster throughput. The configuration of a grid can greatly affect
the performance, reliability, and security of an organization’s computing
infrastructure. For all of these reasons, it is important for the users to understand
how far the grid has evolved today and which features are coming tomorrow or in
the distant future.
 Chapter 1. Grid computing 35

36 Introduction to Grid Computing with Globus

Part 2 Architecture

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 37

38 Introduction to Grid Computing with Globus

Chapter 2. Application considerations

This chapter describes the considerations that need to be made when
evaluating, designing, or converting applications for use in a grid computing
environment.

2

© Copyright IBM Corp. 2003. All rights reserved. 39

2.1 Application considerations
While a grid may offer many advantages, any given application may not
necessarily benefit from a grid. For example, a word processor is tightly coupled
with a user’s interface, and does not consume a large amount of computing
resources. Running it on a grid would likely degrade its performance by having to
use a remote windowing system and being subject to more potential points of
failure. However, other applications may be very suited for exploiting a grid.

The easiest use of the grid is to just run the application somewhere else when
your own machine is too busy. Almost any kind of application can be executed in
a grid environment this way. You will not see spectacular performance gains
unless the machine it runs on is much faster than the machine you usually use.
Applications that can be run in a batch mode are the easiest to handle.
Applications that need interaction through graphical user interfaces are more
difficult to run on a grid, but not impossible. They can use remote graphical
terminal support, such as X Windows or other means.

Applications specifically designed to use multiple processors or other federated
resources of a grid will benefit most. The following discussion is designed to
stimulate analysis, which will show how various factors may help decide whether
a given application should be deployed on a grid and what modifications, if any,
might be considered.

2.1.1 CPU considerations
If you are considering grid computing, you should examine any applications that
consume large amounts of CPU time. The following questions will help determine
if such an application can be run on a grid as-is, needs modification, or just
cannot benefit.

The most important step in grid enabling an application is to determine whether
the calculations can be done in parallel or not. While HPC clusters (High
Performance Computing) are sometimes used to handle the execution of
applications that can utilize parallel processing, grids provide the ability to run
these applications across a set of heterogeneous, geographically disperse set of
clusters. Rather than run the application on a single homogenous cluster, the
application can take advantage of the larger set of resources in the grid. If the
algorithm is such that each computation depends on the prior calculation, then a
new algorithm would need to be found. Not all problems can be converted into
parallel calculations. As an oversimplified example, let us take the process of
adding up a large list of numbers. The simple serial program may be written to
start with the sum of zero and then add each of the numbers, one at a time, until
the final sum is reached. Here each calculation depends on the prior one.
40 Introduction to Grid Computing with Globus

However, we can observe that the associative property of arithmetic shows us
that we could break the list up into seven pieces, for example, with seven
separate programs adding up the numbers in each list, and then a final eighth
program adding the 7 sums to form the final answer. This is illustrated by
Figure 2-1.

Figure 2-1 Rearranging computations to execute in parallel

On the other hand, some computations cannot be rewritten to execute in parallel.
For example, in physics, there are no simple formulas that show where three or
more moving bodies in space will be after a specified time when they
gravitationally affect each other. These kinds of computations are done by
simulating the motions of the bodies, applying Newton’s (or Einstein’s) laws to
small time increments, and computing how the forces and bodies affect each
other, given the new position of the objects after each tiny time increment, as
illustrated in Figure 2-2 on page 42.
 Chapter 2. Application considerations 41

Figure 2-2 Simulation that cannot be made parallel but needs to run many times

This is repeated a great number of times until the desired time is reached. Each
computation depends on the prior one. If it did not, then we would have
discovered the difficult formula we did not have in the first place. Because the
time increments are not infinitely small, after many increments, the small errors
start adding up. The final computed position of the objects can be in error,
perhaps ultimately causing a spacecraft to crash into a planet instead of going
into orbit. To improve accuracy in such computations, we make the time
increments much shorter. This increases the number of these increments to be
computed and thus the overall computation time. Many simulations suffer from
this type of difficulty.

As we saw above, in the list adding example, such computations can be
performed in parallel while others, such as the 3-body physics problem, cannot.
Often, an application may be a mix of independent computations as well as
42 Introduction to Grid Computing with Globus

dependent computations. One needs to analyze the application to see if there is
a way to split some subset of the work. Drawing a program flow graph and a data
dependency graph can help in analyzing whether and how an application could
be separated into independently running parallel parts.

Going back to the space object example, let us say we are trying to find the
correct trajectory to aim a rocket so that it loops around Venus, and then Earth, to
reach Jupiter more quickly. We might try calculating to see what happens for a
large number of different trajectories, pointing the rocket in slightly different
directions and firing the engines for different durations. Each trajectory can be
thought of as a separate calculation, and then in the end, a program chooses the
best one. Here, we are able to perform work in parallel, even though the
underlying computation for a single trajectory may be serial. Applications that
consist of a large number of independent subjobs are very suitable for exploiting
grid CPU resources. These are sometimes called parameter space searches.

Figure 2-3 Redundant speculative computation to reduce latency

Another approach to reducing data dependency on prior computations is to look
for ways to use redundant computations. If the dependency is on a subset of the
 Chapter 2. Application considerations 43

prior computations, it may be beneficial just to have each successive
computation that needs the results of the prior computation recompute those
results instead of waiting for them to arrive from another job. If the dependency is
on a computation that has a yes/no answer, perhaps it is better to compute the
next calculations for both of the “yes” and “no” cases and throw away the wrong
choice when the dependency is finally known, as illustrated in Figure 2-3 on
page 43. This technique can be taken to extremes in various ways. For example,
for two bits of data dependency, we could make four copies of the next
computation with all four possible input values. This can proceed to copies of the
next calculation for N bits of data dependency. As N gets large, it quickly
becomes too costly to compute all possible computations. However, we may
speculate and only perform the copies for the values we guess might be more
likely to be correct. If we did not guess the correct one, then we simply end up
computing it in series, but if we guessed correctly it saves us overall real time.
Here heuristics (rules of thumb) could be developed to make the best possible
guesses. Furthermore, there may be many points in the application where we
could use the speculative approach and if our guess rate is high enough, there
might be an overall improvement in efficiency and parallelism. This same kind of
speculative computing is used to improve the efficiency inside CPUs by
executing both branches of a condition until the correct one is determined.

In many cases, an application is used to test an array of “what if” input values.
For example, in the spacecraft trajectory problem, we might run simulations to
see where a spacecraft goes if you alter, in small increments, its starting
direction, starting speed, and apply various midcourse corrections. Each of these
alternatives can be a separate job running the same simulation application, but
with different input values. We call this a parameter space problem. A
computation grid is ideally suited for this kind of problem, even though it might not
be possible to make any single run more parallel in execution. The parallelism
comes from running many separate jobs that cover the parameter space. Some
grid products provide tools for simplifying the submission of the many sub-jobs in
a parameter space exploration type of application.

Some parameter space problems are finite in nature, and some are infinite or so
large that all possible parameter inputs cannot be examined. For these kinds of
parameter space problems, it is useful to use additional heuristics to select which
parts of the parameter space to try. This may not lead to the absolute best
solution, but it may be close enough. The traveling salesman problem can be
intractable in this way when there are many cities to be visited. However, various
heuristics can be used to get reasonably close to an optimal solution. It may not
be worth a month of additional computation to improve the answer from 98
percent to 99 percent of the best possible.

It may be acceptable to explore only a small part of the parameter space. One
approach is to try a reasonable number of randomly scattered points in the
44 Introduction to Grid Computing with Globus

problem’s parameter space first. Then one would try small changes in the
parameters around the best points that might lead to a better solution. This
technique is useful when the parameter space relates relatively smoothly to
changes in the result. By analogy, this can be described as “hill climbing” to find
the highest altitude point, in a perpetually fog shrouded region of land, on which
to build a television broadcast antenna. You would put a set of people at random
on the terrain. Then each would climb to the highest point near them. Whomever
reached the highest point would then be declared to have found the highest hill in
the land. They may not have found the absolute highest point if nobody started
near that point, but they will probably find the nearly highest hill or one that is
sufficient for their antenna tower. This kind of technique is useful when there are
too few people and too many hills to visit all of them.

Often, mathematical calculations are commutative, associative, or linear in some
way. The simple adding of a list of numbers example illustrates this. By altering
some potentially unimportant rules in the computations involved in a calculation,
we may be able to break the ordering requirement and thus make it possible to
execute more of the application in parallel. For example, in a bank account,
deposits and withdrawals are serially calculated and if the account ever goes
negative, then the transaction may be rejected, a fine may be imposed, or the
account may be frozen. If, however, the bank changes its rules and says that the
account must simply be positive at the end of the day. Then withdrawals
processed before the deposits would not cause a problem and all of these
calculations could be broken up into separate parallel running jobs.

Many times, an application that was written for a single processor may not be
organized or use algorithms or approaches that are suitable for splitting into
parallel subcomputations. An application may have been written in a way that
makes it most efficient on a single processor machine. However, there may be
other methods or algorithms that are not as efficient, yet may be much more
amenable to being split into independently running subcomputations. A different
algorithm may “scale” better because it can more efficiently use larger and larger
numbers of processors. Thus, another approach for grid enabling an application
is to revisit the choices made when the application was originally written. Some
of the discarded approaches may be better for grid use.

How you go about solving a problem may be quite different, depending on
whether it is unique to be solved only once versus being solved repeatedly with
different inputs. One might use a less efficient but more straightforward technique
if the problem is only to be solved once, reducing debug time and making good
use of a grid’s ability to absorb momentary peaks of activity. On the other hand, if
it is a one time problem, but is going to take a year of execution, more thought
should be put into the problem before proceeding. The following are some
additional things to think about.
 Chapter 2. Application considerations 45

Is there any part of the computation that would be performed more than once
using the same data? If so, and if that computation is a significant portion of the
overall work, it may be useful to save the results of such computations.

If we find that an application performs some sets of computations on the same
input data every time it is run, produces the same output data, and takes a
significant amount of time computing this output, how much output data would
need to be saved to avoid the computation the next time? If there is a very large
amount of output data, it may be prohibitive to save this data. Perhaps there are a
large number of similar computations that might be saved. Even if any one
computation’s results does not represent a large amount of data, the aggregate
for all of them might. One needs to consider this time-space trade-off for the
application. One could presumably save space and time by only saving the
results for the most frequently occurring situations. For example, in world class
chess playing programs, the opening positions of the game of chess are usually
stored in a database containing the best move to take in each such position. This
information can be precomputed to a large extent and can save large amounts of
computation time during a chess tournament. However, the number of possible
chess board positions increases very rapidly with more moves into the game, so
only the early move positions of the game or the end-game moves when there
are few pieces left, are precomputed and saved.

In a distributed application, partial results or data dependencies may be met by
communicating among subjobs. That is, one job may compute some
intermediate result and then transmit it to another job in the grid. If possible, one
should consider whether it might be any more efficient to simply recompute the
intermediate result at the point where it is needed rather than waiting for it from
another job. One should also consider the transfer time from another job, versus
retrieving it from a database of prior computations.

2.1.2 Data considerations
When splitting applications for use on a grid, it is important to consider the
amounts of data that are needed to be sent to the node performing a calculation
and the time required to send it. After some analysis, one might discover that a
different design would be better. If the application can be split into small work
units requiring little input data and producing small amounts of output data, that
would be most ideal. The data in this kind of case is said to be “staged” to the
node doing the work. Sending this data along with the executable file to the grid
node doing the work is part of the function of most grid systems. However, in
many applications, larger amounts of input and/or output data are involved and
this can cause complications and inefficiencies.

When the grid application is split into subjobs, often the input data is a large fixed
set of data. This offers the opportunity to share this data rather than staging the
46 Introduction to Grid Computing with Globus

entire set with each subjob. However, one must consider that even with a shared
mountable file system, the data is being sent over the network. The goal is to
locate the shared data closer to the jobs that need the data. If the data is going to
be used more than once, it could be replicated to the degree that space permits.

If more than one copy of the data is stored in the grid, it is important to arrange
for the subjobs to access the nearest copy per the configuration of the network.
This highlights the need for an information service within the grid to track this
form of data awareness. Furthermore, one must be careful that the network does
not become the bottleneck for such a grid application. If each subjob processes
the data very quickly and is always waiting for more data to arrive, then sharing
may not be the best model if the network data transfer speed to each subjob
does not at least match disk speeds.

Shared data may be fixed or changing. For example, a database may contain the
latest known gene sequences and be constantly growing. However, applications
using this data may not need the latest gene sequence data the instant that it is
available. This makes it easier and more efficient to share such a database
because the updates to it can be batched and processed at off-peak usage times
rather than contending with concurrent access by applications. Furthermore, if
more than one copy of this data exists, and all of the copies do not need to be
simultaneously updated, this improves performance because all applications
using the data would not need to be stopped while updating the data. Only those
accessing a particular copy would need to be stopped or temporarily paused.

When a file or a database is updated, jobs cannot simultaneously read the
portion of the file concurrently being updated by another job. Locking or
synchronizing primitives are typically built into the files system or database to
automatically prevent this. Otherwise, the application might read partially
updated data, perhaps receiving a combination of old and new data.

In some shared data situations, updates must not be delayed. For example, if the
subjobs are processing financial transactions, they must be immediately updated
in the master balances database. Furthermore, if there are copies of this
database elsewhere, they must all be updated with each new item
simultaneously. A number of scaling issues come into play here. There can be a
large amount of data synchronization communications among jobs and
databases. The synchronization primitives can become bottlenecks in overall grid
performance. It is important to consider how the database activity can be
partitioned so that there is less interference among the parts and thus less
potential synchronization contention among those parts.

Applications that access the data they need serially are more predictable, so
various techniques can be used to improve their performance on the grid. If each
subjob needs to access all of the data, then shared copies might be desirable.
Multiple copies of the data should be considered if bringing the data closer to the
 Chapter 2. Application considerations 47

nodes running the subjobs would help. If each part of the data is examined only
once, then copies may not be desirable. However, if the access is serial, some of
the retrieval time can be overlapped with processing time. There could be a
thread retrieving the data that will be needed next while the data already
retrieved is being processed. This can even apply to randomly accessed data, if
there is the ability to do some prediction of which portions of data will be needed
next.

One of the most difficult problems with duplicating rapidly changing databases is
keeping them in synchronization. The first step is to see if rapid synchronization
is really needed. Can the application be modified to work around this? If not, the
synchronization mechanisms themselves may need to be changed. If the rapidly
changing data is only a subset of the database, memory versions of the
database might be considered. Network communication bandwidth into the
central database repository could also be increased. Is it possible to rewrite the
application so that it uses a data flow approach rather than the central state of a
database? Perhaps it can use self contained transactions that are transmitted to
where they are needed. The subjobs could use direct communications between
them as the primary flow for data dependency rather than passing this data
through a database first.

In some applications, various database records may need to be updated
atomically or in concert with others. Locking or synchronization primitives are
used to lock all of the related database entries, whether they are in the same
database or not, and then are updated while the synchronization primitives keep
other subjobs waiting until the update is finished. One should look for ways to
minimize the number of records being updated simultaneously to reduce the
contention created by the synchronization mechanism. One should exercise
caution not to create situations which might cause a synchronization deadlock
with two subjobs waiting for each other to unlock a resource the other needs.
There are three ways that are usually used to prevent this problem.

� The first is easiest, but can be most wasteful. This is to have all waits for
resources to include time-outs. If the time-out is reached, then the operation
must be undone and started over in an attempt to have better luck at
completing the transaction.

� The second is to lock all of the resources in a predefined order ahead of the
operation. If all of the locks cannot be obtained, then any locks acquired
should be released and then, after an optional time period, another attempt
should be made.

� The third is to use deadlock detection software. A transitive closure of all of
the waiters is computed before placing the requesting task into a wait for the
resource. If it would cause a deadlock, the task is not put into a wait. The task
should release its locks and try again later. If it would not cause a deadlock,
the task is set to automatically wait for the desired resource.
48 Introduction to Grid Computing with Globus

It may be necessary to run an application redundantly for reliability reasons, for
example. The application may be run simultaneously on geographically distinct
parts of the grid to reduce the chances that a failure would prevent the
application from completing its work or prevent it from providing a reliable
service. If the application updates databases or has other data communications,
it would need to be designed to tolerate redundant data activity caused by
running multiple copies of the application. Otherwise, computed results may be in
error.
 Chapter 2. Application considerations 49

50 Introduction to Grid Computing with Globus

Chapter 3. Security

This chapter extensively describes the security issues, techniques, and solutions
needed to provide a robust and secure grid computing environment.

The following topics are discussed:

� Grid Security Fundamentals
� Public Key Infrastructure Overview
� Globus Security Framework
� Grid Infrastructure Security
� Potential grid Security Risks

3

© Copyright IBM Corp. 2003. All rights reserved. 51

3.1 Introduction to grid security
Security requirements are fundamental to the grid design. The basic security
components within the Globus Toolkit provide the mechanisms for authentication,
authorization, and confidentiality of communication between grid computers.
Without this functionality, the integrity and confidentiality of the data processed
within the grid would be at risk. To properly secure your grid environment, there
are many different tools and technologies available. This chapter will examine
some of those technologies and the different components provided within the
Grid Security Infrastructure (GSI) of the Globus Toolkit.

In order to better understand grid security, it is best to start with some basic
fundamentals. Grid security builds on well-known security standards. We will
discuss these first and they will help us understand some of the more difficult
security concepts. During this chapter, we will be discussing the nuts and bolts of
grid security and the underlying technologies that allow for grid security to work.

In reality, an entire book could be dedicated to the topic of grid security. Due to
the scope of this chapter, we will only be covering the basics of some encryption
and PKI standards and how they are applied to grid security. This will give you a
good overview of the different components of a PKI environment and some of the
encryption techniques and how they work within the grid security framework.

Along with the different responsibilities associated with securing a grid
environment, there are many risks involved. While the Grid Security
Infrastructure (GSI) components make it easy to install and configure, you should
not be fooled into thinking that your environment will be secured without a little
extra work. With this overview, you will need to have a better understanding of
what is involved in properly securing your grid environment.

3.1.1 Security fundamentals
Security requires the three fundamental services: authentication, authorization,
and encryption. A grid resource must be authenticated before any checks can be
done as to whether or not any requested access or operation is allowed within
the grid. Once the grid resources have been authenticated within the grid, the
grid user can be granted certain rights to access a grid resource. This, however,
does not prevent data in transit between grid resources from being captured,
spoofed, or altered. The security service to insure that this does not happen is
encryption.

The world of security has its own set of terminology. The International
Organization for Standardization (ISO) has defined the common security
services found in modern I/T systems. The list was first put in ISO 7498-2 (OSI
Security Architecture) and later updated in ISO 10181 (OSI Security
52 Introduction to Grid Computing with Globus

Frameworks). To have a better understanding of security systems and services,
some security terms with explanations are listed below:

Authentication Authentication is the process of verifying the validity of a
claimed individual and identifying who he or she is.
Authentication is not limited to human beings; services,
applications, and other entities may be required to
authenticate also.

Access control Assurance that each user or computer that uses the
service is permitted to do what he or she asks for. The
process of authorization is often used as a synonym for
access control, but it also includes granting the access or
rights to perform some actions based on access rights.

Data integrity Data integrity assures that the data is not altered or
destroyed in an unauthorized manner.

Data confidentiality Sensitive information must not be revealed to parties that
it was not meant for. Data confidentiality is often also
referred to as privacy.

Key management Key management deals with the secure generation,
distribution, authentication, and storage of keys used in
cryptography.

The Grid Security Infrastructure (GSI) of Globus and a Public Key Infrastructure
(PKI) provide the technical framework (including protocols, services, and
standards) to support grid computing with five security capabilities: user
authentication, data confidentiality, data integrity, non-repudiation, and key
management.

3.1.2 Important grid security terms
During the course of this chapter, we will be going over many important security
terms. While some of the terms covered within this section provide the
background as to how grid security works, there are some important concepts
that should be highlighted. This is due to the fact that some areas within grid
security require a precise understanding of the security concepts. Also, some
security components may work slightly different within a grid environment as
opposed to a standard network. Below are some important security concepts
that you should be aware of when reading this chapter. These concepts will be
described in greater detail throughout the chapter.

� Symmetric encryption: Using the same secret key to provide encryption and
decryption of data.
 Chapter 3. Security 53

� Asymmetric encryption: Using a two different keys for encryption and
decryption. The public key encryption technique is the primary example of this
using a “public key” and a “private key” pair.

� Secure Socket Layer/Transport Layer Security (SSL/TLS): These are
essentially the same protocol, but are referred to one another differently. TLS
has been renamed by the IETF, but they are based on the same RFC.

� Public Key Infrastructure (PKI): The different components, technologies, and
protocols that make up a PKI environment.

� Mutual Authentication: Instead of using an LDAP repository to hold the public
key (PKI), two parties who want to communicate with one another use their
public key stored in their digital certificate to authenticate with one another.
This topic is covered in 3.2.2, “Grid security communication” on page 67.

These are all important concepts to remember and will give you a head start in
understanding how grid security works.

3.1.3 Symmetric key encryption
Symmetric key encryption is based on the use of one shared secret key to
perform both the encryption and decryption of data. To ensure that the data is
only read by the two parties (sender and receiver), the key has to be distributed
securely between the two parties and no others. If someone should gain access
to the secret key that is used to encrypt the data, they would be able to decrypt
the information. This form of encryption is much faster than asymmetric
encryption.
54 Introduction to Grid Computing with Globus

Figure 3-1 Symmetric key encryption using a shared secret key

Here are some commonly used examples of a symmetric key cryptosystem:

� Data Encryption Standard (DES): 56-bit key plus 8 parity bits, developed by
IBM in the middle 1970s

� Triple-DES: 112-bit key plus 16 parity bits or 168-bit key plus 24 parity bits
(that is, two to three DES keys)

� RC2 and RC4: Variable-sized key, often 40 to 128 bits long

To summarize, secret key cryptography is fast for both the encryption and
decryption processes. However, secure distribution and management of keys is
difficult to guarantee.

3.1.4 Asymmetric key encryption
Another commonly-used cryptography method is called public key cryptography.
The RSA public key cryptography system is a prime example of this. In public key
cryptography, an asymmetric key pair (a so-called a public key and a private key)
is used. The key used for encryption is different from the one used for decryption.
Public key cryptography requires the key owners to protect their private keys
while their public keys are not secret at all and can be made available to the
public. Normally, the public key is present in the digital certificate that is issued by
the Certificate Authority.
 Chapter 3. Security 55

The computation algorithm relating the public key and the private key is designed
in such a way that an encrypted message can only be decrypted with the
corresponding other key of that key pair, and an encrypted message cannot be
decrypted with the encryption key (the key that was used for encryption).
Whichever (public/private) key encrypts your data, the other key is required to
decrypt the data. A message encoded with the public key, for instance, can only
be decoded with the private key. One of the keys is designated as the public key
because it is made available, publicly, via a trusted Certificate Authority, which
guarantees the ownership of each of the public keys. The corresponding private
keys are secured by the owner and never revealed to the public.

The public key system is used twice to completely secure a message between
the parties. The sender first encrypts the message using his private key and then
encrypts it again using the receiver’s public key. The receiver decrypts the
message, first using his private key and then the public key of the sender. In this
way, an intercepted message cannot be read by anyone else. Furthermore, any
tampering with the message will make it not decrypt properly, revealing the
tampering.

The asymmetric key pair is generated by a computation which starts by finding
two vary large prime numbers. Even though the public key is widely distributed, it
is practically impossible for computers to calculate the private key from the public
key. The security is derived from the fact that it is very difficult to factor numbers
exceeding hundreds of digits.

This mathematical algorithm improves security, but requires a long encryption
time, especially for large amounts of data. For this reason, public key encryption
is used to securely transmit a symmetric encryption key between the two parties,
and all further encryption is performed using this symmetric key.

3.1.5 The Certificate Authority
A properly implemented Certificate Authority (CA) has many responsibilities.
These should be followed diligently to achieve good security. The primary
responsibilities are:

� Positively identify entities requesting certificates
� Issuing, removing, and archiving certificates
� Protecting the Certificate Authority server
� Maintaining a namespace of unique names for certificate owners
� Serve signed certificates to those needing to authenticate entities
� Logging activity

Within some PKI environments, a Registrant Authority (RA) works in conjunction
with the CA to help perform some of these duties. The RA is responsible for
approving or rejecting requests for the certificate of public keys and forwarding
56 Introduction to Grid Computing with Globus

the user information to the CA. The RA normally has the responsibility of
validating that the user’s information is correct before the signed digital certificate
is sent back to the user. The Globus Toolkit includes a “simple” CA which can be
installed for testing purposes. Within this scenario, the simple CA handles the job
of both the CA and RA within the grid environment. As the number of certificates
expands, these two jobs are normally separated.

One of the critical issues within a grid PKI environment is guaranteeing the
system’s trustworthiness. Before a CA can sign and issue certificates for others,
it has to do the same thing to itself so that its identity can be represented by its
own certificate. That means a CA has to do the following:

1. The CA randomly generates its own key pair.
2. The CA protects its private key.
3. The CA creates its own certificate.
4. The CA signs its certificate with its private key.

If a grid resource needs to securely communicate with another grid resource, it
needs a certificate signed by a CA. The grid resource has to enroll with the CA by
generating an unsigned digital certificate specifying his or her own information.
The information submitted will be used by the CA to identify whether this grid
resource is real and should be granted a certificate. The CA will then sign the
digital certificate if the grid resource is eligible to receive the certificate. This
certificate, after the CA signs the certificate, will be passed back to the
requesting grid resource. So, one basic function of a CA is to create and issue
certificates for a grid resource.

The CA’s private key
The CA’s private key is one of the most important parts in the whole public key
infrastructure. It is used, for example, by the CA to sign every issued digital
certificate within the grid network. Thus, it is especially susceptible to attacks
from hackers. If someone were to gain access to the CA’s private key, they would
be able to impersonate anyone within the environment. Therefore, it is very
important to protect this key. Knowing how sensitive the private key is to the rest
of your grid environment, it is important to provide your CA server with any
available security measures. This includes restricting physical and remote
access and monitoring and auditing of the server.

CA cross certification
Generally within a single grid environment, a CA will provide certificates to a fixed
group of users. If two companies or virtual organizations (VOs) need to
communicate and trust one another, this may require that both CAs trust one
another or participate in cross certification. For example, Alice, an employee
belonging to an organization with its own CA, may want to run a job on grid
 Chapter 3. Security 57

computer Mike, who is outside the organization, and who belongs to a different
CA.

In order to do so, the following should be considered:

� Alice and Mike need a way to obtain each other’s public key certificates.

� Mike needs to be sure that he can trust Alice’s CA. Alice needs to be sure that
she can trust Mike’s CA.

Grid computers from different security domains or VOs will need to trust each
others’ certificates, so the roles and relationships between CAs have to be
defined. The purpose of creating such trust relationships is to eventually achieve
a global, interoperable PKI and enlarge the grid infrastructure. Once the
relationship is established, both of the CA’s can be configured to work with the
grid system.

Managing your own CA
It is important to note that the simple CA is a fully functioning CA for a PKI
environment, but it is only recommended for testing or demo purposes. For any
type of production grid built, it is recommended that you evaluate some
commercial PKI solutions that may better suit your needs and remove some
responsibility for managing your own CA

3.1.6 Digital certificates
Digital certificates are digital documents that associate a grid resource with its
specific public key. A certificate is a data structure containing a public key and
pertinent details about the key owner. A certificate is considered to be a
tamper-proof electronic ID when it signed by the Certification Authority for the
grid environment.

Digital certificates, also called X.509 certificates, act very much like passports;
they provide a means of identifying grid resources. Unlike passports, digital
certificates are used to identify grid resources. Another difference between a
digital certificate and a passport is that a certificate can (and should) be
distributed and copied without restriction, while people are normally very
concerned about handing their passports to someone else. Certificates do not
normally contain any confidential information and their free distribution does not
create a security risk.

The important fact to know and understand about digital certificates is that the
CA certifies that the enclosed public key belongs to the entity listed in the
certificate. The technical implementation is such that it is considered extremely
difficult to alter any part of a certificate without easy detection. The signature of
the CA provides an integrity check for the digital certificate.
58 Introduction to Grid Computing with Globus

When a grid client wants to start a session with a grid recipient, he or she does
not attach the public key to the message, but the certificate instead. The recipient
receives the communication with the certificate and then checks the signature of
the Certificate Authority within the certificate. If the signature was signed by a
certifier that he or she trusts, the recipient can safely accept that the public key
contained in the certificate is really from the sender. This prevents someone from
using a fraudulent public key to impersonate the public key owner.

Contained in your digital certificate is the information about you and your public
key. When you communicate with another party on the grid, the recipient will use
your public key (contained in your digital certificate) to decrypt the SSL session
ID, which is used to encrypt all data transferred between grid computers.

A digital certificate is made up of a unique distinguished name (DN) and
certificate extensions that contain the information about the individual or host that
is being certified. Some information in this section may contain the subject’s
e-mail address, organizational unit, or location.

Figure 3-2 is a graphical depiction of the digital certificate.

Figure 3-2 Digital certificate
 Chapter 3. Security 59

Obtaining a client or a server certificate from a CA involves the following steps:

1. The grid user requiring certification generates a key pair (private key and
certificate request containing the public key).

2. The user signs its own public key and any other information required by the
CA. Signing the public key demonstrates that the user does, in fact, hold the
private key corresponding to the public key.

3. The signed information is communicated to the CA. The private key remains
with the client and should be stored securely. For instance, the private key
could be stored in an encrypted form on a Smartcard, or on the user’s
computer.

4. The CA verifies the that the user does own the private key of the public key
presented.

5. The CA (or optionally an RA) needs to verify the user’s identity. This can be
done using out-of-band methods, for example, through the use of e-mail,
telephone, or face-to-face communication. A CA (or RA) can use its own
record system or another organization’s record system to verify the user’s
identity.

6. Upon a positive identity check, the CA creates a certificate by signing the
public key of the user, thereby associating a user to a public key. The
certificate will be forwarded to the RA for distribution to the user.

Verification of the user
The authentication described above is a one-time authentication for the purpose
of certificate issuance. This can be compared to the process when a government
authority issues a passport to an individual. The passport then serves as an
authentication mechanism when this individual travels to foreign countries. Just
like passports, digital certificates can subsequently be used in daily operations
for authenticating subjects to other parties that require authentication.

Different types of certificates
There are two different types of certificates that are used within a grid
environment. The first type of certificate is a user certificate that will identify
different users on the grid. The second type of certificate is issued to grid
servers.

User
As a grid user, you will need a user certificate to identify yourself within the grid.
This certificate will identify your user name within the grid, not your server or
workstation name. If your name is Mike Kendzierski, your digital certificate might
have the distinguished name:

“/O=Grid/O=GridTest/OU=test.domain.com/CN=Mike Kendzierski"
60 Introduction to Grid Computing with Globus

Server
If you plan on running PKI enabled programs on your server, you will need to
register a server certificate. This server certificate will register the fully-qualified
domain name of your server to your certificate. For your certificate to work, your
full-qualified DNS name will have to match your digital certificate. For example, If
your server name was “Darkstar,” your server certificate would read:

/CN=Service/Darkstar.<domain>.<com>

Certificate revocation list
Since grid computing does not normally store digital certificates within a
directory, there is no need for a certificate revocation list (CRL). During the
authentication process, grid computers use mutual authentication that performs
the digital certificate exchange and does not reference a directory store. For
these purposes, the process of revoking grid certificates are handled manually.

In other PKI environments that use directory services to store the public key, a
CRL is a means of notifying clients who wish to verify the revocation of
certificates. CRLs are issued to mark some certificates unusable, even though
their expiration has not come yet.

Path validation
In order to verify that a certificate is valid, a check must be done to ensure that
that the whoever signed the certificate is valid. This is how the path validation of a
certificate is done. This is done to verify that the certificate path from the Root CA
is valid and up the chain between the CA and grid client/server. This is especially
important when explaining why delegated certificates are valid within the grid.
This delegation is an extension to PKI and is not normally allowed. As long as the
path is valid within the delegated certificate, the certificate will not be rejected.

For more information on certificate path validation, you should check out RFC
3280. You can find more information by accessing the following Web site:

http://www.ietf.org/rfc/rfc3280.txt

PKI directory services
Within some PKI environments, the signed keys are published to a public
directory for easy retrieval. Instead of having the clients handle the mutual
authentication, an external server is responsible for handling the authentication
process. A good example of this process is the MyProxy server, which works as a
grid Web proxy for Web portals. In this example, the user would authenticate to
the Web portal, which would request the user’s online credentials that are stored
in the directory. Upon this authentication, the proxy would extract the DN within
their digital certificate and match their credentials with the public key stored
 Chapter 3. Security 61

http://www.ietf.org/rfc/rfc3280.txt

within the directory. If they two keys matched up, the user would be given access
to resources within the grid.

3.2 Grid security infrastructure
Now that we have gone over some security fundamentals, explaining how the
different grid security components interact will be much easier. In this section of
the chapter, we will be going over how the different security components within
the Globus Toolkit provide security services. We’ll examine some different
scenarios and walk through the various functions of the GSI.

3.2.1 Getting access to the grid
In order to build a grid environment using the GSI components, you have to
create set of keys for public key cryptography and request your certificate from
the Certificate Authority and a copy of the public key of the CA. Figure 3-3 and
the following procedure describe the steps to establish the GSI communication:

1. Copy the Certificate Authority’s public key to your grid host with which you set
up GSI.

2. Create your private key and a certificate request.

3. Send your certificate request to CA by e-mail or another more secure way if
you are running a production system and need to positively identify the
sender.

4. CA signs your request to make your certificate and sends it back to you.

Figure 3-3 Preparation procedure for GSI

When that procedure has been completed and you have received your signed
digital certificate, you will have three important files on your grid host. They are:

� The CA’s public key

GSI sign

Certificate AuthorityGrid Host

Your certificate

Your certificate
signing request

Your private key

CA's Public Key copy

send

send

create2

3
4

1

Your certificate

Your certificate
signing request

4

CA's Public Key

CA's Private Key
62 Introduction to Grid Computing with Globus

� The grid host’s private key
� The grid host’s digital certificate

In order to provide secure authentication and communication for your grid
computer, you should not let others have access to your private key. An extra
layer of security was added to the private key, which includes a secret
passphrase that must be used when using your private key along with your digital
certificate. This is to prevent someone from stealing your digital certificate and
private key and being able to automatically use them to access grid resources.
The host key is protected by the local operating system privileges within the grid
server.

Authentication and authorization
Imagine a scenario where you need to communicate with another grid
computer’s application and you want to ensure that the data from the host is
really from the host. Besides making sure that you can trust the grid host, you
want to make sure the grid host that you want to communicate with trusts your
grid computer. In these cases, you can use the authentication function of GSI, as
shown in Figure 3-4 on page 64. After you have authenticated with the remote
grid resource, you then have the option of having the grid resource give you
access to resources on your behalf. In this case, you can use the authorization
function of GSI.

Through the steps described below, you (grid host A) are authenticated and
authorized by grid host B. Almost all steps are for authentication, except the last
authorization step:

1. Send your certificate to the other host (host B) by which you want to be
authenticated.

2. Host B will get your public key and your subject from your certificate by using
the CA public key.

3. Host B creates a random number and sends it to you (host A).

4. If you got the number, encrypt it with your private key (you may be requested
to input password to open your private key) and send the encrypted number
to host B.

5. Host B will decrypt the number and check that the decrypted number is really
the one that it sent before. Then host B authenticates that the certificate is
really yours, because only you can encrypt the number with your private key.

6. Your certificate is authenticated by host B, then your subject in the certificate
is mapped to a local user name. The subject is in the form of Distinguished
Name (DN) like “O=Grid/O=Globus/OU=itso.grid.com/CN=your name“, and it
is the name that is used by LDAP to distinguish the entries in the directory
service. The subject is used to specify your user identity in a grid
 Chapter 3. Security 63

environment. Here you, the owner of DN, are authorized by host B to act as a
local user on the host B.

Figure 3-4 Authentication procedure

In grid environments, your host will become a client in some cases, and in other
cases, a server. Therefore, your host might be required to authenticate another
host and be authenticated by the host at the same time. In this case, you can use
the mutual authentication function of GSI. This function is almost the same as
explained above, and it proceeds with the authentication steps, and changes the
direction of hosts and redoes the procedure.

Briefly speaking, authentication is the process of sharing public keys securely
with each other, and authorization is the process that maps your DN to a local
user/group of a remote host.

Delegation
Imagine a situation where you distribute jobs to remote grid machines and let
them distribute their child jobs to other machines under your security policy. In
this situation, you can use the delegation function of GSI, as shown in Figure 3-5
on page 66.

user name

"<Subject>" <User Name>

grid-mapfile

mapping

Grid Host A Grid Host B

Your certificate Your certificate

random

Your
public key

random

random

CA's
public keyYour

private key

password

subject

encrypt & send

decrypt

get your public key
& subject

identify

1
send

2

4

4
5

5

3 create & send

6

64 Introduction to Grid Computing with Globus

If you are on the side of host A, you can create your proxy at host B to delegate
your authority. This proxy acts as yourself, and submits a request to host C on
your behalf.

The next steps (see “Proxy creation” on page 65) describes the procedure to
create your proxy (proxy creation) at a remote machine, and the procedure to
submit a request (see “Proxy action” on page 65) to the other remote host on
your behalf (proxy action).

Proxy creation
For proxy creation:

1. A trusted communication is created between host A and host B.

2. You request host B to create a proxy that delegates your authority.

3. Host B creates the request for your proxy certificate, and send it back to host
A.

4. Host A signs the request to create your proxy certificate using your private key
and sends it back to host B.

5. Host A sends your certificate to host B.

Proxy action
For proxy action:

1. Your proxy sends your certificate and the certificate of your proxy to host C.

2. Host C gets your proxy's public key through the path validation procedure:

a. Host C gets your subject and your public key from your certificate using
CA's public key.

b. Host C gets the proxy's subject and your proxy's public key from your
proxy's certificate using your public key.

c. The subject is a Distinguished Name similar to
"O=Grid/O=Globus/OU=itso.grid.com/CN=your name". The subject of
proxy certificate is similar to its owner's (your) subject and is similar to
"O=Grid/O=Globus/OU=itso.grid.com/CN=your name/CN=proxy". So in
order to validate the proxy certificate, Host C just has to check that the
words that eliminate the words "/CN=proxy" from the proxy's subject is just
the same as your subject. If it is validated, your proxy is authenticated by
host C and able to act on your behalf.

3. The proxy encrypts a request message using its private key and sends it to
Host C.

4. Host C decrypts the encrypted message using the proxy's public key and gets
the request.
 Chapter 3. Security 65

5. Host C runs the request under the authority of a local user. The user is
specified using a mapping file, which represents the mapping between the
grid users (subject) and local users (local user name).

Figure 3-5 Delegation procedure of user’s proxy

The procedure in Figure 3-5 represents the remote delegation, where a user
creates a proxy at a remote machine. There is also a local delegation, where a
user creates a proxy certificate at the local machine; for that task, Globus Toolkit
uses the grid-proxy-init command and gatekeeper daemon mechanism.

When you make a proxy to a remote machine (in the remote delegation), the
proxy's private key is on the remote machine, so the super-user of that machine
can access your proxy's private key and conduct business under your name. This
delegated credential can be vulnerable to attacks. In order to avoid this

Grid Host A Grid Host B

creat proxy certificate request

Proxy certificate

Proxy
certificate request

Your
private key

password

Grid Host C
1 creat secure communication

3sign proxy certificate and
send back

4

Proxy certificate

Your certificate

send your
certificate

5

Proxy
certificate request

Proxy certificate
Your

subject

Your public
key

send your
certificate and
proxy certificate

7 path validation & get proxy
public key

CA's
public key

Your
certificate

Proxy public
key

Proxy
subjectrequest

request

Proxy
private key

8 encrypt request
& send decrypt9

mapping & execution10

local user
name

Proxy
subject

"<Subject>" <User Name>

grid-mapfile

request to create proxy2

Your certificate

6

66 Introduction to Grid Computing with Globus

impersonation, it is recommended that the proxy attain restricted policies from its
owner, as in the case with GRAM, for example. The standardization of this proxy
restriction is now going on under GSI Working Group of Grid Forum Security
Area, and you can see more details in its Internet draft at the site below:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

3.2.2 Grid security communication
While we have gone over the process of using PKI within a grid environment and
the different functions of GSI, it is still important to understand the
communication functions within the Globus Toolkit. By default, the underlying
communication is based on the mutual authentication of digital certificates and
SSL/TLS.

The digital certificates that have been installed on the grid computers provide the
mutual authentication between the two parties. We will be going over this
process in detail later on in this section. The SSL/TLS functions that OpenSSL
provides will encrypt all data transferred between grid hosts. These two functions
together provide the basic security services of authentication and confidentiality.

Mutual authentication
To allow secure communication within the grid, the OpenSSL package is installed
as part of the Globus Toolkit. Within the Globus Toolkit, OpenSSL is a software
package that is used to create an encrypted tunnel using SSL/TSL between grid
clients and servers.

The process of mutual authentication begins when two grid resources want to
share resources. Instead of using a key repository, each grid resource
authenticates with one another based on their digital certificate. For example,
one grid resource will attempt to establish secure communication with another
grid resource. Before the recipient will allow the client access to their resources,
they need to authenticate to one another. This process is documented below with
the SSL handshake.

SSL handshake
In order to establish the secure communication between the grid server and grid
client, a handshake must be established. This handshake is responsible for
determining the SSL settings, exchanging public keys and the basis for the
mutual authentication process. The handshake process is as follows:

1. A grid client contacts a remote grid server to start a secure session by using a
digital X.509 ID certificate.
 Chapter 3. Security 67

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

2. The grid client automatically sends to the server the client's SSL version
number, cipher settings, randomly generated data, and other information the
server needs to communicate with the client using SSL.

3. The grid server responds, automatically sending the grid client the site's
digital certificate, along with the server's SSL version number, cipher settings,
and so on.

4. The customer's client examines the information contained in the server's
certificate, and verifies that:

a. The server certificate is valid and has a valid date.

b. The CA that issued the server certificate has been signed by a trusted CA
whose certificate is built into the client.

c. The issuing CA's public key, built into the client, validates the issuer's
digital signature.

d. The domain name specified by the server certificate matches the server's
actual domain name.

5. If the server can be successfully authenticated, the grid client generates a
unique “session key" to encrypt all communications with the grid server using
asymmetric encryption.

6. The user's client encrypts the session key itself with the server's public key so
that only the site can read the session key, and sends it to the server.

7. The server decrypts the session key using its own private key.

8. The grid client sends a message to the server informing it that future
messages from the grid client will be encrypted with the session key. The grid
server then sends a message to the grid client informing it that future
messages from the server will be encrypted with the session key.

9. An SSL-secured session is now established. SSL then uses symmetric
encryption (which is much faster than asymmetric PKI encryption) to encrypt
and decrypt messages within the SSL-secured "pipeline."

10.Now that the first grid resources has authenticated, the second grid resource
will now authenticate using the same process.

11.Once the session is complete, the session key is eliminated.

As long as both grid resources have a valid digital certificate, the process of
mutual authentication will succeed. This is a good example of how grid security
uses both symmetric and asymmetric encryption to authenticate and secure data
transfer between grid resources. A grid client uses asymmetric encryption to
authenticate and once it is authenticated, it passes symmetric encryption along
with a shared secret key to encrypt and decrypt all data traffic between them.
68 Introduction to Grid Computing with Globus

Other grid communication
If you cannot physically access your grid client or server, it may be necessary to
gain remote access to the grid. While your operating systems default telnet
program works fine for remote access, the transmission of the data is in clear
text. That means that the data transmission would be vulnerable to someone
listening or sniffing the data on the network. While this vulnerability is low, it does
exist and needs to be dealt with.

To secure the remote communication between a client and grid server, the use of
Secure Shell (SSH) can be used. SSH will establish an encrypted session
between your client and the grid server.

GSI-SSH client
Depending on your operating system, there are also other standard SSH clients
available. For more information you run a search on Google
(http://www.google.com) using SSH as the keyword. You can also read the SSH
charter page on the IETF Web site at:

http://www.ietf.org/html.charters/secsh-charter.html

3.2.3 Grid security step-by-step
In order to better understand the process for accessing grid resources, we have
outlined the basic process from start to finish.

Local delegation
This program is used to get a session "proxy" certificate using your long term
certificate.

The proxy certificate is used to authenticate the user and user programs to
resources on the grid. For example, the user can run jobs on the grid with the
globusrun command. The globusrun command is authenticated with the proxy
certificate. The proxy certificate is created with the grid-proxy-init command.
A proxy certificate must be created before jobs can be run on the grid. The proxy
certificate is a session certificate with a limited or short-lived life time, which is
signed by the user certificate. This is functionally equivalent to the Kerberos
kinit program or DCE dce_login.

The motive behind this model is to provide for the single sign on. The single sign
on is the grid-proxy-init. Once the grid proxy certificate or is created, this
certificate is used for authentication on the grid.

This model works because it creates a certificate trust hierarchy, as shown in
Figure 3-6 on page 70.
 Chapter 3. Security 69

http://www.google.com
http://www.ietf.org/html.charters/secsh-charter.html

Figure 3-6 Authentication process

The hierarchy is as follows:

1. The remote grid resource trusts the CA. The remote grid resource trusts the
CA because it placed the CA's certificate in /etc/grid-security/certificates.

2. The remote grid resource can authenticate the user certificate because it is
digitally signed by the CA.

3. The remote grid resource can authenticate the user proxy certificate because
it is digitally signed by the user certificate.
70 Introduction to Grid Computing with Globus

It is analogous to meeting three people at a party: CA, Alice, and Proxy. Proxy
hands you a card that is similar to Figure 3-7.

Figure 3-7 Certificate signed by Alice

You are not familiar with Alice's signature, so you take a card from Alice, which is
similar to Figure 3-8.

Figure 3-8 Certificate signed by CA
 Chapter 3. Security 71

You keep a copy of CA's signature in you wallet. You compare the CA signature
on Alice's card to the copy you keep in your wallet and they match. You now have
an authenticated copy of Alice's signature which you compare to the signature on
Proxy's card. They match, and you now trust you that you are talking to Proxy.
You have authenticated that this person is Proxy.

The grid-proxy-init command uses the SSL library to create a proxy certificate
that is stored in /tmp/<filename>, where <filename> is equal to x509up_u<uid>,
where uid is equal to the UID of the user running grid-proxy-init. The
permission of this file is “-rw------- owner group” of the user running the
command.

This file is an X.509 certificate where the issuer is the user’s primary certificate.
Basically, the users primary certificate acts like a CA to create this session or
"proxy" certificate. The proxy certificate is considered a short-lived certificate. By
default, it has a validity period of 12 hours, but this can be specified by the
grid-proxy-init parameter -hours.

The proxy certificate, as with all X.509 certificates, contains a unique name and
public key. The proxy certificate's unique subject name or distinguished name is
the primary certificates unique name plus "CN=proxy" (limited proxy). This is best
illustrated with the grid-cert-info and grid-proxy-info commands. If the
grid-cert-info command is run with the filename of our primary certificate, the
contents of the certificate is displayed:

%grid-cert-info -f.globus/usercert.pem -subject
/C=US/O=IBM/OU=GridLPP/OU=austin.ibm.com/CN=griduser

The -subject flag displays the subject or distinguished name (DN).

A complete description of X.509 certificates can be found RFC 2459. The
/tmp/x509_up_u<uid> file created by grid-proxy-init contains two other
components in addition to the proxy certificate. It also contains the private key of
the proxy certificate and the user certificate.

The proxy certificates private key is only protected by the file permissions of
/tmp/x509_up<uid>. Since the proxy certificate is short lived, a compromised or
stolen certificate will become useless at the end of its life.

The user certificate's private key remains encrypted in the
$HOME/.globus/userkey.pem file. It can only be accessed with the passphrase
that is given when the user certificate is created with the grid-cert-request
command.
72 Introduction to Grid Computing with Globus

3.3 Grid infrastructure security
Apart from the different GSI components and technologies, there are many other
infrastructure security components that are needed to secure the grid. As in
other areas of grid design, the grid infrastructure security builds on other security
principles. While these security components are optional, they are considered
standard within many production networks. We will explore some of these basic
security concepts and see how they fit into a grid infrastructure.

3.3.1 Physical security
Once again, the security of grid infrastructure is based on other common security
fundamentals. The basics involve solid physical security practices for all grid
computers. The physical environment of a system is also considered a part of the
infrastructure. If the servers are kept in an open room, no matter how secure the
applications are designed or how complex the cryptographic algorithms are, the
server services can easily be interrupted, such as being powered off, or
otherwise tampered with. Therefore, physical access should be controlled and is
part of the security policies that need to be defined.

The CA server should be located in a robust, dedicated, and locked room. All
accesses should be logged and controlled so that only CA-related personnel can
go in. The power supply to the servers should never be interrupted. This means
an uninterruptable power supply (UPS) must be used. However, a UPS may still
run out of electricity after a prolonged period. In such a case, the servers should
be able to automatically back up the data and properly shut down. The room’s
entrance can also be monitored to check who has accessed the room.

For maximum security, the network segment where the PKI-sensitive server
machines are installed should be physically and logically separated from the rest
of the network. Ideally, the separation is done through a firewall that is
transparent only for PKI-related traffic. Normally, PKI traffic is reduced to using
only a few TCP/IP ports.

3.3.2 Operating system security
A review of the configuration files for each operating system and middleware
component within the scope of the project determines how each effectively
allows authorized users access based on your security policy and prevents and
detects unauthorized access attempts at all times. You should:

� Remove any unnecessary processes from the servers. If the grid server does
not need sendmail or an FTP server running, these processes should be
disabled.

� Remove any unnecessary users or groups.
 Chapter 3. Security 73

� Use strong passwords for all users on the grid server.

� Update your server with the latest updates and security FixPacks. This
includes all software the has been installed as well.

� Restrict access to the /.globus directory.

� Consider using host IDS to monitor important directories on the server.

� Enable logging and auditing for the server.

� Use a uniform operating system build whenever possible.

� Enable file level restrictions on important files within the server.

� Make periodic reviews of the operating system every other month to ensure
that nothing major has changed.

� Enable anti-virus protection.

3.3.3 Grid and firewalls
Firewalls can be used within networked environment to logically separate
different sets of computers that require additional security. In a grid environment,
this is no different. The use of firewalls within a grid design helps restrict network
access to computers. The firewall is an important piece of the security
infrastructure, so it needs to be carefully analyzed and understood before it is
implemented.

3.3.4 Host intrusion detection
A recommended option for further securing your grid computers is to invest in a
host intrusion detection (IDS) product. As with any software application that
stores important files within the local workstation, host intrusion detection can
add a greater defense for anyone manipulating files on the workstation that
should not be doing so. If the host IDS product detects a changed file on the
server, it can send an alert to a central monitoring workstation to log and alert the
necessary people.

An ID system gathers and analyzes information from various areas within a
computer or a network to identify possible security breaches, which include both
intrusions (attacks from outside the organization) and misuse (attacks from within
the organization). An IDS uses vulnerability assessment (sometimes referred to
as scanning), which is a technology developed to assess the security of a
computer system or network.

Intrusion detection functions include:

� Monitoring and analyzing both user and system activities
� Analyzing system configurations and vulnerabilities
74 Introduction to Grid Computing with Globus

� Assessing system and file integrity
� Ability to recognize typical patterns of attacks
� Analysis of abnormal activity patterns
� Tracking user policy violations

Network intrusion detection
There can be a point made for network IDS within a grid environment, but some
of that benefit would be lost due to the encryption between grid servers. While a
network IDS would be able to use special signatures for standardized network
traffic, the introduction of a network based IDS system would be lost because of
the SSL/TLS encryption. While a network IDS system could not see the data
payload portion of the packet that is encrypted, the network IDS could respond to
events based on the packet header that is unencrypted. Network IDS is best
suited for placement where it can analyze unencrypted traffic.

The use of any IDS is an optional component within an architecture, but is
strongly recommended for good security practices.

3.4 Grid security policies and procedures
Good security policies and procedures are used to complement the variety of
security components that make up a security infrastructure. This is no different in
a grid environment, but may take on more importance since you may be dealing
with networks out of your control. To help manage this risk, different policies and
procedures should be used. These policies and procedures will help build a
certain way of managing the security controls.

One of the first steps an organization has to consider when comprehensive
security solutions are to be introduced is to define a feasible set of security
policies. In the first place, this has little to do with a PKI because security policies
need to be in place for any kind of I/T infrastructure. Only when the deployment of
a PKI has been decided do some additional benefits and issues come up that
need to be defined within security policies. The following subsections discuss
security policies that primarily relate to a PKI.

3.4.1 Certificate Authority
A PKI must be operated in accordance with defined policies. The deployment of
a PKI system in an organization requires the development of security policies
and processes for that organization. The demo CA that is provided within the
Globus Toolkit provides the software in order to build a CA, but unfortunately
none of the policies. In this section, we will examine some of the basic policies
and expectations that a CA would normally be responsible for. For any type of
 Chapter 3. Security 75

production CA duties, it is suggested that you examine a commercial vendor to
provide these services for you.

The standardization effort has been made to involve security policies in a PKI
framework systematically, as outlined in RFC 2527, Internet X.509 Public Key
Infrastructure Certificate Policy and Certification Practices Framework. According
to X.509, a certificate policy is “a named set of rules that indicates the
applicability of a certificate to a particular community and/or class of application
with common security requirements.” A more detailed description of the practices
followed by a CA in issuing and otherwise managing certificates may be
contained in a Certification Practice Statement (CPS) published or referenced by
a CA.

A certificate policies extension contains a sequence of one or more policy
information terms, each of which consists of a registered object ID (OID) and
optional qualifiers. Applications with specific policy requirements will have to
recognize the OID meaning in at least the same security domain. If the required
policy’s OID is not contained in the certificate extension field, or if any existing
critical OIDs are not understood by the application, the application has to reject
the client’s request. Security policies also result in processes that have to be in
place and subsequently enforced. Processes describe (and/or mandate) the way
an infrastructure is utilized by its administrators and users. Processes may
include elements, such as:

� The certificate requesting, issuance, distribution, and revocation processes.

� The use of certificates for client authentication.

� The use of certificates for securing e-mail communication.

� The use of certificates for inter-organization communication.

� Procedures to follow when security violations are suspected.

� Handling guidelines for private keys and certificates.

� Application development guidelines for PKI exploitation (such as user
authentication using certificates).

A PKI will alter many existing business processes and require many new ones to
support it. These processes can cover technical, organizational, legal, and
infrastructure elements of the whole workflow.

� CA key generation

– Who is involved?
– How is the process secured?

� CA key backup

How is a backup of the CA private key accomplished?
76 Introduction to Grid Computing with Globus

� CA Key restore

How is a key restored?

� CA Key compromise

What happens if the key is broken?

� User registration

How does a user obtain a certificate?

� Certificate revocation

How is a certificate revoked?

CA implementation
If you are planning on implementing your own Certificate Authority, you will need
to build on some of the tools that are provided within the Globus Toolkit. The
Globus Toolkit provides some of the basic tools for a demo CA within a lab or
testing environment, but there is more to building a CA than installing a few
scripts.

In order to manage and administer your own CA, you should be aware of some of
the other resources and policies that are normally required. If you plan on
managing a CA yourself, your plan for implementation must include:

� Required resources and skills
� Required PKI and security process additions and changes
� Recommended implementation timeline and dependencies
� Required changes to the technical infrastructure
� Adoption of the CPS, certificate, and security policies
� Required PKI and security policy additions and changes
� All required checkpoints and approvals

3.4.2 Security controls review
When building any new environment or implementing a new software application,
it is always a good idea to perform a security health check. A security health
check will help determine how these new changes will affect the overall security
of the environment and any other areas of change. This can help provide
guidance on the overall use of security controls or how you are managing
security within your environment. A review of your security controls can help you
better understand how security works for your passwords, administration,
toolsets, auditing, and monitoring within your environment. This will provide an
in-depth review of the site security controls in place and the related processes
used within the organization.
 Chapter 3. Security 77

3.5 Potential security risks
Building a PKI environment will provide the necessary services along with the
GSI to design a secure grid solution. This, however, does not guarantee that
there are not any security risks. Within this section, we will examine some
possible vulnerabilities to watch out for during your security design. This is by no
means a laundry list for all security vulnerabilities or a cookbook for building a
secure infrastructure. The importance of this section is to highlight some
vulnerabilities that you may not have been aware of and allow you the option of
taking the proper steps to improve their security.

Ultimately, it will be up to you to design, build, and test out your security
infrastructure within your grid network. All of the security tools, processes, and
policies in the world will not completely secure a networked environment. There
is still some risk involved, but hopefully with the right people and tools at your
disposal, you can reduce that risk to a negligible level.

3.5.1 PKI vulnerabilities
Just because you have built a PKI environment does not mean that your network
is completely secure. There are still many vulnerabilities to be aware of. It is
necessary to always keep an open mind and understand that with any networked
environment there is going to be some risk involved.

Within a PKI environment, you constantly have to worry about the locations of
your private keys and thefts of digital certificates. The following areas should be
considered when dealing with a PKI environment:

� Impersonation: Obtaining a certificate through fraudulent means (either user
or organization).

� Theft of private key: Unauthorized use of a private key associated with a valid
certificate.

� Compromise of root CA private key: Using a CA key to sign fraudulent
certificates or destroying a private key.

� Automatic Trust Decisions: Automated trust decisions can also automate
fraud.

3.5.2 Grid server vulnerabilities
Any server or workstation that participates in the grid is a potential vulnerability to
an external or internal hacker. Knowing this, it is very important to protect and
isolate any grid computer from any network or resources that do not need explicit
access to the grid. The most common way to isolate or protect your grid
computers from unauthorized network access can be done through the use of
78 Introduction to Grid Computing with Globus

good security policies and procedures. There are not any magic scripts or
firewalls to protect your grid computers, but common sense can play a big part in
how well your grid network is secured. The following areas within the grid server
should be protected:

� Good physical security will limit the exposure of anybody walking up to the
server and accessing the console.

� Protect any directories of the /.globus directory.

� Theft of the digital certificate and private key (along with the private key
phrase).

� Any application vulnerabilities or processes that are running on the grid
server.

� Any modification of the gridmap file.

� Latest operating system FixPacks.

� Any application FixPacks.
 Chapter 3. Security 79

80 Introduction to Grid Computing with Globus

Chapter 4. Design

This chapter provides architectural design considerations for grid computing,
especially for the Globus toolkit. Other design topics that will be discussed are
different grid topologies, grid infrastructure design, and grid architecture models.

At a glance, the following topics are discussed:

� Grid architecture design concepts
� Different grid topologies
� Grid architecture models
� Building a grid architecture
� Grid architecture conceptual model

4

© Copyright IBM Corp. 2003. All rights reserved. 81

4.1 Building a grid architecture
The foundation of a grid solution design is typically built upon an existing
infrastructure investment. However, a grid solution does not come to fruition by
simply installing software to allocate resources on demand. Given that grid
solutions are adaptable to meet the needs of various business problems, differing
types of grids are designed to meet specific usage requirements and constraints.
Additionally, differing topologies are designed to meet varying geographical
constraints and network connectivity requirements. The success of a grid
solution is heavily dependant on the amount of thought the IT architect puts into
the solution design.

Once the functional and non-functional requirements are known, the IT architect
should readily be able to select the type of grid and the best topology required to
satisfy the majority of the business requirements. When armed with this
information, the high level grid design will be easier to complete, and by
leveraging the use of known grid types and topologies, articulating the solution
design will require much less effort.

It is important to focus on starting small and to begin building the basic
framework of the design. Rather than setting out to build the desired end state
grid solution all at once, consider building the grid solution in a phased approach.
The milestone for the initial phase is to provide an “intragrid” solution, which is
essentially a grid sandbox that supports a basic set of grid services. This solution
would support a single location built upon the core grid components, such as a
security model, information services, workload management, and the host
devices. As long as this model supports the same protocols and standards, this
design can be expanded as needed.

An easy way to begin the design is to start with the grid security model. The grid
security model is typically built upon a Public Key Infrastructure (PKI) framework,
and is the foundation for grid user authentication. Knowing the grid type, grid
topology, and the desired security model is fundamental to the customization of
the high level grid solution design. Given that the primary characteristic of a grid
solution is that the network and hardware infrastructure is shared by multiple
users and potentially multiple locations, it makes logical sense to make early
architectural decisions based upon on the implications of the security
requirements.

The first step of the design process is to build a graphical representation of the
grid components. The subsequent phases of the design will be focused on the
next level of architecture. This phase of the design is a starting point for
architects, technical managers, and executives to understand the overall
configuration of the architecture.
82 Introduction to Grid Computing with Globus

At a glance, the grid architecture design should offer the following:

� The “blueprint” for the detailed conceptual design.

� The use of open standards prescribed by the grid framework. For this
redbook, the framework used follows the Globus toolkit patterns.

� A multi-dimensional tiered and layered view of the grid infrastructure, which
demonstrates the ability to logically partition grid resources so that their
service consumption does not impact other grid locations.

� The middleware components and subsystems for a grid infrastructure
integration.

� A design for communication to both business and technical personnel, for
budget and planning purposes, and to provide application development an
illustration of how the shared grid infrastructure will impact the middleware
solution design.

� The distribution of applications and subsystems.

� A means for identifying the necessary technical, infrastructural, and other
middleware components and subsystems for a grid infrastructure.

4.1.1 Solution objectives
The design objectives provide a basic framework for building the grid
infrastructure. The advantage of using design solution objectives is to start
documenting certain areas that can affect the overall design. Within your design,
you are going to need to make sure that the grid can provide a certain amount of
security, availability, and performance. By documenting these different objectives
or requirements, it will make your design a lot easier to follow. You will also be
able to justify some of your decisions during the course of the design by being
able to come back to certain objectives and making sure they were met.

Once the design objectives have been defined, you can separate them into
individual subsystems. This allows each design objective to be worked on in
parallel, but at the same time providing a cohesiveness for the overall
architecture. Once you have documented the core subsystems of the design, you
can focus on the different requirements that your grid design will be comprised of.

When you start building the initial pieces of your design, you need to make sure
that your solution objectives line up with the customer’s requirements. For a grid
design, this is especially important, as there are not only the standard
infrastructure components to consider, but specialized middleware and
application integration issues as well. Making sure that your solution objectives
satisfy your stated requirements will allow you to design a working grid.
 Chapter 4. Design 83

Security
Within any networked environment, there is going to be some risk and exposure
involved with the security of your infrastructure. Unless the computers are
unplugged in a locked room, there is the potential that someone may bypass the
security and get access to protected resources. Whether the weaknesses are
exploited in the infrastructure, application, configuration, or administration, there
is some level of risk.

The security objectives are in place to help to reduce that risk to an acceptable
level. While no design is 100 percent secure, the level of risk is reduced and
controlled through the use of security controls. The goal of the security objectives
are to examine the security requirements and implement the necessary tools and
processes to reduce the risk involved.

The degree of security involved is based on the type of grid topology and the data
the security will be protecting. The security requirements for a grid design within
a bank will be completely different from those of an academic institution doing
research. Whatever the security requirements may be, the security design
objectives for the grid design need to be a central focus for the conceptual
architecture.

Considering that the basic grid security model is based on PKI, it is imperative
that the security components are designed and thought out carefully. While PKI
has been around for a while, there are different components and necessary
processes that should be identified. Rushing this process could lead to many
problems in the future.

With the PKI architecture being the focus of the initial design, there are still areas
that need attention. The infrastructure components (firewalls, IDS, anti-virus, and
encryption) and the processes to manage these pieces are all part of the security
objectives. Knowing which areas match up with your existing environment is the
first step to robust security. The following bullet points are an example of some
security questions that will be answered during the course of the design:

� Where will my CA be deployed and how will we manage it?

� Do I have the necessary processes in place to administer my own CA?

� What are the responsibilities for managing my own CA?

� How will I administer security on the local servers?

� Are my servers of a uniform build or common operating environment?

� Do I have a consistent software build across critical grid infrastructure
systems?

� Which processes are running on my servers?
84 Introduction to Grid Computing with Globus

� Will any existing applications conflict or further expose my grid to any
vulnerabilities?

Availability
Availability in its simplest terms commonly refers to the percentage of time that a
site is up and servicing job requests. Determining how much availability should
be built into the design are part of the availability objectives. This leads down the
path of discovering how many potential single point of failure exist and how much
redundancy should be built into the design. It is inevitable that some components
will fail during a lifetime of usage, but this can be managed by using redundant
components where possible.

Whenever you review various availability scenarios, there are always discussions
about the amount of availability that is required. In this respect, a grid design is
no different from any other infrastructure. A good start is to list the potential
components within the design that should be resilient to failure. Once these
components have been identified, you can seek out the specific availability
options for those components. In the following examples, some different
infrastructure options are described.

An important point that needs to be discussed is the availability of dynamic
resources within a grid environment. Grid is not like a standard environment
where resources are fixed and do not change regularly. Within Globus
environments, the resources are constantly changing according to the
membership and participation of the grid. When grid resources are active, they
can register with the information services (GIIS) within the grid to alert the
system of their state. It is important to make sure that when you design your grid
that you keep this in mind.

Besides the grid middleware components, the different infrastructure
components will also require different levels of availability. Some components will
be more critical than others and it will be up to your design to make sure that you
account for this. When going through the different availability requirements, make
sure that you account for both the grid and infrastructure components. The
following lists are some examples of availability resources that should be
accounted for:

� Grid middleware

– Workload management
– Grid directory and indexing service
– Security services
– Data storage
– Grid software clustering
 Chapter 4. Design 85

� Networks

– Load-balancing
– High-availability routing protocols
– Redundant and diverse network paths

� Security

Redundant firewalls

� Datastore

– Mirroring
– Data replication
– Parallel processing

� Systems management

– Backup and recovery
– LDAP replicas
– Alerts and monitoring to signal a failure within the environment

Every so often, different components necessary to the workflow process fail
periodically and disrupt availability of the system. You can help mitigate the risk
involved by eliminating the single points of failure within your environment
through the use of redundant software or hardware components.

To give you a better idea of some different availability targets, the following list
presents the expected system availability in a whole year:

� Normal commercial availability (single node): 99–99.5 percent, 87.6–43.8
hours of system down

� High availability: 99.9 percent, 8.8 hours of system down

� Fault resilient: 99.99 percent, 53 minutes of system down

� Fault tolerant: 99.999 percent, 5 minutes of system down

� Continuous processing: 100 percent, 0 minutes of system down

Keep in mind, however, that the redundancy that is added to the grid
infrastructure will normally increase the costs within the infrastructure. It is up to
the business to help justify the costs that would bring an environment from 99.9
percent availability per year up to 99.99 percent per year. While the difference in
time between those two numbers is about eight hours, the costs associated may
be too much to justify the increased availability.

Performance
The performance objective for a grid environment is to most efficiently utilize the
various resources within the grid. Whether that includes spare CPU cycles,
86 Introduction to Grid Computing with Globus

access to a federated databases, or application processing, it is up to you to
match the performance goals of the business and design accordingly.

If your application can take advantage of multiple resources, you can design your
grid to be broken up into smaller instances and have the work distributed
throughout the grid. The goal is to take advantage of the grid as a whole in order
to increase the performance of the application. Through intelligent workload
management and scheduling, your application can take advantage of whatever
resources within the grid are available. Part of the performance is based on the
form of workload management to make sure that all resources within the grid are
actively servicing jobs or requests within the grid.

4.2 Grid architecture models
There are different type of grid architectures to fit different types of business
problems. Some grids are designed to take advantage of extra processing
resources, whereas some grid architectures are designed to support
collaboration between various organizations.

The type of grid selected is based primarily on the business problem that is being
solved. Taking the goals of the business into consideration will help you choose
the proper type of grid framework. A business that wants to tap into unused
resources for calculating risk analysis within their corporate datacenter will have
a much different design than a company that wants to open their distributed
network to create a federated database with one or two of their main suppliers.
Such different types of grid applications will require proportionately different
designs, based on their respective unique requirements.

The selection of a specific grid type will have a direct impact on the grid solution
design. Additionally, it should be mentioned that grid technologies are still
evolving and tactical modifications to a grid reference architecture may be
required to satisfy a particular business requirement.

4.2.1 Computational grid
A computational grid aggregates the processing power from a distributed
collection of systems. A well known example of a computational grid is the
SETI@home grid. This type of grid is primarily comprised of low powered
computers with minimal application logic awareness and minimal storage
capacity.

Rather than simply painting images of flying toasters, the idle cycles of the
personal computers on the SETI@home grid are combined to create a
 Chapter 4. Design 87

computational grid used to analyze radio transmissions received from outer
space in the “Search for Extra Terrestrial Intelligence.”

Most businesses interested in computational grids will likely have similar IT
initiatives in common. While they probably will not want to search for
extraterrestrials, there will likely be a business initiative to expand abilities and
maximize the computer utilization of existing resources through aggregation and
sharing. The business may require more computer capacity than is available.
The business is interested in modifying specific vertical applications for parallel
computing opportunities.

Additional uses for a computational grid include mathematical equations,
derivatives, pricing, portfolio valuation, and simulation (especially risk
measurement). Note that not all algorithms are able to leverage parallel
processing, data intensive and high throughput computing, order and transaction
processing, market information dissemination, and enterprise risk management.
In many cases, the grid architecture model is not (yet) suitable for real-time
applications.

Computational grids can be recognized by these primary characteristics:

� Made up of clusters of clusters
� Enables CPU scavenging to better utilize resources
� Provides the computational power to process large scale jobs
� Satisfies the business requirement for instant access to resources on demand

The primary benefits of computational grids are a reduced Total Cost of
Ownership (TCO), and shorter deployment life cycles. Besides the SETI@home
grid, the Distributed Terascale Facility (TeraGrid), UK, and Netherlands grids are
all different types of computational grids. The next generation of computational
grid computing will shift focus towards solving real-time computational problems.

4.2.2 Data grid
While computational grids are more suited for aggregating resources, data grids
focus on providing secure access to distributed, heterogeneous pools of data.
Through collaboration, data grids can also include a new concept such as a
federated database. Within a federated database, as illustrated in Figure 4-1 on
page 89, a data grid makes a group of databases available that function as a
single virtual database. Through this single interface, the federated database
provides a single query point, data modeling, and data consistency.

Data grids also harness data, storage, and network resources located in distinct
administrative domains, respect local and global policies governing how data can
be used, schedule resources efficiently, again subject to local and global
constraints, and provide high speed and reliable access to data. Businesses
88 Introduction to Grid Computing with Globus

interested in data grids typically have IT initiatives to expand data mining abilities
while maximizing the utilization of an existing storage infrastructure investment,
and to reduce the complexity of data management.

Figure 4-1 Federated DBMS Architecture

4.3 Grid topologies
A topology view (see Figure 4-2 on page 90) covers the following spectrum of
grids:

� Intragrids

– Single organizations
– No partner integration
– A single cluster

� Extragrids

– Multiple organizations
– Partner integration
– Multiple clusters

Federated DBMS Architecture

Federated
DBMS

Web Services
Portal

OGSA
Grid
Services

Web Services
Gateway

Public Network
Client
Proxy

Grid
Client

Storage Tank Infrastructure

Oracle

Oracle

DB2

Documentum

Client
Firewall

Grid provider
Firewall 1

Grid provider
Firewall 2SOAP

over HTTPS

Pluggable,
'wrappered'
data sources

JDBC,
ODBC,
etc
 Chapter 4. Design 89

� Intergrids

– Many organizations
– Multiple partners
– Many multiple clusters

Figure 4-2 Intragrids, extragrids, and intergrids

The simplest of the three topologies is the intragrid, which is comprised merely of
a basic set of grid services within a single organization. The complexity of the
grid design is proportionate to the number of organizations that the grid is
designed to support, and the geographical parameters and constraints. As more
organizations join the grid, the non-functional or operational requirements for
security, directory services, availability, and performance become more complex.

As more organizations require access to grid resources, the requirements for
increased application layer security, directory services integration, higher
availability, and capacity become more complicated. The philosophy behind grid
computing is transparent, secure, and coordinated resource sharing and problem
solving in dynamic, multi-institutional organizations. The resource sharing
alluded to is not primarily file exchange but rather direct access to computers,
software, data, and other resources, as is required by a range of collaborative
problem-solving and resource-brokering strategies emerging in industry, science,
and engineering. This sharing is, necessarily, highly protected, with resource
providers and consumers defining clearly and carefully just what is shared, who
is allowed to share, and the conditions under which sharing occurs.

Intragrid

Extragrid

Intergrid
90 Introduction to Grid Computing with Globus

4.3.1 Intragrid
A typical intragrid topology, as illustrated in Figure 4-3, exists within a single
organization, providing a basic set of grid services. The single organization could
be made up of a number of computers that share a common security domain,
and share data internally on a private network. The primary characteristics of an
intragrid are a single security provider, bandwidth on the private network is high
and always available, and there is a single environment within a single network.
Within an intragrid, it is easier to design and operate computational and data
grids. An intragrid provides a relatively static set of computing resources and the
ability to easily share data between grid systems. The business might deem an
intragrid appropriate if the business has an initiative to gain economies of scale
on internal job management, or wants to start exploring the use of grid internally
first by enabling vertical enterprise applications.

Figure 4-3 An intragrid

4.3.2 Extragrid
Based on a single organization, the extragrid expands on the concept by bringing
together two or more intragrids. An extragrid, as illustrated in Figure 4-4 on
page 92, typically involves more than one security provider, and the level of
management complexity increases. The primary characteristics of an extragrid
are dispersed security, multiple organizations, and remote/WAN connectivity.
Within an extragrid, the resources become more dynamic and your grid needs to
 Chapter 4. Design 91

be more reactive to failed resources and failed components. The design
becomes more complicated and information services become relevant to ensure
that grid resources have access to workload management at run time.

A business would benefit from an extragrid if there was a business initiative to
integrate with external trusted business partners. An extragrid could also be used
in a B2B capacity and/or to establish relationships of trust.

Figure 4-4 Extragrids can exist in several organizations and security providers

4.3.3 Intergrid
An intergrid requires the dynamic integration of applications, resources, and
services with patterns, customers, and any other authorized organizations that
will obtain access to the grid via the internet/WAN. An intergrid topology, as
illustrated in Figure 4-5 on page 93, is primarily used by engineering firms, life
science industries, manufacturers, and by businesses in the financial industry.
The primary characteristics of an intergrid include dispersed security, multiple
organizations, and remote/WAN connectivity. The data in an intergrid is global
public data, and applications, both vertical and horizontal, must be modified for a
global audience. A business may deem an intergrid necessary if there is a need
for peer-to-peer computing, a collaborative computing community, or simplified
end to end processes with the organizations that will use the intergrid.
92 Introduction to Grid Computing with Globus

Figure 4-5 Intergrid

4.3.4 E-utilities
Instead of having to buy and maintain the latest and best hardware and software,
customers will have the flexibility of tapping into computing power and programs
as needed, just as they do gas or electricity. But enterprises are coming more
and more to see the e-sourcing trend as a continuum - reaching beyond
commonplace IT resources on demand to the delivery of business process and
management functions integral to the way the organization works.

The "e-sourcing" business model is based on providing the components of IT
function that are (largely) standardized and delivered through a service provider
model. The attributes of this model include a distributed and shared environment,
and generally standardized non-core business processes. The e-utility is used by
consumers of the e-utility as building blocks for developing complex e-business
solutions. The major properties of e-sourcing environments are a standard
solution that requires minimal configuration, pooled resources used to serve
multiple customers, capacity on demand and scalable, 24x7, always on, high
availability, rapidly deployable, minimal operations overhead, shared systems
 Chapter 4. Design 93

management, flexible pricing and billing based on either actual
usage/consumption of resources, or a calculated flat rate subscription.

4.4 Phases and activities
Deciding which grid type and topology to chose from is just the first step in the
grid architecture design. A mature end-to-end design methodology is comprised
of distinct phases and activities. The activities in the architecture design phase of
the project include a review of the detailed architectural decisions and design
documentation for the current infrastructure, conducting interviews and
workshops, the modification of the initial high level design based on new
requirements and the results of the detailed assessment, the creation of a
detailed nodular architecture design, and the creation of the implementation and
transition plan.

4.4.1 Basic methodology
For building a grid architecture, using a basic methodology allows the design to
follow a consistent path from beginning to end. A methodology is not a cookbook
for building a grid architecture, but a way to trace the progress of the design from
the kickoff meeting to the final end-state. The methodology follows a reproducible
set of guidelines that can be used over again based on a set of successful
guiding principals for architecture design. A methodology allows the architecture
to follow a set of principals that can be documented from beginning to end
throughout the design.

We define a basic design methodology for developing the grid conceptual
architecture in the next three sections.

Understanding the business drivers
The first step of any design is to identify and document the business drivers that
are the foundation behind building the grid. The business drivers will outline the
investment and what the end state will accomplish. The business drivers or
business strategy are the foundation or reasoning behind building the grid.
Whether the goal is to tie together or build a federated database with your
suppliers or tie together a set of computers to harness their overall processing
power, you should have an end goal in mind before the design begins.

Requirements gathering
The requirements gathering process will help drive the architecture process by
helping the technical team work within a set of guidelines for the architecture. By
following this process, all of your decisions can be tied back to the basic
94 Introduction to Grid Computing with Globus

requirements and business drivers for the design. Along with your solution
objectives, the requirements will offer a road map for you to follow work through
the design phases.

� Business requirements

The business requirements are a subset of the business drivers that are
focused on solving a specific business need. The business requirements
drive important areas within the design, such as the performance and
availability of the environment. Helping to understand these key service levels
are important part of the design.

� Infrastructure requirements

The infrastructure requirements provide the basic framework for how the
infrastructure will be designed. There are many different variables for how the
grid architecture can be designed and, based on what the requirements will
be, will shape how the environment will look.

� Application requirements

There are many factors that need to be accounted for during the design and
the application is one of them. Possibly one of the most important
requirements that must be validated is to ensure that the application in
question can be made “grid-aware.” Unless the application can take
advantage of the grid resources or split the workload across multiple
components, the power of the grid is wasted.

Validate requirements
During the course of some designs, the requirements can change at the last
minute or may go undiscovered. Requirements also have a way of changing
when you least expect them to, so it is always a good idea to validate them before
you proceed. Validating the requirements one last time before the design phase
begins is a good way to ensure that all parties agree with the direction of the
design.

4.4.2 Recommended steps
The following sections deal with additional recommended methods for developing
an optimal grid design. These methods include attending grid design workshops
and building prototypes once the design has been completed.

Grid design workshops
The purpose of the grid design workshops is to help all of the parties involved to
better understand the variables, options, and considerations that need to be
taken into account when developing a grid infrastructure design. Many or most of
the grid middleware, technologies, and system components are probably new to
 Chapter 4. Design 95

many people within the design team and it is always a good idea to hear firsthand
from experienced IT professionals the means by which grid infrastructures can
be implemented, as well as any pitfalls to watch out for when designing
environments for grid computing.

Documentation
An extremely critical means of communicating the design (your “solution”) of your
grid infrastructure is via an architecture or solution document. The solution
document should start with a high-level overview of the environment and
subsequently should drill down into the most detailed configuration diagrams and
descriptions as possible. You will want to include things like IP addresses,
network routes, server names, server architectures, network hardware, and
essentially everything you know about the infrastructure at the time your design
is completed. In truth, architecture documents are often dynamic, changing as
the needs of the system users change and as technologies mature, become
obsolete, and are replaced by newer technologies. You should revise your
architecture document upon further hardware and software updates so that it
accurately reflects the state of the system. Without an accurate architecture
document, the system implementation team may get easily confused and not
produce the system that was originally designed. Additionally, anyone adding
further design changes to the system after the original system architect has
moved on will appreciate an up-to-date architecture document, as it will save him
or her countless hours of information gathering that would be necessary without
an architecture document.

Prototype
Building a prototype of a grid system can save significant time that would
otherwise be spent debugging and re-tooling unforeseen system
incompatibilities. Your goal in building a prototype should be to produce a small
scale, end-to-end backbone of what your production environment will look like. It
should include all interoperating technologies and/or architectures, so that if any
incompatibility exists, it will be apparent before the production system is
implemented. When all of the kinks are ironed out of your prototype, you will be
confident that all of your components will work together properly in your designed
infrastructure, and, additionally, you will have some experience in the
implementation of such a system. Lessons learned from building the prototype
should be reflected in your architecture document and any other directions
provided to the implementation team.

4.5 A conceptual architecture
The purpose of the grid conceptual architecture is to establish a common
understanding between the business owners and the people architecting and
96 Introduction to Grid Computing with Globus

designing the grid infrastructure by describing the grid architecture that will
support the client business requirements.

This section will highlight some of the common components that you can choose
from within the Globus Toolkit. If you are designing a grid architecture using
different grid middleware software from Platform, DataSynapse, Avaki, or any
other grid software provider, this section should still give you a head start on grid
architecture. You will still be faced with decisions on the basic components, such
as the security models, workload management, information services, and data
sharing.

The conceptual model is a high-level framework consisting of the grid system
components and nodes within the design. The nodes represent the different
system components and grid middleware that make up the design. Normally, the
conceptual model is the first graphical view of the grid infrastructure and is used
as a stepping-stone to building a detailed configuration for the grid network. The
graphic depiction of the grid environment will allow you to see how the
requirements were gathered and how the many grid components will interact with
one another.

4.5.1 Infrastructure
The infrastructure represents the physical hardware and software components
used to interconnect different grid computers. These components help support
the flow of information between grid systems and provide the basic set of
services for connectivity, security, performance availability, and management.
While many of these infrastructure components supply basic functionality to the
grid, many are optional. It will be up to you to decide on the requirements and
how well these components match up to the needs of your design.

Security
The use of firewalls can provide logical and secure segmentation between grid
systems. You might want to use firewalls to protect your networks and grid
servers by limiting the types of services and protocols that connect to your
computers. By using firewalls within your grid design, you can help limit the
network communication between grid systems and only use protocols that you
specify that the firewall will support.

Firewalls are not the only answer to protecting your grid servers, but they do add
an additional layer of defense from internal or external users trying to access
your systems. Firewalls work by controlling access to network services that you
grid computers will be running. Since the network offers a gateway to your grid
systems, you want to make sure that you control exactly the services and
protocols and from where to whom on your network.
 Chapter 4. Design 97

For the most up to date information regarding the Globus Toolkit and firewalls,
you should check out the firewall section on the Globus Web site at:

http://www.globus.org/security/

Some areas you may want to protect within your design are:

� Certificate Authority/Registrant Authority

� Globus Toolkit components, such as MDS, GRIS, and GIIS (for more
information about these and other Globus Toolkit components, refer to 7.2,
“Components of Globus Toolkit” on page 133)

� Databases

� All grid servers

Networks
The network design within the grid architecture can take on many different
shapes. The networking components can represent the LAN or campus
connectivity or even WAN communication between the grid networks. Whatever
the case may be, the network’s responsibility is to provide adequate bandwidth
for any of the grid systems. Like many other components within the infrastructure,
the networking can be customized to provide higher levels of availability,
performance, or security.

Grid systems are for the most part network intensive due to security and other
architectural limitations. For data grids in particular, which may have storage
resources spread across the enterprise network, an infrastructure that is
designed to handle a significant network load is critical to ensuring adequate
performance.

Systems management
Any design will require a basic set of systems management tools to help
determine availability and performance within the grid. A design without these
tools are limited in how much support and information can be given about the
health of the grid infrastructure. Some networks within a grid architecture can be
dedicated to perform these functions as to not hamper the performance of the
grid.

Storage
The storage possibilities are endless within a grid design. How that storage will
be secured, backed up, managed, and replicated are some of the questions that
the grid design will try to answer. Within a grid design, you want to make sure that
your data is always available to the resources that need it. Besides availability,
you want to make sure that your data is properly secured, as you would not want
unauthorized access to sensitive data. Lastly, you want more than decent
98 Introduction to Grid Computing with Globus

http://www.globus.org/security/

performance for access to your data. Obviously, some of this relies on the
bandwidth and distance to the data, but you will not want any I/O problems to
slow down your grid applications. For applications that are more disk-intensive, or
for a data grid, more emphasis can be placed on storage resources, such as
those providing higher capacity, redundancy, or fault-tolerance.

4.5.2 Conceptual components
Within this section, we will incorporate the different infrastructure and grid
middleware components with a sample grid architecture design. This design sets
an example of the basic sets of services that the Globus Toolkit can offer and
how the different infrastructure components interact with the grid middleware.
Within this sample design, our basic framework is set within a single location and
within a single security provider. Our basic design, as illustrated Figure 4-6 on
page 100, begins with a simple understanding of the components that can then
be expanded based on the requirements. To review, our design encompasses
the following:

� Intragrid topology and departmental access

� Single security provider

� Basic set of Globus Toolkit components (see Chapter 7, “Components” on
page 131, for more detail about Globus components)

– Grid clients
– Certificate Authority
– Gatekeepers
– MDS (GRIS/GIIS)
– Digital certificates for authentication

� Basic workload management (job scheduler)

� Common infrastructure devices

– Management network
– Firewalls/host intrusion detection
– Network connectivity

� Storage Area Network

� Network Time Protocol Server
 Chapter 4. Design 99

Figure 4-6 Conceptual components

Security functions
The security functions within the grid architecture are responsible for the
authentication, authorization, and secure communication between grid
resources. Based on a variety of security mechanisms, including PKI or
Kerberos, clients gain access to the grid by registering with the security provider.
To ensure the confidentiality and integrity of your data, encryption between grid
systems is strongly encouraged.

Grid Farm
Grid Farm

Grid Farm
Grid Farm

Grid Farm

Grid Farm
Grid Farm

Grid Farm
Grid Farm

Grid Farm

Grid Farm
Grid Farm

Grid Farm
Grid Farm

Grid Farm

Grid Farm
Grid Farm

Grid Farm
Grid Farm

Grid Farm

Digital
certificate

(User X.509)

Grid client

Firewalls

Firewalls

Host X.509 HostX.509

Host X.509 Host X.509

SSL/TSL

LDAP
X.509

MDS
(GIIS)

LDAP
X.509

MDS
(GRIS)

Resource Management Resource Management

Resource ManagementResource Management

Gridmap
file

Gridmap
file

Gridmap
file

Gridmap
file

Grid
Registration

Grid Information &
Directory Services

Grid Information &
Directory Services

Private
Key

LDAP

Job Queue

Grid
SchedulerGrid Farm

Host
X.509

M
an

ag
em

en
t N

et
w

or
k

(H
os

t I
D

S)

M
an

ag
em

en
t N

et
w

or
k

(H
os

t I
D

S)

Certificate Authority

Firew
alls

NTP Server

7 56

1211
10

8 4

2
1

9 3

White Pages
LD

A
P

Proxy
X.509

DBGrid Storage Area NetworkDB
100 Introduction to Grid Computing with Globus

Resource management
The resource management acts as an abstract interface to heterogeneous
resources of the grid. This allows the grid computers to access dispersed
resources within the grid, regardless of the platform. The resource management
helps works with the different authentication mechanisms to map grid clients to
resources within the grid.

Information services
The information services are an effective way for resources within the grid to
cope with the dynamic nature of the grid. Within any grid, both CPU and data
resources will fluctuate, depending on their availability to process and share
data. As resources become free within the grid, they can update their status
within the grid information services. This provide clients information to make
intelligent decisions on which grid resources are free to use.

As opposed to the grid client itself sending off jobs to specific computers on the
grid, a grid client would send job requests to the workload management
component of the grid. The workload management would route the job to the
necessary grid servers that are available to do the work. Based on a queuing
system, the jobs would flow to a scheduler and be processed upon request. This
area alleviates some performance bottlenecks with the grid by having the
scheduler manage the routing of requests instead of the grid client.

Data movement
Your most important aspect asset within your grid is still your data. Whether you
are building a computational grid or data grid, this still remains the same. Within
your design, you will have to determine your data requirements and how you will
move data around your infrastructure. Standardizing a set of grid protocols will
allow you to communicate between any data source that is available within your
design.

You also have choices for building a federated database to create a virtual data
store or other design options for storing your data. Other options include Storage
Area Networks, network file systems, and dedicated storage servers.
 Chapter 4. Design 101

102 Introduction to Grid Computing with Globus

Part 3 Products

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 103

104 Introduction to Grid Computing with Globus

Chapter 5. Grid software

This chapter presents an overview and introduction to several grid computing
and grid related products. Included in this chapter is a discussion of available
software platforms that can be used to implement an enterprise grid.

5

© Copyright IBM Corp. 2003. All rights reserved. 105

5.1 Grid computing products overview
If you did a search on the Internet for grid computing products, the results would
be endless. It would be impossible to mention all of the products available in this
redbook. Instead, we can only focus on a select number of products that are
considered to be among the leaders in the grid computing arena. The first area in
discussing grid computing products are those products that actually provide a
software platform for computing grids. Included in this discussion are products
available from vendors such as Avaki, Data Synapse, Entropia, United Devices,
Globus, and Platform Computing. The second area focuses on those products
that provide utilities or services on top of a computing grid. These components
will be discussed in Chapter 6, “Additional components” on page 115.

What is meant by a product providing a software platform is that the product
provides the base features one would need to construct a grid. There may be
additional features that could be provided by products of the second type, but the
first type immediately gives you the framework for creating a grid. There are
different types of grids, which are discussed in Chapter 4, “Design” on page 81.
The type of grid that most products today create is a computational grid. In
creating this type of grid, there are different approaches one can take. For
example, an enterprise may wish to scavenge CPU cycles from existing desktops
throughout the enterprise. Alternatively, an enterprise may wish to have
dedicated servers for use in a computational grid. Finally, an enterprise may
choose to both scavenge existing desktops and establish dedicated resources for
the computational grid. DataSynapse, Entropia, and United Devices are three
vendors who supply products that take the desktop scavenging approach. Avaki
and Globus supply products take more of the dedicated resource approach to
their computational grid. Platform Computing has a suite of products that handle
both desktop scavenging and dedicated resources. Another grid type discussed
in Chapter 4, “Design” on page 81 is the data grid. Avaki supplies both a
computational grid and a data grid.

5.2 IBM Grid Toolbox (Globus)
The IBM Grid Toolbox is a package available from IBM that includes the Globus
Toolkit. Also included in the package is additional documentation and custom
installation scripts written for IBM ̂hardware running Linux and AIX.
These install scripts include the installp images for AIX and RPMs for Linux. Also
included in the documentation are the steps for the installation, configuration,
and integration of LoadLeveler (AIX only), using a GASS server, and setting up
MDS. Globus 2.0 on zSseries is also available as a part of the SuSE Linux
Enterprise Server 8 (SLES 8).
106 Introduction to Grid Computing with Globus

The Globus Toolkit is an open source software with development being led by
Argonne National Laboratory, the University of Southern California, and the
University of Chicago. There are three main components in the Globus Toolkit:

� Resource management
� Information services
� Data management

The technologies used to realize these three components include Grid Resource
Allocation Management (GRAM), Monitoring and Discovery Service (MDS), and
Grid File Transfer Protocol (GridFTP). All of these components utilize the Grid
Security Infrastructure (GSI) protocol for security at the connection layer. For a
further explanation of these components, refer to the Chapter 7, “Components”
on page 131.

5.3 Avaki
Avaki is a privately held software vendor located in Cambridge, Massachusetts.
Avaki offers a grid platform, which supplies both a computational and a data grid.
Avaki 2.5 is supported on Windows NT/2000, Linux, Tru64, AIX, Solaris, and
IRIX. Avaki, as illustrated in Figure 5-1 on page 108, is designed more for
dedicated resources and existing servers versus desktop scavenging. In the
Avaki platform, there are a bootstrap host, service hosts, and command clients.

The bootstrap host is installed first to set up and initialize the grid. After the
bootstrap host is installed, service hosts may be installed and join the grid
established by the bootstrap host. Also, if a user just wishes to have access to
the Avaki grid without enrolling their machine, they can install a client machine.
Once the Avaki grid is established, the administrator may add users to the Avaki
grid. Users may then log on to the Avaki grid to submit jobs and access data files
located in the Avaki grid.

Avaki supports existing applications and does not require any modifications to be
made to the code. A user may log in to the Avaki grid and then simply register
their application in the grid. Once registered, users may run their application
interactively or submit them as batch jobs to a queue. Avaki can also be
configured to interoperate with existing schedulers or queues, like Platform’s LSF.

In addition to this computational grid capability, Avaki also supplies data grid
capabilities. Avaki users may log in to the Avaki grid and either copy data files
into the Avaki grid or share local data files in the Avaki grid. When these data files
are copied in, they may be stored on any resource in the grid, but the user does
not care which machine the file is located on, but is only concerned with the path
to the file in the global directory. The user may not even have access to the
 Chapter 5. Grid software 107

machine where the file is stored, but will have access to the file through the Avaki
data grid.

Figure 5-1 Avaki

For more information on Avaki, please visit:

http://www.avaki.com

5.4 DataSynapse
DataSynapse is a privately held software vendor located in New York, New York.
They supply a CPU scavenging platform known as LiveCluster. LiveCluster is
supported on Windows, Linux, and Solaris. The LiveCluster platform, as
illustrated in Figure 5-2 on page 109, consists of three major components: a
Server, Engines, and a Driver.

The Server is responsible for system administration and scheduling. There is a
Web console interface to the server that allows for performing system
administration remotely. Engines can be installed on either desktops or dedicated
servers. When an engine determines that a system is idle, it will request a job
108 Introduction to Grid Computing with Globus

http://www.avaki.com

from the server. If an engine is interrupted by the desktop user while working on
a job, it will suspend the job and the server will restart it on another engine. This
way, the desktop user’s work is not affected. The driver is typically embedded in
an application and is responsible for submitting jobs to the server and receiving
the output. Drivers can also send administrative commands to the server to
obtain status.

LiveCluster supports existing applications with only a little integration work
required. In addition, existing applications may be rewritten, or new applications
written, using the LiveCluster APIs to take full advantage of all of the features
available on the LiveCluster platform. The LiveCluster APIs are available in Java,
C++, and XML.

Figure 5-2 DataSynapse’s LiveCluster

For more information, please visit:

http://www.datasynapse.com/
 Chapter 5. Grid software 109

http://www.datasynapse.com/

5.5 Entropia
Entropia is a grid computing vendor located in San Diego, California. Entropia's
product, DCGrid, provides a means to scavenge CPU cycles from existing
Windows desktops in an enterprise. There are three main components in
DCGrid: the DCGrid Clients, DCGrid Manager, and the DCGrid Scheduler, as
illustrated in Figure 5-3.

Figure 5-3 Entropia DCGrid

The DCGrid client is installed on all of the desired desktops in an enterprise. This
client piece runs unobtrusively on the desktop, so the desktop user's normal
work is not affected. The client will only work on a single job at any given time.
Also, if a desktop machine cannot dedicate enough resources to that job
because the desktop user is using too much of a resource (CPU, disk, and
memory), the job will be paused or stopped and run on another client. The client
also contains a “sandbox” for jobs to run in. This is an isolated area for the
application to run in and the application cannot access any files outside of this
“sandbox”. In addition, all application and data files stored on a client machine
are encrypted with Triple-DES encryption. These two facts not only protect the
application from the desktop user, but also protect the desktop user from the
application. The server components of DCGrid consist of the DCGrid Scheduler
and the DCGrid Manager. The DCGrid Scheduler is responsible for dispatching
jobs to the client desktop. The DCGrid Manager offers a Web interface for
110 Introduction to Grid Computing with Globus

managing the enterprise PC grid. This Web interface allows the administrator to
monitor the status of jobs and clients, and manage user access control. The
interface can also provide users with a Web based method for job submissions.

DCGrid supports any Win32 application and requires no alterations to the source
code. However, not all types of applications are well suited for the DCGrid
platform. Applications must exhibit certain characteristics to benefit from being
run through DCGrid. Applications that are CPU intensive and highly parallel are
good candidates for the platform. Serial applications and MPI applications are
not good candidates for the DCGrid platform. The last two statements are true for
any CPU scavenging approach.

For more information on Entropia please visit:

http://www.entropia.com

5.6 Platform Computing
Platform is a privately held software vendor located in Toronto, Canada. Platform
supplies many distributed computing products that relate to grid computing. This
section will briefly discuss LSF, ActiveCluster, and MultiCluster. In addition to
these products, Platform also offers Platform Globus. Platform Globus includes
the software for the Globus Toolkit as well as documentation and support.

LSF, as illustrated in Figure 5-4 on page 112, is a product in Platform’s suite of
workload management products. LSF is supported on AIX, IRIX, Tru64, HP-UX,
Solaris, Linux, and Windows. LSF can be installed across a heterogeneous
group of servers and balance an organizations workload across these servers.
LSF consist of three main components:

� Master host
� Server host
� Client host

There is one master host per cluster and this host is responsible for scheduling
all jobs on its cluster. A server host is any machine that is running the LSF
daemons and can actually execute jobs. A client host is a machine that is not
running any LSF daemons and can only submit jobs and run LSF commands.
Client hosts cannot execute LSF jobs. LSF supplies multiple types of schedulers
and also allows for custom schedulers to be developed to take an organizations
policies into account. LSF supports existing applications and requires no
changes to the code. LSF also provides a rich set of APIs for application
development.
 Chapter 5. Grid software 111

http://www.entropia.com

ActiveCluster is an extension of LSF that can be used for Windows desktop
scavenging. ActiveCluster requires LSF, because it uses the LSF scheduler. A
server host in an existing LSF cluster can be converted to an ActiveCluster host
and is responsible for sending jobs to the ActiveCluster desktops. ActiveCluster
provides a way to harness unused cycles from desktop machines in an
enterprise.

MultiCluster is another extension of LSF that is used to link together multiple LSF
clusters. A large enterprise may have multiple LSF clusters owned by different
departments within the enterprise. MultiCluster allows an enterprise to balance
its workload not only across the individual department cluster, but across all of
the clusters in an enterprise. There are two approaches to this scenario available
with MultiCluster. The first is a department whose cluster needs additional
resources, so it may send jobs to a department whose cluster has idle resources.
The second approach is for the department with underutilized resources to lease
machines from its cluster to departments whose cluster needs additional
resources.

Figure 5-4 Platform LSF

For more information on Platform, please visit:

http://www.platform.com/
112 Introduction to Grid Computing with Globus

http://www.platform.com/

5.7 United Devices
United Devices is a software vendor located in Austin, Texas. They supply a CPU
scavenging platform called the MetaProccessor Platform. The MetaProcessor
Platform, as illustrated in Figure 5-5 on page 114, consists of two main parts, a
server part, known as the MP Server, and a client part, known as UD Agents. In
addition to the MP Server, there is a database server and a Web console to
manage the MetaProcessor Platform.

The MP Server is supported only on Red Hat Linux, while the database server
can be run on any operating system that is supported by IBM DB2. The UD
agents are supported on Microsoft Windows 98, ME, NT, 2000, and XP, as well
as Linux. The MP Server is responsible for scheduling jobs, collecting data, and
managing the platform. The MP Console provides a Web interface to the server,
which allows for remote management and administration. Jobs may also be
submitted through this console and also through a command line job submission.
The database server must be IBM DB2 and is used to store all the applications,
and the statistics on jobs, users, agents, and so on. The UD Agents are installed
on the desired desktops and are responsible for running the submitted jobs. The
agent will only run one job at a time and at a low priority, so the desktop user’s
work is unaffected. The MetaProcessor Platform supports existing applications or
applications can be written using the APIs to take full advantage of the platform.

United Devices has proven great scalability with their MetaProcessor Platform.
Users can download and install the UD Agent and donate their spare desktop
cycles to the United Devices community through the United Devices Web site. In
turn, United Devices offers this processing power to non-profit research efforts,
such as cancer research. There have been around 1.6 million downloads of the
UD Agent, which shows this great scalability with the United Devices platform.
 Chapter 5. Grid software 113

Figure 5-5 United Devices’ MetaProcessor Platform

For more information on United Devices, please visit:

http://www.ud.com
114 Introduction to Grid Computing with Globus

http://www.ud.com

Chapter 6. Additional components

This chapter provides information about some additional components that may
be used in a grid computing environment.

At a glance, the following topics are discussed:

� Schedulers
� Data sharing
� Security
� Directory service
� License management
� Development tools

6

© Copyright IBM Corp. 2003. All rights reserved. 115

6.1 Schedulers

An important function in a grid is scheduling and load balancing. The grid
platforms mentioned in Chapter 5, “Grid software” on page 105 all have
scheduling capabilities, some more advanced than others. Some of the products,
while having their own scheduler, also have the ability to be integrated with some
existing schedulers. For example, the Globus Toolkit can be integrated with many
schedulers, including PBS, Condor, and LoadLeveler. Some of these schedulers
are discussed in the following sections. These schedulers are more cluster level
schedulers. While the Globus Toolkit can be used to submit jobs to different local
schedulers, there is still a piece missing. A higher level scheduler is needed to
balance the load across these multiple clusters, as illustrated in Figure 6-1. This
higher level scheduler is an area that is still being developed.

Figure 6-1 Local scheduler vs. higher level scheduler

6.1.1 Condor
Condor is workload management software that is developed by a research team
located at the University of Wisconsin in Madison. The Condor research project
116 Introduction to Grid Computing with Globus

started in 1988. As illustrated in Figure 6-2 on page 118, there are three basic
components in a Condor installation: a central manager, execution hosts, and
submission hosts. A checkpoint server is an optional fourth component. The
central manager serves two main functions in a condor cluster. The first function
is collecting the status of all of the nodes in a Condor cluster. The second
function is to match up resource requests for job submissions with a Condor
node that can fulfill these requirements. Any node in a Condor cluster can be
configured to be an execution machine and a submission machine, including the
central manager. Execution machines are those nodes that can run Condor jobs
and submission machines are those machines where Condor jobs can be
submitted. An optional checkpoint server can be added to a cluster to store all of
the checkpoint files for the jobs in the cluster.

There are nine daemons in a Condor cluster:

� There is a condor_master daemon, which watches over all other daemons. It
is responsible for starting all daemons, restarting daemons that have stopped
running, and stopping daemons at the request of the administrator. The
condor_master daemon runs on all nodes in a Condor cluster.

� The condor_collector and condor_negotiator daemons both run on the central
manager only. The condor_collector is the daemon responsible for keeping
status for all of the nodes in a cluster. The condor_negotiator is responsible
for matching up all resource requirements of jobs with available resources.

� The condor_startd daemon runs on any node in the cluster that is configured
to be an execution machine. It contains the resource characteristics for a
node and is used in matching to jobs.

� The condor_starter daemon is spawned by the condor_startd. This is the
daemon that sets up the environment for the remote jobs and also monitors
these jobs.

� The condor_schedd daemon runs on any machine in a cluster that is a
submission machine. All user submitted jobs are submitted to queues that are
managed by the condor_schedd.

� The condor_shadow daemon also runs on submission nodes and is
responsible for managing running jobs.

� There is also an optional condor_ckpt_server daemon, which runs on the
checkpoint server if a cluster is configured to use one. This daemon is
responsible for storing and retrieving checkpoint files.

� There is a condor_kbdd daemon, which is only needed on Digital UNIX and
IRIX machines. This daemon determines when there is keyboard and mouse
activity.
 Chapter 6. Additional components 117

For more information on Condor, please visit:

http://www.cs.wisc.edu/condor/

Figure 6-2 Condor

6.1.2 LoadLeveler
LoadLeveler is job management software available from IBM that can be used to
schedule and load balance jobs across a cluster. LoadLeveler is supported on
AIX. As illustrated in Figure 6-3 on page 119, a LoadLeveler cluster can be made
up of four different types of machine servers: scheduling, central manager,
executing, and submitting machines. One machine in a cluster is designated as
the central manager. It is responsible for monitoring the status of the other nodes
and also matching up job requirements with nodes that satisfy them. Any number
of machines may be designated as submit only machines. This is a workstation,
which is only able to submit jobs to a cluster and run commands that monitor the
status of jobs and kill jobs. A submit only machine is not able to run any jobs
submitted to a LoadLeveler cluster. Scheduling machines are cluster nodes that
manage a queue and are responsible for scheduling submitted jobs. An
executing machine is the node were a given job is run. A single machine may
have more than one role.

There are six daemons in a LoadLeveler cluster:

� LoadL_master
118 Introduction to Grid Computing with Globus

http://www.cs.wisc.edu/condor/

� LoadL_schedd
� LoadL_startd
� LoadL_negotiator
� LoadL_kbdd
� LoadL_gsmonitor

To illustrate the responsibility of each of these daemons, the job submission and
execution process will be described. Jobs submitted to LoadLeveler are
submitted to the schedd daemon. After being submitted, the schedd daemon
notifies the negotiator daemon. The negotiator daemon is responsible for
matching the job requirements with an available node in the cluster. The
negotiator daemon monitors the status of all the nodes in a cluster and will use
this information to make the match. Once the negotiator daemon matches a job
with a cluster node, it will notify the schedd daemon of this match. The schedd
daemon is then responsible for managing the job on this given machine. The
startd daemon is responsible for spawning the job on the execution host. The
startd daemon is also responsible for monitoring jobs and resources on the local
node and reporting this to the negotiator daemon. The kbdd daemon monitors for
keyboard and mouse activity on the local node. LoadLeveler can be configured to
only run jobs if the keyboard and mouse are not being used. The gsmonitor
daemon monitors for down machines in the cluster and will notify the schedd
daemon so jobs that were running on machines that go down can be
rescheduled. The master daemon runs on all nodes in a cluster and is
responsible for all other daemons.

Figure 6-3 LoadLeveler
 Chapter 6. Additional components 119

6.1.3 PBS
Portable Batch System (PBS) is a scheduler that was developed for NASA Ames
Research Center by Veridian. There is an open source version available,
OpenPBS, and a commercial version available, PBSPro. There is support
available with the commercial version as well as additional features, such as
better fault tolerance, advance reservation, and desktop cycle scavenging. The
source is also available for the commercial version. As illustrated in Figure 6-4 on
page 121, there are three main components that make up a PBS cluster:

� Job server
� Job executor
� Job scheduler

The job server is responsible for all batch processes in PBS, including creation,
modification, running, and monitoring of batch jobs. A PBS cluster contains only
one server machine.

The job executer is the machine in the cluster where a batch job is running.

The job scheduler is responsible for scheduling jobs on the cluster; it can query
the status of execution nodes and also query the server to determine what jobs
need to be run.

There are three daemons associated with these components:

� pbs_server
� pbs_mom
� pbs_sched

In a typical job submission, the pbs_server will notify the pbs_sched that a job
needs to be run. The pbs_sched request status from the pbs_mom on all of the
execution hosts. Once this status is returned to the pbs_sched, it will request the
job requirements from the pbs_server. The pbs_sched decides where to run the
job and sends the job to the pbs_mom on that machine.

In PBS, all jobs are submitted to queues. These queues and the scheduler can
be configured using the policies of an organization. There are several different
schedulers available in PBS. These schedulers may be configured by the
administrator to comply with the organization’s policies. Custom schedulers may
also be developed by the administrator for a tighter integration with existing
policies.

For more information on PBS, please visit:

http://www.nas.nasa.gov/Groups/SciCon/Origins/Cluster/PBS/
120 Introduction to Grid Computing with Globus

http://www.nas.nasa.gov/Groups/SciCon/Origins/Cluster/PBS/

For more information on OpenPBS, please visit:

http://www.openpbs.org/

Figure 6-4 PBS

6.2 Data sharing
Computational grids are well suited for handling CPU intensive jobs, but when
more data is involved, there is a greater need for a data grid. Data grids may
include the sharing of data from many different data sources as well as many
different locations. The more this can be virtualized, the better. For example, if
somebody was looking for a certain kind of data, it would be nice if they could
write a query that would span all the available data sources in all locations
without that person knowing where the results are coming from and what kind of
data source is used. Today, there are implementations of federated databases
that realize this goal. For example, IBM offers some of this functionality with DB2.
Also, a file system may be used in implementing a data grid. Distributed file
systems can be used to virtualize storage across multiple machines. One
example that will be discussed is IBM General Parallel File System (GPFS).
 Chapter 6. Additional components 121

http://www.openpbs.org/

6.2.1 Federated databases
An organization may have data stored in many different data sources including
Oracle databases, DB2 databases, flat files, and so on. If the organization wishes
to share this data across the organization, it may be desirable to virtualize all of
these data sources to appear as one single data source. This way, a single query
could be written that would locate the desired data across all of the various data
sources. This is the concept behind a federated database. In existing relational
database technologies, there is a database management system, a catalog, and
data. A query is made from a client to the DBMS and resulting data is returned to
the client. The results are all coming from the same data source in the database
system (this is illustrated in Figure 6-5). In a federated database system, there is
a federated DBMS, catalog, local data source, and remote heterogeneous data
sources. A query is made from a client to the federated DBMS. The federated
DBMS then uses wrappers to access a variety of data sources. The local data
source can be used to store query results for better performance (this is
illustrated in Figure 6-6 on page 123).

Figure 6-5 Relational database
122 Introduction to Grid Computing with Globus

Figure 6-6 Federated database

There is a working group in the Global Grid Forum, Database Access, and
Integration Services, which focuses on “promoting standards for the development
of grid database services.” Their home page can be found at
http://www.gridforum.org/6_DATA/dais.htm. In the future, as OGSA is defined
further, there will be data services defined. As the standards are defined,
wrappers can be written to plug into any OGSA compliant data source.

IBM DB2
There are IBM DB2 products that have some of the federated database features.
DB2 Relational Connect provides access to heterogeneous data sources like
Informix®, IDS, Oracle, Sybase, Microsoft SQL Server, and DB2. A DB2 instance
is set up to be the federated database and its catalog contains information on the
other available data sources. The other available data sources consist of a
DBMS and data. Nicknames are created for tables and views in the other data
sources. After the system is set up, clients can connect to the database and see
all the data sources as one database. Relational Connect only allows for read
access to the other data sources. DB2 DataJoiner® is IBM database middleware
that provides features similar to Relational Connect. The differences are that
DataJoiner works with additional data sources and has insert, delete, and update
capabilities. Included in this list of supported datasources is DB2, Informix,
Oracle, Sybase, Microsoft SQL Server, IMS™, and VSAM. In addition to these
products, there is DB2 Life Sciences Data Connect, which supports even more
data sources, including blast, Documentum, Excel, and Table-structured files.
 Chapter 6. Additional components 123

http://www.gridforum.org/6_DATA/dais.htm

6.2.2 Distributed file systems
Apart from sharing data from relational databases, an organization may want to
share files. Again, it would be nice to virtualize the sharing of files as much as
possible. It may be desirable to distribute files across many different storage
devices. These many different storage devices could be virtualized to appear as
one large disk. A user trying to access a file would not need to know what
machine the file is stored on, only the path of the file in a virtual namespace. The
following section will discuss one example of a distributed file system.

IBM GPFS
IBM General Parallel File System (GPFS) is a high performance shared-disk file
system available for AIX and Linux. There are two types of configurations that
can be applied to a GPFS cluster. First, there is the Network Shared Disk (NSD)
Server Model. In this configuration, only one node, or two if redundancy is
applied, is attached to a storage device. For this configuration, there is a potential
for high network traffic, so a high speed network is recommended, for example,
Gigabit Ethernet or Myrinet. This potential for high network traffic is due to the
fact that every time a node requests to read or write to a file, the request is sent
to the node that is directly attached to the storage device. After the attached node
has completed the task, it will send the data back to the requesting node if it was
a read request, or confirmation of completion, if it was a write request. The
second configuration is Directly Attached Model. In this configuration, every
GPFS node must have a direct connection to every storage device.

With GPFS, files can be stored across multiple nodes in a cluster, which allows
for large file sizes. GPFS allows for multiple clients to access the same file at the
same time and uses a token management system to ensure data consistency.
Data and metadata can be replicated to achieve high availability. There are also
many features to improve performance, including client side caching and data
striping.

6.3 Security
Security is a very important topic in grid computing and is discussed in great
detail in Chapter 3, “Security” on page 51. This section will briefly discuss the
OpenSSL open source toolkit. OpenSSL includes a cryptography library and a
library used to implement the Secure Socket Layer (SSL) and Transport Layer
Security (TLS) protocols. The SSL/TLS protocols can be used to encrypt and
decrypt communication between nodes in a grid system. The OpenSSL toolkit
also provides a command line utility which can be used for many things, including
124 Introduction to Grid Computing with Globus

creating certificates and keys and encryption and decryption. For more
information on OpenSSL and to obtain the latest release, please visit:

http://www.openssl.org

6.4 Directory service
With the idea that a grid can be made up of many heterogeneous resources, it is
vital to have a method of capturing what the grid looks like. One would want to be
able to perform queries on both static and dynamic attributes of a grid. The static
attributes may include the machines enrolled in a grid, the operation system
version, CPU speed, physical memory, and so on. The dynamic attributes may
include what machines are available, disk space available, current load, and so
on. The larger the grid, the more important it is to be able to store and retrieve
this kind of information. The Globus Toolkit component called Monitoring and
Discovery Services (MDS) is implemented using OpenLDAP. Chapter 7,
“Components” on page 131 describes further the MDS.

For more information on OpenLDAP, please visit:

http://www.openldap.org/

OpenLDAP
OpenLDAP is an open source software package that implements the Lightweight
Directory Access Protocol (LDAP). The OpenLDAP package includes an LDAP
server, LDAP replication server, libraries for the LDAP protocol, and various
utilities, including some sample clients. LDAP is a protocol used for directory
access and works over TCP/IP. LDAP directories store information with a unique
Distinguished Name and associated attributes. Each individual attribute is made
up of a type and a value. For example, an attribute for a resource might contain
the type “osname” and value “Linux”. These entries are stored in a hierarchical
structure. In LDAP, the hierarchical structure is usually used to show some
boundaries. For example, the top of the structure may be different organizations
or regions, and branching out from each organization are the attributes
associated with it. This structure can be seen in Figure 6-7 on page 126. LDAP
queries allow for filters to be used, so the query may only search a portion of the
structure. So if a user wanted to know only the servers located in Austin, Texas
that are administrated by Sally, the only part of the directory structure that needs
to be searched is located under Austin; the rest of the tree can be ignored.
Clients must authenticate their identity to LDAP directory servers, so access to
the directory server can be limited.
 Chapter 6. Additional components 125

http://www.openssl.org
http://www.openssl.org
http://www.openldap.org/

Figure 6-7 LDAP directory tree

LDAP follows a client/server model. The LDAP server contains the data that
forms the LDAP directory tree. An LDAP client queries the server for data. The
LDAP server returns the data to the client or the location if the data is stored on a
different LDAP server. There are several different ways that LDAP directory
servers can be set up. The simplest configuration would be a single LDAP server
that contains all of the information for a local domain and is not aware of any
other LDAP servers. In other words, the LDAP server will only return data that it
is responsible for and will not refer a client to another LDAP server (this
configuration is illustrated in Figure 6-8 on page 127). A second way would be to
set up a LDAP server that returned requested data for its domain. But if the
request was for another domain, it would return a referral back to the client for the
LDAP server of the required domain. Another configuration may be to replicate
the LDAP directory to another LDAP server for increased reliability or scalability.
126 Introduction to Grid Computing with Globus

Figure 6-8 Simple LDAP configuration

The LDAP server, which is available with OpenLDAP (slapd), has many features.
The security features for slapd include a wide range of access control
information, authentication services, and privacy through the use of TLS or SSL.
There are a wide variety of databases that can be configured to wok with slapd
and it can be configured to use multiple database instances. slapd can also be
replicated for high availability.

6.5 License management
License management is another important concept when discussing grid
computing. Some software licenses may be set up to where they can be shared
among multiple CPUs and geographies. In a computing grid, where several
applications or users may need the same licensed product, one may not want to
purchase a license for every user and application. Instead, it may be more
desirable to buy less licenses and have a system that manages the use of these
licenses. This system may implement a fair share scheme where all users and
applications have equal access to these licenses, or a priority system may be
established where higher priority applications or users are able to use the
licenses when needed. More effective license management can be very cost
effective.

Platform Global License Broker
One example of a license management product is Platform Global License
Broker. Platform Global License Broker is capable of monitoring current license
usage and distributing licenses based on an organization’s policies. For example,
it can be configured to use a fair share scheme giving all designated users equal

LDAP Client

LDAP Serv er

Directory
Serv ice Tree

Query

Data
 Chapter 6. Additional components 127

access to licenses. Alternatively, it may be configured to distribute licenses based
on priority. For example, higher priority users will have higher access to a license
than lower priority users. Platform Global License Broker can be combined with
another product, Platform License Maximizer, to preempt running jobs to free up
licenses. If a high priority job is waiting on a license, Platform License Maximizer
can be configured to suspend a lower priority job using that license. Once the
license is free again, the suspended job will be resumed.

6.6 Development tools
As computing grids develop and evolve, it will be important to have tools available
to aid developers in creating and modifying applications to run on grids. Some of
the grid software discussed in Chapter 5, “Grid software” on page 105 contained
APIs and development kits that can be used to develop and integrate
applications to run on their platforms. There are development tools available to
help with development for the Globus Toolkit. Included in these tools are
Commodity Grid (CoG) Kits. CoG Kits provide developers access to some of the
Globus Toolkit’s grid services using different commodity technologies. Some of
these technologies include Java, Python, Corba, Perl, and Matlab. Most of the
CoG Kits are currently under development, but the source code is available.
Please visit http://www-unix.globus.org/cog/ for more information. There is
also a tool available for implementing MPI (Message Passing Interface)
applications on a Globus Toolkit environment. MPICH-G2 is a grid
implementation of the MPI v1.1 standard. MPICH-G2 allows for the Globus
services, including security, to be used for MPI applications. MPICH-G2
documentation and source code is available from:

http://www3.niu.edu/mpi
128 Introduction to Grid Computing with Globus

http://www-unix.globus.org/cog/
http://www3.niu.edu/mpi

Part 4 Globus Toolkit

Part 4
© Copyright IBM Corp. 2003. All rights reserved. 129

130 Introduction to Grid Computing with Globus

Chapter 7. Components

This chapter presents some of the main components of the Globus Toolkit 2.2,
which provides:

� Single sign-on, authorization, and authentication
� Job submission
� Resource monitoring, searching, and allocation
� Data movement

Also, the Globus Toolkit provides a set of tools for application programming
(APIs) and system development kits (SDKs).

Extensive information about Globus Toolkit and Globus Project can be found at:

http://www.globus.org

7

© Copyright IBM Corp. 2003. All rights reserved. 131

http://www.globus.org
http://www.globus.org

7.1 Three pyramids
Globus Toolkit has three pyramids of support built on top of a security
infrastructure, as illustrated in Figure 7-1. They are:

� Resource management
� Data management
� Information services

All of these pyramids are built on top of the underlying Grid Security
Infrastructure (GSI). This provides security functions, including single/mutual
authentication, confidential communication, authorization, and delegation.

Figure 7-1 Three pyramids

Resource management
The resource management pyramid provides support for:

� Resource allocation
� Submitting jobs: Remotely running executable files and receiving results
� Managing job status and progress
132 Introduction to Grid Computing with Globus

Globus Toolkit does not have its own job scheduler to find available resources
and automatically send jobs to suitable machines. Instead, it provides the tools
and interfaces needed to implement schedulers and is often used with third-party
schedulers.

Information services
The information services pyramid provides support for collecting information in
the grid and for querying this information, based on the Lightweight Directory
Access Protocol (LDAP).

Data management
The data management pyramid provides support to transfer files among
machines in the grid and for the management of these transfers.

7.1.1 Open standards
Globus Toolkit is an open standard software developed and blueprinted by the
Globus Project. Information about the collaborators of the project can be found at
the following Web site:

http://www.globus.org/about/collaborators.html

In addition to the Globus Project, the Global Grid Forum has contributed a
collection of references and standards. The GGF, as the Global Grid Forum is
known, is a community initiative that includes participants of over 200
organizations in more than 30 countries. The GGF Web site is:

http://www.ggf.org/

7.2 Components of Globus Toolkit
For each pyramid previously presented, Globus provides a component to
implement resource management, data management, and information services,
as illustrated in Figure 7-2 on page 134.
 Chapter 7. Components 133

http://www.globus.org/about/collaborators.html
http://www.ggf.org/

Figure 7-2 The system overview of Globus Toolkit

The components are:

� GRAM/GASS

The primary components of the resource management pyramid are the Grid
Resource Allocation Manager (GRAM) and the Global Access to Secondary
Storage (GASS).

� MDS (GRIS/GIIS)

Based on the Lightweight Directory Access Protocol (LDAP), the Grid
Resource Information Service (GRIS) and Grid Index Information Service
(GIIS) components can be configured in a hierarchy to collect the information
and distribute it. These two services are called the Monitoring and Discovery
Service (MDS). The information collected can be static information about the
machines as well as dynamic information showing current CPU or disk
activity. A rich set of information providers is included with the Toolkit and the
Globus users can add their own. The information provides an interface with
the GRIS, which reports this information to a hierarchy of GIIS servers in the
grid. The LDAP query language is used to retrieve the desired information.

gatekeeper

jobmanager

process

GRAM

proxy

job allocation
job management

user

resource finding data transfer
data control

MDS GridFTP

GRIS

Resources

initialize/destroy

use
use

use

FTP
server

RSL/HTTP1.1 LDAP LDAP gsiftp/http/https/file

processprocessprocess

Client

GIISGIISGIIS
134 Introduction to Grid Computing with Globus

� GridFTP

GridFTP is a key component for the secure and high-performance data
transfer. The Globus Replica Catalog and Management is used to register
and manage both complete and partial copies of data sets.

These three pyramids are modularized and can function in isolation; however,
together, they complement each other.

� GSI

All of the above components are built on top of the underlying Grid Security
Infrastructure (GSI). This provides security functions including single/mutual
authentication, confidential communication, authorization, and delegation.

7.2.1 Grid Security Infrastructure (GSI)
GSI provides elements for secure authentication and communication in a grid.
The infrastructure is based on the SSL protocol (Secure Socket Layer), public
key encryption, and x.509 certificates.

For a single sign-on, Globus add some extensions on GSI. It is based on the
Generic Security Service API, which is a standard API promoted by the Internet
Engineering Task Force (IETF).

These are the main functions implemented by GSI:

� Single/mutual authentication
� Confidential communication
� Authorization
� Delegation

The mechanism of GSI can be seen in detail in Chapter 3, “Security” on page 51,
and at the following official GSI Web site:

http://www.globus.org/security/

7.2.2 Grid Resource Allocation Manager (GRAM)
GRAM is the module that provides the remote execution and status management
of the execution. When a job is submitted by a client, the request is sent to the
remote host and handled by the gatekeeper daemon located in the remote host.
Then the gatekeeper creates a job manager to start and monitor the job. When
the job is finished, the job manager sends the status information back to the
client and terminates.
 Chapter 7. Components 135

http://www.globus.org/security/

The official Web site of for the GRAM is:

http://www.globus.org/gram

Figure 7-3 depicts the conceptual view about GRAM. It contains the following
elements:

� The globusrun command
� Resource Specification Language (RSL)
� The gatekeeper daemon
� The job manager
� The forked process
� Global Access to Secondary Storage (GASS)
� Dynamically-Updated Request Online Coallocator (DUROC)

Figure 7-3 Overview of GRAM

The globusrun command
The globusrun command submits and manages remote jobs and is used by
almost all GRAM client tools. This command provides the following functions:

� Request of job submission to remote machines

Job submission uses security functions (such as GSS-API) to check mutual
authentication between clients and servers, and also to verify the rights to
submit the job.

GRAM Client

globusrun
GSI Client

fork

stdout
file

GRAM Server

job status/cancel

GASS

HTTP/1.1

RSL
Gatekeeper

GSI Server

output transfer
GASS

globusrun
GSI Client

Job Manager

RSLRSL Parser

PBS Job

forkcallback

Process LSF Job

qsub

Local Resource Manager

bsub

use (optional) Perl Script

job request

RSL

file transfer
136 Introduction to Grid Computing with Globus

http://www.globus.org/gram

� Transfer the executable files and the resulting job-submission output files

The globusrun command can get the standard output of job results from
remote machines. It uses GASS to provide the secure file transfer between
grid machines.

Resource Specification Language (RSL)
RSL is the language used by the clients to submit a job. All job submission
requests are described in RSL, including the executable file and condition on
which it must be executed. You can specify, for example, the amount of memory
needed to execute a job in a remote machine.

Gatekeeper
The gatekeeper daemon builds the secure communication between clients and
servers. The gatekeeper daemon is similar to inetd daemon in terms of
functionality. However, gatekeeper provides a secure communication. It
communicates with the GRAM client (globusrun) and authenticates the right to
submit jobs. After authentication, gatekeeper forks and creates a job manager
delegating the authority to communicate with clients.

Job manager
Job manager is created by the gatekeeper daemon as part of the job requesting
process. It provides the interfaces that control the allocation of each local
resource manager, such as a job scheduler like PBS, LSF, or LoadLeveler.

The job manager functions are:

� Parse the resource language

Breaks down the RSL scripts.

� Allocate job requests to the local resource managers

The local resource manager is usually a job scheduler like PBS, LSF, or
LoadLeveler. The resource manager interface is written in the Perl language,
which easily allows you to create a new job manager to the local resource
manager, if necessary.

� Send callbacks to clients, if necessary

� Receive the status and cancel requests from clients

� Send output results to clients using GASS, if requested

Global Access to Secondary Storage (GASS)
GRAM uses GASS for providing the mechanism to transfer the output file from
servers to clients. Some APIs are provided under the GSI protocol to furnish
 Chapter 7. Components 137

secure transfers. This mechanism is used by the globusrun command,
gatekeeper, and job manager.

Dynamically-Updated Request Online Coallocator (DUROC)
By using the DUROC mechanism, users are able to submit jobs to different job
managers at different hosts or to different job managers at the same host (see
Figure 7-4 below).

The RSL script that contains the DUROC syntax is parsed at the GRAM client
and allocated to different job managers. The grammar and attributes of RSL and
DUROC are explained in “Resource Specification Language (RSL)” on
page 137.

Figure 7-4 Overview of DUROC

7.2.3 Monitoring and Discovery Service (MDS)
MDS provides access to static and dynamic information of resources. Basically, it
contains the following components:

� Grid Resource Information Service (GRIS)
� Grid Index Information Service (GIIS)
� Information Provider
� MDS client

The official site of MDS is:

http://www.globus.org/mds/

Figure 7-5 on page 139 represents the conceptual view interconnection of the
MDS components. As illustrated, the resource information is obtained by the
information provider and it is passed to GRIS. GRIS registers its local information
with the GIIS, which also registers with another GIIS, and so on. MDS clients can
get the resource information directly from GRIS (for local resources) and/or a
GIIS (for grid-wide resources).

DUROC
Parser

RSL
DUROC

GRAM Server 1

GRAM Client

globusrun HTTP/1.1

RSL

GRAM Server 2
138 Introduction to Grid Computing with Globus

http://www.globus.org/mds/

The MDS uses LDAP, which provides the decentralized maintenance of resource
information.

Figure 7-5 Overview of MDS

Resource information
Resource information contains the objects managed by MDS, which represent
components resources (static and dynamic) as follows:

� Infrastructure components

For example, name of the job manager or name of the running job

� Computer resources

For example, network interface, IP address, or memory size

Grid Resource Information Service (GRIS)
GRIS is the repository of local resource information derived from information
providers. GRIS is able to register its information with a GIIS, but GRIS itself

GIIS

GIIS

GRIS

Information
Provider

MDS Client

Host B

Host C

Resources

Host A

ldapsearch ldapadd/delete/modify
slapd

LDAP base

RegisterRegister

Local resource
 information

Local resource
 information

Request and response
 of resource information

Request and response
 of resource information

Request and response
 of resource information
 Chapter 7. Components 139

does not receive registration requests. The local information maintained by GRIS
is updated when requested, and cached for a period of time known as the
time-to-live (TTL). If no request for the information is received by GRIS, the
information will time out and be deleted. If a later request for the information is
received, GRIS will call the relevant information provider(s) to retrieve the latest
information.

Grid Index Information Service (GIIS)
GIIS is the repository that contains indexes of resource information registered by
the GRIS and other GIISs. It can be seen as a grid wide information server. GIIS
has a hierarchical mechanism, like DNS, and each GIIS has its own name. This
means client users can specify the name of a GIIS node to search for
information.

Information providers
The information providers translate the properties and status of local resources
to the format defined in the schema and configuration files. In order to add your
own resource to be used by MDS, you must create specific information providers
to translate the properties and status to GRIS.

MDS client
The MDS client is based on the LDAP client command, ldapsearch. A search for
a resource information that you want in your grid environment is initially
performed by the MDS client.

Hierarchical MDS
The MDS hierarchy mechanism is similar to the one used in DNS. GRIS and
GIIS, at lower layers of the hierarchy, register with the GIIS at upper layers.
Clients can query the GIIS for any information about resources that build a grid
environment.

7.2.4 GridFTP
GridFTP provides a secure and reliable data transfer among grid nodes. The
word GridFTP can referred to a protocol, a server, or a set of tools.

GridFTP protocol
GridFTP is a protocol intended to be used in all data transfers on the grid. It is
based on FTP, but extends the standard protocol with facilities such as
multistreamed transfer, auto-tuning, and Globus based security. This protocol is
140 Introduction to Grid Computing with Globus

still in draft level, so for more information, please refer to the following Web site
(you must have Adobe Acrobat Reader to view the document):

http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

As the GridFTP protocol is still not completely defined, Globus Toolkit does not
support the entire set of the protocol features currently presented. A set of
GridFTP tools is distributed by Globus as additional packages. Globus Project
has selected some features and extensions defined already in IETF RFCs and
added a few additional features to meet requirements from current data grid
projects.

GridFTP server and client
Globus Toolkit provides the GridFTP server and GridFTP client, which are
implemented by the in.ftpd daemon and by the globus-url-copy command,
respectively. They support most of the features defined on the GridFTP protocol.

The GridFTP server and client support two types of file transfer: standard and
third-party. The standard file transfer is where a client sends the local file to the
remote machine, which runs the FTP server. An overview is shown in Figure 7-6.

Figure 7-6 Standard file transfer

Third-party file transfer is where there is a large file in remote storage and the
client wants to copy it to another remote server, as illustrated in Figure 7-7 on
page 142.

GridFTP Client GridFTP Server

globus-url-copy in.ftpd

File File
transfer

control
 Chapter 7. Components 141

http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

Figure 7-7 Third-party file transfer

GridFTP tools
Globus Toolkit provides a set of tools to support GridFTP type of data transfers.
The gsi-ncftp package is one of the tools used to communicate with the GridFTP
Server. This package is available at the following site:

http://www-unix.globus.org/ftppub/gt2/2.0/contrib/globus_gsincftp-0.2.tar.gz

The GASS API package is also part of the GridFTP tools. It is used by the GRAM
to transfer the output file from servers to clients.

7.2.5 API and software developer's kit
Two other components are available to help develop Globus related grid
applications:

� APIs
� Developer’s toolkit

API
Globus Toolkit APIs are basically implemented in the C language. Information
about the APIs are at the following site:

http://www-unix.globus.org/api/c-globus-2.2/

GridFTP Client

globus-url-copy

in.ftpd

File File
transfer

GridFTP Server 1

in.ftpd

control control

GridFTP Server 2
142 Introduction to Grid Computing with Globus

http://www-unix.globus.org/api/c-globus-2.2/
http://www-unix.globus.org/ftppub/gt2/2.0/contrib/globus_gsincftp-0.2.tar.gz

Developer's kit
Globus provides a rapid development kit known as CoG (Commodity Grid), which
supports the following technologies:

� Java
� Python
� Web services
� CORBA
� Java Server Pages
� Perl
� Matlab

More information about CoG can be found at:

http://www-unix.globus.org/cog/
 Chapter 7. Components 143

http://www-unix.globus.org/cog/

144 Introduction to Grid Computing with Globus

Chapter 8. Installation and setup

This chapter presents the necessary steps to install and configure Globus Toolkit
2.2.

The following topics are discussed:

� Requirements
� Installation
� Setup
� Advanced configurations
� Client interface

8

© Copyright IBM Corp. 2003. All rights reserved. 145

8.1 How to obtain Globus Toolkit
Globus Toolkit supports Red Hat Linux on xSeries, AIX on pSeries™, and SuSE
Linux Enterprise Server 8 (SLES 8) on zSeries, which contains the pre-compiled
binary distribution of the Globus 2.0 code for Linux on zSeries.

As mentioned in 5.2, “IBM Grid Toolbox (Globus)” on page 106, an IBM Grid
Toolbox package is available from IBM, which includes the Globus Toolkit.

For the purpose of this redbook, we selected the Globus Toolkit Version 2.2
running on Red Hat 7.3. This version of Globus Toolkit may be obtained at the
official Globus Project site:

http://www.globus.org/gt2.2/download.html

For bug tracking, the Globus Project provides the following Web site:

http://bugzilla.globus.org/bugzilla/

For platform specific system requirements for Globus Toolkit 2.2, please refer to
the following Web site:

http://www.globus.org/gt2.2/platform.html

8.2 Bundles and Grid Packaging Technology (GPT)
GPT is a package used for installation and distribution, which includes libraries,
files, and modules to support package creation and installation. It supports the
installation of Globus Toolkit bundles. The package contains the executable files,
script files, and configuration files. There are two types of bundles: source
bundles and binary bundles.

8.2.1 Source bundles
Table 8-1 on page 147 lists the source bundles available for Globus Toolkit
Version 2.2. The source code must be compiled before installation.

Important: Globus Toolkit is distributed under the Globus Toolkit Public
License (GTPL), a liberal open source license. You are allowed to use every
tool and the source code in the Globus Toolkit as you like with no restriction.
But it is as is with no warranty. You can find out more about the GTPL at:

http://www.globus.org/toolkit/download/license.html
146 Introduction to Grid Computing with Globus

http://www.globus.org/gt2.2/download.html
http://www.globus.org/gt2.2/platform.html
http://www.globus.org/toolkit/download/license.html
http://www.globus.org/toolkit/download/license.html
http://bugzilla.globus.org/bugzilla/

Table 8-1 Source bundles of Globus Toolkit

8.2.2 Binary bundles
The binary bundles contain the binary executable files that have been
pre-compiled for specific platforms. Table 8-2 lists the binary bundles for a Linux
Intel-based platform.

Table 8-2 Binary bundles of Globus Toolkit

Client bundle Server bundle SDK bundle

Resource management globus-resource-
management-client
-2.2.2-src_bundle.
tar.gz

globus-resource-
management-
server-2.2.2-src_
bundle.tar.gz

globus-resource-
management-sdk-
2.2.2-src_bundle.
tar.gz

Information services globus-information-
services-client-
2.2.2-src_bundle.
tar.gz

globus-information-
services-server-
2.2.2-src_bundle.
tar.gz

globus-information-
services-sdk-2.2.2-
src_bundle.tar.gz

Data management globus-data-
management-client
-2.2.2-src_bundle.
tar.gz

globus-data-
management-
server-2.2.2-src_
bundle.tar.gz

globus-data-
management-sdk-
2.2.2-src_bundle.
tar.gz

Binary bundle Contents

globus-all-2.2.2-i686-pc-
linux-gnu-bin.tar.gz

Client and server packages: Resource management,
information services and data management

globus-all-server-2.2.2-
i686-pc-linux-gnu-bin.tar.
gz

Server packages

globus-all-client-2.2.2-i686
-pc-linux-gnu-bin.tar.gz

Client packages

globus-all-sdk-2.2.2-i686-
pc-linux-gnu-bin.tar.gz

SDK packages

globus-data-management-
server-2.2.2-i686-pc-linux-
gnu-bin.tar.gz

Server packages for the data management

globus-data-management-
client-2.2.2-i686-pc-linux-
gnu-bin.tar.gz

Client packages for the data management
 Chapter 8. Installation and setup 147

Other platform-specific binary bundles are available at the following Globus FTP
site:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin/

8.2.3 Additional bundles
Globus Toolkit provides additional software as GPT bundles.

� GSI:

globus-gsi-2.2.2-src_bundle.tar.gz (source bundle), found at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/

� GRAM Job Manager Scheduler Support:

– globus_gram_job_manager_setup_condor-1.0.tar.gz (source bundle)
– globus_gram_job_manager_setup_pbs-1.0.tar.gz (source bundle)

globus-data-management-
sdk-2.2.2-i686-pc-linux-
gnu-bin.tar.gz

SDK bundles for the data management

globus-information-
services-server-2.2.2-i686
-pc-linux-gnu-bin.tar.gz

Server packages for the information service

globus-information-
services-client-2.2.2-i686-
pc-linux-gnu-bin.tar.gz

Client packages for the information service

globus-information-
services-sdk-2.2.2-i686-pc
-linux-gnu-bin.tar.gz

SDK packages for the information service

globus-resource-
management-server-2.2.2-
i686-pc-linux-gnu-bin.tar.
gz

Server packages for the resource management

globus-resource-
management-client-2.2.2-
i686-pc-linux-gnu-bin.tar.
gz

Client packages for the resource management

globus-resource-
management-sdk-2.2.2-
i686-pc-linux-gnu-bin.tar.
gz

SDK packages for the resource management

Binary bundle Contents
148 Introduction to Grid Computing with Globus

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin/

– globus_gram_job_manager_setup_lsf-1.0.tar.gz (source bundle)
– globus_gram_job_manager_setup_remote-1.0.tar.gz (source bundle)

These are found at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/extra/gram_job_manager/src/

� GRAM Reporter Scheduler Support:

– globus_gram_reporter-2.0.tar.gz (source bundle)
– globus_gram_reporter_setup_fork-1.0.tar.gz (source bundle)
– globus_gram_reporter_setup_condor-1.0.tar.gz (source bundle)
– globus_gram_reporter_setup_pbs-1.0.tar.gz (source bundle)
– globus_gram_reporter_setup_lsf-1.0.tar.gz (source bundle)

These are found at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/extra/gram_reporter/src/

� File Replication Software:

globus-replica-2.2.2-src_bundle.tar.gz (source bundle), found at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/

globus-replica-2.2.2-i686-pc-linux-gnu-bin.tar.gz (Linux binary bundle), found
at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin/

� GSI-enabled version of ncftp FTP client software:

globus_gsincftp-0.6.tar.gz (source bundle), found at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/contrib/src/

� Globus Simple CA bundle:

globus_simple_ca_bundle-0.7.tar.gz (source bundle), found at:

ftp://ftp.globus.org/pub/gsi/simple_ca

� Globus Toolkit 2.2 Advisories

There are the security-fix, bug-fix, and enhancement version of packages,
which can be found at the following site:

http://www.globus.org/gt2.2/advisories.html

8.3 Grid environment
Figure 8-1 on page 150 introduces a conceptual grid environment presented
after a Globus Toolkit installation. In this environment, there are three servers:

� demoCA

It is the simple Certificate Authority.
 Chapter 8. Installation and setup 149

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin/
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/extra/gram_job_manager/src/
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/contrib/src/
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/extra/gram_reporter/src/
http://www.globus.org/gt2.2/advisories.html
ftp://ftp.globus.org/pub/gsi/simple_ca

� Host A and host B

They are the grid nodes.

The user’s names are different on host A and host B, but they share the same
grid user ID, which is known as the Distinguished Name:

/O=Grid/O=Globus/OU=itso.grid.com/CN=ITSO grid user

We are going to explain how to install GPT and install and set up the servers
demoCA and host A. The installation and setup of host B is explained in 8.5.3,
“Adding a new grid server” on page 168.

Figure 8-1 System overview after installation

8.4 Installation
You first need to install GPT into the servers and then install the server and client
bundles.

demoCA
OS: Red Hat Linux 7.3
S/W: GPT 2.2.2
 All server and client
 bundles of GT 2.2.2
Host name:
 hosta.itso.grid.com
Grid user name:
 griduser

Host A Host B
OS: Red Hat Linux 7.3
S/W: GPT 2.2.2
 GSI bundles
 of GT 2.2.2
Host name:
 democa.itso.grid.com

TCP/IP network

DN of grid user:
 /O=Grid/O=Globus/OU=itso.grid.com/CN=ITSO grid user

OS: Red Hat Linux 7.3
S/W: GPT 2.2.2
 All server and client
 bundles of GT 2.2.2
Host name:
 hostb.itso.grid.com
Grid user name:
 griduser

share

Note: In order to build the grid environment presented in 8.3, “Grid
environment” on page 149, install GPT on the demoCA and host A servers.
After the installation of GPT, you must install the Certificate Authority to
demoCA and the server and client bundles on host A.
150 Introduction to Grid Computing with Globus

8.4.1 Installation of GPT
The name of file you need is gpt-2.2.2-src.tar.gz. Before installing GPT, you are
required to set an environment variable, $GPT_LOCATION, that points to the
location where GPT itself is installed. You should set an environment variable,
$GLOBUS_LOCATION, that points to the location where the Globus Toolkit build
and install output is placed. The example is as follows:

export GPT_LOCATION=/usr/local/gpt
export GLOBUS_LOCATION=/usr/local/globus

Extract and unzip gpt-2.2.2-src.tar.gz and build the tools inside of it using the
build_gpt command. The GPT commands are installed in the
$GPT_LOCATION/sbin directory (see Example 8-1).

Example 8-1 Untar GPT source archive and build

[root@democa globus]# tar -zxvf gpt-2.2.2-src.tar.gz
gpt-2.2.2/
gpt-2.2.2/support/
gpt-2.2.2/support/Archive-Tar-0.22/
...(author omits lists)
[root@democa globus]# cd gpt-2.2.2
[root@democa gpt-2.2.2]# ./build_gpt
build_gpt ====> building support/Compress-Zlib-1.16
Up/Downgrade complete.
Up/Downgrade complete.
build_gpt ====> building support/Archive-Tar-0.22
build_gpt ====> building support/PodParser-1.18
build_gpt ====> building packaging_tools
[root@democa gpt-2.2.2]# ls $GPT_LOCATION/sbin
gpt-build gpt_save_flavor
gpt_build_config gpt-setup
gpt-bundle gpt_sort_filelist
gpt_create_automake_rules gpt-translate-interpreter
gpt-deps gpt-translate-interpreter-pl
gpt-edit gpt-undefines
gpt_extract_data gpt-uninstall
gpt-flavor-configuration gpt-update
gpt_generate_bin_pkg_data gpt-verify
gpt_get_lib_names gpt-virtual-pkg
gpt-install pod2usage
gpt-perl-version podchecker
gpt-pkg podselect

Note: To save time upon subsequent logins, it is useful to set up the
$GPT_LOCATION and $GLOBUS_LOCATION environmental variables in the
profile file, such as ~/.bash_profile or /etc/profile.
 Chapter 8. Installation and setup 151

gpt-postinstall ptar
gpt-query

8.4.2 Installation of bundles
In this next section, the general installation procedure of bundles (both source
and binary) is explained. After that, the installation examples of host A and
demoCA are shown.

Installation of source bundles
gpt-build is the command used to install source bundles. Many bundles
distributed by Globus Project are built by using this command. The command to
build a bundle is as follows:

gpt-build some_bundle.tar.gz <options> <flavors>

You can see some of the gpt-build flavors and options in Table 8-3 and
Table 8-4. The flavor option is the compiler option and depends on the C compiler
which you want to use. The examples of flavors shown below are for the GNU C
compiler.

Table 8-3 gpt-build flavors usually used

Table 8-4 Options of globus-build command

Flavor Description

gcc32 Build bundles with GNU C 32-bit compiler as a single-thread without
debug option.

gcc32dbg Build bundles with GNU C 32-bit compiler as a single-thread with
debug option.

gcc32pthr' Build bundles with GNU C 32-bit compiler as a multi-thread without
debug option.

gcc32dbgpthr Build bundles with GNU C 32-bit compiler as a multi-thread with
debug option.

Option Description

-verbose Tells gpt-build to print all of the build output. This is useful in
debugging builds.

-log=’directory
path’

Tells gpt-build to keep a log of the install in ‘directory path’.

-static Tells gpt-build to link all of the programs to libraries statically, not to
use any shared libraries.
152 Introduction to Grid Computing with Globus

Table 8-5 shows the standard combination of flavors and options for each bundle.
In this case, there are no standard options.

Table 8-5 The standard combination of flavors and options

Example 8-2 is a sample procedure of installation of a source bundle (Data
Management Client).

Example 8-2 A sample installation procedure (Data Management Client)

[root@hosta globus]# $GPT_LOCATION/sbin/gpt-build \
> globus-data-management-client-2.2.2-src_bundle.tar.gz \
> gcc32dbg
gpt-build ====> Changing to /home/globus/globus222/globus_core-2.6/
gpt-build ====> BUILDING FLAVOR gcc32dbgp
gpt-build ====> Changing to /home/globus/globus222
...(author omits lists)

Once you have installed all of the source bundles you wish to install, run the
following command to complete your installation:

$GPT_LOCATION/sbin/gpt-postinstall

If you choose the installation of source bundle, you should install all server and
client bundles in Table 8-1 on page 147 to host A. The SDK bundles are for
development and are optional.

Bundle Flavor

Data Management Client gcc32dbg

Data Management Server gcc32dbg

Data Management SDK gcc32dbg

Information Services Client gcc32dbgpthr

Information Services Server gcc32dbgpthr

Information Services SDK gcc32dbgpthr

Resource Management Client gcc32dbg

Resource Management Server gcc32dbg

Resource Management SDK gcc32dbg

Replica gcc32dbgpthr

GSI gcc32dbg
 Chapter 8. Installation and setup 153

Installation of binary bundles
Use the GPT binary install command globus-install to install binary bundles.
An example of how to install a bundle follows:

$GPT_LOCATION/sbin/globus-install \
> globus_data_management_bundle-server-linux-i686-gcc32.tar.gz

Once you have installed the binary bundles, you must run the following command
to complete your installation:

$GPT_LOCATION/sbin/gpt-postinstall

Installation of a grid node
Example 8-3 shows the installation procedure of a binary bundle that contains
both the server and client packages,
globus-all-2.2.2-i686-pc-linux-gnu-bin.tar.gz, in host A.

Example 8-3 Installation procedure of grid node

[root@hosta globus]# $GPT_LOCATION/sbin/gpt-install \
> globus-all-2.2.2-i686-pc-linux-gnu-bin.tar.gz
globus_common-gcc32dbg-dev ver: 3.1 cmp id: 3.1.0 successfully installed.
globus_common-gcc32dbg-rtl ver: 3.1 cmp id: 3.1.0 successfully installed.
globus_common-gcc32dbgpthr-dev ver: 3.1 cmp id: 3.1.0 successfully installed.
...(author omits lists)
[root@hosta globus]# $GPT_LOCATION/sbin/gpt-postinstall
running /usr/local/globus/setup/globus/setup-globus-common...
creating globus-sh-tools-vars.sh
creating globus-script-initializer
...(author omits lists)

Installation of a simple Certificate Authority
There are two ways to use the Certificate Authority. One is to use the official
Globus Certificate Authority; the other is to prepare your own CA in your grid
environment.

If you use the official Globus Certificate Authority, its public key is in the GSI
package. You do not have to build your Certificate Authority in your grid
environment. Send your certificate requests, which are created by the
grid-cert-request command, by e-mail to ca@globus.org. In about two days,
you will receive a reply that contains your certificate signed by Globus CA.

Note: In order to build the grid environment presented in 8.3, “Grid
environment” on page 149, you should install all binary server and client
bundles shown in Table 8-2 to host A. The SDK bundles are optional.
154 Introduction to Grid Computing with Globus

Also, you can choose any CA package to build your own CA, such as OpenSSL.
The server bundles of Globus Toolkit contains OpenSSL and some useful tools
for building our own CA. The GSI bundle is enough to build a simple CA.

Example 8-4 shows the installation procedure of a simple CA on the demoCA
server using the GSI bundle.

Example 8-4 Installation procedure of GSI bundle

[root@democa globus]# $GPT_LOCATION/sbin/gpt-build \
> globus-gsi-2.2.2-src_bundle.tar.gz gcc32dbg
gpt-build ====> Changing to /home/globus/globus/globus_core-2.6/
gpt-build ====> BUILDING FLAVOR gcc32dbg
gpt-build ====> Changing to /home/globus/globus
...(author omits lists)
[root@democa globus]# $GPT_LOCATION/sbin/gpt-postinstall
running /usr/local/globus/setup/globus/setup-globus-common...
creating globus-sh-tools-vars.sh
creating globus-script-initializer
...(author omits lists)

The GSI bundle, globus-gsi-2.2.2-src_bundle.tar.gz, is available at the following
site:

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/

8.4.3 Uninstallation
There is no command currently available to uninstall the Globus Toolkit bundles.
GPT only provides the gpt-uninstall command to uninstall a package. A
packages is a bundle with a dependency tree. Sometimes they might depend
only on the packages in its bundle, while at other times they might depend on the
packages in the other bundles. So, you need to uninstall all the related packages
in order to keep the whole dependency tree. Fortunately, the gtp-uninstall
command is able to identify the dependency. If one package is dependent upon
other packages, this command does not uninstall it. But it does not support the
automatic uninstallation of all the related packages in the dependency tree, so
you need to check for the related packages to uninstall. Example 8-5 shows the
uninstallation of the Data Management client bundle.

Example 8-5 Uninstallation of bundle

[root@hosta globus] # tar -ztf \
>globus-data-management-client-2.2.2-src_bundle.tar.gz | \

Note: In order to build the grid environment presented in 8.3, “Grid
environment” on page 149, a CA must be built on the demoCA server.
 Chapter 8. Installation and setup 155

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src/

>awk '{print "gpt-uninstall " $1}'FS=-|grep -v packaging_list \
>> uninstall.sh
[root@hosta globus] # cat uninstall.sh
gpt-uninstall globus_gass_copy
gpt-uninstall globus_ftp_client
gpt-uninstall globus_gass_transfer
gpt-uninstall globus_ftp_control
gpt-uninstall globus_io
gpt-uninstall globus_gss_assist
gpt-uninstall globus_proxy_utils
gpt-uninstall globus_gssapi_gsi
gpt-uninstall globus_gsi_proxy_core
gpt-uninstall globus_gsi_credential
gpt-uninstall globus_gsi_callback
gpt-uninstall globus_gsi_sysconfig
gpt-uninstall globus_gsi_cert_utils
gpt-uninstall globus_gsi_openssl_error
gpt-uninstall globus_openssl_module
gpt-uninstall globus_gsi_proxy_ssl
gpt-uninstall globus_user_env
gpt-uninstall globus_trusted_ca_42864e48_setup
gpt-uninstall globus_openssl
gpt-uninstall globus_common_setup
gpt-uninstall globus_common
gpt-uninstall globus_core
[root@hosta globus] #sh uninstall.sh
(execute this several times until no independent package exists.)
...(author omits lists)

8.5 Setting up the grid environment
After the installation of Globus Toolkit, each element of your grid environment
must be set up. The first element is security.

You must request certificates for your servers processes from your CA. Next, set
up your user certificate and validate the connection between the user
applications and servers.

The following is a list of the needed files:

/etc/grid-security/certificates/<hash number>.0
/etc/grid-security/certificates/<hash number>.signing_policy
/etc/grid-security/hostcert.pem
/etc/grid-security/hostkey.pem
/etc/grid-security/ldap/ldapcert.pem
/etc/grid-security/ldap/ldapkey.pem
/etc/grid-security/grid-mapfile
156 Introduction to Grid Computing with Globus

<User’s Home Directory>/.globus/usercert.pem
<User’s Home Directory>/.globus/userkey.pem

The servers are then configured to act as daemon processes.

8.5.1 Certificate Authority setup
Before setting up a CA, you should synchronize the system time of all the
machines of your grid environment. GSI certificates use GMT and is very
sensitive to the time. If the system time of your grid environment is not set
correctly, errors might occur when you use GSI certificates. For this reason, it is
recommended that you set up a time server, NTP, in your grid environment and
set the time correctly on all of your systems.

If your are building your own CA, the setup procedure using the GSI bundle is
described below.

1. Create new CA, as shown in Example 8-6.

Example 8-6 Creation of new CA

[root@democa globus]# export SSLEAY_CONFIG="-config /usr/share/ssl/openssl.cnf"
[root@democa globus]# CA.sh -newca
CA certificate filename (or enter to create)

Making CA certificate ...
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 1024 bit RSA private key
.......................................++++++

Attention: It is useful to set up the environmental variables PATH or
LD_LIBRARY_PATH for Globus Toolkit. These are set at the command prompt
or in a setup file like ~/.bash_profile or /etc/profile. For example:

PATH=$PATH:$GPT_LOCATION/sbin:$GLOBUS_LOCATION/bin:$GLOBUS_LOCATION/sbin
LD_LIBRARY_PATH=$GLOBUS_LOCATION/lib

It often happens that the command program cannot load libraries. It helps to
check that the variable, LD_LIBRARY_PATH, is set correctly.

Globus Toolkit provides a shell script to set up these environmental variables.
They can be sourced as follows:

source $GLOBUS_LOCATION/etc/globus-user-env.sh (sh)
source $GLOBUS_LOCATION/etc/globus-user-env.csh (csh)

If this shell script is added to the directory, /etc/profile.d/, then all needed
environmental variables are set for all users.
 Chapter 8. Installation and setup 157

..++++++
writing new private key to './demoCA/private/./cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Texas
Locality Name (eg, city) [Newbury]:Austin
Organization Name (eg, company) [My Company Ltd]:IBM
Organizational Unit Name (eg, section) []:ITSO
Common Name (eg, your name or your server's hostname) []:democa.itso.grid.com
Email Address []:ca@democa.itso.grid.com

2. Create the files to be distributed.

There are two files to be distributed to all grid machines. One is the public key
file of the CA, and the other is the policy file for the CA. Example 8-7 shows
how you can make the public key file for the distribution by using the c_rehash
command.

Example 8-7 Creating the new CA public key

[root@democa CA]# $GLOBUS_LOCATION/bin/c_rehash demoCA
Doing demoCA
cacert.pem => cf9ff597.0

The name of policy file is in the form <hash number of key>.signing_policy.
Example 8-8 shows the contents of a policy file.

Example 8-8 Example of policy file

access_id_CA X509
'/C=US/ST=Texas/L=Austin/O=IBM/OU=ITSO/CN=democa.itso.grid.com/Email=ca@democa.
itso.grid.com'
pos_rights globus CA:sign

Attention: The environmental valuable, $SSLEAY_CONFIG, is for the
configuration of OpenSSL. The openssl.cnf file contained in the OpenSSL
package of Red Hat 7.3 is used. You must install the OpenSSL package if
you have not installed it on your system.
158 Introduction to Grid Computing with Globus

cond_subjects globus '"/O=Grid/O=Globus/*"'

The value of the access_id_CA attribute is the issuer name that was used to
sign the certificates. This name should be the same as you used when
creating the new CA (see Example 8-6 on page 157).

The CA public key and policy files, are shown below, respectively:

<CA’s home directory>/demoCA/<hashed number>.0
<CA’s home directory>/demoCA/<hashed number>.signing_policy

After the installation, the public key and policy file of CA should be distributed
to all grid machines that use this CA.

Server certificates
All server bundles contain GSI. The first step is to initialize your GSI environment.
After the installation of GSI, you are required to run the setup-gsi script (see
Example 8-9). This script initializes the files that are necessary for security.

Example 8-9 Initialize GSI environment

[root@hosta globus]# $GLOBUS_LOCATION/setup/globus/setup-gsi
setup-gsi: Configuring GSI security
Making /etc/grid-security...
mkdir /etc/grid-security
Making trusted certs directory: /etc/grid-security/certificates/
mkdir /etc/grid-security/certificates/
Installing /etc/grid-security/certificates//grid-security.conf.42864e48...
Running grid-security-config...

 G S I : C O N F I G U R A T I O N P R O C E D U R E

Before you use the Grid Security Infrastructure, you should first
define the DN (distinguished name) that should be used for your
organization's X509 certificates. If you do not define a DN,
a default DN will be assigned to you.

This script will ask some questions about site specific
information. This information is used to configure
the Grid Security Infrastructure for your site.

For some questions, a default response is given in [].
Pressing RETURN in response to such a question will enable the default.
This script will overwrite the file --

 /etc/grid-security/certificates//grid-security.conf.42864e48

Do you wish to continue (y/n) [y] :
 Chapter 8. Installation and setup 159

==

(1) Base DN for user certificates
 [ou=itso.grid.com, o=Globus, o=Grid]
(2) Base DN for host certificates
 [o=Globus, o=Grid]

==
(q) save, configure the GSI and Quit
(c) Cancel (exit without saving or configuring)
(h) Help
==
q
Installing Globus CA certificate into trusted CA certificate directory...
Installing Globus CA signing policy into trusted CA certificate directory...
setup-gsi: Complete
[root@hosta globus]# $GPT_LOCATION/sbin/gpt-verify
Verifying run-time dependencies...

Verifying setup dependencies...

Verifying setup packages...

The collection of packages in /usr/local/globus appear to be coherent.

The gpt_verify command verifies the installation.

After the initialization, a directory that contains setup files for security,
/etc/grid-security, is created. The public key and its policy file of CA should be
copied to the /etc/grid-security/certificates directory.

All server bundles (GRAM, MDS, and GridFTP) use the GSI. Certificates must be
created for all of them. GRAM and GridFTP use the same certificate and MDS
uses a separated one.

GRAM and GridFTP certificates
The gatekeeper of GRAM and gsi-wuftpd of GridFTP use the same certificate
(hostcert.pem) and private key (hostkey.pem). First, you need to make the private
key and certificate request, as shown in Example 8-10 on page 161.

Attention: For the setup of the CA, you don’t need to run the setup-gsi script.
This script creates a directory that contains the configuration files for security.
CA does not need this directory, because these configuration files are for the
servers and users who use the CA.
160 Introduction to Grid Computing with Globus

Example 8-10 Creation of GRAM and GridFTP private key and certificate request

[root@hosta globus]# grid-cert-request -host hosta.itso.grid.com
Using configuration from /etc/grid-security/globus-host-ssl.conf
Generating a 1024 bit RSA private key
...(author omits lists)

Next, you need to send your certificate request to the CA and request it to sign
your certificate. CA will send your signed certificate back to you. Place it in the
/etc/grid-security/hostcert.pem file.

Example 8-11 Signing of GRAM and GridFTP certificate

(copy the hostcert_request.pem file from HostA to demoCA.)
[root@democa CA]# ls
demoCA hostcert_request.pem
[root@democa CA]# cp hostcert_request.pem newreq.pem
[root@democa CA]# ls
demoCA hostcert_request.pem newreq.pem
[root@democa CA]# export SSLEAY_CONFIG="-config /usr/share/ssl/openssl.cnf"
[root@democa CA]# CA.sh -sign
Using configuration from /usr/share/ssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
organizationName :PRINTABLE:'Grid'
organizationName :PRINTABLE:'Globus'
commonName :PRINTABLE:'host/democa.itso.grid.com'
Certificate is to be certified until Oct 17 15:47:35 2003 GM
T (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
...(author omits lists)
[root@democa CA]# ls
demoCA hostcert_request.pem newcert.pem newreq.pem
[root@democa CA]# cp newcert.pem hostcert.pem
[root@democa CA]# ls
demoCA hostcert_request.pem newreq.pem
hostcert.pem newcert.pem

Note: In order to build the grid environment presented at 8.3, “Grid
environment” on page 149, copy the certificate request file to the directory in
which the demoCA directory is created. Rename it to newreq.pem and sign it,
as presented in Example 8-11.
 Chapter 8. Installation and setup 161

(copy the hostcert.pem file to HostA.)

MDS certificate
MDS needs a certificate (server.cert) and a private key (server.key).
Example 8-12 presents the process to create the private key and certificate
request.

Example 8-12 Creation of MDS private key and certificate request

[root@hosta globus]# grid-cert-request -service ldap -host hosta.itso.grid.com
Using configuration from /etc/grid-security/globus-host-ssl.conf
Generating a 1024 bit RSA private key
...(author omits lists)

Next, you need to send your certificate request to CA, and request it to sign your
certificate. The request file is /etc/grid-security/ldap/ldapcert_request.pem. The
CA will sign and send your certificate back to you. Copy this to the file:
/etc/grid-security/ldap/ldapcert.pem.

Example 8-13 Signing of MDS certificate

(copy the ldapcert_request.pem file from HostA to demoCA.)
[root@democa CA]# ls
demoCA ldapcert_request.pem
[root@democa CA]# cp ldapcert_request.pem newreq.pem
[root@democa CA]# ls
demoCA ldapcert_request.pem newreq.pem
[root@democa CA]# export SSLEAY_CONFIG="-config /usr/share/ssl/openssl.cnf"
[root@democa CA]# CA.sh -sign
Using configuration from /usr/share/ssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
organizationName :PRINTABLE:'Grid'
organizationName :PRINTABLE:'Globus'
commonName :PRINTABLE:'ldap/democa.itso.grid.com'
Certificate is to be certified until Oct 17 15:50:54 2003 GM
T (365 days)
Sign the certificate? [y/n]:y

Note: In order to build the grid environment presented at 8.3, “Grid
environment” on page 149, copy the certificate request file to the directory in
which the demoCA directory is created. Rename it to newreq.pem and sign it,
as shown in Example 8-13.
162 Introduction to Grid Computing with Globus

1 out of 1 certificate requests certified, commit? [y/n]y
...(author omits lists)
[root@democa CA]# ls
demoCA ldapcert_request.pem newcert.pem newreq.pem
[root@democa CA]# cp newcert.pem ldapcert.pem
[root@democa CA]# ls
demoCA ldapcert_request.pem newreq.pem
ldapcert.pem newcert.pem
(copy the ldapcert.pem file to HostA.)

User’s certificate
The users need their key pair to be authenticated by the grid servers with a
certificate (usercert.pem) and private key (userkey.pem).

Example 8-14 Creation of user’s private key and certificate request

[root@hosta globus]# useradd griduser
[root@hosta globus]# passwd griduser
Changing password for user griduser.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[root@hosta globus]# su - griduser
[griduser@hosta griduser]$ export GPT_LOCATION=/usr/local/globus
[griduser@hosta griduser]$ export GLOBUS_LOCATION=/usr/local/globus
[griduser@hosta griduser]$ $GLOBUS_LOCATION/bin/grid-cert-request
Enter your name, e.g., John Smith: ITSO grid user
A certificate request and private key is being created.
You will be asked to enter a PEM pass phrase.
This pass phrase is akin to your account password,
and is used to protect your key file.
If you forget your pass phrase, you will need to
obtain a new certificate.

Using configuration from /etc/grid-security/globus-user-ssl.conf
Generating a 1024 bit RSA private key
.....++++++
...++++++
writing new private key to '/home/griduser/.globus/userkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
...(author omits lists)

Note: In order to build the grid environment presented at 8.3, “Grid
environment” on page 149, create, on host A, the private key and certificate
request for the user ID griduser, as presented in Example 8-14.
 Chapter 8. Installation and setup 163

[griduser@hosta griduser]$ ls .globus
usercert.pem usercert_request.pem userkey.pem

The users’ certificates are signed by the CA using the certificate request, <User’s
home directory>/.globus/usercert_request.pem. The CA will sign your certificate
and send back you the signed certificate. Copy this to the file <User’s home
directory>/.globus/usercert.pem.

Example 8-15 Signing of user’s certificate

(copy the usercert_request.pem file from HostA to demoCA.)
[root@democa CA]# ls
demoCA usercert_request.pem
[root@democa CA]# cp usercert_request.pem newreq.pem
[root@democa CA]# export SSLEAY_CONFIG="-config /usr/share/s
sl/openssl.cnf"
[root@democa CA]# CA.sh -sign
Using configuration from /usr/share/ssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
organizationName :PRINTABLE:'Grid'
organizationName :PRINTABLE:'Globus'
organizationalUnitName:PRINTABLE:'itso.grid.com'
commonName :PRINTABLE:'ITSO grid user'
Certificate is to be certified until Oct 17 15:58:27 2003 GM
T (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
...(author omits lists)
[root@democa CA]# ls
demoCA newcert.pem newreq.pem usercert_request.pem
[root@democa CA]# cp newcert.pem usercert.pem
[root@democa CA]# ls
demoCA newreq.pem usercert_request.pem
newcert.pem usercert.pem
(copy the usercert.pem file to HostA.)

Note: In order to build the grid environment presented at 8.3, “Grid
environment” on page 149, copy the certificate request file to the directory in
which the demoCA directory is created. Rename it to newreq.pem and sign it,
as presented in Example 8-15.
164 Introduction to Grid Computing with Globus

Testing certificate
After you set up the certificates, you can test them by initiating a gatekeeper
connection, as follows:

grid-proxy-init
globus-personal-gatekeeper -start

This command will output a contact string like “GRAM
contact:hosta.itso.grid.com:32872:/O=Grid/O=Globus/OU=itso.grid.com/CN=
ITSO grid user“. Substitute that contact string for “<contact>” in the following
command.

globus-job-run “<contact>” /bin/hostname

You will see the host name of your system. If this fails, check the files below:

/etc/grid-security/certificates/<hash number>.0
/etc/grid-security/certificates/<hash number>.signing_policy
<User’s Home Directory>/.globus/usercert.pem
<User’s Home Directory>/.globus/userkey.pem

After the verification, you may stop the personal gatekeeper and destroy your
proxy with:

globus-personal-gatekeeper -killall
grid-proxy-destroy

8.5.2 Services setup
GRAM and GridFTP services are daemons initiated by xinetd and MDS service
is a LDAP daemon.

GRAM and GridFTP
The setup procedure is as follows:

1. Assign the service name gsigatekeeper to port 2119 and the name gsiftp to
port 2811 in /etc/services as follows:

for Globus Toolkit services
gsigatekeeper 2119/tcp # Globus Gatekeeper
gsiftp 2811/tcp # Globus wu-ftp

2. Create the gsigatekeeper and gsiftp configuration files in the /etc/xined.d/
directory. Sample contents are shown in Example 8-16 and Example 8-17 on
page 166. To notify xinetd that its configuration file has changed, restart the
xinetd daemon.

Example 8-16 A sample of gsigatekeeper file

service gsigatekeeper
 Chapter 8. Installation and setup 165

{
socket_type = stream
protocol = tcp
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/globus-gatekeeper
server_args = -conf /usr/local/globus/etc/globus-gatekeeper.conf
disable = no

}

Example 8-17 A sample of gsiftp file

service gsiftp
{

instances = 1000
socket_type = stream
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/in.ftpd
server_args = -l -a -G /usr/local/globus
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
disable = no

}

3. Add the certificate subject corresponding to your user name to the
grid-mapfile. The subject is the output of the grid-cert-info -subject
command, and the user name is the output of the whoami command. Now, as
root, create the file /etc/grid-security/grid-mapfile with an entry of:

“<subject>” <local username>

An example entry is:

“/O=Grid/O=Globus/OU=itso.grid.com/CN=ITSO grid user“ griduser

Use the following command to make this mapfile:

grid-mapfile-add-entry \
> -dn “‘grid-cert-info -f /home/griduser/.globus/usercert.pem -subject‘” \
> -ln griduser

4. Test GRAM and GridFTP with the execution of client commands, as shown in
Example 8-18. This test is done under the griduser user ID.

Example 8-18 Test of GRAM and GridFTP

[griduser@hosta griduser]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso.grid.com/CN=ITSO grid user
166 Introduction to Grid Computing with Globus

Enter GRID pass phrase for this identity:
Creating proxy ..
Done
Your proxy is valid until: Wed Oct 2 22:38:57 2002
[griduser@hosta griduser]$ globus-job-run hosta.itso.grid.com /bin/hostname
hosta.itso.grid.com
[griduser@hosta griduser]$ ls
testa
[griduser@hosta griduser]$ globus-url-copy \
> gsiftp://hosta.itso.grid.com/home/griduser/testa \
> file:///home/griduser/testb
[griduser@hosta griduser]$ ls
testa testb

If it fails, check the files below:

/etc/grid-security/certificates/<hash number>.0
/etc/grid-security/certificates/<hash number>.signing_policy
/etc/grid-security/hostcert.pem
/etc/grid-security/hostkey.pem
/etc/grid-security/grid-mapfile
<User’s Home Directory>/.globus/usercert.pem
<User’s Home Directory>/.globus/userkey.pem

MDS
The setup procedure is as follows:

1. Start the MDS daemon. The official Globus recommendation is that you
should never run MDS as root. In fact, there is very little in the Globus Toolkit
that needs to be installed as root, including OpenLDAP.

$GLOBUS_LOCATION/sbin/globus-mds start

2. Send a test query to GRIS and GIIS under griduser user ID (see
Example 8-19).

Example 8-19 Test of MDS

[griduser@hosta griduser]$ grid-info-search
version: 1

#
filter: (objectclass=*)
requesting: ALL
...(author omits lists)

If it fails, check the files below:

/etc/grid-security/certificates/<hash number>.0
 Chapter 8. Installation and setup 167

/etc/grid-security/certificates/<hash number>.signing_policy
/etc/grid-security/ldap/ldapcert.pem
/etc/grid-security/ldap/ldapkey.pem
/etc/grid-security/grid-mapfile
<User’s Home Directory>/.globus/usercert.pem
<User’s Home Directory>/.globus/userkey.pem

8.5.3 Adding a new grid server
This section describes how to add a new server to your grid environment.

Setting up a new server
Follow these steps:

1. Installation of Globus Toolkit

Install the GPT and bundles to host B according to 8.4.1, “Installation of GPT”
on page 151 and 8.4.2, “Installation of bundles” on page 152.

2. Setup of server certificates

Set up the server certificates according to “Server certificates” on page 159.

3. Setup of user certificate

Host A and host B share the same grid user ID, so you do not need to create
a new user certificate. Copy the files for the user’s certification from host A:

scp -r griduser@hosta.itso.grid.com:/home/griduser/.globus /home/griduser

4. Server setup

Set up the server according to 8.5.2, “Services setup” on page 165. If you
want to change the local user, you need to change the local user name in the
grid-mapfile.

Attention: If you had already started OpenLDAP server on the same host, you
might be unable to start the MDS daemon. In this case, stop the LDAP
daemon.

Note: The demoCA and host A servers are now set up according to the grid
environment presented in 8.3, “Grid environment” on page 149.

Note: In order to build the grid environment presented in 8.3, “Grid
environment” on page 149, you need to add the host B server as a grid node,
as explained in “Setting up a new server” on page 168.
168 Introduction to Grid Computing with Globus

8.6 Additional configurations
Here we present some additional sections on how to configure the services
daemons beyond the default configuration.

8.6.1 GRAM
Here we present two advanced configurations, adding a new job manager and
adding and enabling a GRAM reporter.

Adding a job manager
The Globus Toolkit provides a job manager, in addition to the default fork job
manager, to help you expand the job management capability. The job manager
supports job submissions to some third-party vendor’s job schedulers, such as
PBS, LSF, Condor, and LoadLeveler.

The job manager is created by the gatekeeper to satisfy every request submitted
to the gatekeeper. By default, the job manager is the process that executes the
job request from the gatekeeper as a "forked" child process.

Globus Toolkit 2.2.2 provides an extra packages to help you install the job
managers for third-party schedulers. The packages are available at:

ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager

As presented in Figure 8-2 on page 170, the job manager for the PBS job
scheduler has been chosen. PBS is installed on host B and host C and it
contains three daemons:

� pbs_mom: Execution daemon
� pbs_sched: Scheduler daemon
� pbs_server: Management daemon

The pbs_mom daemon is needed on each system where jobs are expected to
run (on host B and host C). The pbs_sched and pbs_server daemons are
needed on the system where the job manager and job queues exist (on host B
only).

When a client (on host A) submits a PBS job to a gatekeeper (on host B), the job
manager for PBS runs and then PBS sends the job to executed in another
machine (host C), where Globus Toolkit is not installed.
 Chapter 8. Installation and setup 169

ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager
ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager
ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager

Figure 8-2 System overview after PBS installation

Adding the GRAM reporter
The GRAM reporter provides status information for the job manager. The GRAM
reporter for the “forked” job manager is contained in the server bundle. This
section describes the activation of GRAM reporter for the default job manager
and for the PBS job manager.

Activation of GRAM Reporter for default job manager
Do these steps:

1. Edit the $GLOBUS_LOCATION/etc/globus-job-manager.conf file and add the
following lines to the configuration file:

-publish-jobs
-job-reporting-dir=<GLOBUS_LOCATION>/tmp/gram_job_reporter

Change the <GLOBUS_LOCATION>, depending on your environment.

2. Create the directory in which GRAM reporter places the temporary files. The
command is as follows:

mkdir <GLOBUS_LOCATION>/tmp/gram_job_reporter
chmod 777 <GLOBUS_LOCATION>/tmp/gram_job_reporter

3. Restart the xinetd daemon:

/etc/init.d/xinetd restart

Host A Host B Host C

TCP/IP network

globusrun client
gatekeeper

PBS
pbs_mom

PBS
pbs_mom

pbs_sched

pbs_server

jobmanager
170 Introduction to Grid Computing with Globus

Adding and activation of GRAM reporter for PBS job manager
The GRAM Reporter publishes the job manager status information into MDS. To
enable it, you need to install the globus-gram-reporter package, plus one
jobmanager-specific setup package, as presented in Example 8-20.

Example 8-20 Installing the globus-gram-reporter package

[root@democa gt222]# gpt-build globus_gram_reporter_setup_pbs-1.0.tar.gz
gpt-build ====> CHECKING BUILD DEPENDENCIES FOR globus_gram_reporter_setup_pbs
gpt-build ====> Changing to
/home/globus/gt222/BUILD/globus_gram_reporter_setup_pbs-1.0/
gpt-build ====> BUILDING FLAVOR
...(author omits lists)
[root@democa etc]# gpt-postinstall
running /usr/local/globus222/setup/globus/setup-globus-gram-reporter-pbs...
Setting up pbs gram reporter in MDS
--
loading cache /dev/null
checking for qstat... /usr/pbs/bin/qstat
updating cache /dev/null
creating ./config.status
creating /usr/local/globus222/libexec/globus-script-pbs-queue
Done

As illustrated in Figure 8-3, GRIS now can get status information using the
following command:

/usr/local/globus222/libexec/globus-gram-reporter -conf \
> /usr/local/globus222/etc/globus-job-manager.conf \
> -type pbs -rdn jobmanager-pbs -dmdn \
> Mds-Host-hn=democa.itso.grid.com,Mds-Vo-name=local,o=grid

Figure 8-3 Behavior of globus-gram-reporter

GRIS

globus-gram-reporter

grid-info-resource-
ldif.conf slapd

PBS status
(pbs jobs or jobmanager-pbs)

forked process status
(processes or jobmanager)
 Chapter 8. Installation and setup 171

8.6.2 MDS
MDS is based on OpenLDAP, allowing you to created your own configuration of
hierarchical GIIS.

For more informations regarding MDS and LDAP customization, please refer to
the following Web site at:

http://www.globus.org/

Configuration of hierarchical GIIS
MDS supports a hierarchical structure for GIIS similar to the Domain Name
Servers hierarchy. In Figure 8-4, we present an overview of a hierarchical GIIS.
The boxes represent the configuration files and the ovals represent the programs
and daemons that update the resource information.

Figure 8-4 Overview of a hierarchical GIIS structure and configuration files

Programs and daemons
The slapd is one of two daemon processes that globus-mds executes. This
triggers the information providers that output the local resource information and
send it to the GRIS database, conforming to the grid-info-resource-ldif file format.

GRIS

grid-info-resource-
ldif.conf

Resources

Information
Provider

slapd

GIIS
grid-info-site-

policy.conf

GIIS
grid-info-site-

policy.conf

Host A

Host B

grid-info-
soft-register

grid-info-
slapd.conf

*.schema

*.schema

grid-info-resource-
register.conf
172 Introduction to Grid Computing with Globus

http://www.globus.org

The grid-info-soft-register is the other daemon process that globus-mds executes.
This is a shell script that registers the GRIS information with the GIIS database at
regular intervals.

The information providers are the programs that output the local resource
information in LDIF format (LDAP Data Interchange Format).

Hierarchical structure
An example of a hierarchical structure is presented in Figure 8-4 on page 172,
where GRIS (on host B) registers GIIS (also on host B) and GIIS (on host A)
registers GIIS (on host B).

Figure 8-5 The abstract figure of a hierarchical GIIS

8.7 Client interface
This section presents the client interfaces for the following services of Globus
Toolkit:

� GRAM
� MDS
� GridFTP

Before using any of these client tools, you must initialize your environment and
create a proxy with the grid-proxy-init command.

Detailed information about all Globus Toolkit tools is described at:

http://www.globus.org/toolkit/

hostb

= GRIS

= GIIS

 Registration
 Messages

=

hosta

hostname:
 hosta.itso.grid.com
GIIS suffix: sitea

hostname:
 hostb.itso.grid.com
GIIS suffix: siteb
 Chapter 8. Installation and setup 173

http://www.globus.org/toolkit/

8.7.1 Client interface for GRAM
GRAM has the following client commands to submit and manage jobs on the grid
environment.

globus-job-run
This is an online interface for job submissions. It is the easiest command to use
to submit a job and returns the output of its result. This data-staging function is
realized by the GASS server that stages the executables on remote machines.

The basic command syntax is:

globus-job-run <contact string> <command>

where <contact string> specifies a machine’s host name, port, and service to
which to send the request. The syntax of a contact string is
host:port/jobmanager-name. The default port is 2119 and the default job
manager’s name is “jobmanager”.

Here is an example of how to submit a program:

globus-job-run hosta.itso.grid.com -s program_name

globus-job-submit
This is an interface for batch job submissions. It will immediately return with an
URL (with the job contact string embedded) that you can use to query the status
of your job. The command is similar to globus-job-run, but the
globus-job-submit command does not return the output of its result. To obtain
the output, you need to run the job management commands (as seen in
globus-job-status, globus-job-get-output, and
globus-job-clean/globus-job-cancel) pointing to the URL generated as result
of the globus-job-submit execution. An example job contact string is:

https://hosta.itso.grid.com:33318/1137/1033581329/

The basic command syntax is as follows:

globus-job-submit <contact string> command

globusrun
This is a command that gives access to the RSL, the language which provides a
common interchange to describe resources. More information about RSL can be
found at the following Web site:

http://www-fp.globus.org/gram/rsl_spec1.html

The globus-job-run and globus-job-submit commands are both shell script
wrappers around globusrun.
174 Introduction to Grid Computing with Globus

http://www-fp.globus.org/gram/rsl_spec1.html

The basic command syntax is:

globusrun <contact string> <RSL>

An example would be the following:

globusrun -o -r hosta.itso.grid.com \
> &(executable=/bin/ls)(arguments=-l)(count=1)

Here we have typical examples of using the globusrun command:

� How to run your program at a single job manager.

The following example shows how to run myprogram for five times:

globusrun -o -r hosta.itso.grid.com -s ‘&(executable=myprogram)(count=5)’

� How to write standard output to the remote file.

The following example shows how to write standard output of myprogram to a
remote file:

globusrun -r hosta.itso.grid.com \
> ‘&(executable=myprogram)(directory=/home/griduser)(stdin=myprog.output)’

� How to submit multi-requests to different hosts.

The following example shows how to submit multi-requests to different job
managers at different hosts:

globusrun \
> ‘+(&(resourceManagerContact=”hosta.itso.grid.com”)(executable=myprog1))
> (&(resourceManagerContact=”hostb.itso.grid.com”)(executable=myprog2)))’

globus-job-status
This is a job management command that returns a job status of one of the
following:

� pending
� active
� done
� failed
� others

For example:

globus-job-status https://hosta.itso.grid.com:33318/1137/1033581329/

globus-job-get-output
This is a job management command that collects the output when the job
finishes.
 Chapter 8. Installation and setup 175

globus-job-clean/globus-job-cancel
This is a job management command that stops the job if it is running, and cleans
up the cached copy of the output.

8.7.2 Client interface for MDS (GRIS and GIIS)
MDS has a client command to query for details about resources in the grid
environment.

grid-info-search
This command sends one or more queries to GRIS and GIIS and displays the
result in the standard output. The queries are RFC1558 compliant with the LDAP
search filter, since the command embeds the ldapsearch command.

The basic command syntax is:

grid-info-search [options] <filter> [attributes...]

The following are typical examples of using the grid-info-search command:

� How to query all objects on a GRIS

The following example shows how to display all of data objects and resources
on a single, local machine set up as a GRIS:

grid-info-search -x -b ‘Mds-vo-name=local,o=Grid’

This search uses anonymous binding (-x) and runs on the local host with the
default port of 2135. Mds-Vo-name=local means that the search will start on a
GRIS.

� How to query a file system space on a GIIS

The following example shows how to query for the amount of free file system
space on all machines on a GIIS:

grid-info-search -x -h hosta.itso.grid.com -p 2135 \
> -b 'Mds-Vo-name=site,o=Grid' Mds-Fs-freeMB

This search uses anonymous binding (-x) and runs on the host and port
indicated. Mds-Vo-name=site means that the search will start on a GIIS that is
named “site”.

� How to query CPU data on a single machine on a GIIS

The following example shows how to query for CPU model and speed on a
single machine on a GIIS:

grid-info-search -x -h hosta.itso.grid.com -p 2135 \
> -b 'Mds-Vo-name=site,o=Grid' \
> '(&(objectclass=MdsCpu)(Mds-Host-hn=hosta.itso.grid.com))' \
> Mds-Cpu-model Mds-Cpu-speedMHz
176 Introduction to Grid Computing with Globus

This search uses anonymous binding (-x) and runs on the host and port
indicated. Mds-Vo-name=site means that the search will start on a GIIS. Your
GIIS may be named something other than the default of site. The objectclass
expression specifies CPU data on a specific machine on the GIIS. The last
two arguments specify the CPU model and speed.

8.7.3 Client interfaces for GridFTP
GridFTP provides a client command to copy files between local and remote
locations.

globus-url-copy
The basic command syntax is:

globus-url-copy [options] <sourceURL> <destURL>

Where:

� <sourceURL> is the URL to source file, or ‘-’ for standard input.
� <destURL> is the URL of the destination file, or ‘-’ for standard output.

Basically, all protocols are supported by GASS, such as:

� local file
� http
� https
� gsiftp

Example URLs are:

gsiftp://hosta.itso.grid.com/home/griduser/testfile
file:///home/griduser/testfile

Here is an example of the execution of the globus-url-copy command:

globus-url-copy gsiftp://hosta.itso.grid.com/home/griduser/testa \
> file:///home/griduser/testb
 Chapter 8. Installation and setup 177

178 Introduction to Grid Computing with Globus

Chapter 9. Demo: Grid setup

This chapter is a cookbook for setting up the grid environment to be used to
deploy the video conversion demo application. This includes installing Red Hat
Linux, Network Time Protocol, Globus, and a Certificate Authority. Chapter 10,
“Demo: Application” on page 197, explains the demo application, how to install it,
and run it on this grid.

The following topics are discussed:

� Required software
� Hardware environment
� Operating system installation
� Globus installation and setup
� CA installation and setup

9

© Copyright IBM Corp. 2003. All rights reserved. 179

9.1 Required software
Globus Toolkit Version 2.2 is used in the demo. Globus Toolkit supports Red Hat
Linux on xSeries and AIX on pSeries. Globus Toolkit 2.0 is also available as part
of the SuSE Linux Enterprise Server 8 (SLES 8) on zSeries.

For the purpose of this redbook, we selected Red Hat Linux as our host
operating system. Although the lab environment to produce the redbook had
been configured with Red Hat Version 7.3, Version 8.0 can also be used with no
restrictions.

This is the list of required files to be downloaded:

� Globus Packaging Technology

gpt-2.2.2-src.tar.gz

� Globus client

globus-all-client-2.2.3-i686-pc-linux-gnu-bin.tar.gz

� Server bundle

globus-all-server-2.2.3-i686-pc-linux-gnu-bin.tar.gz

� Certificate Authority

globus_simple_ca_bundle-0.9.tar.gz

� Network Time Protocol

ntp-4.1.1-1.i386.rpm

Place the Globus *.gz files in the /usr/src directory. These files can be
downloaded from the official site of Globus Project at:

http://www.globus.org/gt2.2/download.html

Or

ftp://ftp.globus.org/pub/gt2/2.2/

The NTP package may already be installed, perhaps at a newer level, depending
on the version of Linux installed. If not, download and install it.

The md5sum command can be used to check if you are using the same versions of
the files we used by comparing the signature values against this list:

765c5ec7f51b650eb8474baf009d8852 gpt-2.2.2-src.tar.gz
dd9453e0503350dcc93b9b1693682a89

globus-all-client-2.2.3-i686-pc-linux-gnu-bin.tar.gz
9ed2ac41dd2cf3ab27084f3d754341f5

globus-all-server-2.2.3-i686-pc-linux-gnu-bin.tar.gz
180 Introduction to Grid Computing with Globus

http://www.globus.org/gt2.2/download.html
ftp://ftp.globus.org/pub/gt2/2.2/

492e9386ac66f80c36fefe959af653a3 globus_simple_ca_bundle-0.9.tar.gz
f06d8293b290f92a137ce67450cf542f ntp-4.1.1-1.i386.rpm

9.2 Setting up the environment
An Ethernet LAN and five Intel Pentium machines were used to build the demo
application environment. In Figure 9-1 on page 182, we illustrate this
environment with the host names and functions to be installed in each machine.
The host names are alpha, beta, gamma, delta, and zeta. The machines should
have a clock speed of at least 500 Mhz, at least 256 MB of memory, and at least
8 GB hard drives. The zeta machine should have at least a 40 GB hard drive for
any serious video conversions. It is also recommended that the zeta machine
have a 1Ghz processor or faster for improved video capture reliability.

The following steps should be performed in the order presented in this chapter.
There are dependencies among them that required performing them in this order.
The major steps to set up the grid environment include installing:

� Red Hat Linux on each machine

� Network Time Protocol server on one machine (for example, alpha) and
configuring NTP clients for the others (beta, gamma, delta, and zeta)

� Globus Packaging Technology on each machine

� Globus Server on the alpha, beta, gamma, and delta machines

� Globus Client on zeta

� Globus Simple Certificate Authority on alpha

The grid is configured using these major steps:

� Sign the certificate requests from all components and users needing them
� Set up gridmap files for each system
� Set up automated grid startup
� Set up each GRIS to talk to one GIIS
� Set up MDS security
 Chapter 9. Demo: Grid setup 181

Figure 9-1 Hardware environment and software functions of each machine

9.2.1 Naming and addressing planning
Below, we show the tables we have filled for naming and address planning.

Table 9-1 summarizes the names of the machines to be used in the grid, their IP
addresses, and the software to be installed on them.

Table 9-1 Host names and IP addressing

Host name IP Software

alpha.itso.grid.com 192.168.0.4 Globus server, CA, and
NTPserver

beta.itso.grid.com 192.168.0.5 Globus server

gamma.itso.grid.com 192.168.0.6 Globus server

delta.itso.grid.com 192.168.0.7 Globus server
182 Introduction to Grid Computing with Globus

Before you install the Globus Simple Certificate Authority, you must define the
distinguished name (DN) that will be used by the CA in your environment. DN is
defined by CCITT 1988 recommendation x.509, which determines a framework
for authentication of objects included in a distributed directory service. Table 9-2
describes the distinguished name used for the Certificate Authority in our
environment. In a real production environment, this should be globally unique.
The distinguished names for the users and for the Globus services will be
generated automatically.

Table 9-2 CA distinguished name and passphrase

The distinguished name (DN) and passphrase will be used by the Certificate
Authority to sign certificate requests.

We recommend that you define the group and user IDs that you want to use
before implementation. Table 9-3 has some suggested user and group IDs and
passwords.

Table 9-3 User ID and group ID

The root ID is used on all machines. A cell containing “-no id-” means that the
corresponding machine does not have that user ID installed on it.

The globususer ID is used to run jobs on the grid for the user and to FTP files
during installation. Note that since this user ID has more than eight characters,
you will need to install it later, rather than installing it as part of the Linux install
process. The other user IDs can be installed as part of the Linux installation or
later.

The snobol ID is used to submit jobs to the grid.

zeta.itso.grid.com 192.168.0.8 Globus client and video
apps

Certificate Authority DN Passphrase

cn=my test CA, ou=alpha.itso.grid.com, ou=demotest, o=grid mycapw

Host name IP Software

User ID Group ID alpha pw beta pw gamma pw delta pw zeta pw

root root pwxjhsa pwxjhsb pwxjhsg pwxjhsd pwxjhsz

globususer globus pwcjsna pwcjsnb pwcjsng pwcjsnd pwcjsnz

snobol snobol -no id- -no id- -no id- -no id- kjsdnb

adminca adminca nslcxa -no id- -no id- -no id- -no id-
 Chapter 9. Demo: Grid setup 183

The adminca ID is used to receive certificate requests for the Certificate
Authority. This could be done via e-mail to this account. However, we will not
describe the details of configuring e-mail. The adminca ID could be used to ftp
the certificate requests to the alpha machine in our demo. The certificates will be
signed using the root ID on machine alpha. In a production system, the
Certificate Authority should follow more script procedures for identifying
requesters and handling certificates. For the purposes of this demo, we will leave
the decision of how to transfer certificate requests and signed certificates
between the machines as an exercise for the reader.

9.2.2 Install Linux
Install Linux on all of the machines using the “custom” install, selecting
“everything” and “no firewall.” Each system should use a fixed network IP
address with a corresponding host name, per Table 9-1 on page 182, and do not
use DHCP. Use Table 9-3 on page 183 to create user IDs (except globususer) at
install time. Otherwise, the IDs can be added later. After the first boot, you will
probably want to use the ntsysv command to enable telnet and wu-ftpd. This
will make it easier to move files (using FTP) and to execute the installation
procedures from one terminal (using telnet). To make FTP less restrictive, edit
the file /etc/ftpaccess on each machine and comment out the guestuser line as
follows:

#guestuser *

To enable telnet, a reboot will be required after configuring with ntsysv. If you
have trouble configuring wu-ftpd to your liking, you can try using vsftpd instead
in Red Hat Linux 8.0.

9.2.3 Installing Network Time Protocol (NTP)
NTP needs to be installed because the grid needs the clocks on the systems to
be synchronized. The security process creates proxy certificates that are valid for
specific times. If the systems do not have their clocks synchronized, then the
users may not be able to use the grid, because the proxy certificates may look
like they have expired or are not yet valid.

On all of the grid machines, install NTP as follows using the root ID:

$ rpm -ivh /usr/src/ntp-4.1.1-1.i386.rpm

If the package is already installed as part of the Linux distribution, ignore the
error message and continue to set up the NTP server. Proceed by setting up the
server and daemons.
184 Introduction to Grid Computing with Globus

Edit the /etc/ntp.conf file on the machine designated to be the time server,
machine alpha, and leave the following four lines as the only un-commented
ones, commenting all others with a leading “#” character:

server 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10
driftfile /etc/ntp/drift
broadcastdelay 0.008

Also, on the NTP server machine (alpha), use the ntsysv command to enable the
NTP daemon (ntpd) on the next reboot.

On the other machines in the grid (beta, gamma, delta, and zeta), change the
/etc/ntp.conf file to leave only the following lines un-commented:

server alpha.itso.grid.com
driftfile /etc/ntp/drift
broadcastdelay 0.008
authenticate no

Next, execute the following command to have them check for the time from the
above server machine alpha:

ntpdate -b alpha.itso.grid.com

This should be executed at least once per boot, and could be set up to run
periodically using crond and crontab.

9.2.4 Set up other global items on each machine
Unless your systems are entered into a name server, you will want to list them in
the /etc/hosts hosts file with the following lines, adjusting the IP addresses to
match those assigned for your grid machines:

127.0.0.1 localhost
192.168.0.4 beta.itso.grid.com beta
192.168.0.5 zeta.itso.grid.com zeta
192.168.0.6 alpha.itso.grid.com alpha
192.168.0.7 delta.itso.grid.com delta
192.168.0.8 gamma.itso.grid.com gamma

Be certain to put the long name before the short name; otherwise, Globus will
have some problems when it tries to do a reverse lookup of the fully qualified
names for IP addresses.

Verify machine connectivity after the next reboot, using the ping command to
ping each of the other machines by name.
 Chapter 9. Demo: Grid setup 185

As root, edit the /etc/profile file in each machine. pico is a simple convenient
editor to use. Insert the following three lines after the line in /etc/profile that says
“export PATH USER ...”:

export GPT_LOCATION=/usr/local/gpt
export GLOBUS_LOCATION=/usr/local/globus
export PATH=$PATH:$GLOBUS_LOCATION/bin:$GLOBUS_LOCATION/sbin

Log off and log back on the machines after modifying the /etc/profile file so that
the above settings take effect.

If the other user IDs in Table 9-3 on page 183 were not created while installing
Linux, they can be added now.

Here is an example of how to add the globususer ID. Create a globus group and
globus user ID under which the grid jobs will run for each server machine.

Add a group for globus by executing:

groupadd -g 900 globus

Add the user globususer (with password globususer) by executing:

adduser -u 900 -g globus -d /home/globususer -n globususer

Change the globususer ID’s password from globususer to pwcjsna or other
password by executing:

passwd globususer

Repeat the procedure on all of the machines, adding the IDs listed under the
user IDs in Table 9-3 on page 183.

9.2.5 Installing the GPT
Log on as root and install GPT on all of the machines. Please ignore all warnings
from Globus:

cd /usr/src
tar -xzvf gpt-2.2.2-src.tar.gz
cd gpt-2.2.2
./build_gpt
ls ${GPT_LOCATION}/sbin | wc -l

The final ls command should show 29 gpt-* executable files.
186 Introduction to Grid Computing with Globus

9.2.6 Installing a Globus server bundle
The following is used to install the server bundle on each server machine.
Perform these steps on each machine that will be a server. In our demo, we will
use machines alpha, beta, gamma, and delta as servers.

As root, run:

cd /usr/src
export PATH=$PATH:$GPT_LOCATION/sbin
gpt-install globus-all-server-2.2.3-i686-pc-linux-gnu-bin.tar.gz
gpt-postinstall
/usr/local/globus/setup/globus/setup-gsi
y
q

9.2.7 Installing a Globus client bundle
The following is used to install the client bundle on any machines that will be
used to query or submit jobs to the grid. In our demo, we will install the client on
the zeta machine.

As root, run:

cd /usr/src
export PATH=$PATH:$GPT_LOCATION/sbin
gpt-install globus-all-client-2.2.3-i686-pc-linux-gnu-bin.tar.gz
gpt-postinstall
/usr/local/globus/setup/globus/setup-gsi
y
q

9.2.8 Installing the Globus Simple Certificate Authority
To install the Globus Simple Certificate Authority, one of the Globus bundles
(server or client) needs to be installed on the machine due to a dependency. We
will install the CA and a Globus server on the “alpha” machine.

As root, run:

cd /usr/src
export PATH=$PATH:$GPT_LOCATION/sbin
gpt-build -nosrc gcc32
gpt-build globus_simple_ca_bundle-0.9.tar.gz gcc32
gpt-postinstall
...
Do you want to keep this as the CA subject (y/n) [y]: n
Enter a unique subject name for this CA:

cn=my test CA, ou=alpha.itso.grid.com, ou=demotest, o=grid
 Chapter 9. Demo: Grid setup 187

Enter the email of the CA:
adminca@alpha.itso.grid.com
[default 5 years] 1825 <- use the default by pressing enter
Enter PEM pass phrase:
mycapw
mycapw
[enter]

During the above process, a hash number is generated and used as part of the
file name. Please note this number for use in the next steps. Run the script name
printed at the end of the prior install, substituting the hex hash number printed by
the above process in place of the <hash> shown below, adding the “-default”
argument:

/usr/local/globus/setup/globus_simple_ca_<hash>_setup/setup-gsi -default
y
q

For your information, the /root/.globus/simpleCA/private/cakey.pem file is the
CA’s private key and should not be given out to anyone else. The
/root/.globus/simpleCA/cacert.pem file contains the CA’s public key.

The following is used to install the CA’s certificate on each of the other grid
machines. /root/.globus/simpleCA/globus_simple_ca_<hash>_setup-0.9.tar.gz is
the file containing the public CA key and other information needed to participate
in this grid. This must be copied to each of the other machines and installed
using the gpt-build command.

First, on machine alpha, use ftp to copy the
/root/.globus/simpleCA/globus_simple_ca_<hash>_setup-0.9.tar.gz file to the
/usr/src/ directory of each of the other grid machines. This can be done in two
steps by ftp-ing them to the /home/globususer directory on each of those
machines using globususer ID. Then, using root, this file can be moved to the
/usr/src directory. Next, issue the following commands on each of those
machines as root:

gpt-build /usr/src/globus_simple_ca_<hash>_setup-0.9.tar.gz
gpt-postinstall
/usr/local/globus/setup/globus_simple_ca_<hash>_setup/setup-gsi -default
y
q

9.2.9 Requesting and signing gatekeeper certificates for servers
On each of the server machines (alpha, beta, gamma, and delta), we perform the
following steps to request and sign certificates:

grid-cert-request -host <hostname of requesting server machine>
188 Introduction to Grid Computing with Globus

Use ftp or e-mail (if available and using the adminca ID) to copy the
/etc/grid-security/hostcert_request.pem file to the CA machine and put it into the
/root directory. On the CA machine, as root, sign the certificate using the
following:

grid-ca-sign -in /root/hostcert_request.pem -out /root/hostcert.pem
mycapw

Then, ftp the /root/hostcert.pem file back to the server machine and place it in the
/etc/grid-security directory.

9.2.10 Requesting and signing user certificates
For each user who will use the grid (in our example, user snobol on the client
machine zeta), the following procedure must be executed by the user and
Certificate Authority. On the snobol user’s logon, run:

grid-cert-request
<userspassphrase> <- see paragraph below about this
<userspassphrase>

The user should make up his own passphrase for his certificate. He will use this
same passphrase later with the grid-proxy-init command to authenticate with
the grid. In our example, the snobol user’s login password could be used here.

The user must then send the /home/<userid>/.globus/usercert_request.pem file
to the Certificate Authority (machine alpha) for signing. On the CA machine
(alpha), sign the certificate using root with the following command, adjusting the
location of usercert_request.pem to point to wherever the above request file is
now stored on alpha:

grid-ca-sign -in usercert_request.pem -out usercert.pem
mycapw

Securely send the usercert.pem file back the requesting user. The user should
put the usercert.pem file into his /home/<userid>/.globus directory.

The user should also be added to the grid mapfile (on machine alpha under root)
using the following command (note the backward apostrophe characters next to
the double quote characters):

grid-mapfile-add-entry -dn “‘grid-cert-info -f usercert.pem -subject‘” -ln
globususer

Copy gridmapfile to /etc/grid-security/grid-mapfile to each of the other servers
(beta, gamma, and delta) so that all of the servers have this file.
 Chapter 9. Demo: Grid setup 189

9.2.11 Setting up the gatekeepers
On each server (alpha, beta, gamma, and delta), add the following two lines to
the /etc/services file:

gsigatekeeper 2119/tcp #globus gatekeeper
gsiftp 2811/tcp #globus wuftp

Create the file /etc/xinetd.d/gsigatekeeper on each server, containing the lines:

service gsigatekeeper
{

socket_type = stream
protocol = tcp
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/globus-gatekeeper
server_args = -conf /usr/local/globus/etc/globus-gatekeeper.conf
disable = no

}

Create the file /etc/xinetd.d/gsiftp on each server, containing the lines:

service gsiftp
{

instances = 1000
socket_type = stream
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/in.ftpd
server_args = -l -a -G /usr/local/globus
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
disable = no

}

Now reboot all of the machines.

9.3 Setting up MDS
We will configure the Monitoring and Discovery Service (MDS) to have one Grid
Information Index Service (GIIS) in the alpha machine, which collects the data
reported by the Grid Resource Information Servers (GRIS) in all of the machines.
The GRIS servers send information about their respective servers to the GIIS. In
190 Introduction to Grid Computing with Globus

the demo application, we will use this to find machines that are not busy. The
user will be able to query the GIIS from the zeta client machine.

To set up this structure, we need to modify several configuration files. These files
name the GIIS and GRIS, and show how these components should register with
each other. Figure 9-2 shows the relationship among the MDS components in
our example.

Figure 9-2 MDS configuration

9.3.1 Setting up the GIIS and GRIS on the alpha machine
On alpha, make the following modifications to the conf files in the
$GLOBUS_LOCATION/etc directory.

In the grid-info-slapd.conf file, name the GIIS on machine alpha. Change the
second of the lines:

database giis
suffix “Mds-Vo-name=site, o=Grid”
 Chapter 9. Demo: Grid setup 191

to

database giis
suffix “Mds-Vo-name=alpha.itso.grid.com, o=Grid”

In the grid-info-site-policy.conf file, allow registrations from the domain. Change
the second of the lines:

policydata:
(&(Mds-Service-hn=site) (Mds-Service-port=2135))

to

policydata
(&(Mds-Service-hn=*.itso.grid.com) (Mds-Service-port=2135))

In the grid-info-resource-register.conf file, tell the alpha GRIS to register with the
alpha GIIS. Change the two matching lines to the settings shown below:

dn: Mds-Vo-Op-name=register, Mds-Vo-name=alpha.itso.grid.com, o=grid
reghn: alpha.itso.grid.com

9.3.2 Setting up the GRIS on beta, gamma, and delta
On all of the other server machines (beta, gamma, and delta), make the following
modifications to the conf files in the $GLOBUS_LOCATION/etc directory.

In the grid-info-slapd.conf file, remove the GIIS server from these machines.
Remove the block of lines starting with the following lines:

database giis
suffix “Mds-Vo-name=site, o=Grid”

In the grid-info-resource-register.conf file, tell the GRIS which GIIS to register
with. Change the two matching lines as shown below:

dn: Mds-Vo-Op-name=register, Mds-Vo-name=alpha.itso.grid.com, o=grid
reghn: alpha.itso.grid.com

9.3.3 Start the MDS on all of the servers
Start the MDS on all of the servers (alpha, beta, gamma, and delta) using:

globus-mds start

This can be automated by putting it in /etc/rc.d/rc.5 per the usual conventions.
Copy the globus-mds script into the directory /etc/init.d/. Then create two
symbolic links as follows:

cp $GLOBUS_LOCATION/sbin/globus-mds /etc/init.d/
cd /etc/rc.d/rc5.d/
192 Introduction to Grid Computing with Globus

ln -s /etc/init.d/globus-mds S92globus-mds
ln -s /etc/init.d/globus-mds K92globus-mds

9.3.4 Setting up the MDS client zeta
Modify the $GLOBUS_LOCATION/etc/grid-info.conf file lines shown below so
that searches go to the GIIS on machine alpha:

GRID_INFO_HOST=”alpha.itso.grid.com”
GRID_INFO_ORGANIZATION_DN=”Mds-Vo-name=alpha.itso.grid.com, o=Grid”

9.3.5 Setting up a secure MDS
So far, we have set up an MDS that permits anonymous access. The
grid-info-search command should use the -x flag to indicate an anonymous
search request. However, the MDS can be secured so that only certified users
can access the GIIS and only certified server GRISs can register to send
information to the GIIS. The following steps should be performed.

Request and sign certificates for each server machine
For each of the server machines (alpha, beta, gamma, and delta) request LDAP
certificates, sign them using the Certificate Authority on alpha, and copy the
signed certificates to the proper location. The steps for one of the servers (beta)
is shown here.

On the server machine (beta) under root, run:

grid-cert-request -service ldap -host beta.itso.grid.com

Copy the request certificate from /etc/grid-security/ldap/ldapcert_request.pem to
the Certificate Authority machine (alpha) using ftp or any other desired method.
Sign the certificate using root on alpha substituting the correct locations for the
request certificate and signed certificates:

grid-ca-sign -in ldapcert_request.pem -out ldapcert.pem

Copy the resulting signed certificate file ldapcert.pem from the Certificate
Authority machine (alpha) to the file the server machine (beta) location
/etc/grid-security/ldap/ldapcert.pem.

Change the conf files
Change the following configuration files on the servers.

Change $GLOBUS_LOCATION/etc/grid-info-slapd.conf to change the
anonymousbind setting(s) as follows:

anonymousbind no
 Chapter 9. Demo: Grid setup 193

Change the $GLOBUS_LOCATION/etc/grid-info-resource-register.conf files on
the servers to require authentication when registering:

bindmethod: AUTHC-ONLY

After making all of these changes, the server machines should be rebooted or
the following should be used to restart the MDS on each of the servers (alpha,
beta, gamma, and delta):

globus-mds stop
globus-mds start

9.4 Checking the installation
Check the installations on each machine as root using the command:

$GPT_LOCATION/sbin/gpt-verify

The following commands can be used on a server machine to see if the GRAM
and GridFTP are listening on their respective ports:

netstat -an | grep 2119
netstat -an | grep 2811

From the client machine (zeta) logged on as the user snobol, do the following:

This command sets up the environment so that Globus commands can be issued
by the user. One may want to add this line to one’s login profile:

. $GLOBUS_LOCATION/etc/globus-user-env.sh

This command refreshes the proxy certificate for the user (snobol):

grid-proxy-init
<userspassphrase>

The following commands send a simple job to the server machine and has it
return its host name. This test whether jobs can be submitted to each of the
server machines:

globus-job-run alpha.itso.grid.com “/bin/hostname”
globus-job-run beta.itso.grid.com “/bin/hostname”
globus-job-run gamma.itso.grid.com “/bin/hostname”
globus-job-run delta.itso.grid.com “/bin/hostname”

The following command tests whether a file can be copied to the target server
machine and then submits a job to list the directory contents:

echo hello >testfile
globus-url-copy file://$HOME/testfile \

gsiftp://alpha.itso.grid.com/home/globususer/testfile
194 Introduction to Grid Computing with Globus

globus-job-run alpha.itso.grid.com “/bin/ls” “-trlc”

The following submits an insecure MDS search request. Remove the “-x”
parameters for the secure version:

grid-info-search -x “(objectclass=MdsCpu)” Mds-Cpu-Free-1minX100

To refine the search to look for processors that have more than 90 percent free of
CPU utilization for the last minute, use:

grid-info-search -x \
“(&(Mds-Device-Group-name=processors)(Mds-Cpu-Free-1minX100>=90))” \
Mds-Cpu-Free-1minX100

You should now be ready to install and run the video conversion demo
application.
 Chapter 9. Demo: Grid setup 195

196 Introduction to Grid Computing with Globus

Chapter 10. Demo: Application

This chapter is intended to introduce a parallel demo application that can be run
on a grid. A video conversion application is introduced and installation and
implementation steps follow.

10
© Copyright IBM Corp. 2003. All rights reserved. 197

10.1 Video conversion application overview
The video conversion application was built to show a potentially practical use of
the grid as well as to give a feel for the problems that may be encountered with
data intensive applications.

The demo takes a home video tape and converts it to a VideoCD that can be
played on DVD players supporting this format. Commercial programs exist for
this application, but they are set up to use a single system for the conversion.
The compression of the raw captured video data into an MPEG-1 or MPEG-2
data stream can take an enormous amount of time, which increases with higher
quality conversions. Depending on the quality level of the video capture, the data
required for a typical one hour tape can create over 10 GB of video data, which
needs to be compressed to approximately 650 MB to fit on a VideoCD. The
compression stage is CPU intensive, since it matches all parts of adjacent video
frames looking for similar sub-pictures, and then creates an MPEG data stream
encoding the frames. The MPEG data stream can be thought of as an instruction
stream on how to reconstruct the video frames from prior (and sometimes future)
video frames and compressed data that represent differences in portions of the
images. The audio is compressed as well. This compressed data is written in a
standard format to a CD-R or writable DVD disk and can then be played on DVD
players or other media players supporting that format. At higher quality levels,
more data is initially captured and enhanced algorithms, which consume more
time, are used. The compression process can take a day or more, depending on
the quality level and the speed of the system being used. For commercial DVD
quality, conversions are typically done by a service company that has developed
higher quality conversion algorithms. Such conversions may take weeks. Hence,
grid technology is ideal for improving the process of video conversion.

Our demo uses a Linux system to capture the video from a FireWire enabled
camcorder or VCR that is used to play the video tape to be converted. The
captured video file is then split into a number of smaller segments. These
segments are sent via Globus to Linux grid systems for compression. The
compressed segments are then reassembled and a CD is written in the VCD
format. This process can be seen in Figure 10-1 on page 199. Currently, the
compression programs run only on Linux x86 systems. The process described
here can be modified to handle more hours of video, and use different levels of
quality with different media formats. However, the procedure described here has
a limit of about 1 hour of video, which fits on one CD written in the VCD format.
198 Introduction to Grid Computing with Globus

Figure 10-1 Video conversion demo application

Sending many gigabytes of data from one computer to another takes a
considerable amount of time, even with a 100 Mb Ethernet connection. When a
file is copied into a distributed file system, it may be stored on a system other
than the one running the conversion for that segment. This can cause yet another
large transfer of the data to get it to the system doing the conversion. Thus, for
grid programs processing large amounts of data, it is imperative to understand
the network topology and to have the means of keeping the data near the
processing node that is using it.

To improve this grid application, one could install more network cards in the grid
machines that split the video data. These machines would be arranged in a
hierarchical network topology. With these, one could split the captured video into
fewer pieces initially, and have other grid machines split the files further and
distribute them to several machines in parallel. Another optimization would be to
split the data while it is being captured.
 Chapter 10. Demo: Application 199

10.2 Pre-installation
As described in the previous section, the video conversion application performs
three major tasks: capture a video, conversion of the video, and creation of a
VCD. This demo will use the Globus demo installation described in Chapter 9,
“Demo: Grid setup” on page 179. Changes can be made to the scripts presented
so they work on different configurations of the grid. This application was tested
on Red Hat Linux 7.3 and 8.0, but should work on any distribution with suitable
adjustments. One machine in this group (machine zeta) will be used to capture
the video and write the VCD and the other four (alpha, beta, gamma, and delta)
will be used to perform the conversion. There are several open source software
packages used for this demo application. These packages and the location from
which to download them are listed in Table 10-1. The versions listed were the
ones that were tested, but the process should work with later versions, possibly
requiring small changes in parameters. In addition to the software packages,
some additional hardware will be needed. To perform the video capture, a
FireWire enabled DV camcorder or FireWire VCR is needed, as well as a
FireWire card for machine zeta. The demo application was tested on a FireWire
card with the TI chipset, but other OHCI compatible chipsets may also work with
the drivers. A CD-R drive is needed to write the VCD and must be able to write in
“disk-at-once” mode. If video capture hardware is not available, one could use a
AVI file captured somewhere else in DV format. Furthermore, if you do not have a
CD-R drive, the MPG file created by the procedure can be played by many media
players.

Table 10-1 Software packages needed for video conversion

The above files should be downloaded into the /usr/src directory on machine
zeta. The mjpegtools will be installed on the server machines (alpha, beta,
gamma, and delta), so they should be downloaded to the /usr/src directory on
those machines.

Package Version URL

libraw1394 libraw1394_0.9.0.tar.gz http://sourceforge.net/projects/libraw1394

libdv libdv-0.98.tar.gz http://sourceforge.net/projects/libdv

libavc1394 libavc1394-0.3.1.tar.gz http://sourceforge.net/projects/libavc1394

dvgrab dvgrab-1.1b2.tar.gz http://www.schirmacher.de/arne/dvgrab/index_e.
html

mjpegtools mjpegtools-1.6.0-1.i386.rpm http://sourceforge.net/projects/mjpeg

vcdimager vcdimager-0.6.2-1.i386.rpm http://www.vcdimager.org/

cdrdao cdrdao-1.1.7.bin.x86.linux.tar.bz2 http://cdrdao.sourceforge.net/index.html
200 Introduction to Grid Computing with Globus

http://sourceforge.net/projects/libraw1394
http://sourceforge.net/projects/libdv
http://sourceforge.net/projects/libavc1394
http://www.schirmacher.de/arne/dvgrab/index_e.html
http://sourceforge.net/projects/mjpeg
http://www.vcdimager.org/
http://cdrdao.sourceforge.net/index.html

The md5sum command can be used to check if you are using the same versions of
the files we used by comparing the values against this list:

56fc0bc6f00efdebb635dcc52d91f7bc libraw1394_0.9.0.tar.gz
9b536c093869f171de1b4179885e43fb libdv-0.98.tar.gz
7e761f05b310392d6e07a7186b973cb5 libavc1394-0.3.1.tar.gz
b63cce79baca8baca6d9fe88a9251b1d dvgrab-1.1b2.tar.gz
324494caa95b8ae01f0fd435db8c487f mjpegtools-1.6.0-1.i386.rpm
8b585534df6005beee1606b3a2924663 vcdimager-0.6.2-1.i386.rpm
8c045b665f67f7c9665cb8eae3a7c814 cdrdao-1.1.7.bin.x86.linux.tar.bz2

10.3 Installation
There are four main parts to the installation of the video conversion demo:

� Globus Toolkit
� Capture software
� Conversion software
� VideoCD creation software

10.3.1 Install Globus Toolkit
Please follow the instructions given in Chapter 9, “Demo: Grid setup” on
page 179 to obtain and install the Globus Toolkit in the configuration required for
this demo application. This text will assume a total of five machines are used for
the application. The scripts presented can be modified to work for more or fewer
machines if needed.

10.3.2 Install capture software
There are several packages that are needed to capture a video using a FireWire
card and a FireWire video source. If you are using Red Hat Linux 8.0, the
following packages will not need to be installed, because they are included in the
“custom” installation of “everything” as part of the Linux install. Otherwise, the
following packages should be download, as listed in the previous section:

� libraw1394_0.9.0.tar.gz
� libdv-0.98.tar.gz
� libavc1394-0.3.1.tar.gz
� dvgrab-1.1b2.tar.gz

Libraw1394 is used to access the IEEE 1394 bus directly. The libdv libraries, also
known as the Quasar DV codec, are used to decode video in the DV format. DV
video is defined by the IEC61384 and SMPTE314M standards and is most
commonly used in digital camcorders. The libavc1394 libraries are needed for
 Chapter 10. Demo: Application 201

utilities to be able to control IEEE-1394 devices. The dvgrab package is used to
capture DV input into AVI files. To install these packages, please follow the steps
in Example 10-1. The packages must be installed as root on the machine that will
be used for the video capture. This is the zeta machine, on which the FireWire
card is installed.

Example 10-1 Installing video capture packages on zeta

cd /usr/src
tar -vzxf libraw1394_0.9.0.tar.gz
cd /libraw1394-0.9.0
./configure
make
make dev
make install

cd /usr/src
tar libdv-0.98.tar.gz
cd libdv-0.98
./configure
make
make install

cd /usr/src
tar -vzxf libavc1394-0.3.1.tar.gz
cd libavc1394-0.3.1
./configure
make
make install

cd /usr/src
tar -vzxf dvgrab-1.1b2.tar.gz
cd dvgrab-1.1b2
./configure
make
make install

chmod 666 /dev/raw1394

10.3.3 Test capture machine
A simple test can be done to determine if all of the capture software was properly
installed. To do this task, connect the video camera to the FireWire card in the
capture machine. dvgrab does not contain any remote control features, in other
words, it cannot start and stop the camera. The camera must manually be
started. Also an environment variable LD_LIBRARY_PATH must be set to include
202 Introduction to Grid Computing with Globus

/usr/local/lib. The following example illustrates how to test the capture software. It
should be performed while the video source is playing.

In Example 10-2, the modprobe command is used to load the ohci1394 and
raw1394 modules. The dvgrab command is then used to capture video from the
FireWire card. The autosplit and frames options indicate that the resulting
capture is to be split into multiple video files, each containing 750 frames or
about 25 seconds of video. The format option indicates that the captured videos
should be in dv2 AVI format. If you are using Red Hat Linux 8.0, leave off the
“--index small” parameter; otherwise, that version of dvgrab will give an error
message. The index option is used to choose between the older “small” size file
structure or the newer “large” file format for files larger than 1 GB. The parameter
myvideo is used to indicate the name of the files created. Since multiple files are
created, they will follow the naming convention myvideo001.avi, myvideo002.avi,
and so on, as shown in Figure 10-2.

Example 10-2 Testing the capture software

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
modprobe ohci1394
modprobe raw1394
dvgrab --autosplit --frames 750 --format dv2 --index small myvideo
(Stop the capture using ctrl-C.)

Figure 10-2 Video capture example

10.3.4 Install video conversion packages
There is a package that must be installed on each of the server machines to
perform the video conversion. This consists of the mjpegtools-1.6.0-1.i386.rpm
file, which should have been downloaded to the /usr/src/ directory of each of the
server machines (alpha, beta, gamma, and delta).
 Chapter 10. Demo: Application 203

Use the steps shown in Example 10-3 to install this package on each of the
server machines.

Example 10-3 Video conversion software installation on alpha, beta, gamma, & delta

cd /usr/src
rpm -ivh --nodeps mjpegtools-1.6.0-1.i386.rpm

mjpegtools contains the commands necessary to do the mpeg compression. The
lav2wav command is used to extract the audio from an captured AVI file. The
mp2enc command is used to convert the WAV audio file produced from the
lav2wav command into a compressed, MPEG layer-2 audio file. The lav2yuv
command is used to convert the mjpeg-encoded video produced by dv2jpg into a
raw yuv format. The yuvscaler command is used to generate VCD compliant
frames from the video produced by lav2yuv. The mpeg2enc command is used to
convert the video into MPEG format. The mplex command is an audio/video
multiplexer used to combine the compressed audio produced by mp2enc with the
video produced by mpeg2enc. The flow of commands for the video conversion is
illustrated in Figure 10-3. There are two approaches that can be taken to
installing the video conversion software. One way is to install the software on all
of the nodes in the system that will be performing conversions. A second way
could be to install the programs on a single machine and stage the binaries and
library files to the remote machines for conversion. For simplicity, we will simply
preinstall the mjpegtools on all of the servers.

Figure 10-3 Video conversion process

10.3.5 Install VideoCD creation software
The final two packages are used to create the VideoCD:

� vcdimager-0.6.2-1.i386.rpm
� cdrdao-1.1.7.bin.x86.linux.tar.bz2
204 Introduction to Grid Computing with Globus

These packages should be downloaded from the sources described in
Table 10-1 on page 200, as shown in Figure 10-4. The vcdimager command
converts a video in MPEG format to a VCD image, in a BIN/CUE format suitable
for use by the cdrdao CD-R writing program. The installation instructions for both
are listed in Example 10-4. Both packages must be installed by root. These
packages should be installed on the zeta machine, which has the CD-R drive.

Example 10-4 VideoCD creation software installation on zeta

cd /usr/src
rpm -Uvh vcdimager-0.6.2-1.i386.rpm

tar -xvjf cdrdao-1.1.7.bin.x86.linux.tar.bz2
cd cdrdao-1.1.7.bin.x86.linux
cp cdrdao /usr/bin/
the following gives everyone permission to write CD-Rs
chmod 666 /dev/sg?

Figure 10-4 VideoCD creation using vcdimager

10.4 Setup
There are three main steps that must be completed for the video conversion
demo: video capture, video conversion, and VideoCD creation. A script for each
step will be presented along with a fourth script used to tie the other three
together.

10.4.1 Video capture setup
The video capture must take place on the zeta machine with the FireWire card
and the capture software installed, as shown in Example 10-5 on page 206. The
dvgrab command will be used to capture the video. This command will continue
to run until the process is killed, so it must be scripted to kill the process when the
desired amount of video is captured. The dvgrab command also allows for
capturing video in multiple files. In this example, the video will be captured in four
files, each containing 750 frames. Each video should be approximately 25
seconds, for a total of almost two minutes of video.
 Chapter 10. Demo: Application 205

Example 10-5 Place this file in /home/snobol/videocapture.sh on zeta

#!/bin/sh
#videocapture.sh

#set up capture environment
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
#the following three commands need to be performed by root:
#chmod 666 /dev/raw1394
#modprobe ohci1394
#modprobe raw1394

rm -f videocap0*.*

#start the video capture 1800 frames = 1 minute
Note: for Red Hat 8.0 with preinstalled dvgrab, remove the "--index small"
parameter
dvgrab --autosplit --frames 1800 --format dv2 --index small videocap &

#wait for capture to finish
The following lines limits the number of captured files to 4.
It does this by killing the capture when the 5th file is created.
flag=0
while [$flag -eq 0]
do

sleep 15
flag=`ls videocap005.avi 2>/dev/null | wc -l`

done

#kill dvgrab process
for i in `ps -efw | grep dvgrab | cut -c10-14`
do

kill -9 $i
done

rm -r videocap005.avi

10.4.2 Video conversion setup
The video conversion script will be run on all four conversion machines. Each
machine will convert a different captured avi file into MPEG format, as shown in
Example 10-6. The argument passed to videoconversion.sh is the name of the
avi file to be converted.

Example 10-6 Place this file in /home/snobol/videoconversion.sh on zeta

#!/bin/sh
videoconversion.sh
206 Introduction to Grid Computing with Globus

lav2wav $1 | mp2enc -V -o sound.mp2
lav2yuv $1 2>/dev/null | yuvscaler -O VCD 2>/dev/null | mpeg2enc -s -r 16 -o
video.m2v 2>/dev/null
mplex -f1 sound.mp2 video.m2v -o $1.mpg
rm -f video.m2v
rm -f sound.mp2
rm -f $1

10.4.3 VideoCD creation setup
The third script will use the vcdimager command to create a VCD image, as
shown in Example 10-7. The input to vcdimager is the concatenated set of four
MPEG video files and the output consists of the bin and cue files suitable for
writing the VCD image to a CD-R disk. Then cdrdao will be used to write the VCD
to a blank CD-R disk. The -device 0,0,0 option is the device number for the CD-R
drive. If this is unknown, the following command can be used to determine the
device number:

cdrdao -scanbus

Furthermore, if you are using a different type of CD-R writer, the --driver
parameter may need to be changed to match your hardware. Use the --help
parameter of the cdrdao program to find out more about this.

Example 10-7 Place this file in /home/snobol/videocd.sh on zeta

#!/bin/sh
#Either run as root or give permissions to use cd writer using:
chmod 666 /dev/sg?
#The --driver --device --speed parameters may need to be changed to match your
cd writer
vcdimager videocap.mpg
cdrdao write --driver generic-mmc --device 0,0,0 --speed 8 --eject videocd.cue
rm -f videocd.cue
rm -f videocd.bin
g:

10.4.4 Main script setup
The final script (Example 10-8) will be used to tie the other three together. The
Globus toolkit will be used to stage the necessary files to the remote machines
and run the conversions on the remote machines.

Example 10-8 Place this file in /home/snobol/main.sh on zeta

#!/bin/sh
main.sh
 Chapter 10. Demo: Application 207

#First, capture video from DVcamera
./videocapture.sh

#set environment variables
target_dir=/home/globususer
curdir=`pwd`

#stage code and video to remote machines
ndx=1
List machines to be used here and below (one conversion per machine):
for target_host in alpha.itso.grid.com beta.itso.grid.com \

gamma.itso.grid.com deltra.itso.grid.com
do

echo Setting up demo on host $target_host
globus-url-copy file:${curdir}/videoconversion.sh \

gsiftp://${target_host}:2811${target_dir}/videoconversion.sh
echo sending video ${curdir}/videocap00${ndx}.avi
globus-url-copy file:${curdir}/videocap00${ndx}.avi \

gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi
globus-job-run ${target_host} /bin/chmod 755 videoconversion.sh

echo Building RSL for $target_host
echo +>demo_rsl${ndx}
echo "(&(resourceManagerContact="${target_host}")" >>demo_rsl${ndx}
echo " (subjobStartType=strict-barrier)" >> demo_rsl${ndx}
echo " (label="videocap00${ndx}")" >> demo_rsl${ndx}
echo " (executable= ${target_dir}/videoconversion.sh)" >> demo_rsl${ndx}
echo " (arguments = videocap00${ndx}.avi)" >> demo_rsl${ndx}
echo ' (stdout= $(GLOBUSRUN_GASS_URL) # "'$curdir/videocap00${ndx}.out'")' \

>> demo_rsl${ndx}
echo ' (stderr= $(GLOBUSRUN_GASS_URL) # "'$curdir/videocap00${ndx}.err'")' \

>> demo_rsl${ndx}
echo ")" >> demo_rsl${ndx}

echo submiting job to $target_host
globusrun -w -f demo_rsl${ndx} &
ndx=`expr $ndx + 1`

done
echo waiting for all conversions to complete
wait

 echo getting result files now

rm -f videocap.mpg
ndx=1
for target_host in alpha.itso.grid.com beta.itso.grid.com gamma.itso.grid.com
deltra.itso.grid.com
do
208 Introduction to Grid Computing with Globus

globus-url-copy
gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi.mpg \

file:${curdir}/videocap00${ndx}.avi.mpg
cat videocap00${ndx}.avi.mpg >> videocap.mpg
rm -f videocap00${ndx}.*
rm -f demo_rsl${ndx}
ndx=`expr $ndx + 1`

done

Now create the video cd (VCD)
./videocd.sh

10.5 Operation
Once all of the above steps have been completed and the necessary scripts have
been written, the demo is ready to run. Before running the main.sh script, it is
necessary to set up a proxy for the globususer ID to be able to run the Globus
Toolkit commands. This can be done with the grid-proxy-init command. This
command will prompt for a passphrase that was set up by the user. The
DVCamera needs to be connected to the capture machine via FireWire and
manually started. As soon as the video playback is started, the main.sh script
should be started, which in turn starts the video capture process and all of the
other conversion steps. While the process is starting, a blank CD-R disk should
be loaded into the CD writer.

This assumes that all of the scripts are located in the same directory on the
capture machine. This example creates four video segments, each one minute
long, and sends them to each of the four sever machines for conversion. The
resulting VCD can be played in DVD players that support the VCD format. The
videocap.mpg file can also be played directly using a media player on a personal
computer.

To summarize, the following steps are used to convert about four minutes of
video and make a VCD out of it:

� Put a blank CD-R in your CD writer.

� Then, get your DV camcorder connected and ready to play.

� Issue the commands shown in Example 10-9.

� As you enter your passphrase for the grid-info-cert request, press Play on
your camcorder.

Example 10-9 Operation commands

As user ID root (once per boot):
 Chapter 10. Demo: Application 209

modprobe ohci1394
modprobe raw1394
As user ID snobol:
chmod 755 *.sh
grid-proxy-init
<passphrase> <- This is the passphrase you set for snobol: kjsdnb
./main.sh

10.6 Improvements
As mentioned in the overview, there are some changes that can be made to
improve the performance of the demo application. One of these changes is to
begin the video file transfer during the capture, as illustrated by Figure 10-5 on
page 211. Since dvgrab creates multiple video files while capturing the video, this
improvement can be easily scripted. Once the first video is completed, it can be
staged to the remote machine and the conversion can begin. This process is
repeated as each individual AVI file is captured. A parameter is specified in the
new script, which states the number of minutes of video to capture and convert.
Furthermore, using MDS, we can locate a machine on the grid that is not very
busy and send the video file to it. In this way, we can use a variable number of
machines.

To accomplish this, we can use the following script files in place of the ones
above. Also, these are configured for using anonymous MDS grid-info-search
commands. For a secure MDS, remove the “-x” parameter form the
grid-info-search commands.
210 Introduction to Grid Computing with Globus

Figure 10-5 Parallel video capture and date transfer

Example 10-10 through Example 10-13 on page 213 are the improved scripts to
use for the enhanced demo. A parameter is given to the main.sh script, which
says how many minutes you want to record. Since a VCD can only hold about an
hour, this number should be 60 or less.

Example 10-10 Place this file in /home/snobol/videocapture.sh on machine zeta

#!/bin/sh
#videocapture.sh <maxfilenumberwanted>

#set up capture environment
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
#the following three commands need to be performed by root in advance:
#chmod 666 /dev/raw1394
#modprobe ohci1394
#modprobe raw1394

rm -f videocap0*.*

#start the video capture in the background. 1800 frames = 1 minute
Note: for RedHat 8.0 with preinstalled dvgrab,
 Chapter 10. Demo: Application 211

remove the "--index small" parameter
dvgrab --autosplit --frames 1800 --format dv2 --index small videocap &

ndx=`expr $1 + 1`
ndx=`echo 000$ndx | rev | cut -c 1-3 | rev`

#wait for capture to finish
It does this by killing the capture when the ${ndx}th file is created.
flag=0
while [$flag -eq 0]
do

sleep 30
flag=`ls videocap${ndx}.avi 2>/dev/null | wc -l`

done

#kill dvgrab process
for i in `ps -efw | grep dvgrab | cut -c10-14`
do

kill -9 $i
done

#dont delete the extra file so main.sh can tell they are all captured

Example 10-11 Place this file in /home/snobol/videoconversion.sh on zeta

#!/bin/sh
#video_conversion.sh <inputfile.avi> <uniquenumber>
lav2wav $1 | mp2enc -V -o sound${2}.mp2
lav2yuv $1 2>/dev/null | yuvscaler -O VCD 2>/dev/null | mpeg2enc \

-s -r 16 -o video${2}.m2v 2>/dev/null
mplex -f1 sound${2}.mp2 video${2}.m2v -o $1.mpg
rm -f sound${2}.mp2
rm -f video${2}.m2v
rm -f $1

Example 10-12 Place this file in /home/snobol/videocd.sh on zeta

#!/bin/sh
#Either run as root or give permissions to use cd writer using:
chmod 666 /dev/sg?
#The --driver --device --speed parameters may need to be changed to match your
cd writer
vcdimager videocap.mpg
cdrdao write --driver generic-mmc --device 0,0,0 --speed 8 --eject videocd.cue
rm -f videocd.cue
rm -f videocd.bin
212 Introduction to Grid Computing with Globus

Example 10-13 Place this file in /home/snobol/main.sh on zeta

#!/bin/sh
#main.sh <number of minutes to capture>
Note: a normal VCD will not hold more than 60 minutes

Make certain certificate is not expired
echo type your user passphrase, if asked by grid-proxy-init
grid-proxy-init

#capture video from DVcamera
#Improvements "Run capture in the background so we can begin converting pieces"
./videocapture.sh $1 &

#set environment variables
target_dir=/home/globususer
curdir=`pwd`

#stage code and video to remote machines

rm -f resources_used.txt
#kdx is the section number being handled
#ndx is equal kdx + 1
kdx=001
ndx=002
while [$kdx -lt `expr $1 + 1`]
do

#wait for capture of current section $kdx to finish
flag=0
while [$flag -eq 0]
do

 flag=`ls videocap${ndx}.avi 2>/dev/null | wc -l`
 if [$flag -eq 0]
 then sleep 13
 fi

done

#Use MDS to find a machine which is more than 95% free cpu time
#check to see if we got any responses
available=0
while [$available -eq 0]
do

grid-info-search -x \
"(&(Mds-Device-Group-name=processors)(Mds-Cpu-Free-1minX100>=95))" \
Mds-Cpu-Free-1minX100 | grep Mds-Host-hn | cut -d , -f 2 | cut -d = \
-f 2 > tmp.out

echo waiting for resource more sufficiently free
 available=`cat tmp.out | wc -l`
 if [$available -eq 0]
 Chapter 10. Demo: Application 213

 then sleep 29
 fi

done

target_host=`head -1 tmp.out`
 echo Video section $kdx will be sent to $target_host

echo $target_host >> resources_used.txt
 # send the script to run at the target host
 globus-url-copy file://${curdir}/videoconversion.sh \

gsiftp://${target_host}:2811${target_dir}/videoconversion.sh
send the video section to the target host
globus-url-copy file://${curdir}/videocap${kdx}.avi \

gsiftp://${target_host}:2811${target_dir}/videocap${kdx}.avi
 # get rid of local copy of captured video
 rm -f videocap${kdx}.avi

make the script executable
globus-job-run $target_host /bin/chmod 755 videoconversion.sh

echo submiting job to $target_host
globus-job-run $target_host $target_dir/videoconversion.sh \

videocap${kdx}.avi ${kdx} &

 ndx=`expr $ndx + 1`
 kdx=`expr $kdx + 1`
 # now left pad the numbers with zeros

kdx=`echo 000$kdx | rev | cut -c 1-3 | rev`
ndx=`echo 000$ndx | rev | cut -c 1-3 | rev`

done

delete extra capture file now
rm -r videocap$kdx.avi

echo waiting for all conversions to complete
wait
rm -f videocap.mpg
kdx=001
for target_host in `cat resources_used.txt`
do

globus-url-copy \
gsiftp://${target_host}:2811${target_dir}/videocap${kdx}.avi.mpg \
file://${curdir}/videocap${kdx}.avi.mpg

cat videocap${kdx}.avi.mpg >> videocap.mpg
 # delete local file
 rm -f videocap${kdx}.avi.mpg
 # delete remote files
 globus-job-run $target_host /bin/rm -f videocap${kdx}.avi.mpg
 globus-job-run $target_host /bin/rm -f videoconversion.sh

 kdx=`expr $kdx + 1`
214 Introduction to Grid Computing with Globus

 kdx=`echo 000$kdx | rev | cut -c 1-3 | rev`
done

delete some other temp files
rm -f tmp.out
this file showsshould which machines were chosen. rm -f resources_used.txt

Now create the video cd (VCD)
./videocd.sh

The following steps are used to convert 15 minutes of video and make a VCD out
of it. Put a blank CD-R in your CD writer. Then get your DV camcorder ready to
play, issue the commands below (Example 10-14), and, as you enter your
passphrase for the grid-info-cert request, press Play on your camcorder.

Example 10-14 Commands to start the video conversion on zeta

As user root (once per boot):
modprobe ohci1394
modprobe raw1394
As user snobol:
chmod 755 *.sh
./main.sh 15
<passphrase> <- you probably set it to the snobol password: kjsdnb

Other enhancements will become apparent as you use these scripts. The scripts
could be enhanced to automatically generate a second VCD when the video is
longer than 60 minutes. Additional MDS queries could be made to locate only
x86 Linux machines that have the mjpegtools installed, so that these procedures
could be used in a larger grid. In fact, it may be possible to set up a small grid in
a neighborhood of homes connected via cable modems or other means,
permitting all of the participants to use each other’s machines to speed up
conversion of their old home video tapes to disks. These improvements are left
as an exercise to the reader.
 Chapter 10. Demo: Application 215

216 Introduction to Grid Computing with Globus

Part 5 Examples

Part 5
© Copyright IBM Corp. 2002. All rights reserved. 217

218 Introduction to Grid Computing with Globus

Chapter 11. Grid examples

In this chapter, we bring five examples of grid computing implementations. The
implementations of the examples try to rationalize problem solutions. We provide
the examples in the hope that they will be used as a guide and as a scale to use
grid computing to solve real life and business problems successfully.

11
© Copyright IBM Corp. 2002. All rights reserved. 219

11.1 Five examples
As stated earlier, grid computing is the utilization of computers’ available
resources across networks. Grid computing technology will assist organizations
in gaining immense computing power by utilizing their resources more efficiently.
Additionally, grid computing is an advancement in technology using existing
assets and technologies.

A typical IT structure consists of a set of business solutions that, combined,
create computing problems. This set of problems consists of performance,
storage, and memory shortage problems. Grid computing technology solves
these problems by distributing tasks to multiple concurrent suitable resources
instead of performing them sequentially on a single resource. Grid technology
will normalize the peaks and bottlenecks by creating immense computing power
and throughput to handle the same workload in much less time.

In the ZetaGrid example, we demonstrate how calculations that are estimated to
take 213 years are calculated in less than one year. In the cancer imaging
example, we show how a grid is being used in medical research and diagnoses.
In the entertainment example, we present an innovative, commercial venture. In
the Excel example, we demonstrate a simple financial model that can be
implemented in a small office or department.

Even though we believe that grid technology could be implemented in all
organizations with network infrastructure in place, organizations with the
following profile are the best candidates for grid technology:

� Applications take too long to finish.
� Have many servers and looking to consolidate.
� CPU intensive applications.
� Storage intensive applications.
� Organization is geographically distributed.

11.2 Digital cancer imaging
This is an example of grid computing used in the area of digital cancer imaging. It
illustrates how data resource sharing can be implemented in a grid to aid in
research and potentially save lives.

More details about this and others life science solutions can be found in the IBM
Life Sciences Web page at:

http://www.ibm.com/solutions/lifesciences/
220 Introduction to Grid Computing with Globus

http://www.ibm.com/solutions/lifesciences/

11.2.1 Needs
A need has developed for a medical records system to capture, manage, and
store patient files from any location for fast retrieval and diagnostic evaluations.
These files include patient records, clinical history, and medical images, such as
tomography (CT or cat scan), magnetic resonance imagery (MRI), ultra sounds,
and mammograms. The main benefit for such a system is number of lives saved
by early diagnosis and treatment.

In some hospitals, files have become mis-filed or otherwise make unavailable,
which has left physicians and radiologists without comparative records for
making diagnoses. Patients also sometimes obtained their health care services
at other medical facilities, making it difficult to quickly retrieve those records to
study the medical history and prior treatments. For the patient, there is the
potential for complications leading to disabilities or death. For the hospital or
medical practitioner, there is the possibility of litigation for misdiagnosis due to
the unavailability of patients’ records. As a result of missing records, additional,
often costly, diagnostic studies are required.

Rising health care costs are due to the high overhead and administrative costs of
maintaining paper and x-ray film file systems. Each year, the average hospital
spends $4 million to develop x-ray films, according to some estimates. Millions of
dollars can be saved each year by using the medical records grid.

A unique property exists for one form of cancer diagnosis in that a set of
standards and protocols exist for mammography imagery. Traditionally,
radiologists will scan the films with a magnifying glass to look for micro
calcifications. There are then three options:

� Wait six months to see if the mass or calcifications increase, which suggests
malignancy

� Biopsy

� Biopsy and removal

It is very important that prior x-rays be taken into account when deciding on an
option. To help, x-ray images can be converted to a digitized format and
analytical tools used to help diagnose individual patients and quickly isolate
abnormalities.
 Chapter 11. Grid examples 221

11.2.2 Solution
This example demonstrates the use of a data grid being dispersed among four
hospitals. The grid takes into account the following challenges:

� Data images of 160 MB per mammogram exam results in more than 5.6 PB
per year.

� Daily traffic for archiving current exams and comparing past and present
exams is a minimum of 28 TB.

� Network bandwidth responses range from high speed access to expert
consultation and unscheduled exams down to low speed Internet access.

At each hospital, physicians, radiologists, and other authorized personnel upload
images to a data repository that is accessible by the other hospitals. The medical
personnel are able to query and retrieve patient records within 90 seconds.

Data grid
This is a typical example of a data grid, where the application accesses a storage
system that is transparent to the hospital. There is also a metadata access
service to access and manage information about data stored in the storage
system.

The grid has the following characteristics:

� Images are loaded at each hospital or end node. There are two servers. One
acts as a temporary repository. The other is a link to the Internet or to the next
generation of the Internet.

� Each hospital transmits images to a metropolitan hub.

� The metropolitan hubs funnels its images to a high-capacity regional hub for
resource pooling.

� The distributed archive emulates one huge archive. Queries to the archive are
handled rapidly by a secure, highly available database that indexes and
catalogs the data.

� Access at local hospitals is transparent and fast.

� Management software monitors and controls the nodes and provides security
and diagnostic information.

Application
Digital images of potential cancers are being shared among four hospitals. The
potential exists to scale this grid to include thousands of hospitals and clinics and
to share more types of patient data not only for aiding diagnoses but also for
research and training. Using the grid, algorithms can uncover patterns to identify
abnormal concentrations of cancer in the population. A suite of educational tools
222 Introduction to Grid Computing with Globus

will be deployed on the grid to help doctors, medical students, and interns learn
more about cancer and related diseases.

11.3 Spreadsheet
This example demonstrates how combining personal computers and applications
connected on a local area network with grid computing technology could deliver
superior computing power.

More details about this solution can be found on the GridSystems Web page at:

http://www.gridsystems.com/

11.3.1 Needs
Organizations around the world invested for several years in personal computers
and software. Today, we come to find that an average PC is underutilized in all
aspects. Most personal computers are idle or used for short amounts of time.
Research shows that thousands of computers around the world are used as
e-mail clients and Web browsers with small fragmented activities. Personal
computers are necessary in all organizations to achieve little tasks, and it is cost
effective to buy the latest CPU technology and more memory because of the
developing technology and applications requirements. Today, personal computer
applications are limited to the size of workspace and processing they can do in a
reasonable amount of time. Using grid computing technology, PC users can
develop applications that could well exceed the reasonable power of one
personal computer. In addition, new applications could be developed because of
the developing grid technology and because of the growing processors' power.

11.3.2 Solution
Today, spreadsheet applications are limited to tens of thousands of rows and less
than a few hundreds of columns. An application that requires ten times that much
space maybe broken into ten or more multiple spreadsheets and distributed to
ten or more personal computers utilizing grid technology. Each part of the
spreadsheet will calculate on its own node and report results back to the master
node for final reporting. In the past, organizations bought expensive computers to
establish such tasks.

Computational grid
Redundancy and multiple job submission are native in computational grids.
Application integrity can be achieved by submitting the same tasks to more than
one node, then results can be compared for accuracy. Also, jobs could be
 Chapter 11. Grid examples 223

http://www.gridsystems.com/

resubmitted if a node does not return result in a reasonable amount of time,
which may indicate a node became unavailable after the task was submitted.
Applications that require calculation of a great quantity of spreadsheets can take
advantage of using multiple nodes performing the calculation.

This example was built on a Microsoft Windows environment using InnerGrid
software from GridSystems and Microsoft Excel. For more details about
InnerGrid software see:

http://www.gridsystems.com/

Application
A financial institute could use any licensed spreadsheet application that is
already installed on their local area network stations to compute complex tasks.
When a workstations is idle, it can be utilized to carry out the queued small tasks
to assist completing a bigger task. This can be done around the clock, during and
after business hours, as the distributed work runs in the background in a lower
priority unless the computer is entirely free and available.

11.4 ZetaGrid
ZetaGrid is a computational grid that runs on participating computers around the
world and across the Internet. It is an open source and platform independent grid
system that uses idle CPU cycles from participating computers. The participants
download the client software that is suitable for their operating system, install it,
and run it. When the screen saver on the client computer is activated, the
ZetaGrid client initiates a request to the grid for a new task. The client's
processor then is utilized until the task is completed. Then the client return
results to the ZetaGrid servers and acquires a new task, this loop of operation
continues until the client's screen saver is interrupted.

More details about ZetaGrid can be found at:

http://www.zetagrid.net/

11.4.1 Needs
ZetaGrid is a worldwide heterogeneous computational grid that tries to verify the
Riemann hypothesis by calculating all the zeroes of the Riemann zeta function.

The verification of Riemann's hypothesis, formulated in 1859, is considered to be
one of modern mathematics’ most important problems. The last 140 years did
not bring its proof, but a considerable number of important mathematical
theorems that depend on the hypothesis being true, for example, the fastest
known primarily test of Miller.
224 Introduction to Grid Computing with Globus

http://www.gridsystems.com/
http://www.zetagrid.net/

11.4.2 Solution
This implementation involves more than 3000 heterogeneous workstations and
has a peak performance rate of about 530 GFLOPS. About 2 billions zeros for
the zeta function are calculated every day.

Scavenging
CPU scavenging grids will be growing in the research field. Resources schedule
themselves in and out of the grid, their availability is variable, and there is no
fixed expectation on time to return results. The task may be interrupted
unexpectedly by participants and resources maybe powered down randomly.
This type of grid is mostly used in life science applications that may not have a
requirement to finish in a certain timetable.

In this ZetaGrid example, CPU cycles are donated from Internet users that are
interested in proofing the theory while other users are doing it for rewards. When
the screen saver on the client computer is activated, indicating that the system is
idle, then the ZetaGrid client initiates.

Application
The ZetaGrid software is open source and platform independent. The source can
be used for any CPU intensive application that can be split into separate
sub-processes. ZetaGrid client support various platforms like AIX, Linux, and
Microsoft Windows. The source can be downloaded at the following Web site:

http://www.zetagrid.net/zeta/downloads.html

Multiple platforms
Heterogeneity is necessary in this type of grid, not only on an operating system
level but also on the hardware architecture level. This is to increase the number
of participants and decrease the amount of time to accomplish results.
Table 11-1 presents which operating systems participates in ZetaGrid.

Table 11-1 Operating systems for ZetaGrid (November 2002)

Operating system Processor

AIX ppc 230

Linux i386 427

Linux s390 3

Linux x86 99

Mac OS X ppc 1

SunOS sparc 12
 Chapter 11. Grid examples 225

http://www.zetagrid.net/zeta/downloads.html

11.5 Simulation
In the aerospace and the automotive industries, many manufacturers run
simulations. Simulation is not a replacement for real experience, but it gives a
great deal of information before sending the product for testing; this not only
economical but also logical.

More details about aerospace, automotive, and others industries can be found in
the IBM Solutions Web page at:

http://www.ibm.com/solutions/

11.5.1 Needs
Simulation and visualization of a simulation requires high computing power.
Industries are using grid computing technology to perform their simulations and
calculate design problems that were impossible before due to the cost of
processing. Calculations that took months are done in days in a grid
environment.

11.5.2 Solution
Applications for design and simulation are known to demand high computing
power when it comes to advanced design and testing phases. Computer cycles
that are necessary to drive simulation in high resolution mode will far exceed the
abilities of one single computer, regardless of it how many processors a single
computer may have installed.

In the automotive industry, grid computing technology has assisted many car
manufacturers using different simulation and design application to achieve
compute times and build scenarios that were time consuming to build before.
This gave car manufacturing companies the advantage of building better

Windows 2000 x86 1448

Windows 95 x86 15

Windows 98 x86 150

Windows Me x86 47

Windows NT x86 346

Windows XP x86 462

Operating system Processor
226 Introduction to Grid Computing with Globus

http://www.ibm.com/solutions/

products and simulation problems before they are distributed, unknowingly, to the
consumer.

Grid computing and application
Grid computing technology and compute-intensive applications, such as finite
element analysis, computational fluid dynamics, and DOE
(design-of-experiment) simulations, gave the automotive industry the advantage
of producing efficient and performing products in a way that would take greater
time and expense to achieve. Grid allows you to perform thousands more
"what-if" analyses up-front, so they could increase quality and see how minute
changes in the third-gear ratio impact a car's overall performance. Also,
applications like MCAD (Mechanical Computer Aided Design) demand that kind
of CPU power and can take advantage of a computational grid.

Web interface
Using the same custom-built Web interface that front-ended their previous cluster
software, engineers can now send their jobs to the grid, which automatically
distributes those jobs to the machines that are available at that moment.

In the automotive industry, we can assume a computational grid configured with
hundreds of computers. Imagine the power of all those computers supplying a
pool of available resources to provide computing on demand.

11.6 Entertainment
This example demonstrates how grid computing can be used in the
entertainment industry, such as for online gaming. It illustrates how processing
resources can be used on an as-needed basis as the demand for power grows.

For more information about this and others entertainment solutions refer to the
IBM Linux solution for media and entertainment Web site at:

http://www.ibm.com/industries/media/

More details about online gaming can be found at http://www.butterfly.net/,
and in the Butterfly.net references at:

http://www.ibm.com/

11.6.1 Needs
The popularity of multi player online games has grown as users buy
subscriptions to play online games with other users from around the world. The
 Chapter 11. Grid examples 227

http://www.ibm.com/industries/media/
http://www.butterfly.net/
http://www.ibm.com/

challenge with traditional multi player games is the limitation placed on the
number of concurrent players per server. The following scenario can occur:

� A player buys a game and a subscription to play online with others.

� There are thousands other players who buy the same game and want to play
online.

� The server handling the game is capable of handling a limited number of
players.

If the power capacity is overcome, the solution has been to acquire additional
servers and run additional copies of the gaming engine, but this must be done
considering the application capability, that is, the capability of the application
runs in a parallel environment.

11.6.2 Solution
Online gaming is an example of a computational grid that utilizes resource
aggregation on demand from third parties. Instead of investing a considerable
amount in new hardware, the gaming company can take the approach of leasing
computing power from service providers, such as IBM, who have data centers of
servers with connectivity to the Internet.

Starting with the limitations on the number of simultaneous users per server, the
grid overcomes this by providing resources on demand. Instead of a single
server hosting a number of players, the grid itself becomes the host. The
challenge is to design gaming software to take advantage of this feature of one
large virtual gaming world. As demand for a particular game increases, an
additional server can be integrated into the online gaming grid to handle the
processing requests.

The nature of the grid also provides for transferring resources on demand from
one node to another node. It is transparent which server on the grid is
responding. When a server needs maintenance, upgrades, or replacement, the
resources it was handling are taken over by another server, This has the effect
that a game player has no downtime.

Application considerations
Considering that the application has parallel characteristics and low-intensive
communication, a computational grid is perfectly suitable to host the solution.
228 Introduction to Grid Computing with Globus

Expanding this scenario for other type of video games leads to other
considerations:

� More servers are needed to support more games, but what if a couple of the
games are not popular? As the servers can be allocated on demand, this
allows a better usage distribution.

� What if a game’s popularity grows rapidly? How soon can another server be
added? On grid, a server can be added transparently, without interruptions

� During a maintenance or upgrade to a server, game play for the users on that
server does not need to stop, since the servers can fade in and out when
necessary.

With these considerations, there is a motivation for gaming companies to come
up with a cost-effective infrastructure where servers can be added or replaced
without interrupting users as they play in a true multi-player environment.

Use of data centers
The online gaming grid can use a network of data centers, each of which
contains multiple servers. The game developers access the grid to load and test
their games, objects, rules, and parameters. Once tested, game specific
configuration information is transferred to the data center or grid service
providers. The end user or game player purchases a gaming client and the fun
begins. As the demand changes for the game play, the resources are shifted to
handle the load.

Just as most companies do not generate their own electricity, there are some
companies who do not own their computing infrastructure. Online gaming is an
example of thinking of a grid as a utility. Companies cannot afford to gamble on
investing in servers, networks, and storage. Grid service providers supply a
growing need for computing power without the headaches of hardware
maintenance and administration.
 Chapter 11. Grid examples 229

230 Introduction to Grid Computing with Globus

Part 6 OGSA

Part 6
© Copyright IBM Corp. 2003. All rights reserved. 231

232 Introduction to Grid Computing with Globus

Chapter 12. Open Grid Services
Architecture

This chapter introduces some of the motivations behind Open Grid Services
Architecture (OGSA), the technology driving it, and problems addressed by the
Grid Service Specification proposed by the Global Grid Forum (GGF) - Open
Grid Services Infrastructure Working Group

The ideas explained here are taken primarily from four papers, Web Services
Conceptual Architecture (WSCA 1.0), by Kreger, which introduces Web Services
concepts and terminology, The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, by Foster, et al, which introduces Grid concepts and terminology,
The Physiology of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration, by Foster, et al, which introduces the Open Grid Services
concepts and terminology, and the Grid Service Specification, by Tuecke, et al,
which details the first steps towards OGSA (the Grid Service). In addition,
information has been collected from different sources and they are mentioned by
citation. More information on obtaining these sources can be found in “Related
publications” on page 255.

12
© Copyright IBM Corp. 2003. All rights reserved. 233

12.1 Overview and directions
It should be noted that OGSA is work in progress, the future of grid computing if
you like. Many of the problems that need to be solved are only just being tackled
and those that are being tackled, such as the OGSI Working Group within GGF,
are continually being revised (Grid Service Specification).

The GGF Open Grid Services Architecture Working Group is looking into
producing a document to outline a road map for OGSA Services development.
They aim to highlight the services that need to exist to have a fully functional grid
environment and to suggest, at a high level, how these services should
inter-relate. By highlighting the highest priority services, they will encourage the
creation of other working groups within GGF to develop these services, for
example, the OGSA Security Working Group.

OGSA by itself will not give you grid computing. It is an architecture and, as such,
requires an implementation, a container perhaps, in which an OGSA Grid
Service can exist. The OGSI working group exists to address the basics for the
OGSA architecture: the Grid Service. We can think of Grid Service in a similar
way to the Linux kernel; it is the core and the future for grid computing, although
by itself it does not provide anything useful. It does provide building blocks for
powerful grid middleware and applications, just as Linux provides the power for
GNU tools and the popular Linux distributions and applications.

OGSA has the commitment of many vendors within the grid community, including
Entropia, Unicore, United Devices, Platform, Globus, and IBM. Indeed, there is
currently a tech-preview OGSA implementation available at the Globus Web site
(http://www.globus.org/ogsa) and Globus Toolkit 3 is scheduled for beta
release in April 2003. Globus is working to ensure backwards compatibility of
Toolkit 3 with Toolkit 2.

12.2 Motivations for OGSA
OGSA has three main predecessors:

� Globus Toolkit
� Autonomic computing initiative
� Emerging Web Services standards

Note: OGSA is becoming much greater than just the Grid Service
Specification; working groups within GGF are already looking into Security, but
there are hopes that the Grid Service Specification will near completion in
2003.
234 Introduction to Grid Computing with Globus

http://www.globus.org/ogsa

Globus Toolkit
Globus Toolkit Version 2 has been considered by many as the de facto standard
for the implementation of grids, providing many key technologies, such as
directory service for resource discovery, authentication, and job scheduling. The
toolkit grew from a realization that to make a grid work for scientists and
engineers required a significant middleware infrastructure. Such middleware
protects the application writer from the underlying complexity of operating
systems, and allows users to exploit the power of distributed systems without
having to know the details of the systems being used.

Autonomic computing
The IBM autonomic computing initiative has much in common with Globus in that
it strives to unify a user’s view of a heterogeneous distributed system through the
provision of common facilities. It has long been recognized that middleware
requires a set of functionality, such as logging, security, failover, clustering,
heartbeat monitoring, first failure data capture, trace, and so on. across a variety
of platforms and technologies. Application servers, databases, or messaging
engines all require similar functionality, but are often implemented in different
ways by different middleware. For this reason, IBM embarked in this project to
provide a common set of core infrastructure functions across all platforms.

Emerging Web Services standards
Web Services are one of the hottest topics in IT at the present time. Through a
significant cooperative venture by some of the biggest players in the industry
(including IBM and Microsoft) working through a number of standards
organizations, a common set of technologies have emerged. These technologies
allow for the registration, discovery, and use of distributed services.

12.2.1 Today’s focus
The focus of grid computing had been on shared resources, where these
resources are typical shared among large multi-national groups of institutes with
heterogeneous environments. The Globus Toolkit has focused primarily on the
academic community, particularly High Performance Computing, with a view to
improve usage of a particular shared resource. This enables the end user to
become increasingly less concerned with resources and more concerned with
applications and making use of portals to carry out analysis of results
(“services”).

So, it is the application developers who are concerned with resources, but why
should even they be concerned? The autonomic computing initiative was aimed
at virtualizing these resources to application developers and IT staff. They, just
like the end users, want to view the resources as services they can make use of
and not expose the underlying heterogeneity that may exist.
 Chapter 12. Open Grid Services Architecture 235

Web Services traditionally allow companies to provide services to other
companies and allow for the discovery of these services. However, the concept of
a virtual organization within the grid blurs the boundaries of two companies, so
Web Services are a viable approach to grid computing as well as B2B.

Grid resources and protocols are going to the Web Services approach of
services and functionality. This moves grid technology towards an environment
which enables QoS (Quality of Service) to play an important part, issues such as
peak utilization, priorities, security, reliability, disaster recovery etc.

12.3 Basis for OGSA
In Chapter 2, “Application considerations” on page 39, and Chapter 4, “Design”
on page 81, we have discussed requirements and characteristics of grid
computing, topics basically related to the operation and management of
computational resources, but homogeneous in certain sense.

There are many definitions of what is architecture. Take, for example, that of the
IEEE Standard for Architectural Description of Software-Intensive Systems (IEEE
P1471/D5.3):

“The fundamental organization of a system embodied by its components, their
relationships to each other and to the environment and the principles guiding its
design and evolution.”

To make use of the resource availability in a grid, we need to know the following:

� Are the resources that I need available somewhere?
� What are the characteristics of such resources?
� Do they satisfy my requirements?
� Where are they?
� How can I reach them?
� Can I trust the data storage and transport mechanisms?
� How can I get access to those resources?
� How much do I have to pay?

An answer to these questions, positive or not, implies that a series of
inter-operable components have been arranged based on OGSA.

The OGSA foundation is based on the Globus Toolkit combined with Web
Services.
236 Introduction to Grid Computing with Globus

12.3.1 The Globus Toolkit
The Globus Toolkit is the de facto standard for building grid infrastructures and
applications. Details about Globus Toolkit can be found in Chapter 7,
“Components” on page 131, and 5.2, “IBM Grid Toolbox (Globus)” on page 106.

12.3.2 Web Services
Web Services is an interface that describes a collection of operations that are
network-accessible through standard XML messaging. Web Services is intended
to facilitate the conversation or communication between computer programs. It is
said that what the Web did for program-to-user communication, Web Services
will do for program-to-program communication.

Most of the information described here is derived from the IBM paper Web
Services Conceptual Architecture (WSCA 1.0) by Heather Kreger.

A Web Service is an interface that describes a collection of operations that are
network-accessible through standardized XML messaging. It is a framework for
the building and deployment of Web Services applications.

Some Web Services functionality exists today in some products, such as:

� IBM XML and Web Services Development Environment
� IBM Web Services Toolkit
� IBM WebSphere® Application Server
� Microsoft.Nets
� JBoss
� BEA Systems

Web Services uses a program-to-program communications model built on
existing standards, such as Hyper Text Transmission Protocol (HTTP), Extensible
Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL) and Universal Description Discovery, and
Integration (UDDI).

Web Services defines techniques for describing:

� Software components to be accessed.

� Methods for accessing those components.

� Discovery methods that enable the identification of service providers with the
understanding that services are neutral entities, that is, a programming
language, data, a system software, a computing device, and so on.

Note: Version 3 of the Globus Toolkit is planned to be OGSA compliant.
 Chapter 12. Open Grid Services Architecture 237

The Web Services model
As we see in Figure 12-1, the Web Services model has three roles: Service
Requestor, Service Provider, and Service Registry.

Figure 12-1 Roles in the Web Services model

Service Requestor
This is the business entity asking for a resource or service. From an architectural
viewpoint, this is the application that is looking and invoking or initiating an
interaction with the service. The Service Requestor role can be played by a
browser in the hands of a person or by another service provider.

Service Provider
This is the resource owner or service owner. From an architectural viewpoint, this
is the environment that hosts access to the service.

Service Registry
This is where requestors can find information about available resources or
services. This is a searchable registry in which service providers publish their
service descriptions and the availability of their services. Service Requestors find
services and obtain binding information from the service descriptions for static
binding or dynamic binding. A Service Requestor can bind directly to a Service
Provider if they already have the binding information, then the Service Registry
can be considered optional.

Publish

Bind

Find
WSDL WSDL

Service
Register

Service
Requestor

Service
Provider

Service

Service
Description

Service
Description
238 Introduction to Grid Computing with Globus

Operations in a Web Service architecture
As can be seen in Figure 12-1 on page 238, three different actions or operations
can be taken that are related to a resource: Publish, Find and Bind.

� Publish

To be accessible, a service description needs to be known (published).

� Find

The entity looking for a specific type of resource must find the resource with
the necessary characteristics.

� Bind

Eventually, the service can be invoked and bound to be used.

The Web Services architecture defines two important concepts that are called
artifacts. They are:

� Service

This is the implementation of the Web Service interface.

� Service Description

This is the details of the interface and the implementation of the service. This
includes its data types, operations, binding information and network location.
The service description might be published directly to a service requestor or
to a service registry.

Their use can be a real execution if it is a computer program or just the use of its
characteristics in the design phase. That is what Web Service architecture calls
the two different phases for the service requestor; at design time, to get the
service’s interface description for program development, and at a runtime, to get
the service’s binding and location description for invocation.

Standards
OGSA proposes the heavy use of three standards: Simple Object Access
Protocol (SOAP), Web Service Description Language (WSDL), and Web Service
Inspection (WSI).

SOAP
This is a means for providing messaging between a Service Requestor and a
Service Provider. It is a simple enveloping mechanism for XML payloads and
defines a Remote Procedure Call (RPC) mechanism and conventions. SOAP
payloads can be carried on HTTP, FTP, Java Messaging Service (JMS), and so
on.
 Chapter 12. Open Grid Services Architecture 239

WSDL
This is a XML document for describing Web Services as a set of endpoints on
messages containing either document-oriented (messaging) or RPC payloads.

WSI
This is a simple XML language, with related conventions for locating service
descriptions published by a service provider. A WSI language (WSIL) document
can contain a a collection of service descriptions and links to other source of
service descriptions. It is a service description and, normally, is a URL to a
WSDL document, but occasionally can be a URL to another WSI document. With
WS-Inspection, a service provider creates a WSIL document and makes the
document network accessible.

The Web Services stack
To perform the three operations (Publish, Find, and Bind) in an interoperable
manner, there must be a Web Services stack that embraces standards at each
level, as shown in Figure 12-2 on page 241.

The conceptual stack is built in a layered way. Each layer represents an action,
an operation, or merely a document. The text on the left of Figure 12-2 on
page 241 represents several standard technologies used by each layer. To the
right are the requirements that must be addressed at every layer of the stack.

The foundation of the Web Services stack is the network. Web Services must be
network accessible to be invoked by a service requestor; understand that the
service has been published by the service provider and registered accordingly or
communicated its existence directly to the service requestor.

HTTP is the de facto standard network protocol for Internet-available services.
However, other Internet protocols can be supported, including SMTP and FTP.
240 Introduction to Grid Computing with Globus

Figure 12-2 Web Services conceptual stack

The next layer, XML-based messaging, represents the use of XML as the basis
for the messaging protocol. SOAP is a widely used example of XML messaging
protocol due to its lack of complexity (HTTP POST with XML can be enveloped
as payload). Services interact with one another by exchanging messages. The
Service Description layer is actually a stack of description documents using
WSDL. Any action that makes a WSDL document available to a service
requestor qualifies as Service Publication. If the service provider sent the
document (description) directly to the service requestor, it is said to be a direct
publication. A Web Service cannot be discovered if it has not been published.
This is done in the Service Discovery layer. Any mechanism that allows the
service requestor to gain access to the service description and make it available
to the application at runtime qualifies as service discovery. Finally, on top of the
Web Service stack, we might find a Web Service flow model, the Flow Language,
describing the feasible ways for composing several Web services together.

Figure 12-3 on page 242 shows XML messaging using SOAP and we can see
the following:

1. A service requestor’s application creates a SOAP message invoking a Web
service operation provided by a service provider.

2. The network infrastructure delivers the message to the service provider’s
SOAP runtime (for example, a SOAP server).

3. The response SOAP message is presented to the SOAP runtime with the
service requestor as the destination.

4. The response message is receive by the networking infrastructure on the
service requestor’s node.

F l o w L a n g u a g e

S e r v i c e D i s c o v e r y

S e r v i c e P u b l i c a t i o n

S e r v i c e D e s c r i p t i o n

X M L - B a s e d M e s s a g i n g

N e t w o r k

W S F L

S t a t ic U D D I

U D D I

W S D L

S O A P

H T T P , F T P , e m a i l ,
M Q , I I O P , e t c .

Q
uality of Service

M
anagem

ent

Security
 Chapter 12. Open Grid Services Architecture 241

This example uses the request/response transmission that is very common in
most distributed environments.

Figure 12-3 XML-based messaging using SOAP

12.3.3 Grid security
Grid security has been described in Chapter 3, “Security” on page 51. However,
we would like to note that the concepts and functions are also requirements for
OGSA. The minimal functional requirements to provide security for the service
and resources are:

� Authentication

Verifying the validity of a claimed individual and identifying who he or she is.

� Access Control

Assurance that each user or computer that uses the service is permitted to do
what he or she asks for.

� Data Confidentiality

Assurance that sensitive information must not be revealed to parties that it
was not meant for.

A p p lic a t io n A p p lic a t io n
W e b S e rv ic e

S O A P

N e tw o rk P ro to c o l N e tw o rk P ro to c o l

S O A P

S e rv ic e R e q u e s to r S e rv ic e P ro v id e r

1 4 23

R e s p o n s e

 R e q u e s t
(s e rv ic e in v o c a t io n)
242 Introduction to Grid Computing with Globus

� Data Integrity

Assurance that the data is not altered or destroyed in an unauthorized
manner.

� Key Management

The secure generation, distribution, authentication and storage of keys used
in cryptography.

The Grid Security Infrastructure (GSI) and a Public Key Infrastructure (PKI)
provide the technical framework (including protocols, services, and standards) to
currently support grid computing with the five security requirements mentioned
above.

Within the Web Services community, standards are emerging, such as
WS-Security, to address these security requirements, but it is as yet unclear how
the merging of existing technology with grid computing and the emerging
technology within Web Services will combine.

Up to now, we have described standards and experience on which OGSA is
based. In the next paragraphs, we will cover OGSA in more detail and how it is
defined using the standards and concepts previously discussed.

12.4 OGSA in detail
A strong interface definition is one of the fundamentals of good software
engineering. This is because interfaces can be used to achieve consistent
definition of function while hiding the implementation of that function from the
invoking application. Scale this behavior up to a distributed heterogeneous
system and it is easy to see why a good interface definition is important. The
Web Services Description Language (WSDL) provides a mechanism to define
service interfaces in XML. These descriptions set out the structure and sequence
of exchanges between the invoker and the service.

The exchanges between an invoker and a service must be carried over some
transport mechanism using a protocol known at both end points. WSDL allows
the same service to support multiple protocol bindings for a single interface. This
capability contributes greatly to support of heterogeneous distributed systems.
Not only can the binding be, for example, SOAP over JMS or HTTP, but a service
can support multiple bindings for each offering, for example, different qualities of
service or authentication mechanisms. All the variants of the service are
described by the WSDL definition of that service.

OGSA brings the grid and Web service communities together to address the
problem of services across a distributed, heterogeneous, dynamic, and virtual
 Chapter 12. Open Grid Services Architecture 243

organization. OGSA can be considered as taking Web Services into an
environment in which state becomes important – we are exposing services that
can be very dynamic or transient in nature, and these services may wish to
maintain state for their lifetime or to allow re-use of the service in that state. The
core of the OGSA architecture is the grid service. Grid services may be
computational resources, storage resources, programs, or databases. Taking the
Web services model as the example, grid services map very well to the concepts
of registration, discovery, and use. The two critical aspects for users in such a
Service Orientated Architecture (SOA) are definition of the service interfaces and
identification of the protocol(s) that can be used to invoke a given service.

Nothing in the grid service specification dictates how grid services are written,
what operating systems they run on, what languages they use, or the
programming model they conform to. Grid services are equally applicable to
native operating system processes written in C, C++, Fortran, or Java, and to
container or component-based hosting environments, such as J2EE,
WebSphere, .NET, and SunOne. The basic difference between the two
approaches is the extent to which the writer of the service needs to worry about
interaction with the underlying operating system. Native operating system
process based services require more work to implement. However, the
component-based model hides implementation from the invoking application or
service so that low-level considerations, such as whether the service is
managing its own run-time environment, are hidden from the invoker.

Interaction between services takes place by messages, and the existence of the
internal state makes it important that a message is only delivered once or not at
all. This becomes even more important in the context of an unreliable distributed
system.

According to official Globus Project documentation, there is a commitment to
develop a high-quality open source OGSA implementation. For this year and the
forthcoming 2003, the Globus Project will evolve the current Globus Toolkit 2.2
towards an OGSA-compliant Globus Toolkit 3.0, working with its partners to
address backward compatibility and transitional issues. A fact sheet detailing the
Globus Toolkit 3.0 plans is available at:

http://www.globus.org/toolkit/gt3-factsheet.html

A basic premise of OGSA is that any computational resource like processor
cycles, storage, memory, databases, and so on, can be understood as a service.
Furthermore these services exhibit certain properties and needs that can be
described as a core set of interfaces (or operations). The first Working Group to
address OGSA within the Global Grid Forum is the Open Grid Services
Infrastructure. The Grid Service Specification they are producing aims to specify
this core set of behaviors as operations within several PortTypes, which can be
composed with other Port Types to create a service.
244 Introduction to Grid Computing with Globus

http://www.globus.org/toolkit/gt3-factsheet.html

Grid Services extend the Web Services concept by laying out a set of
well-defined interfaces that address discovery, dynamic service creation, lifetime
management, notification, and manageability and a set of conventions for
naming and upgrade ability. These interfaces and conventions are vital for
allowing reliable interoperability between services and with invoking applications.
WSDL refers these interface as portTypes.

These portTypes include:

� GridService portType

To allow the discovery of data relating to the service and enable lifetime
management of the service

� Notification-Source portType

To allow the sending of notification messages

� Notification-Sink portType

To allow the receiving of notification messages

� Notification-Subscription portType

To allow a NotificationSource portType to subscribe to a set of notifications for
a period of time

� Registration portType

To allow a service instance to register/unregister to enable/disable discovery
of the service instance

� Factory portType

To allow the creation of service instances

� HandleResolver portType

To allow a grid service handle to be converted into a Grid Service Reference,
necessary for binding to the service

The GridService portType is required for all services. The other portTypes are
optional.

12.4.1 Needs in a grid process
There are several needs for building a robust grid environment. The following list
describe some of them and how OSGA is addressing those needs.

� Dynamic Service Creation

Virtual organization participants want more than persistent static services,
where each interaction can be considered completely separate. They want to
 Chapter 12. Open Grid Services Architecture 245

be able to create service instances to handle the management and
interactions associated with the state of particular activities.

To allow a dynamic service creation, OGSA uses the concept of a service
factory (Factory portType), something we can use to create an instance of the
service we desire. Transience is not a problem; since the factory is a
persistent service, we can always create another instance at any point in the
future.

� Dynamic Service Management

We need a mechanism to identify a service instance once created. We may
wish to return to that same instance to examine its state or it may be building
up results from many other asynchronous services.

OGSA addresses this need with the HandleResolver portType, Grid Service
References (GSR), and Grid Service Handles (GSH). Once the service
instance has been created, how can we allow anyone to connect to it and
read/update its state? GSH provides a unique way of naming all OGSA
services, but it does not enable us to use the service instance; we need the
GSR to do this. We must have a way to convert a GSH into a GSR before we
can actually use the service instance. For this task, OGSA uses a
HandleResolver portType that takes a GSH and returns a GSR, which
contains protocol and instance specific data to allow anyone to connect to the
service instance.

How do we find the HandleResolver to convert our GSH? OGSA indicates
that the GSH is structured in such a way as to contain the home handle
resolver for our service instance. Other HandleResolver may know about our
service instance, but the home HandleResolver will always know about our
service instance.

This has implications for the factory, since we now need the factory to create a
GSH and GSR for us as well as the service instance. The factory can look
after choosing the home HandleResolver and ensure the home
HandleResolver can map the GSH to the current GSR.

� Upgrade ability and compatibility

A mechanism is required to upgrade services over time, and we might like to
know if the new upgraded service is still compatible with the older version. We
cannot guarantee that this service upgrade will take place at a convenient
time. A client may be interacting with a service while the upgrade takes place;
ideally, the client is never aware the upgrade has happened. However, if the
service as a result of the upgrade, now supports different protocols or
additional functions, the client may wish to know. A infrastructure should be
provided to allow clients to become aware of these changes.

OGSA addresses this need by providing the Grid Service portType. GSR
does not solve the upgrade ability problem, since changes effectively
246 Introduction to Grid Computing with Globus

invalidates the GSR. We do not know who has the old GSR, so we cannot tell
them what has changed.

GSH is effectively the GSR without protocol or instance specific information;
this is unique for our service instance and will not change, even after
upgrading our service instance. So if we use the GSH to tell everyone about
our service instance, then this will still remain valid after an upgrade.

GSR will have a lifetime associated with it. This is an indication of how long
the GSR is expected to be valid, which saves us the need to convert the GSH
into a GSR. Of course, we may discover the GSR is invalid after all and still
have to convert a GSH into a GSR, but until this point, we do not have the
overhead of this conversion before connecting to the service instance.

� Lifetime management

If each service instance is to be transient or dynamic in nature, then we must
have some way of removing it when it is no longer required. Within a grid
environment, an actual delete message may never reach the service instance
due to unreliable transport within a distributed environment.

OGSA addresses the lifetime issue by providing a “soft state registration”
within the GridService portType. Upon creating a service instance, a lifetime
is associated with it, which means the service instance will terminate itself at
this point in time. However, anyone with correct permissions to connect to this
service instance can extend its lifetime. If you know you need the service
instance to exist for the next 24 hours, you would ensure its lifetime is set
appropriately. So if any communication problems happen within the grid, the
service instance will not exist forever and will destroy itself once its lifetime
expires.

� Registration/Discovery

A standard representation of information about a service and mechanism to
enable someone to discover all alike services within a registry is necessary.
This enables choices between service instances to be made based on things
such as QoS, functions of the service, and perhaps attributes/state of a
service instance.

OGSA addresses this issue by providing “service data” elements within
GridService portType and Registration portType. It indicates a registry should
exist that contains service data and descriptions to allow the selection of a
service instance. GSH is returned, which must be used to obtain the GSR
before the service instance can be used.

� Notification

A collection of distributed services must be able to notify each other of
asynchronously changing states. There should be a basic standard
mechanism to allow the subscription for notification from a service and
delivery of these notifications.
 Chapter 12. Open Grid Services Architecture 247

OGSA addresses this notification issue by using the Notification-Source
portType, Notification-Sink portType and Notification-Subscription portType.
OGSA defines a source and access to support notification. You can give your
notification to a service instance’s notification source or use the subscription
mechanism to give some indication of the notifications you am interested in.

You could even give the access for another service and not receive the
notifications directly, and you may wish to ensure the source has a lifetime as
long as you are interested in the notifications.

12.4.2 Conclusions
What does all this mean to people with a need to build applications? At one level,
they will be able to exploit and compose grid services to build their applications
rather than implementing these functions from scratch. They will find grid
services by examining registries, and communicate with them using standard,
well defined interfaces and conventions. It will allow exploitation of facilities and
services that they do not own, but they can afford to occasionally use.

At another level, it will provide work for programmers to grid enable services in
their organizations. By using Web Services, it allows easy migration and
integration with the already existing Web Services environments.

The fact that the drive to define and develop OGSA is a broad-based
collaborative effort rather than a proprietary solution and that it is based on
emerging standards for Web Services should mean that, like the Internet, it will
actually work.
248 Introduction to Grid Computing with Globus

Part 7 Appendixes

Part 7
© Copyright IBM Corp. 2003. All rights reserved. 249

250 Introduction to Grid Computing with Globus

Glossary

Adaptive Algorithm. An algorithm that can learn
and change its behavior by comparing the results of
its actions with the goals that it is designed to
achieve.

AFS. The Andrew File System is a mountable
networked file system.

Autonomic computing. An approach to
self-managed computing systems with a minimum of
human interference. The term derives from the
body's autonomic nervous system, which controls
key functions without conscious awareness or
involvement.

CA. A Certificate Authority is (1) an instance or
external institute to issue authority certificates to
identify the certificate holder to use certain services;
(2) in e-commerce, an organization that issues
certificates, authenticates the certificate owner's
identity and the services that the owner is authorized
to use, issues new certificates, renews existing
certificates, and revokes certificates belonging to
users who no longer exist.

CERN. The Conseil Europeen pour la Recherche
Nucleaire is a European organization for nuclear
research.

DFS. A Distributed Files System is a type of
mountable networked file system.

GASS. Global Access to Secondary Storage is
used for file staging and cache management.

GGF. The Global Grid Forum was founded in 2001
when the merger of regional grid organizations
created a single worldwide one
© Copyright IBM Corp. 2003. All rights reserved.
GIIS. Grid Index Information Service is the
database that contains indexes of resource
information registered by the GRIS and other GIISs.
It can be seen as a grid-wide information server.
GIIS has a hierarchical mechanism, like DNS, and
each GIIS has its own name. This means client
users can specify the name of a GIIS node to search
for information.

Globus. A collaborative project centered at
Argonne National Laboratory that is focused on
enabling the application of grid concepts to
computing.

GPFS. General Parallel File System is a type of
mountable networked file systems

GRAM. The Grid Resource Allocation and
Management API is a means allowing programs to
be started on remote resources.

Grid Computing. A type of distributed computing
in which a wide-ranging network connects multiple
computers whose resources can then be shared by
all end users; includes what is often called
peer-to-peer computing.

GridFTP. The Grid File Transfer Program provides
high-performance and reliant data transfer.
 251

GRIS. The Grid Resource Information Service
is the repository of local resource information
derived from information providers. GRIS is
able to register its information with a GIIS, but
GRIS itself does not receive registration
requests. The local information maintained by
GRIS is updated when requested, and cached
for a period of time known as the time-to-live
(TTL). If no request for the information is
received by GRIS, the information will time out
and be deleted. If a later request for the
information is received, GRIS will call the
relevant information provider(s) to retrieve the
latest information.

GSI. The Grid Security Infrastructure contains
components to secure your grid network.

IEEE. The Institute of Electrical and Electronics
Engineers is a professional society accredited by the
American National Standards Institute (ANSI) to
issue standards for the electronics industry.

IESG. The Internet Engineering Steering Group is
the executive committee of the Internet Engineering
Task Force (IETF). The IESG reviews and oversees
the work produced by individual IETF working
groups and charters all new working groups.

IETF. The Internet Engineering Task Force is the
task force of the Internet Architecture Board (IAB)
that is responsible for solving the short-term
engineering needs of the Internet. The IETF consists
of numerous working groups, each focused on a
particular problem. Internet standards are typically
developed or reviewed by individual working groups
before they can become standards.

ISV. An Independent Software Vendor is an
enterprise offering software solutions.

ITS. Integrated Technology Services is a sub
division of IBM Global Services providing technical
support services for IBM and non-IBM platforms and
products.

J2EE. Java 2 Enterprise Edition is the second
version of the platform definition for advanced Java
applications built on Enterprise Java Beans (EJB).

LDAP. The Lightweight Directory Access Protocol
builds on TCP/IP to define a query-response
protocol for querying the state of remote databases.

MPI. The Message Passing Interface is an
application interface allowing formatted messages
to enter and leave an application.

NCSA. The National Center for Supercomputing
Applications is a US government institution for
supercomputing.

NFS. A Networked File System is a mountable
networked file system.

NTP. A Network Time Protocol server keeps the
time on the network.

OASIS. The Organization for the Advancement of
Structure Information Standards is an industry
consortium promoting XML, TCP/IP, and UDDI.

ODN. An Open Data Network is capable of
carrying all kinds of services for all kind of users from
all kind of providers, for example, telephone or
computer grids.

OGSA. The Open Grid Services Architecture is a
standard setting the base for communication in grids
across virtual organizations. OGSA marries open
standards and grid computing protocols with Web
Services, bringing together the ability to share
computing resources with the ability to provide
application interoperability over the Internet.

QoS. Quality of Service is a term used in a Service
Level Agreement (SLA) denoting a guaranteed level
of performance (for example, response times less
than 1 second).

RA. A Registrant Authority works in conjunction
with the Certificate Authority (CA) approving or
rejecting requests for certificates of public keys.
252 Introduction to Grid Computing with Globus

Secure Interface. The physical layer connection
between a gateway and a secure network.

Secure Network. A set of nodes that are
controlled by a single administrative party.

SLA. A Service Level Agreement is a contract in
which a service provider agrees to deliver a
minimum level of service.

SOAP. Simple Object Access Protocol is a means
of sending messages between a service requester
and provider.

SSL/TLS. Secure Socket Layer / Transport Layer
Security is a security protocol that provides
communication privacy. SSL enables client/server
applications to communicate in a way that is
designed to prevent eavesdropping, tampering, and
message forgery. SSL was developed by Netscape
Communications Corp. and RSA Data Security.

TLS. Transport Layer Security is a protocol that
provides privacy and data integrity between two
communicating applications, layered on top of
TCP/IP.

UDDI. Universal Description Discovery and
Integration is a standard to use Web Services
across various systems, including .NET and
J2EE-based solutions.

URL. A Universal Resource Locator is the address
that translates to a TCP/IP address in order to
access resources in the Internet.

W3C. The World Wide Web Consortium is an
independent work group formed in 1994 that
provides standards like XML.

Web Services. A way of providing computational
capabilities using standard Internet protocols and
architectural elements. For example, a database
Web Service would use Web browser interactions to
retrieve and update data located remotely. Web
Services use UDDI to make their presence known.

WSA. The Web Services Architecture is a
standardized approach based on SOAP and WSDL
to develop Web Service solutions.

WSDL. Web Services Description Language is a
mechanism for representing the services that a
provider has and is making available and the
specifics for accessing that service.

WSFL. The Web Services Flow Language
addresses flows and dependencies between
services.

WSIL. Web Services Inspection Language is a
means for discovering the WSDL-described
services that a provider has made available.

XML. eXtensible Markup Language is a data
representation method.

Virtual Organization. A virtual entity whose users
and servers are geographically apart but share their
resources collectively as a larger grid. The users of
the grid can be organized dynamically into a number
of virtual organizations, each with different policy
requirements.
 Glossary 253

254 Introduction to Grid Computing with Globus

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 260.

� Building a Linux HPC Cluster with xCAT, SG24-6623

� Deploying a Public Key Infrastructure, SG24-5512

� Linux Clustering with CSM and GPFS, SG24-6601

� Understanding LDAP, SG24-4986

� Globus Toolkit 3.0 Quick Start, REDP-3697

� Fundamentals of Grid Computing, REDP-3613

Other resources
These publications are also relevant as further information sources:

� Foster, et al, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, ISBN 1558604758

� The Anatomy of the Grid: Enabling Scalable Virtual Organizations, found at:

http://www.globus.org/research/papers/anatomy.pdf

� A Brief Introduction to Grid Technology

http://www.bo.infn.it/alice/introgrd/introgrd/

� Computational Grids

http://www.globus.org/research/papers/chapter2.pdf

� The Globus Project: A Status Report

ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf

� GridFTP Update January 2002

http://www.globus.org/datagrid/deliverables/GridFTP-Overview-200201.pdf

� Grid Service Specification

http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf
© Copyright IBM Corp. 2003. All rights reserved. 255

http://www.globus.org/research/papers/anatomy.pdf
ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf
http://www.globus.org/research/papers/chapter2.pdf
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf
http://www.globus.org/datagrid/deliverables/GridFTP-Overview-200201.pdf
http://www.bo.infn.it/alice/introgrd/introgrd/

� Internet Draft GridFTP: Protocol Extensions to FTP for the Grid

http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

� Internet Draft Internet X.509 Public Key Infrastructure Proxy Certificate Profile

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

� MDS 2.2 User's Guide

http://www.globus.org/mds/mdsusersguide.pdf

� The Open Grid Services Architecture and Data Grids

http://aspen.ucs.indiana.edu/CCPEwebresource/c600gridkunszt/c600FINALGridSe
rvices_DataGridv3.pdf

� The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration

http://www.globus.org/research/papers/ogsa.pdf

� A Resource Management Architecture for Metacomputing Systems

ftp://ftp.globus.org/pub/globus/papers/gram97.pdf

� RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

http://www.ietf.org/rfc/rfc3280.txt

� Web Services Conceptual Architecture (WSCA 1.0)

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

� Web Service Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

� Enginframe

http://www.nice-italy.com/

� Maya Software

http://www.alias.com/

� GridSystems

http://www.gridsystems.com/

� ZetaGrid

http://www.zetagrid.net

� ZetaGrid downloads

http://www.zetagrid.net/zeta/downloads.html
256 Introduction to Grid Computing with Globus

http://www.globus.org/research/papers/ogsa.pdf
ftp://ftp.globus.org/pub/globus/papers/gram97.pdf
http://aspen.ucs.indiana.edu/CCPEwebresource/c600gridkunszt/c600FINALGridServices_DataGridv3.pdf
http://www.w3.org/TR/wsdl
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://www.globus.org/mds/mdsusersguide.pdf
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt
http://www.nice-italy.com
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf
http://www.zetagrid.net
http://www.zetagrid.net/zeta/downloads.html
http://www.nice-italy.com
http://www.nice-italy.com

Referenced Web sites
These Web sites are also relevant as further information sources:

� Argonne National Laboratory

http://www.anl.gov/

� Avaki Corporation

http://www.avaki.com/

� Cactus

http://www.cactuscode.org/

� CDRDAO

http://cdrdao.sourceforge.net/index.html

� Commodity Grid Kits

http://www-unix.globus.org/cog

� Condor

http://www.cs.wisc.edu/condor/

� Database Access and Integration Services

http://www.gridforum.org/6_DATA/dais.htm

� The DataGrid Project

http://eu-datagrid.web.cern.ch/eu-datagrid/

� DataSynapse, Inc

http://www.datasynapse.com/

� Distributed Systems Laboratory - Argonne National Laboratory

http://www-fp.mcs.anl.gov/dsl/

� Entropia, Inc.

http://www.entropia.com/

� globus_gsincftp-0.2 .tar file

http://www-unix.globus.org/ftppub/gt2/2.0/contrib/globus_gsincftp-0.2.tar.g
z

� Global Grid Forum

http://www.gridforum.org/
http://www.ggf.org/

� Globus API documentation

http://www-unix.globus.org/api/c-globus-2.2
 Related publications 257

http://www.anl.gov/
http://www.gridforum.org/
http://www.ggf.org/
http://www.avaki.com/
http://www.entropia.com/
http://www.datasynapse.com/
http://www-fp.mcs.anl.gov/dsl/
http://www.cactuscode.org/
http://www.cs.wisc.edu/condor/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.gridforum.org/6_DATA/dais.htm
http://www-unix.globus.org/cog
http://www-unix.globus.org/api/c-globus-2.2
http://www-unix.globus.org/ftppub/gt2/2.0/contrib/globus_gsincftp-0.2.tar.gz
http://cdrdao.sourceforge.net/index.html

� Globus bin bundles

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin

� Globus contributor’s src files

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/contrib/src

� Globus GRAM job manager src and bin bundles

ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager

� The Globus Project

http://www.globus.org/

� The Globus Project Bugzilla Database

http://bugzilla.globus.org/

� Globus Project collaborators

http://www.globus.org/about/collaborators.html

� Globus Resource Allocation Manager (GRAM) 1.6

http://www.globus.org/gram

� The Globus Resource Specification Language RSL v1.0

http://www-fp.globus.org/gram/rsl_spec1.html

� Globus Simple CA directory

ftp://ftp.globus.org/pub/gsi/simple_ca

� Globus src bundles

ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src

� Globus Toolkit

http://www.globus.org/toolkit

� Globus Toolkit 2.2 Advisories

http://www.globus.org/gt2.2/advisories.html

� Globus Toolkit 2.2 Download Page

http://www.globus.org/gt2.2/download.html

� Globus Toolkit 2.2 Platform Notes

http://www.globus.org/gt2.2/platform.html

� Globus Toolkit Public License

http://www.globus.org/toolkit/download/license.html

� GNU VCDImager

http://www.vcdimager.org
258 Introduction to Grid Computing with Globus

http://www.globus.org/
http://bugzilla.globus.org/
http://www.globus.org/gram
http://www.globus.org/about/collaborators.html
http://www.globus.org/gt2.2/platform.html
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/src
http://www.globus.org/toolkit
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin
http://www.globus.org/gt2.2/download.html
http://www-fp.globus.org/gram/rsl_spec1.html
ftp://ftp.globus.org/pub/gsi/simple_ca
ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/contrib/src
ftp://ftp.globus.org/pub/gt2/2.2/2.2.2/extra/gram_job_manager
http://www.globus.org/toolkit/download/license.html
http://www.globus.org/gt2.2/advisories.html
http://www.vcdimager.org

� Google Internet search engine

http://www.google.com

� Grid Security Infrastructure (GSI)

http://www.globus.org/security

� GSI-Enabled OpenSSH

http://grid.ncsa.uiuc.edu/ssh/

� IBM Grid computing

http://www.ibm.com/grid/

� IBM Solutions

http://www.ibm.com/solutions/

� IBM Life Sciences

http://www.ibm.com/solutions/lifesciences/

� The Internet Engineering Task Force

http://www.ietf.org/

� Linux Digital Video

http://www.schirmacher.de/arne/dvgrab/index_e

� MPICH-G2

http://www3.niu.edu/mpi

� NASA Information Power Grid

http://www.nas.nasa.gov/About/IPG/ipg.html

� OASIS

http://www.oasis-open.org/

� OGSA

http://www.globus.org/ogsa

� OpenLDAP

http://www.openldap.org/

� OpenPBS

http://www.openpbs.org/

� OpenSSL Project

http://www.openssl.org

� PBS

http://www.nas.nasa.gov/Groups/SciCon/Origins/Cluster/PBS/
 Related publications 259

http://www.ibm.com/grid/
http://www.globus.org/ogsa
http://www.ietf.org/
http://www.nas.nasa.gov/About/IPG/ipg.html
http://www.oasis-open.org/
http://www.google.com
http://www.openssl.org
http://www3.niu.edu/mpi
http://www.schirmacher.de/arne/dvgrab/index_e
http://www.globus.org/security
http://www.ibm.com/grid/
http://www.ibm.com/grid/
http://www.openpbs.org/
http://www.nas.nasa.gov/Groups/SciCon/Origins/Cluster/PBS/
http://www.openldap.org/

� Platform Computing

http://www.platform.com/

� Project: GNU/Linux 1394 AV/C Library: Summary

http://sourceforge.net/projects/libavc1394

� Project: Libraw1394: Summary

http://sourceforge.net/projects/libraw1394

� Project: The MJPEG/Linux square: Summary

http://sourceforge.net/projects/mjpeg

� Project: Quasar DV Codec: Summary

http://sourceforge.net/projects/libdv

� San Diego Supercomputer Center

http://www.sdsc.edu/

� Secure Shell Charter

http://www.ietf.org/html.charters/secsh-charter.html

� Status and Plans for Globus Toolkit 3.0

http://www.globus.org/toolkit/gt3-factsheet.html

� TeraGrid

http://www.teragrid.org/

� United Devices

http://www.ud.com

� University of Chicago

http://www.uchicago.edu/

� University of Southern California Information Sciences Institute

http://www.isi.edu/

� World Wide Web Consortium (W3C)

http://www.w3.org/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks
260 Introduction to Grid Computing with Globus

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.sdsc.edu/
http://www.ud.com
http://www.platform.com/
http://www.uchicago.edu/
http://www.isi.edu/
http://www.teragrid.org/
http://www.w3.org/
http://www.ietf.org/html.charters/secsh-charter.html
http://sourceforge.net/projects/libraw1394
http://sourceforge.net/projects/libdv
http://sourceforge.net/projects/libavc1394
http://sourceforge.net/projects/mjpeg
http://www.globus.org/toolkit/gt3-factsheet.html

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 261

262 Introduction to Grid Computing with Globus

Index

Symbols
/etc/globus-user-env.csh 157
/etc/globus-user-env.sh 157
/etc/grid-info.conf 193
/etc/grid-info-resource-register.conf 194
/etc/grid-info-slapd.conf 193
/etc/grid-security 160
/etc/grid-security/certificates 70, 160
/etc/grid-security/grid-mapfile 166, 189
/etc/grid-security/hostcert.pem 161
/etc/grid-security/hostcert_request.pem 189
/etc/grid-security/ldap/ldapcert.pem 162, 193
/etc/grid-security/ldap/ldapcert_request.pem 162,
193
/etc/xinetd.d/gsiftp 190
/etc/xinetd.d/gsigatekeeper 190

A
AIX

pSeries 146
API

see Application Programming Interface
application

API 131
authentication 53
considerations 40
demo 179, 181, 197–198
design 29
development 33, 76, 83, 128
distributed 46
execution 16
integration 83, 92
license management 127
monitoring 29
MPI 25
parallel 45, 88
requirements 95
secure 73
submitting jobs 28
to be used in a grid 22, 46

Application Programming Interface 29, 109, 111,
113, 128, 131, 136–137, 142
asymmetric key pair 55
© Copyright IBM Corp. 2003. All rights reserved.
Avaki 106–107

B
billing

resources 94
bundles

additional 148
binary 147
source 146

C
capture 181
certificate

MDS 162
X.509 certificate 58, 67, 72, 135, 183

Certificate Authority 22–23, 32, 56, 180
certificate 55, 62
distinguished name 183
implementation 77
PKI 75
setting up 149, 154, 157, 187
user certificate 189

client interface 145, 173, 176
for GIIS 176
for GRAM 174
for GridFTP 177
for GRIS 176
for MDS 176
globus-job-cancel 176
globus-job-clean 176
globus-job-get-output 175
globus-job-run 174
globus-job-status 175
globus-job-submit 174
globusrun 174
globus-url-copy 177

CoG
 see Commodity Grid

Commodity Grid 128, 143
computational grid 4, 87–88, 91, 106–107, 121,
223–224, 228
Condor 116
condor_ckpt_server 117
 263

condor_collector 117
condor_kbdd 117
condor_master 117
condor_negotiator 117
condor_schedd 117
condor_shadow 117
condor_startd 117
cryptography 53

D
daemons

condor_ckpt_server 117
condor_collector 117
condor_kbdd 117
condor_master 117
condor_negotiator 117
condor_schedd 117
condor_shadow 117
condor_startd 117
gatekeeper 66, 135, 137, 160, 169
globus-mds 172
grid-info-soft-register 173
ntpd 185
pbs_mom 169
pbs_sched 169
pbs_server 169
schedd 119
slapd 172
xinetd 165

Data Encryption Standard
data grid 4, 6, 13, 88, 91, 98–99, 101, 106, 121,
141, 222
data management 132–133
DataSynapse 106, 108
DCGrid 110
demo application

hardware environment 201
network 199
performance 210
Red Hat installation 179
video conversion 198, 200
video conversion setup 206

demo application software
capture software 201
conversion coftware 201
Globus Toolkit 201
video capture 205
video conversion 203

videoCD creation 207
VideoCD creation software 201, 204

DES
see Data Encryption Standard

distinguished name 183
distributed grid management 24
DN

see distinguished name
DUROC

see Dynamically-Updated Request Online
Coallocator

Dynamically-Updated Request Online Coallocator
136

E
Entropia 106, 110
e-utility 93
Extensible Markup Language 109, 237
extragrid 89, 91

F
files

/etc/globus-user-env.csh 157
/etc/globus-user-env.sh 157
/etc/grid-info.conf 193
/etc/grid-info-resource-register.conf 194
/etc/grid-info-slapd.conf 193
/etc/grid-security 160
/etc/grid-security/certificates 70, 160
/etc/grid-security/grid-mapfile 166, 189
/etc/grid-security/hostcert.pem 161
/etc/grid-security/hostcert_request.pem 189
/etc/grid-security/ldap/ldapcert.pem 162, 193
/etc/grid-security/ldap/ldapcert_request.pem
162, 193
/etc/xinetd.d/gsiftp 190
/etc/xinetd.d/gsigatekeeper 190
grid-info-resource-register.conf 192
grid-info-site-policy.conf 192
grid-info-slapd.conf 191–192
grid-mapfile 166, 168
openssl.cnf 158

FireWire
card 200–202, 205
enabled DV camcorder 200
video source 201
264 Introduction to Grid Computing with Globus

G
GASS

 see Global Access to Secondary Storage
gatekeeper 99, 135, 137, 160, 169, 188, 190
GIIS

 see Grid Index Information Service
Global Access to Secondary Storage 106, 134,
136–137, 174
Global Grid Forum 133, 233–234
Globus Project 131, 133, 141, 146, 180, 244
Globus Toolkit 34, 52, 62, 81, 97, 106, 111,
131–132, 145, 180, 234–235

bundles 146
client interface 173
Globus Toolkit 3.0 244
how to obtain 146
operation 209
requirements 180
setting up 145, 156, 201
unisntallation 155

Globus Toolkit components 133
API 131
Application Programming Interface 131
data management 133
DUROC 136, 138
GASS 106, 134, 137, 174
gatekeeper 66, 99, 137
GRAM 107, 135, 148, 160, 165, 169–171, 173,
194
GSI 53, 62, 107, 132, 135, 148, 157, 243
job manager 135, 137, 148, 169
resource manager 133
SDK 131, 147, 153

GLOBUS_LOCATION 151, 167, 186, 191–193
globus-job-cancel 176
globus-job-clean 176
globus-job-get-output 175
globus-job-run 174
globus-job-status 175
globus-job-submit 174
globus-mds 172
globusrun 174
globus-url-copy 177
GPT

see Grid Packaging Technology
GPT_LOCATION 151, 157, 187
GRAM 107

see Grid Resource Allocation Manager
Grid File Transfer Protocol 107, 135, 140–141, 160,

165, 173, 177, 194
Grid Index Information Service 134, 138, 140, 172,
176, 181, 190–191

hierarchy 172
grid management 22
Grid Packaging Technology 146

bundles 148
installation 151

Grid Resource Allocation Manager 107, 134–135,
148, 160, 165, 169–171, 173, 194
Grid Resource Information Service 134, 138, 172,
176, 181, 190–191
Grid Security Infrastructure 53, 62, 107, 132, 135,
148, 157
grid software

Avaki 106–107
DataSynapse 106, 108
Entropia 106, 110
Globus Toolkit 106
IBM Grid Toolbox 106
Platform Computing 106, 111
United Devices 106, 113

grid types
computational grid 4, 87–88, 91, 106–107, 121,
223–224, 228
data grid 4, 6, 13, 88, 91, 98–99, 101, 106, 121,
141, 222

GridFTP
see Grid File Transfer Protocol

grid-info-resource-register.conf 192
grid-info-search 176
grid-info-site-policy.conf 192
grid-info-slapd.conf 191–192
grid-info-soft-register 173
GRIS

see Grid Resource Information Service
GSI

see Grid Security Infrastructure

I
IBM Grid Toolbox 106
IBM Web Services Toolkit 237
IBM WebSphere Application Server 237
IBM XML 237
intergrid 92
intragrid 18, 20, 82, 89, 91, 99
 Index 265

J
job manager 135, 137, 148, 169

K
Kerberos 69, 100

L
license management 127
LoadLeveler 106, 116, 118, 137, 169
LSF 107, 111, 137, 169

M
management 10–11, 15, 23, 25, 30, 32, 86, 94, 98
Message Passing Interface 25, 111, 128
Microsoft.Net. 237
Monitoring and Discovery Service 106, 125, 134,
138, 140, 160, 167

setting up 190
MPI

see Message Passing Interface

N
Network Time Protocol 99

installation 184
ntpd 185

O
OGSA

see Open Grid Services Architecture
on-line gaming application 227
Open Grid Services Architecture 34, 123, 233–234,
236, 243
openssl.cnf 158

P
PBS 169

see Portable Batch System
pbs_mom 169
pbs_sched 169
pbs_server 169
PKI

see Public Key Infrastructure
Platform Computing 106, 111
Portable Batch System 116, 120, 137, 169–171
pricing

resources 94

private key 30, 32, 56–57, 62, 160, 162–163
proxy

certificate 69, 72, 184
grid-proxy-init command 173

pSeries
AIX 146, 180

public key 30, 32, 51, 54–56, 188
encryption 135
PKI 82, 243

Public Key Infrastructure 54, 56, 78, 84, 243

Q
QoS

see Quality of Service
Quality of Service 18, 29, 236, 247

R
real examples

digital cancer imaging 220
online gaming 227
simulation 226
spreadsheet 223
ZetaGrid 224

Red Hat Linux
xSeries 146

Red Hat Linux 7.3 158, 180, 200
Red Hat Linux 8.0 180, 201
Redbooks Web site 260

Contact us xxi
required software

Certificate Authority 180
Globus client 180
Globus Packaging Technology 180
Network Time Protocol 180
Server bundle 180

reservation 17
resource management 132
resources

allocate 82
balancing 8
billing 94
communications 14
computation 12
exploiting 4
grid-wide 138
heterogeneous 125
local 138
management 32, 101, 236
266 Introduction to Grid Computing with Globus

on demand 88, 93, 228
protected 84
reservation 18, 29
shared 235
software and licenses 15
special equipment 15
static and dynamic 139
storage 13
type of 7, 12, 16, 88, 90–91, 244
underutilized 4, 223
virtual 6, 11, 235

S
scavenging 17, 23, 88, 106–108, 112–113, 120,
225
schedd 119
scheduler 9, 14, 17, 24–25, 29, 99, 107, 116, 120,
133, 137, 169

Condor 116
DCGrid 110
LoadLeveler 106, 116, 118, 137, 169
LSF 107, 111, 137, 169
PBS 116, 120, 137, 169–171

SDK 131
see System Development Kit

Secure Socket Layer 67, 124, 135
Service Oriented Architecture 244
SETI@home grid 87
simulation application

computational and application grid 226
slapd 172
SOA

see Service Oriented Architecture
SOAP

see Simple Object Access Protocol
spreadsheet application 223–224

computational grid 223
SSL

see Secure Socket Layer
standard

Web Service 236–239
standards

Extensible Markup Language 109, 237
Simple Object Access Protocol 237, 239, 243
Web Service 143, 235, 237, 240
WSDL 237

SuSE
zSeries 146

System Development Kit 131, 143, 147, 153

T
TLS

see Transport Layer Security
topology

e-utility 93
extragrid 89, 91
intergrid 92
intragrid 18, 20, 82, 89, 91, 99

Transport Layer Security 124

U
UDDI

see Universal Description Discovery and Inte-
gration

United Devices 106, 113
Universal Description Discovery and Integration
237
user certificate 60, 69–70, 156

requesting and signing 189

V
variable

GPT_LOCATION 151, 153, 157, 167, 186–187,
191–193

video
capture 8, 181, 198–199

virtual organization 236, 243, 245
VO

see virtual organization

W
Web Service 143, 233, 235–240
Web Services Description Language 237, 239, 241
WSDL

see Web Services Description Language

X
xinetd 165
XML

see Extensible Markup Language
xSeries

Red Hat Linux 146, 180
 Index 267

Z
ZetaGrid application 224

scavenging 224
zSeries

SuSE SLES 8 distribution for Linux 146, 180
268 Introduction to Grid Computing with Globus

Introduction to Grid Com
puting w

ith Globus

®

SG24-6895-01 ISBN 0738427969

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Introduction to Grid
Computing with Globus

Fundamentals and
concepts

Using the Globus
Toolkit

OGSA introduction

This IBM Redbook is intended to give readers interested in the
technical aspects of grid computing a hands-on introduction
using the Globus Toolkit. This includes a discussion of the first
basics of grid computing, and various grid products and
architectures.

This publication is a good starting point for learning about grid
computing, and gives you a good foundation before learning
more about the future of grid computing, OGSA, e-business,
and IBM's vision of the on-demand era.

This publication covers the following topics:

- Grid computing fundamentals
- Architecture and security considerations
- Introduction of Open Grid Services Architecture (OGSA)
- Description of the components of the Globus Toolkit
- Globus Toolkit Version 2.2 implementation

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Acknowledgements
	Become a published author
	Comments welcome

	Part 1 Fundamentals
	Chapter 1. Grid computing
	1.1 What grid computing can do
	1.1.1 Exploiting underutilized resources
	1.1.2 Parallel CPU capacity
	1.1.3 Applications
	1.1.4 Virtual resources and virtual organizations for collaboration
	1.1.5 Access to additional resources
	1.1.6 Resource balancing
	1.1.7 Reliability
	1.1.8 Management

	1.2 Grid concepts and components
	1.2.1 Types of resources
	1.2.2 Jobs and applications
	1.2.3 Scheduling, reservation, and scavenging
	1.2.4 Intragrid to intergrid

	1.3 Grid construction
	1.3.1 Deployment planning
	1.3.2 Grid software components

	1.4 Using a grid: A user’s perspective
	1.4.1 Enrolling and installing grid software
	1.4.2 Logging onto the grid
	1.4.3 Queries and submitting jobs
	1.4.4 Data configuration
	1.4.5 Monitoring progress and recovery
	1.4.6 Reserving resources

	1.5 Using a grid: An administrator’s perspective
	1.5.1 Planning
	1.5.2 Installation
	1.5.3 Managing enrollment of donors and users
	1.5.4 Certificate authority
	1.5.5 Resource management
	1.5.6 Data sharing

	1.6 Using a grid: An application developer’s perspective
	1.7 The present and the future
	1.8 What the grid cannot do

	Part 2 Architecture
	Chapter 2. Application considerations
	2.1 Application considerations
	2.1.1 CPU considerations
	2.1.2 Data considerations

	Chapter 3. Security
	3.1 Introduction to grid security
	3.1.1 Security fundamentals
	3.1.2 Important grid security terms
	3.1.3 Symmetric key encryption
	3.1.4 Asymmetric key encryption
	3.1.5 The Certificate Authority
	3.1.6 Digital certificates

	3.2 Grid security infrastructure
	3.2.1 Getting access to the grid
	3.2.2 Grid security communication
	3.2.3 Grid security step-by-step

	3.3 Grid infrastructure security
	3.3.1 Physical security
	3.3.2 Operating system security
	3.3.3 Grid and firewalls
	3.3.4 Host intrusion detection

	3.4 Grid security policies and procedures
	3.4.1 Certificate Authority
	3.4.2 Security controls review

	3.5 Potential security risks
	3.5.1 PKI vulnerabilities
	3.5.2 Grid server vulnerabilities

	Chapter 4. Design
	4.1 Building a grid architecture
	4.1.1 Solution objectives

	4.2 Grid architecture models
	4.2.1 Computational grid
	4.2.2 Data grid

	4.3 Grid topologies
	4.3.1 Intragrid
	4.3.2 Extragrid
	4.3.3 Intergrid
	4.3.4 E-utilities

	4.4 Phases and activities
	4.4.1 Basic methodology
	4.4.2 Recommended steps

	4.5 A conceptual architecture
	4.5.1 Infrastructure
	4.5.2 Conceptual components

	Part 3 Products
	Chapter 5. Grid software
	5.1 Grid computing products overview
	5.2 IBM Grid Toolbox (Globus)
	5.3 Avaki
	5.4 DataSynapse
	5.5 Entropia
	5.6 Platform Computing
	5.7 United Devices

	Chapter 6. Additional components
	6.1 Schedulers
	6.1.1 Condor
	6.1.2 LoadLeveler
	6.1.3 PBS

	6.2 Data sharing
	6.2.1 Federated databases
	6.2.2 Distributed file systems

	6.3 Security
	6.4 Directory service
	6.5 License management
	6.6 Development tools

	Part 4 Globus Toolkit
	Chapter 7. Components
	7.1 Three pyramids
	7.1.1 Open standards

	7.2 Components of Globus Toolkit
	7.2.1 Grid Security Infrastructure (GSI)
	7.2.2 Grid Resource Allocation Manager (GRAM)
	7.2.3 Monitoring and Discovery Service (MDS)
	7.2.4 GridFTP
	7.2.5 API and software developer's kit

	Chapter 8. Installation and setup
	8.1 How to obtain Globus Toolkit
	8.2 Bundles and Grid Packaging Technology (GPT)
	8.2.1 Source bundles
	8.2.2 Binary bundles
	8.2.3 Additional bundles

	8.3 Grid environment
	8.4 Installation
	8.4.1 Installation of GPT
	8.4.2 Installation of bundles
	8.4.3 Uninstallation

	8.5 Setting up the grid environment
	8.5.1 Certificate Authority setup
	8.5.2 Services setup
	8.5.3 Adding a new grid server

	8.6 Additional configurations
	8.6.1 GRAM
	8.6.2 MDS

	8.7 Client interface
	8.7.1 Client interface for GRAM
	8.7.2 Client interface for MDS (GRIS and GIIS)
	8.7.3 Client interfaces for GridFTP

	Chapter 9. Demo: Grid setup
	9.1 Required software
	9.2 Setting up the environment
	9.2.1 Naming and addressing planning
	9.2.2 Install Linux
	9.2.3 Installing Network Time Protocol (NTP)
	9.2.4 Set up other global items on each machine
	9.2.5 Installing the GPT
	9.2.6 Installing a Globus server bundle
	9.2.7 Installing a Globus client bundle
	9.2.8 Installing the Globus Simple Certificate Authority
	9.2.9 Requesting and signing gatekeeper certificates for servers
	9.2.10 Requesting and signing user certificates
	9.2.11 Setting up the gatekeepers

	9.3 Setting up MDS
	9.3.1 Setting up the GIIS and GRIS on the alpha machine
	9.3.2 Setting up the GRIS on beta, gamma, and delta
	9.3.3 Start the MDS on all of the servers
	9.3.4 Setting up the MDS client zeta
	9.3.5 Setting up a secure MDS

	9.4 Checking the installation

	Chapter 10. Demo: Application
	10.1 Video conversion application overview
	10.2 Pre-installation
	10.3 Installation
	10.3.1 Install Globus Toolkit
	10.3.2 Install capture software
	10.3.3 Test capture machine
	10.3.4 Install video conversion packages
	10.3.5 Install VideoCD creation software

	10.4 Setup
	10.4.1 Video capture setup
	10.4.2 Video conversion setup
	10.4.3 VideoCD creation setup
	10.4.4 Main script setup

	10.5 Operation
	10.6 Improvements

	Part 5 Examples
	Chapter 11. Grid examples
	11.1 Five examples
	11.2 Digital cancer imaging
	11.2.1 Needs
	11.2.2 Solution

	11.3 Spreadsheet
	11.3.1 Needs
	11.3.2 Solution

	11.4 ZetaGrid
	11.4.1 Needs
	11.4.2 Solution

	11.5 Simulation
	11.5.1 Needs
	11.5.2 Solution

	11.6 Entertainment
	11.6.1 Needs
	11.6.2 Solution

	Part 6 OGSA
	Chapter 12. Open Grid Services Architecture
	12.1 Overview and directions
	12.2 Motivations for OGSA
	12.2.1 Today’s focus

	12.3 Basis for OGSA
	12.3.1 The Globus Toolkit
	12.3.2 Web Services
	12.3.3 Grid security

	12.4 OGSA in detail
	12.4.1 Needs in a grid process
	12.4.2 Conclusions

	Part 7 Appendixes
	Glossary
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

