
Addressing Modes and Assembly Language

8086 Components

2

Introduction
 Efficient software development for the microprocessor

requires a complete familiarity with the addressing
modes employed by each instruction.

3

Data Addressing Modes
 MOV instruction is a common

and flexible instruction.

 provides a basis for explanation of
data-addressing modes

 Source is to the right and
destination the left, next to the
opcode MOV.

 an opcode, or operation code,
tells the microprocessor which
operation to perform

4

5

Addressing Mode
 An addressing mode specifies how to calculate the

effective memory address of an operand by using
information held in registers and/or constants
contained within a machine instruction or elsewhere.

6

1. Register Addressing
 In this mode the source operand, destination operand

or both are to be contained in the 8086 register.

 MOV DX, CX

 MOV CL, DL

 8-bit registers: AH, AL, BH, BL, CH, CL, DH, and DL.

 16-bit registers: AX, BX, CX, DX, SP, BP, SI, and DI.

 never mix an 8-bit \with a 16-bit register.

7

Register Addressing (continued)

2. Immediate Addressing
 Transfers the source-immediate byte or word of data

into the destination register or memory location.

 MOV CL, 03H

 MOV DX, 0502H

 Term immediate implies that data immediately follow
the hexadecimal opcode in the memory.

 immediate data are constant data

 data transferred from a register or memory location are
variable data

9

Immediate Addressing

Immediate Addressing (continued)
 The letter H appends hexadecimal data.

 If hexadecimal data begin with a letter, the assembler
requires the data start with a 0.

 to represent a hexadecimal F2, 0F2H is used
in assembly language

 Decimal data are represented as is and require no
special codes or adjustments.

 an example is the 100 decimal in the
MOV AL,100 instruction

11

An Assembly Program
DATA1 DB 23H ;define DATA1 as a byte of 23H

DATA2 DW 1000H ;define DATA2 as a word of 1000H

START: MOV AL,BL ;copy BL into AL

 MOV BH,AL ;copy AL into BH

 MOV CX,200 ;copy 200 decimal into CX

12

Assembly Programs
 Each statement in an assembly language program

consists of four parts or fields.

 The leftmost field is called the label.
 used to store a symbolic name for the memory location

it represents

 All labels must begin with a letter or one of the
following special characters: @, $, -, or ?.

 a label may any length from 1 to 35 characters

 The label appears in a program to identify the name of a
memory location for storing data and for other
purposes.

13

Assembly Language (continued)
 The next field to the right is the opcode field.

 designed to hold the instruction, or opcode

 the MOV part of the move data instruction is an
example of an opcode

 Right of the opcode field is the operand field.
 contains information used by the opcode

 the MOV AL,BL instruction has the opcode MOV and
operands AL and BL

 The comment field, the final field, contains a
comment about the instruction(s).
 comments always begin with a semicolon (;)

14

3. Direct Addressing
 Moves a byte or word between a memory location and

a register. The instruction set does not support a
memory-to-memory transfer, except for the MOVS
instruction.

 Examples:

 MOV CX,START

 MOV START,BL

 START can be defined as an address by using the
assembler DB(Define Byte) or DW(Define Word)
pseudo instructions.

15

Direct Addressing

4. Register Indirect Addressing
 Transfers a byte or word between a register and a

memory location addressed by an index or base
register. The index and base registers are BP, BX, DI,
and SI.

 Example: MOV AX,[BX] instruction copies the word-
sized data from the data segment offset address
indexed by BX into register AX.

17

Register Indirect Addressing

Register Indirect Addressing

5. Base-plus-index Addressing
 Transfers a byte or word between a register and the

memory location addressed by a base register (BP or
BX) plus an index register (DI or SI).

 Example: MOV [BX+DI],CL instruction copies the
byte-sized contents of register CL into the data
segment memory location addressed by BX+DI.

20

Base-plus-index Addressing

Base-plus-index Addressing

6. Register Relative Addressing
 Moves a byte or word between a register and the

memory location addressed by an index or base
register plus a displacement.

 Examples:

 MOV AX,[BX+4]

 MOV AX,ARRAY[BX]

23

Register Relative Addressing

Register Relative Addressing

7. Base Relative-Plus-Index Addressing
 Transfers a byte or word between a register and the

memory location addressed by a base and an index
register plus a displacement.

 Examples:

 MOV AX,ARRAY[BX+DI]

 MOV AX,[BX+DI+4]

26

Base Relative-Plus-Index Addressing

Base Relative-Plus-Index Addressing

8. Relative Addressing
 In this mode, the operand is specified as a signed 8 bit

displacement, relative to PC (Program Counter).

 Example: JMP START

 PC is loaded with current PC contents plus the 8 bit
signed value of START, otherwise the next instruction is
executed.

29

9. Implied Addressing
 Instructions using this mode have no operands.

 Example: CLC

 This clears the carry flag to zero.

30

Exercises
 Find the addressing

modes of the following
statements:

 MOV DH,[BX+DI+20H]

 MOV AL,BL

 JMP LABEL1

 MOV SP,BP

 MOV AX,WATER

 MOV CH,[BP+SI]

 MOV AX,FILE[BX+DI]

 MOV [DI],BH

 MOV AX,44H

 MOV [BX+SI],SP

 MOV AL,NUMBER

 MOV AX,[DI+100H]

 MOV BL,44

 MOV ARRAY[SI],BL

 MOV LIST[SI+2],CL

 MOV CX,[BX]

 CLI

31

PUSH POP Instructions
 The PUSH POP instructions are important

instructions that store and retrive the data from a
LIFO (Last In First Out) stack memory

Push Instruction

Pop Instruction

Memory Access
 To access memory we can use these four registers: BX,

SI, DI, BP.

 Combining these registers inside [] symbols, we can
get different memory locations.

35

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]

[SI]
[DI]
d16 (variable offset
only)
[BX]

[BX+SI+d8]
[BX+DI+d8
]
[BP+SI+d8]
[BP+DI+d8
]

[SI + d8]
[DI + d8]
[BP + d8]
[BX + d8]

[BX + SI + d16]
[BX + DI + d16]
[BP + SI + d16]
[BP + DI + d16]

[SI + d16]
[DI + d16]
[BP + d16]
[BX + d16]

Displacements
• d8 - stays for 8 bit signed immediate displacement (for

example: 22, 55h, -1, etc...)
• d16 - stays for 16 bit signed immediate displacement (for

example: 300, 5517h, -259, etc...).
• Displacement can be an immediate value or offset of a

variable, or even both (If there are several values, assembler
evaluates all values and calculates a single immediate
value).

• Displacement can be inside or outside of the [] symbols,
assembler generates the same machine code for both ways.

• Displacement is a signed value, so it can be both positive or
negative.

• Generally the compiler takes care about difference between
d8 and d16, and generates the required machine code.

36

Example
 Let's assume that DS = 100, BX = 30, SI = 70.

 [BX + SI] + 25 is calculated by processor to this
physical address: 100 * 16 + 30 + 70 + 25 = 1725.

 (note that all addresses are in decimal form, not
hexadecimal, so DS is multiplied by 16=10H)

37

Data Types
• In order to say the compiler about data type, these prefixes

should be used:
– BYTE PTR - for byte.
– WORD PTR - for word (two bytes)

• Examples:
– MOV AL, BYTE PTR [BX] ; byte access
– MOV CX, WORD PTR [BX] ; word access

• Assembler supports shorter prefixes as well:
– B. - for BYTE PTR
– W. - for WORD PTR

• In certain cases the assembler can calculate the data type
automatically.

38

MOV Instruction
• Copies the second operand (source) to the first

operand (destination).

• The source operand can be an immediate value,
general-purpose register or memory location.

• The destination register can be a general-purpose
register, or memory location.

• Both operands must be the same size, which can be a
byte or a word.

• the MOV instruction cannot be used to set the value of
the CS and IP registers.

 39

Operands of MOV
• These types of operands are supported:

– MOV REG, memory

– MOV memory, REG

– MOV REG, REG

– MOV memory, immediate

– MOV REG, immediate

• REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH,
DL, DI, SI, BP, SP.

• memory: [BX], [BX+SI+7], variable, etc.

• immediate: 5, -24, 3Fh, 10001101b, etc.

40

Segment Register Operands
• For segment registers only these types of MOV are

supported:
– MOV SREG, memory

– MOV memory, SREG

– MOV REG, SREG

– MOV SREG, REG

• SREG: DS, ES, SS, and only as second operand: CS.

• REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH,
DL, DI, SI, BP, SP.

• memory: [BX], [BX+SI+7], variable, etc.

41

MOV Example
ORG 100h ; this directive required for a simple 1 segment

.com program.

MOV AX, 0B800h ; set AX to hexadecimal value of B800h.

MOV DS, AX ; copy value of AX to DS.

MOV CL, 'A' ; set CL to ASCII code of 'A', it is 41h.

MOV CH, 11011111b ; set CH to binary value.

MOV BX, 15Eh ; set BX to 15Eh.

MOV [BX], CX ; copy contents of CX to memory at
B800:015E

RET ; returns to operating system.

42

Variables
• Syntax for a variable declaration:

– name DB value
– name DW value

• DB - stays for Define Byte.
• DW - stays for Define Word.
• name - can be any letter or digit combination, though it

should start with a letter. It's possible to declare unnamed
variables by not specifying the name (this variable will have
an address but no name).

• value - can be any numeric value in any supported
numbering system (hexadecimal, binary, or decimal), or "?"
symbol for variables that are not initialized.

43

Example
ORG 100h

MOV AL, var1

MOV BX, var2

RET ; stops the program.

var1 DB 7

var2 DW 1234H

44

ORG Directive
• ORG 100h is a compiler directive (it tells compiler how

to handle the source code).

• It tells compiler that the executable file will be loaded
at the offset of 100h (256 bytes), so compiler should
calculate the correct address for all variables when it
replaces the variable names with their offsets.

• Directives are never converted to any real machine
code.

• Operating system keeps some data about the program
in the first 256 bytes of the CS (code segment), such as
command line parameters and etc.

45

Arrays
 Arrays can be seen as chains of variables.

 A text string is an example of a byte array, each
character is presented as an ASCII code value (0..255).

 Examples:

 a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h

 b DB 'Hello', 0

 b is an exact copy of the a array, when compiler sees a
string inside quotes it automatically converts it to set
of bytes.

46

Accessing Array Elements

 You can access the value of any element in array using
square brackets, for example:

 MOV AL, a[3]

 You can also use any of the memory index
registers BX, SI, DI, BP, for example:

 MOV SI, 3

 MOV AL, a[SI] 47

Declaring Large Arrays
 If you need to declare a large array you can

use DUP operator.

 The syntax for DUP:

 number DUP (value(s))

 number - number of duplicate to make (any constant value).

 value - expression that DUP will duplicate.

 Example:

c DB 5 DUP(9)

is an alternative way of declaring:

c DB 9, 9, 9, 9, 9

48

Declaring Large Arrays
 One more example:

d DB 5 DUP(1, 2)

is an alternative way of declaring:

d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

49

Getting the Address of a
Variable

 The LEA instruction and the OFFSET operator can be
used to get the offset address of a variable.

 LEA is more powerful because it also allows you to get
the address of an indexed variables.

 Getting the address of the variable can be very useful
in some situations, for example when you need to pass
parameters to a procedure.

50

Example 1
ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

LEA BX, VAR1 ; get address of VAR1 in BX.

MOV BYTE PTR [BX], 44h ; modify the contents of
VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

51

Example 2
ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

MOV BX, OFFSET VAR1 ; get address of VAR1 in BX.

MOV BYTE PTR [BX], 44h ; modify the contents of
VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

52

About the Examples…
 Both examples have the same functionality.

 These lines:
LEA BX, VAR1
MOV BX, OFFSET VAR1
are even compiled into the same machine code: MOV
BX, num
where num is a 16 bit value of the variable offset.

53

Constants
 Constants are just like variables, but they exist only until

your program is compiled (assembled).

 After definition of a constant its value cannot be changed.

 To define constants EQU directive is used:

name EQU < any expression >

 Example:

k EQU 5

MOV AX, k

 The above example is functionally identical to code:

MOV AX, 5

54

Arithmetic and Logic Instructions
 Most arithmetic instructions affect the FLAGS register.

 Carry Flag (C)

 Zero Flag (Z)

 Sign Flag (S)

 Overflow Flag (O)

 Parity Flag (P)

 Interrupt enable Flag (I)

 Direction Flag (D)

55

1st group: ADD, SUB,CMP, AND, TEST, OR, XOR

 These types of operands are supported:
 REG, memory

 memory, REG

 REG, REG

 memory, immediate

 REG, immediate

 REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH,
DL, DI, SI, BP, SP.

 memory: [BX], [BX+SI+7], variable, etc.

 immediate: 5, -24, 3Fh, 10001101b, etc.

56

ADD, SUB,CMP, AND, TEST, OR, XOR (cont)

 After operation between operands, result is always
stored in first operand. CMP and TEST instructions
affect flags only and do not store a result (these
instruction are used to make decisions during program
execution).

 These instructions affect these flags only:

 C, Z, S, O, P, A.

57

ADD, SUB,CMP, AND, TEST, OR, XOR (cont)

 ADD - add second operand to the first.

 SUB - Subtract second operand from the first.

 CMP - Subtract second operand from first for flags
only.

 AND - Logical AND between all bits of two operands.

 TEST - The same as AND but for flags only.

 OR - Logical OR between all bits of two operands.

 XOR - Logical XOR (exclusive OR) between all bits of
two operands.

58

More About AND, OR, XOR
 AND operator gives 1 only if both operands are 1.

 OR operator gives 1 if at least one operand is 1.

 XOR operator gives 1 only if the operands are different.

59

2nd Group: MUL, IMUL, DIV, IDIV
 These types of operands are supported:

 REG

 Memory

 REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI,
SI, BP, SP.

 memory: [BX], [BX+SI+7], variable, etc.

 MUL and IMUL instructions affect these flags only:
 C, O

 When result is over operand size these flags are set to 1,
when result fits in operand size these flags are set to 0.

 For DIV and IDIV flags are undefined.

60

MUL and IMUL
 MUL - Unsigned multiply

 When operand is a byte: AX = AL * operand.

 When operand is a word: (DX AX) = AX * operand.

 IMUL - Signed multiply

 When operand is a byte: AX = AL * operand.

 When operand is a word: (DX AX) = AX * operand.

61

DIV and IDIV
 DIV - Unsigned divide

 When operand is a byte:

 AL = AX / operand and AH = remainder (modulus).

 When operand is a word:

 AX = (DX AX) / operand and DX = remainder (modulus)

 IDIV - Signed divide

 When operand is a byte:

 AL = AX / operand and AH = remainder (modulus)

 When operand is a word:

 AX = (DX AX) / operand and DX = remainder (modulus)

62

3rd Group: INC, DEC, NOT, NEG
 These types of operands are supported:

 REG

 Memory

 REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL,
DI, SI, BP, SP.

 memory: [BX], [BX+SI+7], variable, etc.

63

INC and DEC
 INC: Increments the operand by 1.

 DEC: Decrements the operand by 1.

 INC, DEC instructions affect these flags only:

 Z, S, O, P, A

64

NOT and NEG
 NOT - Reverse each bit of operand.

 NEG - Make operand negative (two's complement).
Actually it reverses each bit of operand and then adds 1
to it. For example 5 will become -5, and -2 will become
2

 NOT instruction does not affect any flags.

 NEG instruction affects these flags only:

 C, Z, S, O, P, A

65

Negative Numbers
 There are three conventions used to negate a number:

1. Sign and Magnitude

 Make the first bit 1

2. One’s Complement

 Complement each bit

3. Two’s Complement

 Complement each bit and add 1

 This convention is used in 8086.

66

Two’s Complement
 To find the representation of 5 is the following:

 Represent 5: 00000101

 Reverse each bit: 11111010

 Add 1: 11111011

 So, -5 is represented as 11111011 in two’s complement
convention.

67

Summary
 Addressing modes

 Data movement Instructions

 Arithmetic Instructions

 Logic Instructions

 Assembly Language Programming

Course Completed
 Chapter 3 4 and 5 Completed.

