
Digital Image Processing 

 
Lecture # 5 

 
Image Enhancement in Spatial Domain- I 



   
ALI JAVED 

  
Lecturer  

 
SOFTWARE ENGINEERING DEPARTMENT 

 
U.E.T TAXILA   
 

Email:: ali.javed@uettaxila.edu.pk 

 

Office Room #:: 7 

 

mailto:ali.javed@uettaxila.edu.pk


Presentation Outline 

 

 Image Enhancement 

 

 Basic Operations of Image Enhancement 

 Point Operations 

 Local Operations 

 Global Operations 

 

 Gray Level Transformation Functions 

 Identity Function 

 Image Negation 

 Power Law transform 

 Log Transform 

 Piece Wise Linear Transform 

 

 Contrast Stretching 

 Gray level Slicing 

 Bit Plane Slicing 

 

 Arithmetic/Logical operations on Images 

 



Image Enhancement 

 Process an image to make the result more suitable than the 
original image for a specific application  

 

 The reasons for doing this include: 

 
 Highlighting interesting details in the image 

 Removing noise from images 

 Making images visually more appealing 

 

 Image enhancement is subjective (problem /application oriented) 



Image Enhancement 

 There are two broad categories of Image enhancement techniques: 

 
 Spatial domain: Direct manipulation of pixel in an image (on                            

the image plane) 

 

 Frequency domain: Processing the image based on modifying the                            
Fourier transform of an image 

 

 Many techniques are based on various combinations of methods 
from these two categories 

 

 



Image Enhancement 



Basic Concepts 

 Spatial domain enhancement methods can be generalized as 
 

 g(x,y)= T [f(x,y)] 
 

f(x,y):      input image 
 
g(x,y):     processed (output) image 
 
T[*]: an operator on f (or a set of input images),  
           defined over neighborhood of (x,y) 

 
 Neighborhood about (x,y): a square or rectangular                                      
sub-image area centered at (x,y) 



Basic Concepts 



Pixel Operations 

g(x,y) = T [f(x,y)] 

 

 Pixel/point operation: The simplest operation in the image processing 
occurs when the neighborhood is simply the pixel itself 

 
 Neighborhood of size 1x1: g depends only on f at (x,y) 

 T: a gray-level/intensity transformation/mapping function 

 Let r = f(x,y)     s = g(x,y) 

 r and s represent gray levels of f and g at (x,y) 

 Then s = T(r) 

 

 

 



Pixel Operations 

 Example 

 

 Image negation or invert 

 Power Law Transform 

 Log Transform 

 Piece wise linear Transform 

 Thresholding 

 

 

Image negation Power Law Transform 

Thresholding 



Local Operations 

g(x,y) = T [f(x,y)] 

 

 Local operations: 

 
 g depends on the predefined number of neighbors of f at (x,y) 

 Implemented by using mask processing or filtering 

 Masks (filters, windows, kernels, templates) : 

 a small (e.g. 3×3) 2-D array, in which the values of the coefficients 
determine the nature of the process 

 

 

 



Local Operations 

 Example 

 

 Image Smoothing (Noise Removal) 

 Image Sharpening (Edge Detection) 

 

 

Image Smoothing Image Sharpening 



Global Operations 

 Global operations: 

 
 An operation on an image that will manipulate the images as a 
whole 
 Example:: Histogram Equalization 

 

 

 

 



 
  
 

3 basic gray-level transformation functions 

 Linear function 

 
 Negative and identity 

transformations 

 
 Logarithm function 

 
 Log and inverse-log 

transformation 

 
 Power-law function 

 
 nth power and nth root 

transformations 



Identity Function 

 Output intensities are identical to input intensities. 

 
 Is included in the graph only for completeness. 



Negative Image 

 A negative image is a total inversion of a positive image, in which light 
areas appear dark and vice versa. A negative color image is additionally 
color reversed, with red areas appearing cyan, greens appearing magenta 
and blues appearing yellow. 

 

 

 

Color, positive picture (A) and negative (B), monochrome positive picture (C) and negative (D) 

http://en.wikipedia.org/wiki/File:Pozytyw_i_negatyw.jpg
http://en.wikipedia.org/wiki/File:Pozytyw_i_negatyw.jpg


Negative Image 

 Image Negative is a typical grey scale transformations that does not depend 
on the position of the pixel in the image. 
 
 The output grey value s is related to the input grey value as follows: 
 

 s=T(r) 

 

 

 

Gray level transformation function for obtaining the image negative of an image 

http://en.wikipedia.org/wiki/File:Pozytyw_i_negatyw.jpg


Negative Image 

 Reverses the gray level order  

 

 For L gray levels the transformation function is  

s =T(r) = (L - 1) - r 

 

 

 



Logarithmic Transformations 

 Log Transformation is particularly useful when the input gray level values 
may have an extremely large range of values 
 

 Function of Log Transform , s = c * Log(1+r) 

 r= Input Pixel Values 

 s= Output Pixel values 

 



Logarithmic Transformations 

 Properties of log transformations 

 

 For lower amplitudes of input image the range of gray levels is 
expanded 

 

 For higher amplitudes of input image the range of gray levels is 
compressed 

 

 Application:  

 

 This transformation is suitable for the case when the dynamic 
range of a processed image far exceeds the capability of the 
display device (e.g. display of the Fourier spectrum of an image)  

 

 Also called “dynamic-range compression / expansion” 

 

 

 



Logarithmic Transformations 

 In the following example the Fourier transform of the image is put through 
a Log Transformation to reveal more detail 



Inverse Logarithmic Transformation 

 Do opposite to the Log Transformations 

 

 Used to expand the values of high pixels in an image while 
compressing the darker-level values. 

 

 



Power Law Transformation 

 Map a narrow range of dark input values into a wider range of output 
values and vice versa 

 

 Varying Gamma gives a whole family of curves 



Power Law Transformation 

 For γ < 1: Expands values of dark pixels, compress values of 
brighter pixels 
 
 For γ > 1: Compresses values of dark pixels, expand values 
of brighter pixels 
 
 If γ=1 & c=1:  Identity transformation (s = r) 
 

 A variety of devices (image capture, printing, display) respond 
according to power law and need to be corrected  

 
 Gamma (γ) correction 

 The process used to correct the power-law response                
phenomena 

 



Gamma Correction 

 Cathode ray tube (CRT) devices 
have an intensity-to-voltage      
response that is a power            
function, with  varying from    
1.8 to 2.5 

 

 The picture will become darker. 

 

 Gamma correction is done by     
preprocessing the image before 
inputting it to the monitor with   
s = cr1/ 



Power Law Transformation: Example 

 The images shows the Magnetic Resonance image of a fractured human 
spine 

 Different curves highlight different details 



Power Law Transformation: Example 

 An aerial photo of a runway is shown 

 This time Power Law Transform is used to darken the image 

 Different curves highlight different details 



Piece Wise Linear Transformation 

Contrast Stretching 
 
 Goal:  
 

 Increase the dynamic range of the gray levels for low            
contrast images 

 
 
 Low-contrast images can result from 
 

 poor illumination 
 lack of dynamic range in the imaging sensor 
 wrong setting of a lens during image acquisition 



Contrast Stretching: Example 



Piecewise-Linear Transformation: Gray-level slicing 

 Highlighting a specific range of 
gray levels in an image 

 
 Display a high value of all gray 

levels in the range of interest  
and a low value for all other    
gray levels 

 

 (a) transformation highlights   
range [A,B] of gray level and   
reduces all others to a            
constant level 

 

 (b) transformation highlights   
range [A,B] but preserves all  
other levels  



Piecewise-Linear Transformation: Bit Plane slicing 

 Highlighting the contribution made to total image appearance by specific  
bits 

 

 Suppose each pixel is represented by 8 bits 

 

 Higher-order bits contain the majority of the visually significant data 

 

 Useful for analyzing the relative importance played by each bit of  the       
image 
 

Bit-plane 7 
(most significant) 

Bit-plane 0 
(least significant) 

One 8-bit byte 



8- bit Planes 

Bit-plane 7 Bit-plane 6 

Bit-
plane 5 

Bit-
plane 4 

Bit-
plane 3 

Bit-
plane 2 

Bit-
plane 1 

Bit-
plane 0 



3/24/2011 

 
 
 

Arithematic/Logical Operations on Images 

 Addition 

 

 Averaging images for noise removal  

 

 Add edge image into blurred image to get the sharper image 

 

 Subtraction 

 

 Removal of background from images 

 

 Image matching 

 

 Moving/displaced object tracking  

 

 Multiplication/Division 

 

 Scaling 

 

 Shading 

 

 Convolution 

 

 AND / OR operations  

 

 To remove the unnecessary area of an image through mask operations 

 

  



3/24/2011 

 
 
 

Image Addition 

 In its most straightforward implementation, this operator takes as input two 
identically sized images and produces as output a third image of the same size as the 
first two, in which each pixel value is the sum of the values of the corresponding pixel 
from each of the two input images. More sophisticated versions allow more than two 
images to be combined with a single operation.  

 

 A common variant of the operator simply allows a specified constant to be added to 
every pixel.  

 

 How It Works 

 The addition of two images is performed straightforwardly in a single pass. The 
output pixel values are given by:  

 

 

 Or if it is simply desired to add a constant value C to a single image then:  

 

 

 If the pixel values in the input images are actually vectors rather than scalar values 
(e.g. for color images) then the individual components (e.g. red, blue and green 
components) are simply added separately to produce the output value.  



3/24/2011 

Image Averaging for Noise Reduction 



3/24/2011 

Image Averaging for Noise Reduction 



3/24/2011 

Image Averaging for Noise Reduction 



3/24/2011 

Image Subtraction 

 Takes two images as input and produces a third image whose 
pixel values are those of the first image minus the corresponding 
pixel values from the second image 

 

 Variants  

 

 It is also often possible to just use a single image as input and subtract 
a constant value from all the pixels 

 

 Just output the absolute difference between pixel values, rather than 
the straightforward signed output.  



3/24/2011 

Image Subtraction 

 The subtraction of two images is performed  in a single pass 

 

 

 

 If the operator computes absolute differences between the two 
input images then:  

 

 

 

 If it is simply desired to subtract a constant value C from a single 
image then: 



3/24/2011 

Image Subtraction 

 If the operator calculates absolute differences, then it is 
impossible for the output pixel values to be outside the range  

 

 In rest of the two cases the pixel value may become negative 

 

 This is one good reason for using absolute differences. 

 

 How to solve problem of negative pixels?  



3/24/2011 

Image Subtraction 

 

How to solve problem of negative pixels?  

 

 1st Method 

 
 Let we have an 8 bit Gray scale image (Value Range= 0 t0 255) 

 

 The result of image subtraction may come in the range of -255 to +255 

 

 One scheme can be to add 255 to every pixel and then divide by 2 

 

 Method is easy and  fast 

  

 Limitations  

 

 Truncation errors can cause loss of accuracy 

 Full range of display may not be utilized 

 



3/24/2011 

Image Subtraction 

 

How to solve problem of negative pixels?  

 

  2nd Method 

 

 first, find the minimum gray value of the subtracted image 

 second, find the maximum gray value of the subtracted image 

 set the minimum value to be zero and the maximum to be 255 

 while the rest are adjusted according to the interval  
[0, 255], by timing each value with 255/max 

 

 



3/24/2011 

Example:: Image Subtraction 



3/24/2011 

Example: Background Removal Using Image Subtraction 



3/24/2011 

Image Multiplication 

 

 Like other image arithmetic operators, multiplication comes in two main 
forms.  

 

 The first form takes two input images and produces an output image in which the 
pixel values are just those of the first image, multiplied by the values of the 
corresponding values in the second image.  

 The second form takes a single input image and produces output in which each 
pixel value is multiplied by a specified constant.  

 

 How It Works 

 

 The multiplication of two images is performed in the obvious way in a single pass 
using the formula: 

 

 

 

 Scaling by a constant is performed using:  



3/24/2011 

Image Multiplication 

 Guidelines for Use 
 
 There are many specialist uses for scaling. In general though, given a scaling 
factor greater than one, scaling will brighten an image. Given a factor less than one, 
it will darken the image.  

 
 For instance, shows a picture of model robot that was taken under low lighting 
conditions. Simply scaling every pixel by a factor of 3, we obtain the one shown in 
the middle which is much clearer. However, when using pixel multiplication, we 
should make sure that the calculated pixel values don't exceed the maximum 
possible value. If we, for example, scale the above image by a factor of 5 using a 8-
bit representation, we obtain the one shown in last. All the pixels which, in the 
original image, have a value greater than 51 exceed the maximum value and are (in 
this implementation) wrapped around from 255 back to 0.  

 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1dim1.gif
http://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul1.gif
http://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul2.gif


3/24/2011 

Example:: Image Multiplication 

 Multiplication also provides a good way of "shading" artwork. You can 
use it to introduce a sense of diffuse lighting into your painting.  



3/24/2011 

Example:: Image Multiplication 

 Multiplication provides a good way to color line drawings. Here you can 
really see the "black times anything is black, white times anything is that 
thing unchanged" rule in action. 



3/24/2011 

Logic Operations 

AND / OR / NOT Operations  
 
 

To remove the unnecessary area of an image through    
mask operations (AND/OR) 
 
To invert the image same as image negative (NOT) 



3/24/2011 

Logical Operations 

 Logical operators operate on a pixel by pixel basis 

 

 When Logical operation performs on gray-level images, the 
pixel values are processed as string of binary numbers 

 
 E.g performing the NOT operation on a black, 8 bit pixel (a 

string of 8 0’s) produces a white pixel (a string of 8 1’s) 

 

 Intermediate values are processed the same way changing all 
1’s to 0’s and vice versa  

 

 NOT operation = negative transformation 

 

 



3/24/2011 

Logical Operations 

 The AND and OR operations are used for masking; that is for selecting sub-images in 
an image as mentioned in the figure 3.27 

 

 Light represents a binary 1, and dark represents a binary 0  



Any question  


