2 Effects

- **Pulse Spreading – Dispersion (Distortion)**
 - Causes the optical pulses to broaden as they travel along a fiber
 - Overlap between neighboring pulses creates errors
 - Resulting in the limitation of information-carrying capacity of a fiber

- **Signal Attenuation – Losses**
 - Determines the maximum repeaterless separation between optical transmitter & receiver
Pulse Spreading

- Successive pulses overlap as they spread
- Spreading increases with distance
- Degree of dispersion depends on fiber type

Multipath/Modal Dispersion

- Modes are oscillation/propagation paths
- Mode velocities differ in step-index multimode fiber
- Visualize as difference in ray paths
 - Red ray goes shorter distance than blue
Time Delay & Bandwidth Length product

- Time delay between the two rays taking longest and shortest paths is a measure of pulse broadening; given by
 \[dT = \frac{n_i}{c} \left[\frac{L}{\sin \phi_i} - L \right] = \frac{L}{c} \frac{n_i}{n_2} \Delta \]
 Derive?

- Time delay can be related to the information carrying capacity of the fiber through bit rate B
 \[B.dT < 1 \quad \Rightarrow \quad BL < \frac{n_2 c}{n_1^2 \Delta} \]
 Derive?

- This condition provides a rough estimate of fundamental limitation of SI fibers.

Wave Velocities

1– Plane wave velocity:
 For a plane wave, represented by \(\exp (j\omega t - jk_1 z) \), propagating along z-axis in an unbounded homogeneous region of refractive index, \(n_1 \), the velocity of constant phase plane is:
 \[v = \frac{\omega}{k_1} = \frac{c}{n_1} \]

2– Modal wave phase velocity:
 For a modal wave, represented by \(\exp (j\omega t - j\beta z) \), propagating along z-axis in the fiber, the velocity of constant phase plane is:
 \[v_p = \frac{\omega}{\beta} \]
 \[k_1 = \text{Propagation constant} = 2 \pi / \lambda \]
 \[\beta = \text{Propagation constant along the fiber axis} \]
Group Velocity, V_g

- The actual velocity at which the signal information & energy is traveling down the fiber. It is always less than the speed of light
- The observable delay experienced by the optical signal waveform & energy, is commonly referred to as group delay
- The group velocity depends on frequency and is given by:

$$V_g = \frac{d\omega}{d\beta}$$

Basics about Plane Waves

\[\vec{E} = \vec{E}_0 e^{i(\omega t - k \cdot r)} \]

\[= E_x e^{i(\omega t - kz)} \hat{i} + E_y e^{i(\omega t - kz)} \hat{j} \]

\[= E_x \cos(\omega t - kz) \hat{i} + E_y \cos(\omega t - kz) \hat{j} \]

for plane waves propagating in the positive z-direction

\[k = \frac{2\pi}{\lambda} \quad \text{[m]} \quad \text{wavenumber} \]

\[\omega = 2\pi v = \frac{2\pi c}{\lambda} \quad \text{[rad/m]} \quad \text{frequency} \]

E_x, E_y - amplitude of the waves in the x and y directions
Phase Velocity

P is a point of constant phase

$$\Rightarrow \omega t - kz = \text{constant}$$

$$\Rightarrow \frac{dz}{dt} = \frac{\omega}{k}$$

$$v_p = \frac{\omega}{k} = c_0 \quad \text{phase velocity}$$

$$c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.998 \times 10^8 \text{ m/s}$$

speed of light

Group of Waves

Consider two plane waves E_{x1} and E_{x2} propagating in the +ve z-direction

$$E_{x1} = E_0 \cos \left[(\omega_0 + \Delta \omega) t - (k_0 + \Delta k) z \right]$$

$$E_{x2} = E_0 \cos \left[(\omega_0 - \Delta \omega) t - (k_0 - \Delta k) z \right]$$

The superposition of the waves (wavepacket) is given by

$$E = E_{x1} + E_{x2}$$

$$= 2E_0 \cos(\Delta \omega t - \Delta kz) \cos(\omega_0 t - k_0 z)$$

slowly varying envelope

rapid oscillation (carrier frequency)
Carrier and Envelope

Group Velocity

For a point of “constant phase” on the envelope

\[\Rightarrow \Delta \omega t - \Delta kz = \text{constant} \]

\[\Rightarrow \frac{dz}{dt} = \frac{\Delta \omega}{\Delta k} \]

\[v_g = \frac{d\omega}{dk} = \frac{c_0}{n} \]

\(n \): refractive index

Physical meaning of group velocity: speed at which energy (or information) in a wavepacket travels (no information carried by phase velocity)
Dispersion can be described as:

- Any phenomenon in which the velocity of propagation of any electromagnetic wave is wavelength dependent.
- Any process by which any electromagnetic signal propagating in a physical medium is degraded because the various wavelength signals have different propagation velocities within the physical medium.

Types of Dispersion

- Intermodal/Modal Dispersion

 (already discussed)

- Intramodal Dispersion
 1. Material Dispersion
 2. Waveguide Dispersion

- Polarization-Mode Dispersion
Intramodal Dispersion/GVD

- The propagation constant, $\beta(\omega)$, is frequency dependent over band width $\Delta \omega$, with the center frequency ω_0.
- Each frequency component has a specific delay time.
- As the output signal is collectively represented by group velocity & group delay this phenomenon is called **intramodal dispersion or Group Velocity Dispersion (GVD)**
- In the case of optical pulse propagation down the fiber, GVD causes pulse broadening, leading to Inter Symbol Interference (ISI)

How to characterize dispersion?

- If the spectral width of the optical source is not too wide, For spectral components which are $\delta \lambda$ apart, symmetrical around center wavelength, the total delay difference $\delta \tau$ over a distance L is:

$$\Delta T = \left| \frac{d \tau_g}{d \omega} \right| \Delta \omega = \frac{d}{d \omega} \left(\frac{L}{V_g} \right) \Delta \omega = L \left(\frac{d^2 \beta}{d \omega^2} \right) \Delta \omega = \beta_2 L \Delta \omega$$

where, the group delay, $\tau_g = \frac{L}{V_g}$ and $\frac{1}{V_g} = \frac{d \beta}{d \omega}$

β_2 is called **GVD parameter**, and shows how much a light pulse broadens as it travels along an optical fiber.
The more common parameter is called **Dispersion**, and can be defined as the delay difference per unit length per unit wavelength as follows:

\[
D = \frac{d}{d\lambda} \left(\frac{1}{V_g} \right) = -\frac{2\pi c}{\lambda^2} \beta_2
\]

In the case of optical pulse, if the spectral width of the optical source is characterized by its *rms* value of the Gaussian pulse \(\Delta\lambda\), the pulse spreading \(\Delta T\), over the length of \(L\), can be well approximated by:

\[
\Delta T = DL \Delta\lambda
\]

\(D\) has a typical unit of \([\text{ps}/(\text{nm–km})]\)

Material Dispersion

- All excitation sources are inherently non-monochromatic and emit within a spectrum, \(\Delta\lambda\), of wavelengths.
- Waves in the guide with different free space wavelengths travel at different group velocities due to the wavelength dependence of \(n_1\).
- The waves arrive at the end of the fiber at different times and hence result in a broadened output pulse.
Material Dispersion

- The refractive index of the material varies as a function of wavelength, \(n(\lambda) \)
- Material-induced dispersion for a plane wave propagation in homogeneous medium of refractive index \(n \):

\[
D_M = -\frac{2\pi}{\lambda^2} \frac{dn_2}{d\omega} = \frac{1}{c} \frac{dn_2}{d\lambda}
\]

The pulse spread due to material dispersion is therefore:

\[
\Delta T_g = L \Delta_{\lambda} |D_{mat}(\lambda)|
\]
Waveguide Dispersion

- Waveguide dispersion is due to the dependency of the group velocity of the fundamental mode as well as other modes on the ‘V’ number (Normalized Frequency).
- In order to calculate waveguide dispersion, we consider that \(n \) is independent of wavelength.
- Waveguide dispersion is given by:

\[
D_W = -\frac{2\pi \Delta}{\lambda^2} \left[\frac{n_{2g}^2}{n_2} \frac{V d^2(Vb)}{dV^2} + \frac{dn_{2g}}{d\omega} \frac{d(Vb)}{dV} \right]
\]

where, group delay is expressed in terms of the normalized propagation constant, ‘\(b \)’, also called waveguide parameter.

Total Dispersion, Zero Dispersion

Minimum loss here
Dispersion Shifted Fiber Profiles

Polarization Mode Dispersion

- Effect of fiber birefringence on polarization (electric field orientation) states of an optical signal
- Due to geometric irregularities, internal stresses, deviations in circularity, external factors like bending, twisting & pinching
- Resulting difference in propagation times between the two orthogonal modes causes pulse spreading, hence leading to PMD
- PMD varies randomly along the fiber, ps/√km
Suppose that the core refractive index has different values along two orthogonal directions corresponding to electric field oscillation direction (polarizations). We can take x and y axes along these directions. An input light will travel along the fiber with E_x and E_y polarizations having different group velocities and hence arrive at the output at different times.
Polarization Mode Dispersion

- **Polarization mode dispersion** (PMD) is due to slightly different velocity for each polarization mode because of the lack of perfectly symmetric & anisotropicity of the fiber.
- If the group velocities of two orthogonal polarization modes are v_{gx} and v_{gy}, then the differential time delay ΔT_{pol} between these two polarization over a distance L is

$$\Delta T_{pol} = \left| \frac{L}{v_{gx}} - \frac{L}{v_{gy}} \right|$$

- The rms value of the differential group delay can be approximated as: $$\langle \Delta T_{pol} \rangle \approx D_{PMD} \sqrt{L}$$

Losses in Optical Fibers

Coaxial cable Vs. Optical Fiber Attenuation

![Graph showing attenuation vs frequency for different cables and fiber types](attachment:image.png)
Attenuation (fiber loss)

- Power loss along a fiber:

\[P(z) = P(0)e^{-\alpha_p z} \]

- The parameter \(\alpha_p \) is called fiber attenuation coefficient having the unit of for example \([1/\text{km}]\) or \([\text{nepers/km}]\).

- A more common unit is \([\text{dB/km}]\) that is defined by:

\[
\alpha[\text{dB/km}] = \frac{10}{l} \log \left(\frac{P(0)}{P(l)} \right) = 4.343 \alpha_p [1/\text{km}]
\]

Fiber loss in dB/km

\[P(l)[\text{dBm}] = P(0)[\text{dBm}] - \alpha[\text{dB/km}] \times l[\text{km}] \]

\[P = 10 \text{ mW} = 10 \log_{10} \left(\frac{10 \text{ mW}}{1 \text{ mW}} \right) = 10 \text{ dBm} \]

\[P = 27 \text{ dBm} = 1 \text{ mW} \left(\frac{27}{10} \right) = 501 \text{ mW} \]
Fiber loss

- **Example**: 10mW of power is launched into an optical fiber that has an attenuation of $a=0.6$ dB/km. What is the received power after traveling a distance of 100 km?
 - Initial power is: $P_{in} = 10$ dBm
 - Received power is: $P_{out} = P_{in} - aL = 10$ dBm $- (0.6)(100)$
 $$= -50$$ dBm

- **Example**: 8mW of power is launched into an optical fiber that has an attenuation of $a=0.6$ dB/km. The received power needs to be -22 dBm. What is the maximum transmission distance?
 - Initial power is: $P_{in} = 10\log_{10}(8) = 9$ dBm
 - Received power is: $P_{out} = 1$ mW $10^{-2.2} = 6.3$ mW
 - $P_{out} - P_{in} = 9$ dBm $- (-22$ dBm$) = 31$ dB $= 0.6$ L
 - $L = 51.7$ km

Optical fiber attenuation vs. wavelength

![Optical fiber attenuation vs. wavelength](chart.png)
Attenuation in Optical Fibers

Three causes of Losses

■ Absorption
■ Scattering
■ Radiative Losses

Absorption-I (Extrinsic)

■ Absorption is caused by three different mechanisms:
 1- (a) Impurities in fiber material: from transition metal [iron, chromium, cobalt and copper] ions (must be in order of 1~10 ppb)
 (b) OH ions with absorption peaks at wavelengths 1400 nm, 950 nm & 725nm (overtones of the fundamental absorption peak of water around 2700nm).

Reduction of residual OH contents to around 1 ppb, commercially available fibers have attenuation around 0.3 dB/km in 1550 nm window.

An effectively complete elimination of water molecule results in the Allwave fiber
Absorption-II

2- Intrinsic absorption (fundamental lower limit): electronic absorption band (UV region) & atomic bond vibration band (IR region) in basic SiO₂.

3- Radiation defects
2 Scattering losses

- Linear scattering losses: transfer of optical power from one mode (proportionally to the mode power) into some other mode
 - Rayleigh scattering
 - Mie scattering
- Nonlinear scattering losses: Disproportionate attenuation, usually at high optical power levels in long SM fibers
 - Stimulated Brillouin scattering
 - Stimulated Raman scattering

Linear Scattering

- Rayleigh scattering: - Refractive index variations over small distances compared with wavelength due to:
 - Microscopic variations in the material density
 - Defects during fiber manufacture
 - Compositional fluctuations due to oxides

\[\alpha_R = c_R \frac{1}{\lambda^4} \ (dB/km) \]

where \(c_R \) is the Rayleigh scattering coefficient and is the range from 0.8 to 1.0 (dB/km)·(mm)^4
Mie scattering: ---- inhomogeneities comparable in size to the guided wavelength due to non perfect cylindrical structure: e.g
- Imperfections at core-cladding interface
- Diameter fluctuations
- Core-cladding refractive index differences along the fiber length
- Mie scattering is typically very small in optical fibers

Nonlinear Scattering
Insignificant unless the power is greater than 100 mW
- Stimulated Brillouin scattering: modulation of light through thermal molecular vibrations within the fiber: incident photon produces a phonon of acoustic frequency as well as a scattered photon
- Stimulated Raman scattering: high frequency optical phonon is generated instead of acoustic phonon

Phonon is a quantum of elastic wave in lattice structure
Absorption & Scattering Losses in Fibers

Radiative Losses (Bending Loss)

Macrobending Loss:
- Lightwave suffers severe loss due to radiation of the evanescent field in the cladding region. As the radius of the curvature decreases, the loss increases exponentially until it reaches a certain critical radius.
- For any radius a bit smaller than this point, the losses suddenly become extremely large.
- Higher order modes radiate away faster than lower order modes.
Microbending Loss:

- Microscopic bends of the fiber axis that can arise when the fibers are incorporated into cables.
- The power is dissipated through the microbended fiber, because of the repetitive coupling of energy between guided modes & the leaky or radiation modes in the fiber.

Losses in standard SM fiber

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>SMF28</th>
<th>62.5/125</th>
</tr>
</thead>
<tbody>
<tr>
<td>850 nm</td>
<td>1.8 dB/km</td>
<td>2.72 dB/km</td>
</tr>
<tr>
<td>1300 nm</td>
<td>0.35 dB/km</td>
<td>0.52 dB/km</td>
</tr>
<tr>
<td>1380 nm</td>
<td>0.50 dB/km</td>
<td>0.92 dB/km</td>
</tr>
<tr>
<td>1550 nm</td>
<td>0.19 dB/km</td>
<td>0.29 dB/km</td>
</tr>
</tbody>
</table>