
© IEEE – Trial Version 1.00 – May 2001 *SWEBOK is an official service mark of the IEEE

Guide to the Software Engineering Body of Knowledge

Trial Version

SWEBOK*

A Project of the Software Engineering Coordinating Committee

© IEEE – Trial Version 1.00 – May 2001

© IEEE – Trial Version 1.00 – May 2001 *SWEBOK is an official service mark of the IEEE

Guide to the Software Engineering Body of Knowledge

Trial Version

SWEBOK*

A Project of the Software Engineering Coordinating Committee

Executive Editors
Alain Abran, École de technologie supérieure

James W. Moore, The MITRE Corp.

Editors
Pierre Bourque, École de technologie supérieure
Robert Dupuis, Université du Québec à Montréal

Project Champion

Leonard L. Tripp, Chair, Professional Practices Committee, IEEE Computer Society

http://computer.org

Los Alamitos, California
Washington • Brussels • Tokyo

© IEEE – Trial Version 1.00 – May 2001

Library of Congress Cataloging-in-Publication Data

Guide to the software engineering body of knowledge : trial version
(version 1.00) / executive editors, Alain Abran, James W. Moore;

editors, Pierre Bourque, Robert Dupuis, Leonard L. Tripp.
p. cm.

1. Software engineering. 2. Computer software--Development. I.
Abran, Alain, 1949- . II. Moore, James W., 1948- .

QA76.758 .G85 2001
005.1--dc21

2001005442

Copyright © 2001 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy
isolated pages beyond the limits of US copyright law, for private use of their patrons. Other copying, reprint, or republication
requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331.

IEEE Computer Society Press Order Number BP01000
Library of Congress Number 2001005442

ISBN 0-7695-1000-0

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1-732-981-0060 Minato-ku, Tokyo 107-0062
Tel: + 1-714-821-8380 Fax: + 1-732-981-9667 JAPAN
Fax: + 1-714-821-4641 http://shop.ieee.org/store/ Tel: + 81-3-3408-3118

E-mail: cs.books@computer.org customer-service@ieee.org Fax: + 81-3-3408-3553
 tokyo.ofc@computer.org

Publisher: Angela Burgess
Group Managing Editor, CS Press: Deborah Plummer

Advertising/Promotions: Tom Fink
Production Editor: Bob Werner

Printed in the United States of America

© IEEE – Trial Version 1.00 – May 2001 v

TABLE OF CONTENTS
FOREWORD .. vii
PREFACE TO THE SWEBOK GUIDE...ix
SWEBOK COMMITTEES ..xv
CHAPTER 1 INTRODUCTION TO THE GUIDE... 1
CHAPTER 2 SOFTWARE REQUIREMENTS.. 9
 Pete Sawyer, Gerald Kotonya , Lancaster University, United Kingdom

CHAPTER 3 SOFTWARE DESIGN .. 35
 Guy Tremblay, Université du Québec à Montréal, Canada

CHAPTER 4 SOFTWARE CONSTRUCTION ... 53
 Terry Bollinger, The MITRE Corporation, United States
 Philippe Gabrini, Louis Martin , Université du Québec à Montréal, Canada

CHAPTER 5 SOFTWARE TESTING .. 69
 Antonia Bertolino, Istituto di Elaborazione della Informazione, Italy

CHAPTER 6 SOFTWARE MAINTENANCE .. 87
 Thomas M. Pigoski, Technical Software Services (TECHSOFT), Inc, United States

CHAPTER 7 SOFTWARE CONFIGURATION MANAGEMENT ... 103
 John A. Scott, David Nisse, Lawrence Livermore National Laboratory, United States

CHAPTER 8 SOFTWARE ENGINEERING MANAGEMENT.. 121
 Stephen G. MacDonell, Andrew R. Gray, University of Otago, New Zealand

CHAPTER 9 SOFTWARE ENGINEERING PROCESS ... 137
 Khaled El Emam, Institute for Information Technology,
 National Research Council, Canada

CHAPTER 10 SOFTWARE ENGINEERING TOOLS AND METHODS .. 155
 David Carrington, The University of Queensland, Australia

CHAPTER 11 SOFTWARE QUALITY ... 165
 Dolores Wallace, Larry Reeker,
 National Institute of Standards and Technology, United States

APPENDIX A KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS FOR THE
 TRIAL VERSION OF THE GUIDE TO THE SOFTWARE ENGINEERING
 BODY OF KNOWLEDGE .. 185
APPENDIX B A LIST OF RELATED DISCIPLINES FOR THE TRIAL VERSION OF THE
 GUIDE TO THE SWEBOK .. 193
APPENDIX C CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY................ 199
APPENDIX D A PROPOSED BREAKDOWN FOR A COMPONENT INTEGRATION
 KNOWLEDGE AREA.. 205

© IEEE – Trial Version 1.00 – May 2001 vi

Important Notice

This is the Trial Version 1.00 of the Guide to the Software Engineering Body of Knowledge. This
phase of the project is the Stoneman phase, and previous versions were entitled Stoneman
versions.

Please register as a user of the Guide at www.swebok.org, after January 2002. You will have the
opportunity to share your experiences in using the guide. The results of the experimentation you
will make of the guide are of importance to us and the next version of the guide will be based on
such results.

© IEEE – Trial Version 1.00 – May 2001 vii

Foreword

In 1952, John Tukey, the world-renowned statistician, coined the term software. The term software engineering was
used in the title of a NATO conference held in Germany in 1968. The IEEE Computer Society first published its
Transactions on Software Engineering in 1972. The committee within the IEEE Computer Society for developing
software engineering standards was founded in 1976.

On May 21, 1993, the IEEE Computer Society Board of Governors approved a motion to “establish a steering
committee for evaluating, planning, and coordinating actions related to establishing software engineering as a profession.”
Shortly thereafter, in August 1993, the ACM Council endorsed the “establishment of a Commission on Software
Engineering to address a number of questions relating to; 1) the terminology used to describe software engineering and
those who work in the software area; 2) the identification of generally accepted and desired standards of good software
practice; and 3) our ability to identify, educate, and train individuals who are competent with software engineering and
design.” The two motions were clearly related and had emerged through informal discussions between volunteers in the
two societies.

From September through December of 1993, an ad-hoc committee involving volunteers from both societies met to
define an initial set of recommendations to accomplish these tasks. Early on they recognized that the amount of effort and
time to accomplish the tasks required a more formal process, and this lead to an agreement, in January 1994, between
Laurel Kaleda (then president of the Computer Society) and Gwenn Bell (then president of the ACM) to form a joint
steering committee. Mario Barbacci and Stuart Zweben served as co-chairs of the committee. The mission statement of the
joint committee was “To establish the appropriate sets(s) of criteria and norms for professional practice of software
engineering upon which industrial decisions, professional certification, and educational curricula can be based.” The
steering committee organized task forces in the following areas:
 1. Define Required Body of Knowledge and Recommended Practices;
 2. Define Ethics and Professional Standards;

3. Define Educational Curricula for undergraduate, graduate, and continuing education.
The code of ethics and professional practice for software engineering was completed in 1998 and shortly thereafter

was approved by both the ACM Council and the Computer Society Board of Governors. It has been adopted by numerous
corporations and other org anizations and is included in several recent textbooks. A model set of accreditation criteria for
software engineering was also completed in 1998, and has been utilized by ABET in defining its criteria for software
engineering accreditation. The present document supplies the third component: a guide to the body of knowledge of
software engineering.

Each profession is based on a body of knowledge and recommended practices, although they are not always defined in
a precise manner. In many cases these are formally documented, usually in a form that permits them to be used for such
purposes as accreditation of academic programs, development of education and training programs, certification of
specialists, or professional licensing. Generally a professional society or related body maintains custody of such a formal
definition. In cases where no such formality is used, the body of knowledge and recommended practices are “generally
recognized” by practitioners and may be codified in a variety of ways for different uses.

From 1994 through 1996, the task force on the body of knowledge discussed various options on performing their tasks.
By 1996 the task force had concluded that there would be significant cost associated with any reasonable method of
establishing a body of knowledge baseline. The task force used a web-based survey to produce a prototype document that
served as the basis for the Guide to the Software Engineering Body of Knowledge published in this work.

It should be noted that this work does not purport to define the body of knowledge, but rather to serve as a
compendium and guide to the body of knowledge that has been developing and evolving over the past four decades.
Furthermore, this body of knowledge is not static  the Guide must, necessarily, develop and evolve as software
engineering matures. Nevertheless, the Guide is a valuable element of the software engineering infrastructure. Even in
draft form, for example, it has been used to guide the development of several education and training programs in software
engineering.
Those who have worked in dedication over the past few years to establish this knowledge baseline hope readers will find
this work useful in guiding them towards the knowledge and resources they need in their lifelong career development as
software engineering professionals.

Dr. Guylaine M. Pollock, 2000 President, IEEE Computer Society

© IEEE – Trial Version 1.00 – May 2001 viii

© IEEE – Trial Version 1.00 – May 2001 ix

PREFACE

Software engineering is an emerging discipline and
there are unmistakable trends indicating an increasing
level of maturity:

w Several universities throughout the world offer
undergraduate degrees in software engineering.
For example, such degrees are offered at the
University of New South Wales (Australia),
McMaster University (Canada), the Rochester
Institute of Technology (US), the University of
Sheffield (UK) and other universities.

w In the US, the Computer Science Accreditation
Board (CSAB) and the Accreditation Board for
Engineering and Technology (ABET) are
cooperating closely and CSAB is expected to be
lead society for the accreditation of university
software engineering programs.

w The Canadian Information Processing Society has
published criteria to accredit software engineering
undergraduate university programs.

w The Software Engineering Institute’s Capability
Maturity Model for Software (SW CMM) and
ISO 9000 family of standards are used to assess
organizational capability for software
engineering.

w The Texas Board of Professional Engineers has
begun to license professional software engineers.

w The Association of Professional Engineers and
Geoscientists of British Columbia (APEGBC) has
begun registering software professional engineers
and the Professional Engineers of Ontario (PEO)
has also announced requirements for licensing.

w The Association for Computing Machinery
(ACM) and the Computer Society of the Institute
of Electrical and Electronics Engineers (IEEE)
have jointly developed and adopted a Code of
Ethics for software engineering professionals 1.

w The Institute for Certification of Computing
Professionals (ICCP) offers certification in
software development as well as software
engineering (www.iccp.org).

All of these efforts are based upon the presumption
that there is a Body of Knowledge that should be
mastered by practicing software engineers. This Body
of Knowledge exists in the literature that has

1 The ACM/CS Software Engineering Code of Ethics and other

information about the effort can be found at:
http://csciwww.etsu.edu/gotterbarn/SECEPP/

accumulated over the past thirty years. This book
provides a Guide to that Body of Knowledge.

PURPOSE

The purpose of this Guide is to provide a consensually-
validated characterization of the bounds of the
software engineering discipline and to provide a
topical access to the Body of Knowledge supporting
that discipline. The Body of Knowledge is subdivided
into ten Knowledge Areas (KA) and the descriptions of
the KAs are designed to discriminate among the
various important concepts, permitting readers to find
their way quickly to subjects of interest. Upon finding
a subject, readers are referred to key papers or book
chapters selected because they succinctly present the
knowledge.

In browsing the Guide, readers will note that the
content is markedly different from Computer Science.
Just as electrical engineering is based upon the science
of physics, software engineering should be based upon
computer science. In both cases, though, the emphasis
is necessarily different. Scientists extend our
knowledge of the laws of nature while engineers apply
those laws of nature to build useful artifacts, under a
number of constraints. Therefore, the emphasis of the
Guide is placed upon the construction of useful
software artifacts.

Readers will also notice that many important aspects of
information technology, that may constitute important
software engineering knowledge, are not covered in
the Guide; they include: specific programming
languages, relational databases and networks. This is a
consequence of an engineering-based approach. In all
fields—not only computing—the designers of
engineering curricula have realized that specific
technologies are replaced much more rapidly than the
engineering work force. An engineer must be equipped
with the essential knowledge that supports the
selection of the appropriate technology at the
appropriate time in the appropriate circums tance. For
example, software systems might be built in Fortran
using functional decomposition or in C++ using object-
oriented techniques. The techniques for integrating and
configuring instances of those systems would be quite
different. But, the principles and objectives of
configuration management remain the same. The
Guide therefore does not focus on the rapidly changing
technologies, although their general principles are
described in relevant Knowledge Areas.

 © IEEE –Trial Version 1.00 – May 2001 x

These exclusions demonstrate that this Guide is
necessarily incomplete. The Guide includes the
software engineering knowledge that is necessary, but
not sufficient to a software engineer. Practicing
software engineers will need to know many things
about computer science, project management and
systems engineering—to name a few—that fall outside
the Body of Knowledge characterized by this Guide.
However, stating that this information should be
known by software engineers is not the same as stating
that this knowledge falls within the bounds of the
software engineering discipline. Instead, it should be
stated that software engineers need to know some
things taken from other disciplines—and that is the
approach adopted by this Guide. So, this Guide
characterizes the Body of Knowledge falling within the
scope of software engineering and provides references
to relevant information from other disciplines.

The emphasis on engineering practice leads the Guide
toward a strong relationship with the normative
literature. Most of the computer science, information
technology and software engineering literature
provides information useful to software engineers, but
a relatively small portion is normative. A normative
document prescribes what an engineer should do in a
specified situation rather than providing information
that might be helpful. The normative literature is
validated by consensus formed among practitioners
and is concentrated in standards and related
documents. From the beginning, the SWEBOK project
was conceived as having a strong relationship to the
normative literature of software engineering. The two
major standards bodies for software engineering (IEEE
Software Engineering Standards Committee and
ISO/IEC JTC1/SC7) are represented in the project.
Ultimately, we hope that software engineering practice
standards will contain principles traceable to the
SWEBOK Guide.

INTENDED AUDIENCE

The Guide is oriented toward a variety of audiences,
all over the world. It aims to serve public and private
organizations in need of a consistent view of software
engineering for defining education and training
requirements, classifying jobs, developing
performance evaluation policies or specifying
development tasks. It also addresses practicing, or
managing, software engineers and the officials
responsible for making public policy regarding
licensing and professional guidelines. In addition,
professional societies and educators defining the
certification rules, accreditation policies for university
curricula, and guidelines for professional practice will
benefit from SWEBOK, as well as the students
learning the software engineering profession and

educators and trainers engaged in defining curricula
and course content.

EVOLUTION OF THE GUIDE

From 1993 to 2000, the IEEE Computer Society and
the ACM cooperated in promoting the
professionalization of software engineering through
their joint Software Engineering Coordinating
Committee (SWECC). The Code of Ethics was
completed under stewardship of the SWECC primarily
through volunteer efforts. The SWEBOK project was
initiated by the SWECC in 1998.

The SWEBOK project’s scope, the variety of
communities involved, and the need for broad
participation suggested a need for full-time rather than
volunteer management. For this purpose, the IEEE-
Computer Society contracted the Software Engineering
Management Research Laboratory at the Université du
Québec à Montréal to manage the effort.

The project plan includes three successive phases:
Strawman, Stoneman and Ironman. The publication of
this Trial Version of the Guide marks the end of the
Stoneman phase of the project. An early prototype,
Strawman, demonstrated how the project might be
organized. Development of the Ironman version will
commence after we gain insight through trial
application of the Trial Version of the Guide.

The project team developed two important principles
for guiding the project: transparency and consensus.
By transparency, we mean that the development
process is itself documented, published, and publicized
so that important decisions and status are visible to all
concerned parties. By consensus, we mean that the
only practical method for legitimizing a statement of
this kind is through broad participation and agreement
by all significant sectors of the relevant community.
By the time the Trial version of the Guide is
completed, literally hundreds of contributors and
reviewers will have touched the product in some
manner. By the time the third phase—the Ironman—is
completed, the number of participants will number in
the thousands and additional efforts will have been
made to reach communities less likely to have
participated in the current review process.

Like any software project, the SWEBOK project has
many stakeholders—some of which are formally
represented. An Industrial Advisory Board, composed
of representatives from industry (Boeing, Construx
Software, the MITRE Corporation, Rational Software,
Raytheon Systems, and SAP Labs-Canada), research
agencies (National Institute of Standards and
Technology, National Research Council of Canada)
and of the Canadian Council of Professional
Engineers, and the IEEE Computer Society, have

© IEEE – Trial Version 1.00 – May 2001 xi

provided financial support for the project. The IAB’s
generous support permits us to make the products of
the SWEBOK project publicly available without any
charge (visit http://www.swebok.org). IAB
membership is supplemented with the chairs of
ISO/IEC JTC1/SC7 and of the related Computing
Curricula 2001 initiative. The IAB reviews and
approves the project plans, oversees consensus
building and review processes, promotes the project,
and lends credibility to the effort. In general, it ensures
the relevance of the effort to real-world needs From the
outset, it was understood that an implicit Body of
Knowledge already exists in textbooks on software
engineering. To ensure that we took full advantage of
existing literature, Steve McConnell, Roger Pressman,
and Ian Sommerville —the authors of the three best-
selling textbooks on software engineering—served on
a Panel of Experts to provide advice on the initial
formulation of the project and the structure of the
Guide. In addition, the extensive review process
involves feedback from relevant communities. In all
cases, we seek international participation to maintain a
broad scope of relevance.

We organized the development of the Trial version
into three public review cycles. The first review cycle
focused on the soundness of the proposed breakdown
of topics within each KA. Thirty-four domain experts
completed this review cycle in April 1999. The
reviewer comments, as well as the identities of the
reviewers, are available on the project’s Web site.

In the second review cycle completed in October 1999,
a considerably larger group of professionals, organized
into review viewpoints, answered a detailed
questionnaire for each KA description. The viewpoints
(for example, individual practitioners, educators, and
makers of public policy) were formulated to ensure
relevance to the Guide’s various intended audiences. In
all, roughly 200 reviewers provided 5000 comments.
The identities of the reviewers, their comments, and
the disposition of those comments can be found on the
project’s web site. In the third review cycle,
considering the coherency of the Guide as a whole, we
received close to 3500 comments from 378
professionals from 41 countries. These comments, as
well as demographic data about the reviewers, are also
available at www.swebok.org.

Readers are invited to access the project web site to be
informed on the future evolution of the Guide.

LIMITATIONS AND NEXT S TEPS

Even though the current version of the Guide has gone
through an elaborate development and review process,
the following limitations of this process must be
recognized and stated:

w Close to five hundred software engineering
professionals from 41 countries and representing
various viewpoints have participated in the
project. Even though this is a significant number
of competent software engineering professionals,
we cannot and do not claim that this sample
represents all viewpoints from around the world
and across all industry sectors.

w Even though complementary definitions of what
constitutes “generally accepted knowledge” have
been developed, the identification of which topics
meet this definition within each Knowledge Area
remains a matter for continued consensus
formation

w The amount of literature that has been published
on software engineering is considerable and any
selection of reference material remains a matter
of judgment. In the case of the SWEBOK,
references were selected because they are written
in English, readily available, easily readable,
and—, taken as a group—, provide coverage of
the topics within the KA

w Important and highly relevant reference material
written in other languages than English have been
omitted from the selected reference material.

w Reports of “field-testing” by its intended
audience have not reached the editorial team at
the time of publication. We are aware of teams
using the Guide for evaluation and development
of curriculum as well as for various purposes in
industry. Monitoring of such field trials will be
the next step in the evolution of the Guide.

Additionally, one must consider that

w Software engineering is an emerging discipline.
This is especially true if you compare it to certain
more established engineering disciplines. This
means notably that the boundaries between the
Knowledge Areas of software engineering and
between software engineering and its Related
Disciplines remain a matter for continued
consensus formation;

The contents of this Guide must therefore be viewed as
an “informed and reasonable” characterization of the
software engineering Body of Knowledge and as
baseline document for the Ironman phase.
Additionally, please note that the Guide is not
attempting nor does it claim to replace or amend in any
way laws, rules and procedures that have been defined
by official public policy makers around the world
regarding the practice and definition of engineering
and software engineering in particular.

To address these limitations, the next Ironman phase
will begin by monitoring and gathering feedback on

 © IEEE –Trial Version 1.00 – May 2001 xii

actual usage of the Trial version of the Guide by the
various intended audiences for a period of roughly two
years. Based on the gathered feedback, development of
the Ironman version would be initiated in the third year

and would follow a still to be determined development
and review process. Those interested in performing
experimental applications of the Guide are invited to
contact the project team.

© IEEE – Trial Version 1.00 – May 2001 xiii

Alain Abran
École de technologie supérieure

Executive Editors of the
Guide to the Software
Engineering Body of

Knowledge

James W. Moore
The MITRE Corporation

Pierre Bourque
École de Technologie Supérieure

Editors of the Guide to
the Software Engineering

Body of Knowledge

Robert Dupuis
Université du Québec à Montréal

Leonard Tripp
Boeing Commercial Airplane
1999 President
IEEE Computer Society

Chair of the Professional
Practices Committee,

IEEE Computer Society

May 2001

The SWEBOK project web site is http://www.swebok.org/

ACKNOWLEDGMENTS

The SWEBOK editorial team gratefully
acknowledges the support provided by the
members of the Industrial Advisory Board.
Funding for this project has been provided by the
ACM, Boeing, the Canadian Council of
Professional Engineers, Construx Software, the
IEEE Computer Society, the MITRE
corporation, the National Institute of Standards
and Technology, the National Research Council
of Canada, Rational Software, Raytheon, and
SAP Labs (Canada). The team is thankful for the
counsel provided by the Panel of Experts. The
team also appreciates the important work
performed by the Knowledge Area specialists.
We would also like to express our gratitude for
initial work on the Knowledge Area Descriptions
completed by Imants Freibergs, Stephen Frezza,
Andrew Gray, Vinh T. Ho, Michael Lutz, Larry
Reeker, Guy Tremblay, Chris Verhoef, and

Sybille Wolff. The editorial team must also
acknowledge the indispensable contribution of
the hundreds of reviewers.

The editorial team also wishes to thank the
following people who contributed to the project
in various manners: Mark Ardis, Michel Boivin,
Julie Bonneau, Simon Bouchard, François
Cossette, Vinh Duong, Gilles Gauthier, Michèle
Hébert, Paula Hawthorn, Richard W. Heiman,
Vinh T. Ho, Julie Hudon, Lucette Lapointe,
Claude Laporte, Luis Molinié, Serge Oligny,
Keith Paton, Denis St-Pierre, Dave Rayford,
Pascale Tardif, Louise Thibaudeau, Dolores
Wallace, Évariste Valery Bevo Wandji, Sybille
Wolff, and Michal Young.

Finally, there are surely other people who have
contributed to this Guide, either directly or
indirectly, whose names we have inadvertently
omitted. To those people, we offer our tacit
appreciation and apologize for having omitted
explicit recognition here.

 © IEEE –Trial Version 1.00 – May 2001 xiv

© IEEE – Trial Version 1.00 – May 2001 xv

INDUSTRIAL ADVISORY
BOARD

At the time of the publication, the following people formed the Industrial Advisory Board:

Mario R. Barbacci, Software Engineering Institute, representing the
IEEE Computer Society

Carl Chang, University of Illinois at Chicago, representing Computing Curricula 2001

François Coallier, Bell Canada, speaking as ISO/IEC JTC 1 / SC7 Chairman

Charles Howell, The MITRE Corporation

Anatol Kark, National Research Council of Canada

Philippe Kruchten, Rational Software

Laure Le Bars, SAP Labs (Canada)

Steve McConnell, Construx Software

Dan Nash, Raytheon Company

Fred Otto, Canadian Council of Professional Engineers (CCPE)

Bryan Pflug, The Boeing Company

Larry Reeker, National Institute of Standards and Technology,
Department of Commerce, USA

© IEEE – Trial Version 1.00 – May 2001 xvi

PANEL OF EXPERTS

At the time of the publication, the following people formed the Panel of Experts:

Steve McConnell, Construx Software

Roger Pressman, R.S. Pressman and Associates

Ian Sommerville, Lancaster University, UK

© IEEE – Trial Version 1.00 – May 2001 xvii

REVIEW TEAM

The following people participated in the review process of this Guide.

Abbas, Rasha, Australia
Abran, Alain, Canada
Accioly, Carlos, Brazil
Ackerman, Frank, USA
Akiyama, Yoshihiro, Japan
Al-Abdullah, Mohammad, USA
Alarcon, Miren Idoia, Spain
Alawy, Ahmed, USA
Alleman, Glen, USA
Allen, Bob, Canada
Allen, David, USA
Amorosa, Francesco, Italy
Amyot, Daniel, Canada
Andrade, Daniel, Brazil
Arroyo-Figueror, Javier, USA
Ashford, Sonny, USA
Atsushi, Sawada, Japan
Backitis Jr., Frank, USA
Bagert, Donald, USA
Baker, Theodore, USA
Baker, Jr., David, USA
Baldwin, Mark, USA
Bales, David, UK
Bamberger, Judy, USA
Banerjee, Bakul, USA
Barker, Harry, UK
Barnes, Julie, USA
Barney, David, Australia
Barros, Rafael, Colombia
Bastarache, Louis, Canada
Bayer, Steven, USA
Beaulac, Adeline, Canada
Beck, William, USA
Beckman, Kathleen, USA
Below, Doreen, USA
Ben-Menachem, Mordechai, Israel
Benediktsson, Oddur, Iceland
Bergeron, Alain, Canada
Berler, Alexander, Greece
Bernet, Martin, USA
Bernstein, Larry, USA
Bertram, Martin, Germany
Bielikova, Maria, Slovakia
Bierwolf, Robert, The Netherlands

Bisbal, Jesus, Ireland
Boivin, Michel, Canada
Bomitali, Evelino, Italy
Bonderer, Reto, Switzerland
Bonk, Francis, USA
Booch, Grady, USA
Booker, Glenn, USA
Börstler, Jürgen, Sweden
Borzovs, Juris, Latvia
Botting, Richard, USA
Bowen, Thomas, USA
Boyer, Ken, USA
Brashear, Phil, USA
Briggs, Steve, USA
Bright, Daniela, USA
Brosseau, Jim, Canada
Brotbeck, George, USA
Brown, Normand, Canada
Bruhn, Anna, USA
Brune, Kevin, USA
Bryant, Jeanne, USA
Buglione, Luigi, Italy
Burns, Robert, USA
Burnstein, Ilene, USA
Byrne, Edward, USA
Calizaya, Percy, Peru
Carreon, Juan, USA
Carruthers, Kate, Australia
Caruso, Richard, USA
Case, Pam, USA
Cavanaugh, John, USA
Celia, John A., USA
Chalupa Sampaio, Alberto Antonio, Portugal
Chan, F.T., Hong Kong
Chan, Keith, Hong Kong
Chandra, A.K., India
Chang, Wen-Kui, Taiwan
Chapin, Ned, USA
Charette, Robert, USA
Chevrier, Marielle, Canada
Chi, Donald, USA
Chilenski, John, USA
Chow, Keith, Italy
Ciciliani, Ricardo, Argentina

© IEEE – Trial Version 1.00 – May 2001 xviii

Clark, Glenda, USA
Cleavenger, Darrell, USA
Cloos, Romain, Luxembourg
Coblentz, Brenda, USA
Cohen, Phil, Australia
Collignon, Stephane, Australia
Connors, Kathy Jo, USA
Cooper, Daniel, USA
Councill, Bill, USA
Cox, Margery, USA
Cunin, Pierre-Yves, France
DaLuz, Joseph, USA
Dampier, David, USA
Daneva, Maya, Canada
Davis, Ruth, USA
De Cesare, Sergio, UK
Dekleva, Sasa, USA
del Castillo, Federico, Peru
Del Dago, Gustavo, Argentina
DeWeese, Perry, USA
Di Nunno, Donn, USA
Diaz-Herrera, Jorge, USA
Dieste, Oscar, Spain
Dion, Francis, Canada
Dixon, Wes, USA
Dolado, Javier, Spain
Donaldson, John, UK
Dorofee, Audrey, USA
Douglass, Keith, Canada
Du, Weichang, Canada
Duben, Anthony, USA
Dudash, Edward, USA
Duncan, Scott, USA
Duong, Vinh, Canada
Durham, George, USA
Dutil, Daniel, Canada
Edge, Gary, USA
Edwards, Helen Maria, UK
El-Kadi, Amr, Egypt
Endres, David, USA
Engelmann, Franz, Switzerland
Escue, Marilyn, USA
Espinoza, Marco, Peru
Fay, Istvan, Hungary
Fayad, Mohamed, USA
Fendrich, John, USA
Ferguson, Robert, USA
Fernandez, Eduardo, USA
Fernandez-Sanchez, Jose, Spain
Filgueiras, Lucia, Brazil
Finkelstein, Anthony, UK
Flinchbaugh, Scott, USA
Fortenberry, Kirby, USA

Foster, Henrietta, USA
Fowler, John Jr., USA
Fox, Christopher, USA
Frankl, Phyllis, USA
Freibergs, Imants, Latvia
Frezza, Stephen, USA
Fruehauf, Karol, Switzerland
Fuggetta, Alphonso, Italy
Fujii, Roger, USA
Fuschi, David Luigi, Italy
Gabrini, Philippe, Canada
Gagnon, Eric, Canada
Ganor, Eitan, Israel
Garbajosa, Juan, Spain
Garceau, Benoît, Canada
Garcia-Palencia, Omar, Colombia
Garner, Barry, USA
Gelperin, David, USA
Gersting, Judith, Hawaii
Giesler, Gregg, USA
Gil, Indalecio, Spain
Gilchrist, Thomas, USA
Glass, Robert, USA
Glynn, Garth, UK
Goers, Ron, USA
Gogates, Gregory, USA
Goldsmith, Robin, USA
Goodbrand, Alan, Canada
Gorski, Janusz, Poland
Gresse von Wangenheim, Christiane, Brazil
Grigonis, George, USA
Gupta, Arun, USA
Gustafson, David, USA
Gutcher, Frank, USA
Haas, Bob, USA
Hagar, Jon, USA
Hagstrom, Erick, USA
Hailey, Victoria, Canada
Haller, John, USA
Halstead-Nussloch, Richard, USA
Hamm, Linda, USA
Hankewitz, Lutz, Germany
Harker, Rob, USA
Hart, Ronald, USA
Hart, Hal, USA
Hartner, Clinton, USA
Hayeck, Elie, USA
He, Zhonglin, UK
Hedger, Dick, USA
Hefner, Rick, USA
Heinrich, Mark, USA
Herrmann, Debra, USA
Hesse, Wolfgang, Germany

© IEEE – Trial Version 1.00 – May 2001 xix

Hilburn, Thomas, USA
Hill, Michael, USA
Ho, Vinh, Canada
Hodgen, Bruce, Australia
Hodges, Brett, Canada
Hoffman, Michael, USA
Hoganson, Tammy, USA
Hollocker, Chuck, USA
Horch, John, USA
Huang, Hui Min, USA
Hung, Peter, USA
Hung, Chih-Cheng, USA
Hunt, Theresa, USA
Hunter, John, USA
Hvannberg, Ebba Thora, Iceland
Hybertson, Duane, USA
Ikiz, Seckin, Turkey
Iyengar, Dwaraka, USA
Jackelen, George, USA
Jaeger, Dawn, USA
Jahnke, Jens, Canada
Jino, Mario, Brazil
Johnson, Vandy, USA
Jones, Larry, Canada
Jones, Alan, UK
Jones, James, USA
Jones, Paul, USA
Juan-Martinez, Manuel-Fernando, Spain
Juhasz, Zoltan, Hungary
Juristo, Natalia, Spain
Kaiser, Michael, Switzerland
Kambic, George, USA
Kark, Anatol, Canada
Kasser, Joseph, Australia
Kasser, Joe, USA
Katz, Alf, Australia
Kececi, Nihal, Canada
Kell, Penelope, USA
Kelly, Diane, Canada
Kelly, Frank, USA
Kenett, Ron, Israel
Kenney, Mary L., USA
Kerr, John, USA
Kierzyk, Robert, USA
Kinsner, W., Canada
Kirkpatrick, Harry, USA
Kittiel, Linda, USA
Klappholz, David, USA
Klein, Joshua, Israel
Knight, Claire, UK
Knoke, Peter, USA
Ko, Roy, Hong Kong
Kolewe, Ralph, Canada

Komal, Surinder Singh, Canada
Kovalovsky, Stefan, Austria
Krauth, Péter, Hungary
Krishnan, Nirmala, USA
Kruchten, Philippe, Canada
Kwok, Shui Hung, Canada
Lacroix, Dominique, Canada
LaMotte, Stephen, USA
Land, Susan, USA
Lange, Douglas, USA
Laporte, Claude, Canada
Lawlis, Patricia, USA
Le, Thach, USA
Leavitt, Randal, Canada
LeBel, Réjean, Canada
Leciston, David, USA
Lehman, Meir (Manny), UK
Leigh, William, USA
Lenss, John, USA
Leonard, Eugene, USA
Lethbridge, Timothy, Canada
Leung, Hareton, Hong Kong
Lever, Ronald, The Netherlands
Levesque, Ghislain, Canada
Ley, Earl, USA
Little, Joyce Currie, USA
Logan, Jim, USA
Lounis, Hakim, Canada
Low, Graham, Australia
Lutz, Michael, USA
Lynch, Gary, USA
MacKay, Stephen, Canada
MacKenzie, Garth, USA
MacNeil, Paul, USA
Magel, Kenneth, USA
Mains, Harold, USA
Malak, Renee, USA
Maldonado, José Carlos, Brazil
Marcos, Esperanza, Spain
Marinescu, Radu, Romania
Marm, Waldo, Peru
Marusca, Ioan, Canada
Matlen, Duane, USA
Matsumoto, Yoshihiro, Japan
McBride, Tom, Australia
McCarthy, Glenn, USA
McChesney, Ian, UK
McCormick, Thomas, Canada
McCown, Christian, USA
McDonald, Jim, USA
McGrath Carroll, Sue, USA
McHutchison, Diane, USA
McKinnell, Brian, Canada

© IEEE – Trial Version 1.00 – May 2001 xx

McMichael, Robert, USA
McMillan, William, USA
McQuaid, Patricia, USA
Mead, Nancy, USA
Meeuse, Jaap, The Netherlands
Meier, Michael, USA
Melhart, Bonnie, USA
Mengel, Susan, USA
Meredith, Denis, USA
Meyerhoff, Dirk, Germany
Mili, Hafedh, Canada
Miller, Chris, The Netherlands
Miller, Mark, USA
Miller, Keith, USA
Miranda, Eduardo, Canada
Mistrik, Ivan, Germany
Mitasiunas, Antanas, Lithuania
Modell, Howard, USA
Modell, Staiger,USA
Modesitt, Kenneth, USA
Moland, Kathryn, USA
Moreno, Ana, Spain
Mosiuoa, Tseliso, Lesotho
Moudry, James, USA
Mularz, Diane, USA
Mullens, David, USA
Müllerburg, Monika, Germany
Murali, Nagarajan, Australia
Murphy, Mike, USA
Narasimhadevara, Sudha, Canada
Narawane, Ranjana, India
Narayanan, Ramanathan, India
Navarro Ramirez, Daniel, Mexico
Navas Plano, Francisco, Spain
Neumann, Dolly, USA
Nguyen-Kim, Hong, Canada
Nikandros, George, Australia
Nishiyama, Tetsuto, Japan
Nunn, David, USA
O'Donoghue, David, Ireland
Oliver, David John, Australia
Olson, Keith, USA
Ostrom, Donald, USA
Oudshoorn, Michael, Australia
Owen, Cherry, USA
Parrish, Lee, USA
Parsons, Samuel, USA
Patel, Dilip, UK
Paulk, Mark, USA
Pavelka, Jan, Czech Republic
Pawlyszyn, Blanche, USA
Pecceu, Didier, France
Perisic, Branko, Yugoslavia

Peters, Dennis, Canada
Petersen, Erik, Australia
Pfeiffer, Martin, Germany
Phillips, Dwayne, USA
Phipps, Robert, USA
Phister, Jr., Paul, USA
Piattini, Mario, Spain
Piersall, Jeff, USA
Pillai, S.K., India
Pinder, Alan, UK
Pinheiro, Francisco A., Brazil
Poon, Peter, USA
Poppendieck, Mary, USA
Powell, Mace, USA
Predenkoski, Mary, USA
Prescott, Allen, USA
Pressman, Roger, USA
Price, Margaretha, USA
Price, Art, USA
Pullum, Laura, USA
Purser, Keith, USA
Purssey, John, Australia
Pustaver, John, USA
Quinn, Anne, USA
Radnell, David, Australia
Rafea, Ahmed, Egypt
Ramsden, Patrick, Australia
Rao, N.Vyaghrewara, India
Reader, Katherine, USA
Redwine, Samuel, USA
Reed, Karl, Australia
Reedy, Ann, USA
Rios, Joaquin, Spain
Risbec, Philippe, France
Roach, Steve, USA
Robillard, Pierre, Canada
Rocha, Zalkind, Brazil
Rodeiro Iglesias, Javier, Spain
Rodriguez-Dapena, Patricia, Spain
Rogoway, Paul, Israel
Rontondi, Guido, Italy
Rosca, Danie la, USA
Rosenberg, Linda, USA
Rourke, Michael, Australia
Rout, Terry, Australia
Ruocco, Anthony, USA
Rutherfoord, Rebecca, USA
Ryan, Michael, Ireland
Salustri, Filippo, Canada
Salwin, Arthur, USA
Sanden, Bo, USA
Sandmayr, Helmut, Switzerland
Santana Filho, Ozeas Vieira, Brazil

© IEEE – Trial Version 1.00 – May 2001 xxi

Sato, Tomonobu, Japan
Satyadas, Antony, USA
Schaaf, Robert, USA
Scheper, Charlotte, USA
Schiffel, Jeffrey, USA
Schlicht, Bill, USA
Schrott, William, USA
Schwarm, Stephen, USA
Sebern, Mark, USA
Seffah, Ahmed, Canada
Selby, Nancy, USA
Selph, William, USA
Sen, Dhruba, USA
Senechal, Raymond, USA
Setlur, Atul, USA
Sharp, David, USA
Shepard, Terry, Canada
Shepherd, Alan, Germany
Silva, Andres, Spain
Singer, Carl, USA
Sinnett, Paul, UK
Sintzoff, André, France
Sky, Richard, USA
Smilie, Kevin, USA
Smith, David, USA
Sophatsathit, Peraphon, Thailand
Sorensen, Reed, USA
Soundarajan, Neelam, USA
Sousa Santos, Frederico, Portugal
Spillers, Mark, USA
Spinellis, Diomidis, Greece
Springer, Donald, USA
St-Pierre, Denis, Canada
Staiger, John, USA
Steurs, Stefan, Belgium
Stroulia, Eleni, Canada
Subramanian, K.S., India
Sundaram, Sai, UK
Swanek, James, USA
Swearingen, Sandra, USA
Tamai, Tetsuo, Japan
Tasker, Dan, New Zealand
Taylor, Stanford, USA
Terski, Matt, USA

Thayer, Richard, USA
Thomas, Michael, USA
Thompson, A. Allan, Australia
Thompson, John Barrie, UK
Titus, Jason, USA
Tockey, Steve, USA
Tovar, Edmundo, Spain
Towhidnejad, Massood, USA
Trellue, Patricia, USA
Trèves, Nicolas, France
Troy, Elliot, USA
Tsuneo, Furuyama, Japan
Tuohy, Marsha P., USA
Tuohy, Kenney, USA
Turczyn, Stephen, USA
Upchurch, Richard, USA
Van Duine, Dan, USA
Vander Plaats, Jim, USA
Vegas, Sira, Spain
Verner, June, USA
Villas-Boas, André, Brazil
Vollman, Thomas, USA
Walker, Richard, Australia
Walsh, Bucky, USA
Wang, Yingxu, Sweden
Wear, Larry, USA
Weinstock, Charles, USA
Wenyin, Liu, China
Werner, Linda, USA
White, Stephanie, USA
Whitmire, Scott, USA
Wijbrans, Klaas, The Netherlands
Wijbrans-Roodbergen, Margot, The Netherlands
Wilkie, Frederick, UK
Wilson, Charles, USA
Wilson, Russell, USA
Wilson, Leon, USA
Woechan, Kenneth, USA
Yadin, Aharon, Israel
Yih, Swu, Taiwan
Young, Michal, USA
Yrivarren, Jorge, Peru
Zvegintzov, Nicholas, USA
Zweben, Stu, USA

© IEEE – Trial Version 1.00 – May 2001 xxii

The following motion was unanimously adopted on April 18, 2001.

The Industrial Advisory Board of the Guide to the Software Engineering Body of Knowledge
(SWEBOK) project recognizes that due process was followed in the development of the Guide
(Trial Version) and endorses the position that the Guide (Trial Version) is ready for field trials
for a period of two years.

The following motion was adopted by the Board of Governors of the
IEEE Computer Society in May 2001.

The Board of Governors of the IEEE Computer Society accepts the Guide to the Software
Engineering Body of Knowledge (Trial Version) as fulfilling its development requirements and is
ready for field trials for a period of two years.

© IEEE – Trial Version 1.00 – May 2001

CHAPTER 1

INTRODUCTION TO THE GUIDE

In spite of the millions of software professionals worldwide
and the ubiquitous presence of software in our society,
software engineering has not yet reached the status of a
legitimate engineering discipline and a recognized
profession.

Originally formed in 1993 by the IEEE Computer Society
and the Association for Computing Machinery, the
Software Engineering Coordinating Committee (SWECC)
has been actively promoting software engineering as a
profession and an engineering discipline.

Achieving consensus by the profession on a core body of
knowledge is a key milestone in all disciplines and has
been identified by the SWECC as crucial for the evolution
of software engineering toward a professional status. This
Guide, written under the auspices of this committee, is the
part of a multi-year project designed to reach this
consensus.

What is Software Engineering?

The IEEE Computer Society defines software engineering
as

“(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

(2) The study of approaches as in (1).”1

What is a Recognized Profession?

For software engineering to be known as a legitimate
engineering discipline and a recognized profession,
consensus on a core body of knowledge is imperative. This
fact is well illustrated by Starr when he defines what can be
considered a legitimate discipline and a recognized
profession. In his Pulitzer-prize-winning book on the
history of the medical profession in the USA, he states that:

“the legitimization of professional authority involves three
distinctive claims: first, that the knowledge and competence
of the professional have been validated by a community of
his or her peers; second, that this consensually validated
knowledge rests on rational, scientific grounds; and third,
that the professional’s judgment and advice are oriented
toward a set of substantive values, such as health. These

1 “IEEE Standard Glossary of Software Engineering Terminology,”

IEEE, Piscataway, NJ std 610.12-1990, 1990.

aspects of legitimacy correspond to the kinds of attributes
— collegial, cognitive and moral — usually cited in the
term “profession.”2

What are the Characteristics of a Profession ?

But what are the characteristics of a profession? Gary Ford
and Norman Gibbs studied several recognized professions
including medicine, law, engineering and accounting3.
They concluded that an engineering profession is
characterized by several components:

w An initial professional education in a curriculum
validated by society through accreditation;

w Registration of fitness to practice via voluntary
certification or mandatory licensing;

w Specialized skill development and continuing
professional education;

w Communal support via a professional society;

w A commitment to norms of conduct often prescribed
in a code of ethics.

This Guide contributes to the first three of these
components. Articulating a Body of Knowledge is an
essential step toward developing a profession because it
represents a broad consensus regarding what a software
engineering professional should know. Without such a
consensus, no licensing examination can be validated, no
curriculum can prepare an individual for an examination,
and no criteria can be formulated for accrediting a
curriculum. The development of the consensus is also
prerequisite to the adoption of coherent skill development
and continuing professional education programs in
organizations.

What are the Objectives of the SWEBOK Project?

The Guide should not be confused with the Body of
Knowledge itself. The Body of Knowledge already exists in
the published literature. The purpose of the Guide is to
describe what portion of the Body of Knowledge is

2 P. Starr, The Social Transformation of American Medicine: Basic

Books, 1982. p. 15.
3 G. Ford and N. E. Gibbs, “A Mature Profession of Software

Engineering,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-T R-
004, January 1996.

1–2 © IEEE – Trial Version 1.00 – May 2001

generally accepted, to organize that portion, and to provide
a topical access to it.

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) was established with the
following five objectives:

1. Promote a consistent view of software engineering
worldwide.

2. Clarify the place—and set the boundary—of software
engineering with respect to other disciplines such as
computer science, project management, computer
engineering, and mathematics.

3. Characterize the contents of the software engineering
discipline.

4. Provide a topical access to the Software Engineering
Body of Knowledge.

5. Provide a foundation for curriculum development and
individual certification and licensing material.

The first of these objectives, the consistent worldwide view
of software engineering was supported by a development
process that has engaged approximately 500 reviewers from
42 countries. (More information regarding the development
process can be found in the Preface and on the Web site.
Professional and learned societies and public agencies
involved in software engineering were officially contacted,
made aware of this project and invited to participate in the
review process. Knowledge Area Specialists or chapter
authors were recruited from North America, the Pacific
Rim and Europe. Presentations on the project were made to
various international venues and more are scheduled for the
upcoming year.

The second of the objectives, the desire to set a boundary,
motivates the fundamental organization of the Guide. The
material that is recognized as being within software
engineering is organized into the ten Knowledge Areas
listed in Table 1. Each of the ten KAs is treated as a chapter
in this Guide. Table 1. The SWEBOK knowledge areas
(KA).

Software requirements

Software design

Software construction

Software testing

Software maintenance

Software configuration management

Software engineering management

Software engineering process

Software engineering tools and methods

Software quality

In establishing a boundary, it is also important to identify
what disciplines share a boundary and often a common
intersection with software engineering. To this end, the
guide also recognizes seven related disciplines, listed in

Table 2 (See also Appendix B). Software engineers should
of course know material from these fields (and the KA
descriptions may make references to the fields). It is not
however an objective of the SWEBOK Guide to
characterize the knowledge of the related disciplines but
rather what is viewed as specific to software engineering.

Table 2 Related disciplines.

Cognitive sciences and human factors

Computer engineering

Computer science

Management and management science

Mathematics

Project management

Systems engineering

Hierarchical Organization

The organization of the Knowledge Area Descriptions or
chapters, shown in Figure 1, supports the third of the
project’s objectives—a characterization of the contents of
software engineering. The detailed specifications provided
by the project’s editorial team to the Knowledge Area
Specialists regarding the contents of the Knowledge Area
Descriptions can be found in Appendix A.

Figure 1 The organization of a KA description

The Guide uses a hierarchical organization to decompose
each KA into a set of topics with recognizable labels. A
two- or three-level breakdown provides a reasonable way to
find topics of interest. The Guide treats the selected topics
in a manner comp atible with major schools of thought and
with breakdowns generally found in industry and in
software engineering literature and standards. The
breakdowns of topics do not presume particular application
domains, business uses, management philosophies,
development methods, and so forth. The extent of each
topic’s description is only that needed to understand the

Breakdown
of Topics

Matrix of Topics
and Reference

Materials

Reference
Materials

Topic
Descriptions Classification

by Bloom’s
Taxonomy

References to
Related

Disciplines

© IEEE – Trial Version 1.00 – May 2001

generally accepted nature of the topics and for the reader to
successfully find reference material. After all, the Body of
Knowledge is found in the reference materials, not in the
Guide itself.

Reference Materials and a Matrix

To provide a topical access to the Knowledge—the fourth
of the project’s objectives—the Guide identifies reference
materials for each KA including book chapters, refereed
papers, or other well-recognized sources of authoritative
information4. Each KA description also includes a matrix
that relates the reference materials to the listed topics. The
total volume of cited literature is intended to be suitable for
mastery through the completion of an undergraduate
education plus four years of experience.

It should be noted that the Guide does not attempt to be
comprehensive in its citations. Much material that is both
suitable and excellent is not referenced. Materials were
selected, in part, because— taken as a collection—they
provide coverage of the described topics.

Depth of Treatment

From the outset, the question arose as to the depth of
treatment the Guide should provide. We adopted an
approach that supports the fifth of the project’s
objectives—providing a foundation for curriculum
development, certification and licensing. We applied a
criterion of generally accepted knowledge, which we had to
distinguish from advanced and research knowledge (on the
grounds of maturity) and from specialized knowledge (on
the grounds of generality of application). A second
definition of generally accepted comes from the Project
Management Institute: “The generally accepted knowledge
applies to most projects most of the time, and widespread
consensus validates its value and effectiveness”.5

However, generally accepted knowledge does not imply
that one should apply the designated knowledge uniformly
to all software engineering endeavors —each project’s
needs determine that—but it does imply that competent,
capable software engineers should be equipped with this
knowledge for potential application. More precisely,
generally accepted knowledge should be included in the
study material for a software engineering licensing
examination that graduates would take after gaining four
years of work experience. Although this criterion is specific
to the U.S. style of education and does not necessarily
apply to other countries, we deem it useful. However, both

4 Web pages in the Recommended References sections were verified on

April 9, 2001.
5 Project Management Institute, A Guide to the Project Management

Body of Knowledge, Upper Darby, PA, 1996,
http://www.pmi.org/publictn/pmboktoc.htm/. “Project” in the quote
refers to projects in general.

definitions of generally accepted knowledge should be seen
as complementary.

Additionally, the KA descriptions are somewhat forward-
looking—we’re considering not only what is generally
accepted today but also what could be generally accepted in
three to five years.

Ratings

As an aid notably to curriculum developers and in support
of the project’s fifth objective, the Guide rates each topic
with one of a set of pedagogical categories commonly
attributed to Benjamin Bloom6. The concept is that
educational objectives can be classified into six categories
representing increasing depth: knowledge, comprehension,
application, analysis, synthesis, and evaluation Results of
this exercise for all KAs can be found in Appendix C. This
Appendix must however not be viewed as a definitive
classification but much more as a starting point for
curriculum developers.

KAs from Related Disciplines

A list of disciplines (Related Disciplines) that share a
common boundary with software engineering can be found
in Appendix B. Appendix B also identifies from an
authoritative source a list of KAs of these Related
Disciplines.

A proposed Breakdown for an Additional KA

One of the knowledge areas that was not included in this
Trial version because there was no consensus on the
generally accepted set of reference material is Component
integration. Since such a consensus may appear in the near
future, we include in Appendix D a proposal for a
breakdown of topics on that subject. This is intended to
serve as a jumpstart for future work on the topic.

We recognize also that Human-Computer Interface is
important and we will in future versions indicate a point
beyond which the software engineer should seek the help of
a specialist. There was also no consensus on a set of
reference material on the subject.

THE KNOWLEDGE AREAS

Figure 2 maps out the 10 KAs and the important topics
incorporated within them. The first five KAs are presented
in traditional waterfall lifecycle sequence. The subsequent
Kas are presented in alphabetical order. This is identical to
the sequence in which they are presented in the Guide.
Brief summaries of the KA descriptions appear next.

6 See chiron.valdosta.edu/whuitt/col/cogsys/bloom.html for a short

description of Bloom’s taxonomy. The original source is Bloom, B.S.
(Ed.) (1956) Taxonomy of educational objectives: The classification
of educational goals: Handbook I, cognitive domain. New York ;
Toronto: Longmans, Green.

1–4 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE REQUIREMENTS (see Figure 2, column a)

A requirement is defined as a property that must be
exhibited in order to solve some problem of the real world.

The first knowledge sub-area is the requirement
engineering process, which introduces the requirements
engineering process, orienting the remaining five topics and
showing how requirements engineering dovetails with the
overall software engineering process. It describes process
models, process actors, process support and management
and process quality improvement.

The second sub-area is requirements elicitation , which is
concerned with where requirements come from and how
they can be collected by the requirements engineer. It
includes requirement sources and techniques for elicitation.
The third sub-area, requirements analysis, is concerned
with the process of analyzing requirements to:
w detect and resolve conflicts between requirements;

w discover the bounds of the system and how it must
interact with its environment;

w elaborate system requirements to software
requirements.

Requirements analysis includes requirements classification,
conceptual modeling, architectural design and requirements
allocation and requirements negotiation.

The fourth sub-area is software requirements specification.
It describes the structure, quality and verifiability of the
requirements document. This may take the form of two
documents, or two parts of the same document with
different readership and purposes. The first document is the
system requirements definition document, and the second is
the software requirements specification. The sub-area also
describes the document structure and standards and
document quality.

The fifth sub-area is requirements validation whose aim is
to pick up any problems before resources are committed to
addressing the requirements. Requirements validation is
concerned with the process of examining the requirements
document to ensure that it defines the right system (i.e. the
system that the user expects). It is subdivided into
descriptions of the conduct of requirements reviews,
prototyping, model validation and acceptance tests.

The last sub-area is requirements management, which is an
activity that spans the whole software life -cycle. It is
fundamentally about change management and the
maintenance of the requirements in a state that accurately
mirrors the software to be, or that has been, built. It
includes change management, requirements attributes and
requirements tracing.

SOFTWARE DESIGN (see Figure 2, column b)

According to the IEEE, software design is an activity that
spans the whole software life-cycle. It is fundamentally
about change management and the maintenance of the
requirements in a state that accurately mirrors the software
to be, or that has been, built. The knowledge area is divided
into six sub-areas.

The first one presents the basic concepts and notions which
form an underlying basis to the understanding of the role
and scope of software design. These are general concepts,
the context of software design, the design process and the
enabling techniques for software design.

The second sub-area regroups the key issues of software
design. They include concurrency, control and handling of
events, distribution, error and exception handling,
interactive systems and persistence.

The third sub-area is structure and architecture, in
particular architectural structures and viewpoints,
architectural styles, design patterns, and finally families of
programs and frameworks.

The fourth sub-area describes software design quality
analysis and evaluation. While a whole knowledge area is
devoted to software quality, this sub-area presents the
topics more specifically related to software design. These
aspects are quality attributes, quality analysis and
evaluation tools and measures.

The fifth one is software design notations, which are
divided into structural and behavioral descriptions.

The last sub-area covers software design strategies and
methods. First, general strategies are described, followed by
function-oriented methods, then object-oriented methods,
data-structure centered design and a group of other
methods, like formal and transformational methods.

SOFTWARE CONSTRUCTION (see Figure 2, column c)

Software Construction is a fundamental act of software
engineering: the construction of working meaningful
software through a combination of coding, validation, and
testing (unit testing).

The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed. These principles are

the reduction of complexity, the anticipation of diversity,
the structuring for validation and the use of external
standards.

A second and less important method of breaking the subject
of software construction into smaller units is to recognize
three styles/methods of software construction, namely :
Linguistic, Formal and Visual.

A synthesis of these two views is presented.

© IEEE – Trial Version 1.00 – May 2001

SOFTWARE TESTING (see Figure 2, column d)

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the specified expected behavior. It includes five
sub-areas.

It begins with a description of basic concepts. First, the
testing terminology is presented, then the theoretical
foundations of testing are described, with the relationship
of testing to other activities.

The second sub-area is the test levels. They are divided
between the targets and the objectives of the tests.

The third sub-area are the test techniques themselves. A
first category is grouped on the criterion of the base on
which tests are generated, and a second group based on the
ignorance of knowledge of implementation. A discussion of
how to select and combine the appropriate techniques is
presented.

The fourth sub-area covers test-related measures. The
measures are grouped into those related to the evaluation of
the program under test and the evaluation of the tests
performed.

The last sub-area describes the management specific to the
test process. It included management concerns and the test
activities.

SOFTWARE MAINTENANCE (see Figure 2, column e)

Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.
The maintenance phase of the lifecycle commences upon
delivery but maintenance activities occur much earlier. The
Software maintenance knowledge area is dived into six
sub-areas.

The first on presents the domain’s basic concepts,
definitions, the main activities and problems of software
maintenance.

The second sub-area describes the maintenance process,
based on the standards IEEE 1219 and ISO/IEC 14764.

The third sub-area regroups key issues related to software
maintenance. The topics covered are technical,
management, cost and estimation and measurement issues.

Techniques for maintenance constitute the fourth sub-area.
Those techniques include program comprehension, re-
engineering, reverse engineering and impact analysis.

 SOFTWARE CONFIGURATION MANAGEMENT (see Figure
2, column f)

Software Configuration Management (SCM) is the
discipline of identifying the configuration of a system at
distinct points in time for the purpose of systematically
controlling changes to the software configuration and
maintaining the integrity and traceability of the

configuration throughout the system lifecycle. This
Knowledge Area includes six sub-areas.

The first sub-area is the management of the SCM process. It
covers the topics of the organizational context for SCM,
constraints and guidance for SCM, planning for SCM, the
SCM plan itself and surveillance of SCM.

The second sub-area is Software configuration
identification, which identifies items to be controlled,
establishes identification schemes for the items and their
versions, and establishes the tools and techniques to be
used in acquiring and managing controlled items. The
topics in this sub-area are first the identification of the
items to be controlled and the software library.

The third sub-area is the software configuration control,
which is the management of changes during the software
life-cycle. The topics are, first, requesting, evaluating and
approving software changes, and, second, implementing
software changes, and third deviations and waivers.

The fourth sub-area is software configuration status
accounting . Its topics are software configuration status
information and status reporting.

The fifth sub-area is software configuration auditing.
Consisting of software functional configuration auditing,
software physical configuration auditing and in-process
audits of a software baseline.

The last sub-area is software release management and
delivery, covering software building and software release
management.

SOFTWARE ENGINEERING MANAGEMENT (see Figure 2,
column g)

Whilst it is true to say that in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects particular
to software products and the software engineering process
that complicate effective management. There are three sub-
areas for software engineering management.

The first is organizational management, comprising policy
management, personnel management, communication
management, portfolio management and procurement
management.

The second sub-area is process/project management,
including initiation and scope definition, planning,
enactment, review and evaluation and closure.

The third and last sub-area is software engineering
measurement, where general principles about software
measurement are covered. The first topics presented are the
goals of a measurement program, followed by measurement
selection, measuring software and its development,
collection of data and, finally, software metric models.

1–6 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE ENGINEERING PROCESS (see Figure 2,
column h)

The Software Engineering Process Knowledge Area is
concerned with the definition, implementation,
measurement, management, change and improvement of
the software engineering process itself. It is divided into six
sub-areas.

The first one presents the basic concepts: themes and
terminology.

The second sub-area is process infrastructure, where the
Software Engineering Process group concept is described,
as well as the Experience Factory.

The third sub-area deals with measurements specific to
software engineering process. It presents the methodology
and measurement paradigms in the field.

The fourth sub-area describes knowledge related to process
definition: the various types of proces s definitions, the life-
cycle framework models, the software life-cycle models,
the notations used to represent these definitions, process
definitions methods and automation relative to the various
definitions.

The fifth sub-area presents qualitative process analysis,
especially the process definition review and root cause
analysis.

Finally, the sixth sub-area concludes with process
implementation and change. It describes the paradigms and
guidelines for process implementation and change, and the
evaluation of the outcome of implementation and change.

SOFTWARE ENGINEERING TOOLS AND METHODS (see
Figure 2, column i)

The Software Engineering Tools and Methods knowledge
area includes both the software development environments
and the development methods knowledge areas identified in
the Straw Man version of the guide.

Software development environments are the computer-
based tools that are intended to assist the software
development process. Development methods impose
structure on the software development activity with the
goal of making the activity systematic and ultimately more
likely to be successful.

The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) and the next four subsections correspond to
the remaining Knowledge Areas (Process, Quality,
Configuration Management and Management). Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool

integration techniques, that are potentially applicable to all
classes of tools.

The software development methods section is divided into
four subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneous method issues.

SOFTWARE QUALITY (see Figure 2, column j)

This chapter deals with software quality considerations that
transcend the lifecycle processes. Since software quality is
a ubiquitous concern in software engineering, it is
considered in many of the other KAs and the reader will
notice pointers those KAs through this KA. The Knowledge
Area description covers four sub-areas.

The first sub-area describes the software quality concepts
such as measuring the value of quality, the ISO9126 quality
description, dependability and other special types of system
and quality needs.

The second sub-area covers the purpose and planning of
software quality assurance (SQA) and V&V (Verification
and Validation). It includes common planning activities,
and both the SQA and V&S plans.

The third sub-area describes the activities and techniques
for SQA and V&V. It includes static and dynamic
techniques as well as other SQA and V&S testing.

The fourth sub-area describes measurement applied to SQA
and V&V. It includes the fundamentals of measurement,
measures, measurement analysis techniques, defect
characterization, and additional uses of SQA and V&V
data.

© IEEE – Trial Version 1.00 – May 2001 1–7

Process
Measurement

Software Design Tools

Guide to the Softw are Engineering Body of Knowledge
(Version 0.95)

Software
Configuration
Management

Software
Construction

Software
Engineering Tools

and Methods

Software
Engineering

Process

Software
Maintenance

Software QualitySoftware Testing

 Management of
the SCM Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status Accounting

Software
Configuration

Auditing

Software Release
Management and

Delivery

Reduction in
Complexity

Anticipation of
Diversity

Software Methods

Software Tools
Software

Engineering
Process Concepts

Process Definition

Process
Implementation

and Change

Basic Concepts

Maintenance
Process

Key Issues in
Software

Maintenance

Techniques for
Maintenance

Software Quality
Concepts

Definition &
Planning for Quality

Testing Basic
Concepts and

Definitions

Test Levels

Test Techniques

Test-Related
Measures

Managing the Test
Process

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Heuristic Methods

Formal Methods

Prototyping Methods

Software Requirements
Tools

Software Testing Tools

Software Maintenance
Tools

Software Engineering
Process Tools

Process
Infrastructure

Qualitative Process
Analysis

Techniques
Requiring Two or

More People

Support to Other
Techniques

Testing Special to
SQA or V&V

Software Construction
Tools

(a) (b) (c) (d)(e) (f) (g) (h) (i) (j)

Software Quality Tools

Software Configuration
Management Tools

Software Engineering
Management Tools

Infrastructure Support
Tools

Miscellaneous Tool
Issues

Miscellaneous Method
Issues

Software Design

Software Design
Basic Concepts

Key Issues in
Software Design

Software Structure
and Architecture

Software Design
Quality Analysis
and Evaluation

Software Design
Notations

Software
Requirements

Requirement
Engineering

Process

Requirements
Elicitation

Requirement
Analysis

Requirements
Validation

Requirements
Management

Requirements
Specification

Software
Engineering
Management

Organizational
Management

Process/Project
Management

Software
Engineering

Measurement

(d)

Software Design
Strategies and

Methods

Defect Finding
Techniques

Measurement in
Software Quality

Analysis

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Structuring for
Validation

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Use of External
Standards

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

© IEEE – Trial Version 1.00 – May2001 2–1

CHAPTER 2
SOFTWARE REQUIREMENTS

Pete Sawyer and Gerald Kotonya
Computing Department,

Lancaster University
United Kingdom

{sawyer} {gerald}@comp.lancs.ac.uk

Table of Contents

1 Introduction...1
2 Definition of the Software Requirements Knowledge

Area ..2
3 Breakdown of Topics for Software Requirements7
4 Breakdown Rationale ..15
5 Matrix of Topics vs. Reference Material for Software

Requirements ..16
6 Recommended References for Software

Requirements ..17
Appendix A – List of Further Readings19
Appendix B – References Used to Write and Justify the

Description ..23

1 INTRODUCTION

This document proposes a breakdown of the SWEBOK
Software Requirements Knowledge Area. The knowledge
area is concerned with the acquisition, analysis,
specification, validation and management of software
requirements. It is widely acknowledged within the
software industry that software projects are critically
vulnerable when these activities are performed poorly. This
has led to the widespread use of the term ‘requirements
engineering’ to denote the systematic handling of
requirements. This is the term we use in the rest of this
document. Software requirements are one of the products of
the requirements engineering process.

Software requirements express the needs and constraints
that are placed upon a software product that contribute to
the satisfaction of some real world application [Kot00]. The
application may be, for example, to solve some business
problem or exploit a business opportunity offered by a new
market. It is important to understand that, except where the
problem is motivated by technology, the problem is an
artifact of the problem domain and is generally technology-
neutral. The software product alone may satisfy this need
(for example, if it is a desktop application), or it may be a
component (for example, a speech compression module

used in a mobile phone) of a software-intensive system for
which satisfaction of the need is an emergent property. In
fundamental terms, the way in which the requirements are
handled for stand-alone products and components of
software-intensive systems is the same.

One of the main objectives of requirements engineering is
to discover how to partition the system; to identify which
requirements should be allocated to which components. In
some systems, all the components will be implemented in
software. Others will comprise a mixture of technologies.
Almost all will have human users and sometimes it makes
sense to consider all components of the system to which
requirements should be allocated (for example, to save
costs or to exploit human adaptability and resourcefulness).
Because of this requirements engineering is fundamentally
an activity of systems engineering rather than one that is
specific to software engineering. In this respect, the term
‘software requirements engineering’ is misleading because
it implies a narrow scope concerned only with the handling
of requirements that have already been acquired and
allocated to software components. Since it is increasingly
common for practicing software engineers to participate in
the elicitation and allocation of requirements, it is essential
that the scope of the knowledge area extends to the whole
of the requirements engineering process.

One of the fundamental tenets of good software
engineering is that there is good communication between
system users and system developers. It is the requirements
engineer who is the conduit for this communication. They
must mediate between the domain of the system user (and
other stakeholders) and the technical world of the software
engineer. This requires that they possess technical skills, an
ability to acquire an understanding of the application
domain, and the inter-personal skills to help build
consensus between heterogeneous groups of stakeholders
[Gog93].

We have tried to avoid domain dependency in the
document. The knowledge area document identifies
requirements engineering practice and identifies when it is
and isn’t appropriate. We recognise that desktop software
products are different from nuclear reactor control systems
and the document should be read in this light. Where we
refer to particular tools, methods, notations, SPI models,

2–2 © IEEE – Trial Version 1.00 – May 2001

etc. it does not imply our endorsement of them. They are
merely used as examples.

2 DEFINITION OF THE SOFTWARE REQUIREMENTS
KNOWLEDGE AREA

This section provides an overview of requirements
engineering in which:

♦ the notion of a ‘requirement’ is defined;

♦ motivations for systems are identified and their
relationship to requirements is discussed;

♦ a generic process for analysis of requirements is
described, followed by a discussion of why, in
practice, organisations often deviate from this process;
and

♦ the deliverables of the requirements engineering
process and the need to manage requirements are
described.

This overview is intended to provide a perspective or
‘viewpoint’ on the knowledge area that complements the
one in Section 3 – Breakdown of topics for the Software
Requirements Knowledge Area.

2.1 What is a requirement?

At its most basic, a requirement is a property that must be
exhibited in order to solve some problem of the real world
[Pfl98, Kot00, Som01, Tha97]. This document refers to
requirements on ‘systems’ rather than ‘solutions’ because it
is concerned with problems that have software-based
solutions. Hence, a requirement is a property that must be
exhibited by a system developed or adapted to solve a
particular problem. The problem may be to automate part
of a task of someone who will use the system, to support
the business processes of the organisation that has
commissioned the system, to correct shortcomings of an
existing system, to control a device and many more. The
functioning of users, business processes and devices are
typically complex. By extension, therefore, the
requirements on a system are typically a complex
combination of requirements from different people at
different levels of an organisation and from the
environment in which the system must operate.

Requirements vary in intent and in the kinds of properties
they represent. A distinction can be drawn between product
parameters and process parameters. Product parameters
are requirements on the system to be developed and can be
further classified as [Kot00, Som97]:

♦ Functional requirements on the system such as
formatting some text or modulating a signal.
Functional requirements are sometimes known as
capabilities.

♦ Non-functional requirements that act to constrain the
solution. Non-functional requirements are sometimes

known as constraints or quality requirements. They
can be further classified according to whether they are
(for example) performance requirements,
maintainability requirements, safety requirements,
reliability requirements, electro-magnetic
compatibility requirements and many other types of
requirements.

A process parameter is essentially a constraint on the
development of the system (e.g. ‘the software shall be
written in Ada’). These are sometimes known as process
requirements.

Requirements must be stated clearly and unambiguously
and, where appropriate, quantitatively. It is important to
avoid vague and unverifiable requirements that depend for
their interpretation on subjective judgement (‘the system
shall be reliable’, ‘the system shall be user-friendly’). This
is particularly important for non-functional requirements.
Two examples of quantified requirements are: that a system
must increase a call-center’s throughput by 20%; and a
requirement that a system shall have a probability of
generating a fatal error during any hour of operation of less
than 1 * 10-8. The throughput requirement is at a very high
level and will need to be used to derive a number of
detailed requirements. The reliability requirement will
tightly constrain the system architecture [Dav93, Som01].

Some requirements are emergent properties. That is,
requirements that can’t be addressed by a single
component, but which depend for their satisfaction on how
all the system components inter-operate. The throughput
requirement for a call-centre given above would, for
example, depend upon how the telephone system,
information system and the operators all interacted under
actual operating conditions. Emergent properties are
crucially dependent upon the system architecture.

An essential property of all requirements is that they should
be verifiable. It may be difficult or costly to verify certain
requirements. For example, verification of the throughput
requirement on the call-center may necessitate the
development of simulation software. The requirements
engineering and V&V personnel must ensure that the
requirements can be verified within the available resource
constraints.

Some requirements generate implicit process requirements.
The choice of verification method is one example. Another
might be the use of particularly rigorous analysis
techniques (such as formal specification methods) to reduce
systemic errors that can lead to inadequate reliability.
Process requirements may also be imposed directly by the
development organization, their customer, or a third party
such as a safety regulator.

Requirements have other attributes in addition to the
behavioural property that they express. Common examples
include a priority rating to enable trade-offs in the face of
finite resources and a status value to enable project progress
to me monitored. Every requirement must be uniquely

© IEEE – Trial Version 1.00 – May2001 2–3

identified so that they can be subjected to configuration
control and managed over the entire system life cycle.

2.2 System requirements and process drivers

The literature on requirements engineering sometimes calls
system requirements “user requirements”. We prefer a
restricted definition of the term user requirements in which
they denote the requirements of the people who will be the
system customers or end-users. System requirements, by
contrast, are inclusive of user requirements, requirements of
other stakeholders (such as regulatory authorities) and
requirements that do not have an identifiable human source.
Typical examples of system stakeholders include (but are
not restricted to):

♦ Users – the people who will operate the system. Users
are often a heterogeneous group comprising people
with different roles and requirements.

♦ Customers – the people who have commissioned the
system or who represent the system’s target market.

♦ Market analysts – a mass-market product will not
have a commissioning customer so marketing people
are often needed to establish what the market needs
and to act as proxy customers.

♦ Regulators – many application domains such as
banking and public transport are regulated. Systems in
these domains must comply with the requirements of
the regulatory authorities.

♦ System developers – these have a legitimate interest in
profiting from developing the system by, for example,
reusing components in different products. If, in this
scenario, a customer of a particular product has
specific requirements that compromise the potential
for component reuse, the developer must carefully
weigh their own stake against those of the customer.
For mass-market products, the developer is often the
primary stakeholder because they wish to maintain the
product in as large a market as possible for as long as
possible.

In addition to these human sources of requirements,
important system requirements often derive from other
devices or systems in the environment, which require some
services of the system or act to constrain the system, or
even from fundamental characteristics of the application
domain [Lou95, Tha97]. For example, a business system
may be required to inter-operate with a legacy database and
many military systems have to be tolerant of high levels of
electro-magnetic radiation. We talk of ‘eliciting’
requirements but in practice the requirements engineer has
to systematically extract and inventory the requirements
from a combination of human stakeholders, the system’s
environment, feasibility studies, market analyses, business
plans, analyses of competing products and domain
knowledge [Som97].

The elicitation and analysis of system requirements needs
to be driven by the need to achieve the overall project aims.
To provide this focus, a business case should be made
which clearly defines the benefits that the investment must
deliver. These should act as a ‘reality check’ that can be
applied to the system requirements to ensure that project
focus does not drift. Where there is any doubt about the
technical, operational or financial viability of the project, a
feasibility analysis should be conducted. This is designed to
identify project risks and assess the extent to which they
threaten the system’s viability. Risks should be documented
in the project management plan.

Typical risks include the ability to satisfy non-functional
requirements such as performance, or the availability of
off-the-shelf components. In some specialised domains, it
may be necessary to design simulations to generate data to
enable an assessment of the project risks to be made. In
domains such as public transport where safety is an issue, a
hazard analysis should be conducted from which safety
requirements can be identified.

2.3 Overview of requirements analysis

Once the aims of the project have been established, the
work of eliciting, analysing and validating the system
requirements can commence. This is crucial to gaining a
clear understanding of the problem for which the system is
to provide a solution and its likely cost [Tha97].

The requirements engineer must strive for completeness by
ensuring that all the relevant sources of requirements are
identified and consulted. It will usually be infeasible to
consult everyone. There may be many of users of a large
system, for example. However, representative examples of
each class of system stakeholder should be identified and
consulted. Although individual stakeholders will be
authoritative about aspects of the system that represent their
interests or expertise, the requirements engineer has the
responsibility to create the ‘big picture’ to permit for the
assurance of completeness with all individual stakeholders.

Elicitation of the stakeholders’ requirements is rarely easy
and the requirements engineer has to learn a range of
techniques for helping people articulate how they do their
jobs and what would help them do their jobs better. There
are many social and political issues that can affect
stakeholders’ requirements and their ability or willingness
to articulate them and it is necessary to be sensitive to them
[Gog93]. In many cases, it is necessary to provide a
contextual framework that serves to focus the consultation;
to help the stakeholder identify what is possible and help
the requirements engineer verify their understanding.
Exposing the stakeholders to prototypes may help, and
these don’t necessarily have to be high fidelity. A series of
rough sketches on a flip chart can sometimes serve the
same purpose as a software prototype, whilst avoiding the
pitfalls of distraction caused by cosmetic features of the
software. Walking the stakeholder through a small number

2–4 © IEEE – Trial Version 1.00 – May 2001

of scenarios representing sequences of events in the
application domain can also help the stakeholder and
requirements engineer to explore the key factors affecting
the requirements.

Once identified, the system requirements should be
validated by the stakeholders and trade-offs negotiated
before further resources are committed to the project. To
enable validation, the system requirements are normally
kept at a high level and expressed in terms of the
application domain rather than in technical terms. Hence
the system requirements for an Internet book store will be
expressed in terms of books, authors, warehousing and
credit card transactions, not in terms of the communication
protocols, or key distribution algorithms that may form part
of the solution. Too much technical detail at this stage
obscures the essential characteristics of the system viewed
from the perspective of its customer and users.

Some system requirements may not be satisfiable. Some
may be technically infeasible, others may be too costly to
implement and some will be mutually incompatible. The
requirements engineer must analyse the requirements to
understand their implications and how they interact. They
must be prioritised and their costs estimated. The goal is to
identify the scope of the system and a ‘baseline’ set of
system requirements that is feasible and acceptable. This
may necessitate helping stakeholders whose requirements
conflict (with each other or with cost or other constraints)
to negotiate acceptable trade-offs.

To help the analysis of the system requirements, conceptual
models of the system are constructed. These aid
understanding of the logical partitioning of the system, its
context in the operational environment and the data and
control communications between the logical entities. In
general, a mix of static (e.g. an object model) and dynamic
(e.g. event traces and state diagrams) should be developed
to explore different aspects of the system and it’s problem
domain. However, the choice of which aspects to model is
conditioned by the nature of the problem domain.

The system requirements must be analysed in the context of
all the applicable constraints. Constraints come from many
sources, such as the business environment, the customer’s
organizational structure and the system’s operational
environment. They include budget, schedule, technical
(non-functional requirements), regulatory and other
constraints. Hence, the requirements engineer’s job is not
restricted to eliciting stakeholders’ requirements, but
includes making assessments of their feasibility.
Requirements that are clearly infeasible should be rejected
and the reason for rejection recorded. Requirements that are
merely suspected of being infeasible are more difficult. A
feasibility study may be justified if, for example, a doubtful
requirement is strongly advocated by stakeholders [Kot00,
Lou95].

Project resources should be focused on the most important
priority requirements. In principle, the requirements should
be both necessary and sufficient – there should be nothing

left out or anything that doesn’t need to be included.
Achieving this is, of course, difficult. The absence of
important requirements information can only be detected by
rigorous analysis. Similarly, it may take considerable effort
to reach consensus on requirement priorities because one
stakeholder’s essential requirement may have only
cosmetic value to another. In practice, the existence of
sufficient resources will allow some non-essential
requirements to be satisfied, while insufficient resources
may force even strongly advocated requirements to be
excluded. Regardless of how the baseline is identified,
requirements and V&V personnel must derive acceptance
tests that will assure compliance with the requirements
before delivery or release of the product.

Eventually, a complete and coherent set of system
requirements will emerge as the result of the analysis
process. At this point, the principal areas of functionality
should be clear. Subsystems or components are defined to
handle each principle area of functionality. The system
requirements are then allocated or distributed to
subsystems/components.

This activity of partitioning and allocation is part of
architectural design. Architectural design is a skill that is
driven by many factors such as the recognition of reusable
architectural ‘patterns’ or the existence of off-the shelf
components. Derivation of the system architecture
represents a major milestone in the project and it is crucial
to get the architecture right. In particular, the interaction of
the system components crucially affects the extent to which
the system will exhibit the desired emergent properties. At
this point, the system requirements and system architecture
are documented, reviewed and ‘signed off’ as the baseline
for subsequent development, project planning and cost
estimation.

Except in small-scale systems, it is generally infeasible for
software developers to begin detailed design of system
components from the system requirements document. The
requirements allocated to components that are complex
systems in themselves will need to undergo further cycles
of analysis in order to add more detail, and to interpret the
domain-oriented system requirements for developers who
may lack sufficient knowledge of the application domain to
interpret them correctly. Hence, a number of detailed
technical requirements are typically derived from each
high-level system requirement. It is crucial to record and
maintain this derivation to enable requirements to be traced.
Tracing is crucial to requirements management because it
allows, for example, the impact of any subsequent changes
to the requirements to be assessed.

Refinement of the requirements and system architecture is
where requirements engineering merges with software
design. There is no clear-cut boundary but it is rare for
requirements analysis to continue beyond 2 or 3 levels of
architectural decomposition before responsibility is handed
over to the design teams for the individual components.

© IEEE – Trial Version 1.00 – May2001 2–5

2.4 Requirements engineering in practice

The overview of requirements analysis given in section 2.3
described the process of eliciting and analysing
requirements and deriving the system architecture as if it
was a linear sequence of activities. This is an idealised view
of the process. This section examines some reasons why a
linear process is seldom practicable in the context of real
software projects.

There is a general pressure in the software industry for
ever-shorter development cycles, and this is particularly
pronounced in highly competitive market-driven sectors.
Moreover, most projects are constrained in some way by
their environment and many are upgrades to or revisions of
existing systems where the system architecture is a given.
In practice, therefore, it is almost always impractical to
implement requirements engineering as a linear,
deterministic process where system requirements are
elicited from the stakeholders, baselined, allocated and
handed over to the software development team. It is
certainly a myth that the requirements for large systems are
ever perfectly understood or perfectly specified [Som97].

Instead, requirements typically iterate toward a level of
quality and detail that is sufficient to permit design and
procurement decisions to me made. In some projects, this
may result in the requirements being baselined before all
their properties are fully understood. This risks expensive
rework if problems emerge late in the development process.
However, requirements engineers are necessarily
constrained by project management plans and must
therefore take steps to ensure that the requirements’ quality
is as high as possible given the available resources. They
should, for example, make explicit any assumptions that
underpin the requirements, and any known problems.

Even where requirements engineering is well resourced, the
level of analysis will seldom be uniformly applied. For
example, early in the analysis process experienced
engineers are often able to identify where existing or off-
the-shelf solutions can be adapted to the implementation of
system components. The requirements allocated to these
need not be elaborated further, while others, for which a
solution is less obvious, may need to be subjected to further
analysis. Critical requirements, such as those concerned
with public safety, must always be analyzed rigorously.

In almost all cases requirements understanding continues to
evolve as design and development proceeds. This often
leads to the revision of requirements late in the life cycle.
Perhaps the most crucial point of understanding about
requirements engineering is that a significant proportion of
the requirements will change. This is sometimes due to
errors in the analysis, but it is frequently an inevitable
consequence of change in the ‘environment’: the
customer’s operating or business environment; or in the
market into which the system must sell, for example.
Whatever the cause, it is important to recognise the
inevitability of change and adopt measures to mitigate the

effects of change. Change has to be managed by ensuring
that proposed changes go through a defined review and
approval process, and by applying careful requirements
tracing, impact analysis and version management. Hence,
the requirements engineering process is not merely a front-
end task to software development, but spans the whole
development life cycle. In a typical project the activities of
the requirements engineer evolve over time from elicitation
to change management.

2.5 Products and deliverables

Good requirements engineering requires that the products
of the process - the deliverables - are defined. The most
fundamental of these in requirements engineering is the
requirements document. This often comprises two separate
documents (an architecture description may also be
developed at this stage - see the knowledge area description
for software design):

A document that specifies the system requirements. This is
sometimes known as the requirements definition document,
user requirements document or, as defined by IEEE std
1362-1998, the concept of operations (ConOps) document.
This document serves to define the high-level system
requirements from the stakeholders’ perspective(s). It also
serves as a vehicle for validating the system requirements.
Its readership includes representatives of the system
stakeholders. It must therefore be couched in terms of the
customer’s domain. In addition to a list of the system
requirements, the requirements definition needs to include
background information such as statements of the overall
objectives for the system, a description of its target
environment and a statement of the constraints and non-
functional requirements on the system. It may include
conceptual models designed to illustrate the system context,
usage scenarios, the principal domain entities, and data,
information and work flows [Tha97].

A document that specifies the software requirements. This
is sometimes known as the software requirements
specification (SRS). The purpose and readership of the SRS
is somewhat different than the requirements definition
document. In crude terms, the SRS documents the detailed
requirements derived from the system requirements, and
which have been allocated to software. The non-functional
requirements in the requirements definition should have
been elaborated and quantified. The principal readership of
the SRS can be assumed to have some knowledge of
software engineering concepts. This can be reflected in the
language and notations used to describe the requirements,
and in the detail of models used to illustrate the system. For
custom software, the SRS may form the basis of a contract
between the developer and customer [Kot00, Tha97].

Requirements documents must be structured so as to
minimize the effort needed to read and locate information
within them. Failure to achieve this reduces the likelihood
that the system will conform to the requirements. It also

2–6 © IEEE – Trial Version 1.00 – May 2001

hinders the ability to make controlled changes to the
document as the system and its requirements evolve over
time. Standards such as IEEE std 1362-1998 and IEEE std
830-1998 provide templates for requirements documents.
Such standards are intended to be generic and need to be
tailored to the context in which they are used.

Care must also be taken to describe requirements as
precisely as possible. Requirements are usually written in
natural language but in the SRS this may be supplemented
by formal or semi-formal descriptions. Selection of
appropriate notations permits particular requirements and
aspects of the system architecture to be described more
precisely and concisely than natural language. The general
rule is that notations should be used that allow the
requirements to be described as precisely as possible. This
is particularly crucial for safety-critical and certain other
types of dependable systems. However, the choice of
notation is often constrained by the training, skills and
preferences of the document’s authors and readers.

Natural language has many serious shortcomings as a
medium for description. Among the most serious are that it
is ambiguous and hard to describe complex concepts
precisely. Formal notations such as Z or CSP avoid the
ambiguity problem because their syntax and semantics are
formally defined. However, such notations are not
expressive enough to adequately describe every system
aspect. Natural language, by contrast, is extraordinarily rich
and able to describe, however imperfectly, almost any
concept or system property. A natural language is also
likely to be the document author and readerships’ only
lingua franca. Because natural language is unavoidable,
requirements engineers must be trained to use language
simply, concisely and to avoid common causes of mistaken
interpretation. These include:

♦ long sentences with complex sub-clauses;

♦ the use of terms with more than one plausible
interpretation (ambiguity);

♦ presenting several requirements as a single
requirement;

♦ inconsistency in the use of terms such as the use of
synonyms.

To counteract these problems, requirements descriptions
often adopt a stylized form and use a restricted subset of a
natural language. It is good practice, for example, to
standardize on a small set of modal verbs to indicate
relative priorities. For example, ‘shall’ is commonly used to
indicate that a requirement is mandatory, and ‘should’ to
indicate a requirement that is merely desirable. Hence, the
requirement ‘The emergency breaks shall be applied to
bring the train to a stop if the nose of the train passes a
signal at DANGER’ is mandatory.

The requirements documents(s) must be subject to
validation and verification procedures. The requirements
must be validated to ensure that the requirements engineer

has understood the requirements. It is also important to
verify that a requirements document conforms to company
standards, and is understandable, consistent and complete.
Formal notations offer the important advantage that they
permit the last two properties to be proven (in a restricted
sense, at least). The document(s) should be subjected to
review by different stakeholders including representatives
of the customer and developer. Crucially, requirements
documents must be placed under the same configuration
management regime as the other deliverables of the
development process [Byr94, Ros98].

The requirements document(s) are only the most visible
manifestation of the requirements. They exclude
information that is not required by the document
readership. However this other information is needed in
order to manage them. In particular, it is essential that
requirements are traced.

One method for tracing requirements is through the
construction of a directed acyclic graph (DAG) that records
the derivation of requirements and provides audit trails of
requirements. As a minimum, requirements need to be
traceable backwards to their source (e.g. from a software
requirement back to the system requirement(s) from which
it was elaborated), and forwards to the design or
implementation artifacts that implement them (e.g. from a
software requirement to the design document for a
component that implements it). Tracing allows the
requirements to be managed. In particular, it allows an
impact analysis to be performed for a proposed change to
one of the requirements.

Modern requirements management tools help maintain
tracing information. They typically comprise a database of
requirements and a graphical user interface:

♦ to store the requirement descriptions and attributes;

♦ to allow the trace DAGs to be generated
automatically;

♦ to allow the propagation of requirements changes to
be depicted graphically;

♦ to generate reports on the status of requirements (such
as whether they have been analysed, approved,
implemented, etc.);

♦ to generate requirements documents that conform to
selected standards;

♦ and to apply configuration management to the
requirements.

It should be noted that not every organisation has a culture
of documenting and managing requirements. It is common
for dynamic start-up companies which are driven by a
strong ‘product vision’ and limited resources to view
requirements documentation as an unnecessary overhead.
Inevitably, however, as these companies expand, as their
customer base grows and as their product starts to evolve,
they discover that they need to recover the requirements
that motivated product features in order to assess the impact

© IEEE – Trial Version 1.00 – May2001 2–7

of proposed changes. Hence, requirements documentation
and management are fundamental to the any requirements
engineering process.

3 BREAKDOWN OF TOPICS FOR SOFTWARE
REQUIREMENTS

The knowledge area breakdown we have chosen is broadly
compatible with the sections of ISO/IEC 12207-1995 that
refer to requirements engineering activities. This standard
views the software process at 3 different levels as primary,
supporting and organizational life cycle processes. In order
to keep the breakdown simple, we conflate this structure
into a single life cycle process for requirements
engineering. The separate topics that we identify include
primary life cycle process activities such as requirements
elicitation and requirements analysis, along with
requirements engineering-specific descriptions of
management and, to a lesser degree, organizational
processes. Hence, we identify requirements validation and
requirements management as separate topics.

We are aware that a risk of this breakdown is that a
waterfall-like process may be inferred. To guard against

this, the first topic, the requirements engineering process, is
designed to provide a high-level overview of requirements
engineering by setting out the resources and constraints that
requirements engineering operates under and which act to
configure the requirements engineering process.

There are, of course, many other ways to structure the
breakdown. For example, instead of a process-based
structure, we could have used a product-based structure
(system requirements, software requirements, prototypes,
use-cases, etc.). We have chosen the process-based
breakdown to reflect the fact that requirements engineering,
if it is to be successful, must be considered as a process
with complex, tightly coupled activities (both sequential
and concurrent) rather than as a discrete, one-off activity at
the outset of a software development project. The
breakdown is compatible with that used by many of the
works in the recommended reading list (Appendices C and
D). See section 4. for an itemised rationale for the
breakdown.

The breakdown comprises 6 topics as shown in Table 1
[Kot00, Lou95, Tha97].

Model
Validation

Software Requirements

Requirements
Engineering

Process

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Management

Process Models

Process Actors

Process Support
and Management

Process Quality
and

Improvement

Requirements
Sources

Elicitation
Techniques

Requirements
Classification

Conduct of
Requirements

Reviews

Prototyping

Acceptance tests

Change
Management

Requirements
Attributes

Requirements
Tracing

Conceptual
Modeling

Requirements
Negotiation

Architectural
Design and

Requirements
Allocation

Requirement
Specification

Requirements
Definition
Document

Software
Requirements
Specification

(SRS)

Document
Quality

Document
Structure and

Standards

Table 1 Knowledge area breakdown

2–8 © IEEE – Trial Version 1.00 – May 2001

Figure 1 shows conceptually, how these activities comprise
an iterative requirements engineering process. The different
activities in requirements engineering are repeated until an
acceptable requirements specification document is
produced or until external factors such as schedule pressure
or lack of resources cause the requirements engineering

process to terminate. It is important to note that terminating
the requirements engineering process prematurely can have
a detrimental effect on the system design. After a final
requirements document has been produced, any further
changes become part of the requirements management
process.

Figure 1 A spiral model of the requirements engineering process

3.1 The requirements engineering process

This section introduces the requirements engineering
process, orienting the remaining 5 topics and showing how
requirements engineering dovetails with the overall
software engineering process.

3.1.1 Process models.

The objective of this subtopic is to provide an
understanding that the requirements engineering process:

♦ is not a discrete front-end activity of the software life
cycle, but rather, a process that is initiated at the
beginning of a project and continues to be refined
throughout the life cycle of the software process;

♦ must identify requirements as configuration items, and
manage them under the same configuration regime as
other products of the development process;

♦ will need to be tailored to the organisation and project
context.

In particular, the subtopic is concerned with how the
activities of elicitation, analysis, specification, validation

and management are configured for different types of
project and constraints. The subtopic is also with activities
that provide input to the requirements engineering process
such as marketing and feasibility studies.

3.1.2 Process actors.

This subtopic introduces the roles of the people who
participate in the requirements engineering process.
Requirements engineering is fundamentally
interdisciplinary and the requirements engineer needs to
mediate between the domains of the user and software
engineering. There are often many people involved besides
the requirements engineer, each of whom have a stake in
the system. The stakeholders will vary across different
projects but always includes users/operators and customer
(who need not be the same) [Gog93]. These need not be
homogeneous groups because there may be many users and
many customers, each with different concerns. There may
also be other stakeholders who are external to the
user’s/customer’s organisation, such as regulatory
authorities, whose requirements need to be carefully
analysed. The system/software developers are also
stakeholders because they have a legitimate interest in

Requirements analysis
and negotiation

Requirements specification

Requirements elicitation

Requirements validation

Start

Informal statement of
requirements

Draft requirements
document

Agreed

requirements

Requirements document
and validation report

Decision point: Accept
document or reenter spiral

User needs

Domain information

Standards

© IEEE – Trial Version 1.00 – May2001 2–9

profiting from the system. Again, these may be a
heterogeneous group in which (for example) the system
architect has different concerns from the system tester.

It will not be possible to perfectly satisfy the requirements
of every stakeholder and the requirements engineer’s job is
to negotiate a compromise that is both acceptable to the
principal stakeholders and within budgetary, technical,
regulatory and other constraints. A prerequisite for this is
that all the stakeholders are indentified, the nature of their
‘stake’ is analysed and their requirements are elicited.

3.1.3 Process support and management.

This subtopic introduces the project management resources
required and consumed by the requirements engineering
process. This topic merely sets the context for topic 3
(Initiation and scope definition) of the software
management KA. Its principal purpose is to make the link
from process activities identified in 3.1.1 to issues of cost,
human resources, training and tools.

3.1.4 Process quality and improvement.

This subtopic is concerned with requirements engineering
process quality assessment. Its purpose is to emphasize the
key role requirements engineering plays in terms of the
cost, timeliness and customer satisfaction of software
products [Som97]. It will help to orient the requirements
engineering process with quality standards and process
improvement models for software and systems. Process
quality and improvement is closely related to the software
quality KA and the software process KA. Of particular
interest are issues of software quality attributes and
measurement, and software process definition. This
subtopic covers:

w requirements engineering coverage by process
improvement standards and models;

w requirements engineering measures and benchmarking;

w improvement planning and implementation

Table 2 shows the links to common themes in other KAs.

Links to common themes

Quality The process quality and improvement subtopic is concerned with quality. It
contains links to SPI standards such as the software and systems engineering
capability maturity models, the forthcoming ISO/IEC 15504 and ISO 9001-3
guideline. Requirements engineering process is at best peripheral to these and
the only work to address requirements engineering processes specifically, is the
requirements engineering good practice guide [Som97].

Standards SPI models/standards as described in the quality theme above. In addition, the
life cycle software engineering standard ISO/IEC 12207-1995 describes
requirements engineering activities in the context of the primary, supporting
and organizational life cycle processes for software.

Measurement At the process level, requirements measures tend to be relatively coarse-grained
and concerned with (e.g.) counting numbers of requirements and numbers and
effects of requirements changes. If these indicate room for improvement (as
they inevitably will) it is possible to measure the extent and rigour with which
requirements ‘good practice’ is used in a process. These measures can serve to
highlight process weaknesses that should be the target improvement efforts.

Tools General project management tools. Refer to the software management KA.

Table 2 Process quality links to other KAs

3.2 Requirements elicitation

This topic covers what is sometimes termed ‘requirements
capture’, ‘requirements discovery’ or ‘requirements
acquisition’. It is concerned with where requirements come
from and how they can be collected by the requirements
engineer. Requirements elicitation is the first stage in
building an understanding of the problem the software is
required to solve. It is fundamentally a human activity and
is where the stakeholders are identified and relationships
established between the development team (usually in the
form of the requirements engineer) and the customer.

3.2.1 Requirements sources

In a typical system, there will be many sources of
requirements and it is essential that all potential sources are
identified and evaluated for their impact on the system.
This subtopic is designed to promote awareness of different
requirements sources and frameworks for managing them.
The main points covered are:

w Goals. The term ‘Goal’ (sometimes called ‘business
concern’ or ‘critical success factor’) refers to the
overall, high-level objectives of the system. Goals
provide the motivation for a system but are often

2–10 © IEEE – Trial Version 1.00 – May 2001

vaguely formulated. Requirements engineers need to
pay particular attention to assessing the value (relative
to priority) and cost of goals. A feasibility study is a
relatively low-cost way of doing this [Lou95].

w Domain knowledge. The requirements engineer needs
to acquire or to have available knowledge about the
application domain. This enables them to infer tacit
knowledge that the stakeholders do not articulate,
assess the trade-offs that will be necessary between
conflicting requirements and sometimes to act as a
‘user’ champion.

w System stakeholders (see 3.1.2). Many systems have
proven unsatisfactory because they have stressed the
requirements for one group of stakeholders at the
expense of others. Hence, systems are delivered that
are hard to use or which subvert the cultural or polit ical
structures of the customer organisation. The
requirements engineer needs to identify represent and
manage the ‘viewpoints’ of many different types of
stakeholder [Kot00].

w The operational environment. Requirements will be
derived from the environment in which the software
will execute. These may be, for example, timing
constraints in a real-time system or interoperability
constraints in an office environment. These must be
actively sought because they can greatly affect system
feasibility, cost, and restrict design choices [Tha97].

w The organizational environment. Many systems are
required to support a business process and this may be
conditioned by the structure, culture and internal
politics of the organisation. The requirements engineer
needs to be sensitive to these since, in general, new
software systems should not force unplanned change to
the business process.

3.2.2 Elicitation techniques

When the requirements sources have been identified the
requirements engineer can start eliciting requirements from
them. This subtopic concentrates on techniques for getting
human stakeholders to articulate their requirements. This is
a very difficult area and the requirements engineer needs to
be sensitized to the fact that (for example) users may have
difficulty describing their tasks, may leave important
information unstated, or may be unwilling or unable to
cooperate. It is particularly important to understand that
elicitation is not a passive activity and that even if
cooperative and articulate stakeholders are available, the
requirements engineer has to work hard to elicit the right
information. A number of techniques will be covered, but
the principal ones are [Gog93]:

w Interviews. Interviews are a ‘traditional’ means of
eliciting requirements. It is important to understand the
advantages and limitations of interviews and how they
should be conducted.

w Scenarios. Scenarios are valuable for providing context
to the elicitation of users’ requirements. They allow the
requirements engineer to provide a framework for
questions about users’ tasks by permitting ‘what if?’
and ‘how is this done?’ questions to be asked. There is
a link to 3.3.2. (conceptual modeling) because recent
modeling notations have attempted to integrate
scenario notations with object-oriented analysis
techniques.

w Prototypes. Prototypes are a valuable tool for clarifying
unclear requirements. They can act in a similar way to
scenarios by providing a context within which users
better understand what information they need to
provide. There is a wide range of prototyping
techniques, which range from paper mock-ups of
screen designs to beta-test versions of software
products. There is a strong overlap with the use of
prototypes for requirements validation (3.5.2).

w Facilitated meetings. The purpose of these is to try to
achieve a summative effect whereby a group of people
can bring more insight to their requirements than by
working individually. They can brainstorm and refine
ideas that may be difficult to surface using (e.g.)
interviews. Another advantage is that conflicting
requirements are surfaced early on in a way that lets
the stakeholders recognise where there is conflict. At
its best, this technique may result in a richer and more
consistent set of requirements than might otherwise be
achievable. However, meetings need to be handled
carefully (hence the need for a facilitator) to prevent a
situation where the critical abilities of the team are
eroded by group loyalty, or the requirements reflecting
the concerns of a few vociferous (and perhaps senior)
people to the detriment of others.

w Observation. The importance of systems’ context
within the organizational environment has led to the
adaptation of observational techniques for
requirements elicitation. The requirements engineer
learns about users’ tasks by immersing themselves in
the environment and observing how users interact with
their systems and each other. These techniques are
relatively new and expensive but are instructive
because they illustrate that many user tasks and
business processes are too subtle and complex for their
actors to describe easily.

© IEEE – Trial Version 1.00 – May2001 2–11

Table 3 shows the elicitation techniques links to common themes in other KAs.

Links to common themes

Quality The quality of requirements elicitation has a direct effect on product quality.
The critical issues are to recognise the relevant sources, to strive to avoid
missing important requirements and to accurately report the requirements.

Measurement Very little work on measurement of requirements elicitation has been carried
out.

Table 3 Elicitation techniques links to other KAs

3.3 Requirements analysis

This subtopic is concerned with the process of analysing
requirements to:

w detect and resolve conflicts between requirements;

w discover the bounds of the system and how it must
interact with its environment;

w elaborate system requirements to software
requirements.

The traditional view of requirements analysis was to reduce
it to conceptual modeling using one of a number of analysis
methods such as SADT or OOA. While conceptual
modeling is important, we include the classification of
requirements to help inform trade-offs between
requirements (requirements classification), and the process
of establishing these trade-offs (requirements negotiation)
[Dav93].

3.3.1 Requirements classification

There is a strong overlap between requirements
classification and requirements attributes (3.6.2).
Requirements can be classified on a number of dimensions.
Examples include:

w Whether the requirement is functional or non-
functional (see 2.1).

w Whether the requirement is derived from one or more
high-level requirements, an emergent property (see
2.1), or at a high level and imposed directly on the
system by a stakeholder or some other source.

w Whether the requirement is on the product or the
process. Requirements on the process constrain, for
example, the choice of contractor, the development
practices to be adopted, and the standards to be
adhered to.

w The requirement priority. In general, the higher the
priority, the more essential the requirement is for
meeting the overall goals of the system. Often
classified on a fixed point scale such as mandatory,
highly desirable, desirable, optional. Priority often has
to be balanced against cost of development and
implementation.

w The scope of the requirement. Scope refers to the
extent to which a requirement affects the system and
system components. Some requirements, particularly
certain non-functional ones, have a global scope in that
their satisfaction cannot be allocated to a discrete
component. Hence a requirement with global scope
may strongly affect the system architecture and the
design of many components, one with a narrow scope
may offer a number of design choices with little impact
on the satisfaction of other requirements.

w Volatility/stability. Some requirements will change
during the life cycle of the software and even during
the development process itself. It is useful if some
estimate of the likelihood of a requirement changing
can be made. For example, in a banking application,
requirements for functions to calculate and credit
interest to customers’ accounts are likely to be more
stable than a requirement to support a particular kind
of tax-free account. The former reflect a fundamental
feature of the banking domain (that accounts can earn
interest), while the latter may be rendered obsolete by a
change to government legislation. Flagging
requirements that may be volatile can help the software
engineer establish a design that is more tolerant of
change.

Other classifications may be appropriate, depending upon
the development organization’s normal practice and the
application itself.

3.3.2 Conceptual modeling

The development of models of the problem is fundamental
to requirements analysis (see 2.3). The purpose is to aid
understanding of the problem rather than to initiate design
of the solution. Hence, conceptual models comprise models
of entities from the problem domain configured to reflect
their real-world relationships and dependencies.

There are several kinds of models that can be developed.
These include data and control flows, state models, event
traces, user interactions, object models and many others.
The factors that influence the choice of model include:

w The nature of the problem. Some types of application
demand that certain aspects be analysed particularly
rigorously. For example, control flow and state models

2–12 © IEEE – Trial Version 1.00 – May 2001

are likely to be more important for real-time systems
than for an information system.

w The expertise of the requirements engineer. It is often
more productive to adopt a modeling notation or
method that the requirements engineer has experience
with. However, it may be appropriate or necessary to
adopt a notation that is better supported by tools,
imposed as a process requirement (see 3.3.1), or
simply ‘better’

w The process requirements of the customer. Customers
may impose a particular notation or method on the
requirements engineer. This can conflict with the
previous factor.

w The availability of methods and tools. Notations or
methods that are poorly supported by training and tools
may not reach widespread acceptance even if they are
suited to particular types of problem.

Note that in almost all cases, it is useful to start by building
a model of the system context. The system context provides
an understanding between the intended system and its
external environment. This is crucial to understanding the
system’s context in its operational environment and to
identify its interfaces to the environment.

The issue of modeling is tightly coupled with that of
methods. For practical purposes, a method is a notation (or
set of notations) supported by a process that guides the
application of the notations. Methods and notations come
and go in fashion. Object-oriented notations are currently in
vogue but the issue of what is the ‘best’ notation is seldom
clear. There is little empirical evidence to support claims
for the superiority of one notation over another.

Formal modeling using notations based upon discrete
mathematics and which are tractable to logical reasoning
have made an impact in some specialized domains. These
may be imposed by customers or standards or may offer
compelling advantages to the analysis of certain critical
functions or components.

This topic does not seek to ‘teach’ a particular modeling
style or notation but rather to provide guidance on the
purpose and intent of modeling.

3.3.3 Architectural design and requirements allocation

At some point the architecture of the solution must be
derived. Architectural design is the point at which
requirements engineering overlaps with software or
systems design and illustrates how impossible it is to
cleanly decouple both tasks [Som01]. This subtopic is
closely related to topic 2, in Chapter 3 (software

architecture). In many cases, the requirements engineer acts
as system architect because the process of analysing and
elaborating the requirements demands that the subsystems
and components that will be responsible for satisfying the
requirements be identified. This is requirements allocation
– the assignment of responsibility for satisfying
requirements to subsystems.

Allocation is important to permit detailed analysis of
requirements. Hence, for example, once a set of
requirements have been allocated to a component, they can
be further analysed to discover requirements on how the
component needs to interact with other components in
order to satisfy the allocated requirements. In large
projects, allocation stimulates a new round of analysis for
each subsystem. As an example, requirements for a
particular braking performance for a car (braking distance,
safety in poor driving conditions, smoothness of
application, pedal pressure required, etc.) may be allocated
to the braking hardware (mechanical and hydraulic
assemblies) and an anti-lock braking system (ABS). Only
when a requirement for an anti-lock system has been
identified, and the requirements are allocated to it can the
capabilities of the ABS, the braking hardware and emergent
properties (such as the car weight) be used to identify the
detailed ABS software requirements.

Architectural design is closely identified with conceptual
modeling. The mapping from real-world domain entities to
computational components not always obvious, so
architectural design is identified as a separate sub-topic.
The requirements of notations and methods are broadly the
same for conceptual modeling and architectural design.

3.3.4 Requirements negotiation

Another name commonly used for this subtopic is ‘conflict
resolution’. It is concerned with resolving problems with
requirements where conflicts occur; between two
stakeholders’ requiring mutually incompatible features, or
between requirements and resources or between capabilities
and constraints, for example [Kot00, Som97]. In most
cases, it is unwise for the requirements engineer to make a
unilateral decision so it is necessary to consult with the
stakeholder(s) to reach a consensus on an appropriate trade-
off. It is often important for contractual reasons that such
decisions are traceable back to the customer. We have
classified this as a requirements analysis topic because
problems emerge as the result of analysis. However, a
strong case can also be made for counting it as part of
requirements validation.

© IEEE – Trial Version 1.00 – May2001 2–13

Table 4 shows the requirements negotiation links to common themes in other KAs.

Links to common themes

Quality The quality of the analysis directly affects product quality. In principle, the
more rigorous the analysis, the more confidence can be attached to the software
quality.

Measurement Part of the purpose of analysis is to quantify required properties. This is
particularly important for constraints such as reliability or safety requirements
where suitable measures need to be identified to allow the requirements to be
quantified and verified.

Table 4 Requirements negotiation links to other KAs

3.4 Software requirements specification

This topic is concerned with the structure, quality and
verifiability of the requirements document. This may take
the form of two documents, or two parts of the same
document with different readership and purposes (see 2.5):
the requirements definition document and the software
requirements specification. The topic stresses that
documenting the requirements is the most fundamental
precondition for successful requirements handling.

3.4.1 The system requirements definition document

This document (sometimes known as the user requirements
document or concept of operations) records the system
requirements. It defines the high-level system requirements
from the domain perspective. Its readership includes
representatives of the system users/customers (marketing
may play these roles for market-driven software) so it must
be couched in terms of the domain. It must list the system
requirements along with background information about the
overall objectives for the system, its target environment and
a statement of the constraints, assumptions and non-
functional requirements. It may include conceptual models
designed to illustrate the system context, usage scenarios,
the principal domain entities, and data, information and
workflows.

3.4.2 The software requirements specification (SRS)

The benefits of the SRS include:

w It establishes the basis for agreement between the
customers and contractors or suppliers (in market-
driven projects, these roles may be played by
marketing and development divisions) on what the
software product is to do and as well as what it is not
expected do. For non-technical readership, the SRS is
often accompanied by the requirements definition
document.

w It forces a rigorous assessment of requirements before
design can begin and reduces later redesign.

w It provides a realistic basis for estimating product
costs, risks and schedules.

w Organisations can use a SRS to develop their own
validation and verification plans more productively.

w Provides an informed basis for transferring a software
product to new users or new machines.

w Provides a basis for software enhancement

3.4.3 Document structure and standards

Several recommended guides and standards exist to help
define the structure of requirements documentation. These
include IEEE P1233/D3 guide, IEEE Std. 1233 guide, IEEE
std. 830-1998, ISO/IEC 12119-1994. IEEE std 1362-1998
concept of operations (ConOps) is a recent standard for a
requirements definition document.

3.4.4 Document quality

This is one area where measures can be usefully employed
in requirements engineering. There are tangible attributes
that can be measured. Moreover, the quality of the
requirements document can dramatically affect the quality
of the product.

A number of quality indicators have been developed that
can be used to relate the quality of an SRS to other project
variables such as cost, acceptance, performance, schedule,
reproducibility etc. Quality indicators for individual SRS
statements include imperatives, directives, weak phrases,
options and continuances. Indicators for the entire SRS
document include size, readability, specification depth and
text structure [Dav93, Ros98, Tha97].

There is a strong overlap with 3.5.1 (the conduct of
requirements reviews). Table 5 shows the document quality
links to common themes in other KAs.

2–14 © IEEE – Trial Version 1.00 – May 2001

Links to common themes

Quality The quality of the requirements documents dramatically affects the quality of
the product.

Measurement Quality attributes of requirements documents can be identified and measured.
See 3.4.4.

Table 5 Document quality links to other KAs

3.5 Requirements validation

It is normal for there to be one or more formally scheduled
points in the requirements engineering process where the
requirements are validated. The aim is to pick up any
problems before resources are committed to addressing the
requirements. Requirements validation is concerned with
the process of examining the requirements document to
ensure that it defines the right system (i.e. the system that
the user expects) [Kot00]. There are four important
subtopics.

3.5.1 The conduct of requirements reviews.

Perhaps the most common means of validation is by
inspection or formal reviews of the requirements
document(s). A group of reviewers is constituted with a
brief to look for errors, mistaken assumptions, lack of
clarity and deviation from standard practice. The
composition of the group that conducts the review is
important (at least one representative of the customer
should be included for a customer-driven project, for
example) and it may help to provide guidance on what to
look for in the form of checklists.

Reviews may be constituted on completion of the system
requirements definition document, the software
requirements specification document, the baseline
specification for a new release, etc.

3.5.2 Prototyping.

Prototyping is commonly employed for validating the
requirements engineer’s interpretation of the system
requirements, as well as for eliciting new requirements. As
with elicitation, there is a range of prototyping techniques
and a number of points in the process when prototype
validation may be appropriate. The advantage of prototypes
is that they can make it easier to interpret the requirements

engineer’s assumptions and give useful feedback on why
they are wrong. For example, the dynamic behaviour of a
user interface can be better understood through an animated
prototype than through textual description or graphical
models. There are also disadvantages, however. These
include the danger of users’ attention being distracted from
the core underlying functionality by cosmetic issues or
quality problems with the prototype. For this reason,
several people recommend prototypes that avoid software –
such as flip -chart-based mockups. Prototypes may be costly
to develop. However, if they avoid the wastage of resources
caused by trying to satisfy erroneous requirements, their
cost can be more easily justified.

3.5.3 Model validation.

The quality of the models developed during analysis should
be validated. For example, in object models, it is useful to
perform a static analysis to verify that communication paths
exist between objects that, in the stakeholders domain,
exchange data. If formal specification notations are used, it
is possible to use formal reasoning to prove properties of
the specification (e.g. completeness).

3.5.4 Acceptance tests.

An essential property of a system requirement is that it
should be possible to validate that the finished product
satisfies the requirement. Requirements that can’t be
validated are really just ‘wishes’. An important task is
therefore planning how to verify each requirement. In most
cases, this is done by designing acceptance tests.

Identifying and designing acceptance test may be difficult
for non-functional requirements (see 2.1). To be validated,
they must first be analysed to the point where they can be
expressed quantitatively.

Table 6 shows the acceptance tests links to common themes in other KAs.

Links to common themes

Quality Validation is all about quality - the quality of the requirements.

Measurement Measurement is important for acceptance tests and definitions of how
requirements are to be verified.

Table 6 Acceptance tests links to other KAs

© IEEE – Trial Version 1.00 – May2001 2–15

3.6 Requirements management

Requirements management is an activity that spans the
whole software life cycle. It is fundamentally about change
management and the maintenance of the requirements in a
state that accurately mirrors the software to be, or that has
been, built [Kot00, Lou95].

There are 3 subtopics concerned with requirements
management.

3.6.1 Change management

Change management is central to the management of
requirements. This subtopic describes the role of change
management, the procedures that need to be in place and
the analysis that should be applied to proposed changes. It
has strong links to the configuration management
knowledge area.

3.6.2 Requirements attributes

Requirements should consist not only of a specification of
what is required, but also of ancillary information that helps
manage and interpret the requirements. This should include
the various classification dimensions of the requirement
(see 3.3.1) and the verification method or acceptance test
plan. It may also include additional information such as a
summary rationale for each requirement, the source of each
requirement and a change history. The most fundamental
requirements attribute, however, is an identifier that allows
the requirements to be uniquely and unambiguously

identified. A naming scheme for generating these IDs is an
essential feature of a quality system for a requirements
engineering process.

3.6.3 Requirements tracing

Requirements tracing is concerned with recovering the
source of requirements and predicting the effects of
requirements. Tracing is fundamental to performing impact
analysis when requirements change. A requirement should
be traceable backwards to the requirements and
stakeholders that motivated it (from a software requirement
back to the system requirement(s) that it helps satisfy, for
example). Conversely, a requirement should be traceable
forwards into requirements and design entities that satisfy it
(for example, from a system requirement into the software
requirements that have been elaborated from it and on into
the code modules that implement it).

The requirements trace for a typical project will form a
complex directed acyclic graph (DAG) of requirements. In
the past, development organizations either had to write
bespoke tools or manage it manually. This made tracing a
short-term overhead on a project and vulnerable to
expediency when resources were short. In most cases, this
resulted in it either not being done at all or being performed
poorly. The availability of modern requirements
management tools has improved this situation and the
importance of tracing (and requirements management in
general) is starting to make an impact in software quality.

Table 7 shows the requirements tracing links to common themes in other KAs.

Links to common themes

Quality Requirements management is a level 2 key practice area in the software CMM
and this has boosted recognition of its importance for quality.

Measurement Mature organizations may measure the number of requirements changes and
use quantitative measures of impact assessment.

Table 7 Requirements tracing links to other KAs

4 BREAKDOWN RATIONALE

The criterion mentioned below are the criterion described
in Appendix A of the Guide: Knowledge Area Description
Specifications for the Trial Version of the Guide to the
SWEBOK.

Criterion (a): Number of topic breakdowns

One breakdown provided

Criterion (b): Reasonableness

The breakdown is reasonable in that it covers the areas
discussed in most requirements engineering texts and
standards.

Criterion (c): Generally accepted

The topic breakdowns (shown in Table 1) are generally
accepted in that they cover areas typically in texts and
standards.

At level A.1 the breakdown is identical to that given in
most requirements engineering texts, apart from process
improvement. Requirements engineering process
improvement is an important emerging area in requirements
engineering. We believe this topic adds great value to any
the discussion of the requirements engineering as its
directly concerned with process quality assessment.

At level A.2 the breakdown is identical to that given in
most requirements engineering texts. At level A.3 the

2–16 © IEEE – Trial Version 1.00 – May 2001

breakdown is similar to that discussed in most texts. We
have incorporated a reasonably detailed section on
requirement characterization to take into account the most
commonly discussed ways of characterizing requirements.
A.4 the breakdown is similar to that discussed in most
texts, apart from document quality assessment. We believe
this an important aspect of the requirements specification
document and deserves to be treated as a separate sub-
section. In A.5 and A.6 the breakdown is similar to that
discussed in most texts.

Criterion (d): No specific domains have been assumed

No specific domains have been assumed

Criterion (e): Compatible with various schools of thought

Requirements engineering concept at the process level are
general mature and stable.

Criterion (f): Compatible with industry, literature and
standards

The breakdown used here has been derived from literature
and relevant standards to reflect a consensus of opinion.

Criterion (g): As inclusive as possible

The inclusion of the requirements engineering process A.1
sets the context for all requirements engineering topics.
This level is intended to capture the mature and stable
concepts in requirements engineering. The subsequent
levels all relate to level 1 but are general enough to allow
more specific discussion or further breakdown.

Criterion (h): Themes of quality, tools, measurement and
standards

The relationship of requirements engineering product
quality assurance, tools and standards is provided in the
breakdown.

Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level

The proposed breakdown satisfies this criterion.

Criterion (j): Topic names meaningful outside the guide

The topic names satisfy this criterion

Criterion (k): Version 0.1 of the description

Criterion (l): Text on the rationale underlying the proposed
breakdowns

This document provides the rationale

5 MATRIX OF TOPICS VS . REFERENCE MATERIAL FOR
SOFTWARE REQUIREMENTS

In Table B.1 shows the topic/reference matrix. The table is
organized according to requirements engineering topics in
section 3. A ‘X’ indicates that the topic is covered to a
reasonable degree in the reference. A ‘X’ in appearing in
main topic but not the sub-topic indicates that the main
topic is reasonably covered (in general) but the sub-topic is
not covered to any appreciable depth. This situation is quite
common in most software engineering texts, where the
subject of requirements engineering is viewed in the large
context of software engineering.

TOPIC R
E

F
E

R
E

N
C

E

[B
ry

94
]

[D
av

93
]

[G
og

93
]

[K
ot

98
]

[L
ou

95
]

[P
fl

98
]

[R
os

98
]

[S
om

96
]

[S
om

97
]

[T
ha

97
]

Requirements engineering process X X X X

Process models X X X

Process actors X X X

Process support X

Process improvement X X

Requirements elicitation X X X X X

Requirements sources X X X X X

Elicitation techniques X X X X X

Requirements analysis X X X

Requirements classification X X X

Conceptual modeling X X X

Architectural design and requirements allocation X X

Requirements negotiation X

© IEEE – Trial Version 1.00 – May2001 2–17

TOPIC R
E

F
E

R
E

N
C

E

[B
ry

94
]

[D
av

93
]

[G
og

93
]

[K
ot

98
]

[L
ou

95
]

[P
fl

98
]

[R
os

98
]

[S
om

96
]

[S
om

97
]

[T
ha

97
]

Requirement specification X X X X X X X

The requirements definition document X X X X X X

The software requirements specification (SRS) X X X X X X

Document structure X X X X X

Document quality X X X X

Requirements validation X X X

The conduct of requirements reviews X X

Prototyping X X X

Model validation X X X

Acceptance tests X

Requirements management X X X

Change management X

Requirement attributes X

Requirements tracing X

Table B.1 Topics and their references
Key Reference

[Byr94] [Byrne 1994]

[Dav93] [Davis 1993]

[Gog93] [Goguen and Linde 1993]

[Kot00] [Kotonya and Sommerville 2000]

[Lou95] [Loucopoulos and Karakostas 1995]

[Pfl98] [Pfleeger 1998]

[Ros98] [Rosenberg 1998]

[Som01] [Sommerville 2001]

[Som97] [Sommervelle and Sawyer 1997]

[Tha97] [Thayer and Dorfman 1997]

6 RECOMMENDED REFERENCES FOR SOFTWARE
REQUIREMENTS

[Byrne 1994]. Byrne, E., “IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.

Describes the IEEE Standard 830-1993 for requirements
specification.

[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.

Provides a way of categorizing software requirements
techniques--objects, functions, and states. The author takes
an analytical approach by helping the reader analyze
which technique is best, rather than imposing one specific
technique. Discussion of a wide variety of techniques and
their uses is augmented with application illustration using
three case studies.

[Goguen and Linde 1993]. Goguen, J., and C. Linde,
“Techniques for Requirements Elicitation,” International
Symposium on Requirements Engineering, San Diego,
California: IEEE Computer Society Press, January 1993,
pp. 152-164.

This paper is an attempt to address the failings of
traditional requirements practice, particularly in eliciting
requirements. The paper explores a different paradigm for
understanding requirements engineering: the process is
seen essentially as a social process, in which requirements
emerge and evolve from the discourse between users and
developers. The paper describes a number of techniques for
requirements elicitation and examines their strengths and
weaknesses.

[Kotonya and Sommerville 2000]. Kotonya, G., and I.
Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 2000.

Introduces requirements engineering to undergraduate and
graduate students in computer science, software
engineering, and systems engineering. Part I is process-
oriented and describes different activities in the

2–18 © IEEE – Trial Version 1.00 – May 2001

requirements engineering process. Part II focuses on
requirements engineering techniques, covering the use of
structured methods, viewpoint-oriented approaches, and
specification of non- functional requirements and of
interactive systems. A final chapter presents a case study
illustrating a viewpoint-oriented approach. Includes
chapter key points and exercises.

[Loucopoulos and Karakostas 1995]. Loucopoulos, P., and
V. Karakostas, System Requirements Engineering.
McGraw-Hill, 1995.

It provides software professionals with a practical
framework for a formal requirements engineering (RE)
process. Readers will exchange their RE problem-solving
skills in chapters that help them accurately assess the
nature of the problems and implement effective solutions.

[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, Chap. 4, 1998.

Applies concepts to two common examples: one that
represents a typical information system, and one that
represents a real-time system. This work features an
associated web page containing examples from literature
and links to web pages for relevant tool and method
vendors.

[Rosenberg 1998]. Rosenberg, L., T.F. Hammer and L.L.
Huffman, “Requirements, testing and metrics”, 16th
Annual Pacific Northwest Software Quality Conference,
Oregon, October 1998.

This paper addresses the issue of evaluating the quality of a
requirements document. The authors describe a tool
developed to parse requirements documents. The
Automated Requirements Measurement (ARM) software
scans a file containing the text of the requirements
specification. The tool searches each line of text for specific
words and phrases based on seven quality indicators. ARM
has been applied to 56 NASA requirements documents.

[Sommerville 2001]. Sommerville, I. Software Engineering
(6th edition), Addison-Wesley, pp. 63-97,

97-147, 2001.

A textbook that presents a general introduction to software
engineering, for students in undergraduate and graduate
courses and software engineers in commerce and industry.
It doesn’t describe commercial design methods or CASE
systems, but paints a broad picture of software engineering
methods and tools.

[Sommerville 1997]. Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, Chap. 1-2, 1997.

Presents guidelines which reflect good practice in
requirements engineering, based on the authors’
experience in research and in software and systems
development. The guidelines range from common sense tips
to complex new methods, and can be used in any order,
which suits the reader’s problems, goals and budget.
Guidelines are consistent with ISO 9000 and CMM, are

ranked with cost and benefit analysis, include
implementation advice, and can be combined and applied
to suit an organization’s needs.

[Thayer and Dorfman 1997]. Thayer, R.H., and M.
Dorfman, Software Requirements Engineering (2nd Ed).
IEEE Computer Society Press, pp. 176-205, 389-404, 1997.

A new edition of the comprehensive collection of original
and reprinted articles describing the current best practices
in requirement engineering focused primarily on software
systems but also including hardware and people systems.
The 35 papers introduce current issues and basic
terminology, and cover the phases of software requirements
engineering including elicitation, analysis, specification,
verification, and management. Specific discussions feature
descriptions of the process developers and users use to
review and articulate needs and constraints on
development, examine software requirements and
documentation, and supply details on management
planning and control. Lacks an index.

© IEEE – Trial Version 1.00 – May2001 2–19

APPENDIX A – LIST OF FURTHER READINGS

[Ardis 1997]. Ardis, M., “Formal Methods for
Telecommunication System Requirements: A survey of
Standardized Languages,” Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Berzins, et al. 1997]. Berzins, V., et al., “A Requirements
Evolution Model for Computer Aided Prototyping,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 38-47.

[Beyer and Holtzblatt 1995]. Beyer, H., and Holtzblatt, K.,
“Apprenticing with the Customer,” Communications of the
ACM, 38, 5 (May 1995), pp.45-52.

[Bruno and Agarwal 1995]. Bruno, G., and R. Agarwal,
“Validating Software Requirements Using Operational
Models,” Second Sympoium on Software Quality
Techniques and Acquisition Criteria, Florence, Italy, May
1995.

[Bucci, et al. 1994]. Bucci, G., et al., “An Object-Oriented
Dual Language for Specifying Reactive Systems,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 6-15.

[Bustard and Lundy 1995]. Bustard, D., and P. Lundy,
“Enhancing Soft Systems Analysis with Formal Modeling,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

[Chechik and Gannon 1994]. Chechik, M., and J. Gannon,
“Automated Verification of Requirements
Implementation,” ACM Software Engineering Notes,
Proceedings of the International Symposium on Software
Testing and Analysis, Special Issue (October 1994), pp. 1-
15.

[Chung and Nixon 1995]. Chung, L., and B. Nixon,
“Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach,”
Seventeenth IEEE International Conference on Software
Engineering, IEEE Computer Society Press, 1995.

[Ciancarini, et al. 1997]. Ciancarini, P., et al., “Engineering
Formal Requirements: An Analysis and Testing Method for
Z Documents,” Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[Crespo 1994]. Crespo, R., “We Need to Identify the
Requirements of the Statements of Non-Functional
Requirements,” International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994.

[Curran, et al. 1994]. Curran, P., et al., “BORIS-R
Specification of the Requirements of a Large-Scale
Software Intensive System,” Conference on Requirements
Elicitation for Software-Based Systems, July 1994.

[Darimont and Souquieres 1997]. Darimont, R., and J.
Souquieres, “Reusing Operational Requirements: A
Process-Oriented Approach,” IEEE International

Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.

[Davis and Hsia 1994]. Davis, A., and P. Hsia, “Giving
Voice to Requirements Engineering: Guest Editors’
Introduction,” IEEE Software, 11, 2 (March 1994), pp. 12-
16.

[DeFoe 1994]. DeFoe, J., “Requirements Engineering
Technology in Industrial Education,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, p. 145.

[Demirors 1997]. Demirors, E., “A Blackboard Framework
for Supporting Teams in Software Development,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 232-239.

[Diepstraten 1995]. Diepstraten, M., “Command and
Control System Requirements Analysis and System
Requirements Specification for a Tactical System,” First
IEEE International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press,
November 1995.

[Dobson and Strens 1994] Dobson, J., and R. Strens,
“Organizational Requirements Definition for Information
Technology,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, pp. 158-165.

[Duffy, et al. 1995]. Duffy, D., et al., “A Framework for
Requirements Analysis Using Automated Reasoning,”
Seventh International Conference on Advanced Information
Systems Engineering (CAiSE ‘95), Springer-Verlag, 1995.

[Easterbrook and Nuseibeh 1995]. Easterbrook, S., and B.
Nuseibeh, “Managing Inconsistencies in an Evolving
Specification,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1995.

[Edwards, et al 1995]. Edwards, M., et al., “RECAP: A
Requirements Elicitation, Capture, and Analysis Process
Prototype Tool for Large Complex Systems,” First IEEE
International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press,
November 1995.

[El Emam and Madhavji 1995a]. El Emam, K., and N.
Madhavji, “Requirements Engineering Practices in
Information Systems Development: A Multiple Case
Study,” Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

[Fairley and Thayer 1997]. Fairley, R., and R. Thayer, “The
Concept of Operations: The Bridge From Operational
Requirements to Technical Specifications,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Fickas and Feather 1995]. Fickas, S., and M. Feather,
“Requirements Monitoring in Dynamic Environments,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

2–20 © IEEE – Trial Version 1.00 – May 2001

[Fields, et al. 1995]. Fields, R., et al., “A Task-Centered
Approach to Analyzing Human Error Tolerance
Requirements,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.

[Ghajar-Dowlatshahi and Varnekar 1994]. Ghajar-
Dowlatshahi, J., and A. Varnekar, “Rapid Prototyping in
Requirements Specification Phase of Software Systems,”
Fourth International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 135-140.

[Gibson 1995]. Gibson, M., “Domain Knowledge Reuse
During Requirements Engineering,” Seventh International
Conference on Advanced Information Systems Engineering
(CAiSE ‘95), Springer-Verlag, 1995.

[Goldin and Berry 1994]. Goldin, L., and D. Berry,
“AbstFinder: A Prototype Abstraction Finder for Natural
Language Text for Use in Requirements Elicitation:
Design, Methodology and Evaluation,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, pp. 84-93.

[Gotel and Finkelstein 1997]. Gotel, O., and A. Finkelstein,
“Extending Requirements Traceability: Lessons Learned
from an Industrial Case Study,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.

[Heimdahl 1996]. Heimdahl, M., “Errors Introduced during
the TACS II Requirements Specification Effort: A
Retrospective Case Study,” Eighteenth IEEE International
Conference on Software Engineering, IEEE Computer
Society Press, 1996.

[Heitmeyer, et al. 1996]. Heitmeyer, C., et al., “Automated
Consistency Checking Requirements Specifications,” ACM
Transactions on Software Engineering and Methodology, 5,
3 (July 1996), pp. 231-261.

[Holtzblatt and Beyer 1995]. Holtzblatt, K., and H. Beyer,
“Requirements Gathering: The Human Factor,”
Communications of the ACM, 38, 5 (May 1995), pp. 31-32.

[Hudlicka 1996]. Hudlicka, E., “Requirements Elicitation
with Indirect Knowledge Elicitation Techniques:
Comparison of Three Methods,” Second IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1996.

[Hughes, et al. 1994]. Hughes, K., et al., “A Taxonomy for
Requirements Analysis Techniques,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, pp. 176-179.

[Hughes, et al. 1995]. Hughes, J., et al., “Presenting
Ethnography in the Requirements Process,” Second IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, April 1995.

[Hutt 1994]. Hutt, A., Object-Oriented Analysis and
Design, New York, New York: Wiley, 1994.

[Jackson 1995]. Jackson, M., Software Requirements and
Specifications, Reading, Massachusetts: Addison Wesley,
1995.

[Jackson 1997]. Jackson, M., “The Meaning of
Requirements,” Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[Jones and Britton 1996]. Jones, S., and C. Britton, “Early
Elicitation and Definition of Requirements for an
Interactive Multimedia Information System,” Second IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1996.

[Kirner and Davis 1995]. Kirner, T., and A. Davis,
“Nonfunctional Requirements for Real-Time Systems,”
Advances in Computers, 1996.

[Klein 1997]. Klein, M., “Handling Exceptions in
Collaborative Requirements Acquisition,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.

[Kosman 1997]. Kosman, R., “A Two-Step Methodology
to Reduce Requirements Defects,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[Krogstie, et al. 1995]. Krogstie, J., et al., “Towards a
Deeper Understanding of Quality in Requirements
Engineering,” Seventh International Conference on
Advanced Information Systems Engineering (CAiSE ‘95),
Springer-Verlag, 1995.

[Lalioti and Theodoulidis 1995]. Lalioti, V., and B.
Theodoulidis, “Visual Scenarios for Validation of
Requirements Specification,” Seventh International
Conference on Software Engineering and Knowledge
Engineering, Skokie, Illinois: Knowledge Systems Institute,
June 1995, pp. 114-116.

[Leite, et al. 1997]. Leite, J., et al., “Enhancing a
Requirements Baseline with Scenarios,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.

[Lerch, et al. 1997]. Lerch, F., et al., “Using Simulation-
Based Experiments for Software Requirements
Engineering,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.

[Leveson, et al. 1994]. Leveson, N., et al., “Requirements
Specification for Process-Control Systems,” IEEE
Transactions on Software Engineering, 20,, 9 (September
1994), pp. 684-707.

[Lutz and Woodhouse 1996]. Lutz, R., and R. Woodhouse,
“Contributions of SFMEA to Requirements Analysis,”
Second IEEE International Conference on Requirements
Engineering, Computer Society Press, April 1996.

[Lutz and Woodhouse 1997]. Lutz,R., and R. Woodhouse,
“Requirements Analysis Using Forward and Backward
Search,” Annals of Software Engineering, 3, N. Mead, ed.,
1997.

© IEEE – Trial Version 1.00 – May2001 2–21

[Macaulay 1996]. Macaulay, L., Requirements
Engineering, London, UK: Springer, 1996.

[Macfarlane and Reilly 1995]. Macfarlane, I., and I. Reilly,
“Requirements Traceability in an Integrated Development
Environment,” Second IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
March 1995.

[Maiden and Rugg 1995]. Maiden, N., et al.,
“Computational Mechanisms for Distributed Requirements
Engineering,” Seventh International Conference on
Software Engineering and Knowledge Engineering, Skokie,
Illinois: Knowledge Systems Institute, June 1995, pp. 8-15.

[Mar 1994]. Mar, B., “Requirements for Development of
Software Requirements,” Fourth International Symposium
on Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994, pp. 39-44.

[Massonet and van Lamsweerde 1997]. Massonet, P., and
A. van Lamsweerde, “Analogical Reuse of Requirements
Frameworks,” IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1997.

[McFarland and Reilly 1995]. McFarland, I., and I. Reilly,
“Requirements Traceability in an Integrated Development
Environment,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.

[Mead 1994]. Mead, N., “The Role of Softwa re
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 242.

[Mostert and von Solms 1995]. Mostert, D., and S. von
Solms, “A Technique to Include Computer Security,
Safety, and Resilience Requirements as Part of the
Requirements Specification,” Journal of Systems and
Software, 31, 1 (October 1995), pp. 45-53.

[Mylopoulos, et al. 1995]. Mylopoulos, J., et al., “Multiple
Viewpoints Analysis of Software Specification Process,”
submitted to IEEE Transactions on Software Engineering.

[Nishimura and Honiden 1992]. Nishimura, K., and S.
Honiden, “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach,” submitted
to IEEE Transactions on Software Engineering, December
1992.

[Nissen, et al. 1997]. Nissen, H., et al., “View-Directed
Requirements Engineering: A Framework and Metamodel,”
Ninth IEEE International Conference on Software
Engineering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems Institute, June 1997, pp. 366-373.

[O’Brien 1996]. O’Brien, L., “From Use Case to Database:
Implementing a Requirements Tracking System,” Software
Development, 4, 2 (February 1996), pp. 43-47.

[Opdahl 1994]. Opdahl, A., “Requirements Engineering for
Software Performance,” International Workshop on

Requirements Engineering: Foundations of Software
Quality, June 1994.

[Pinheiro and Goguen 1996]. Pinheiro,F., and J. Goguen,
“An Object-Oriented Tool for Tracing Requirements,”
IEEE Software, 13, 2 (March 1996), pp. 52-64.

[Playle and Schroeder 1996]. Playle, G., and C. Schroeder,
“Software Requirements Elicitation: Problems, Tools, and
Techniques,” Crosstalk: The Journal of Defense Software
Engineering, 9, 12 (December 1996), pp. 19-24.

[Pohl, et al. 1994]. Pohl, K., et al., “Applying AI
Techniques to Requirements Engineering: The NATURE
Prototype,” IEEE Workshop on Research Issues in the
Intersection Between Software Engineering and Artificial
Intelligence, IEEE Computer Society Press, May 1994.

[Porter, et al. 1995]. Porter, A., et al., “Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment,” IEEE Transactions on Software
Engineering, 21, 6 (June 1995), pp. 563-575.

[Potts and Hsi 1997]. Potts, C., and I. Hsi, “Abstraction and
Context in Requirements Engineering: Toward a
Synthesis,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.

[Potts and Newstetter 1997]. Potts, C., and W. Newstetter.,
“Naturalistic Inquiry and Requirements Engineering:
Reconciling Their Theoretical Foundations,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.

[Potts, et al. 1995] Potts, C., et al., “An Evaluation of
Inquiry-Based Requirements Analysis for an Internet
Server,” Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

[Ramesh, et al. 1995]. Ramesh, B., et al., “Implementing
Requirements Traceability: A Case Study,” Second
International Symposium on Requirements Engineering,
IEEE Computer Society Press, 1995.

[Regnell, et al. 1995]. Regnell, B., et al., “Improving the
Use Case Driven Approach to Requirements Engineering,”
Second IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, April 1995.

[Reubenstein 1994]. Reubenstein, H., “The Role of
Software Architecture in Software Requirements
Engineering,” IEEE International Conference on
Requirements Engineering, Computer Society Press, April
1994, p. 244.

[Robertson and Robertson 1994]. Robertson, J., and S.
Robertson, Complete Systems Analysis, Vols. 1 and 2,
Englewood Cliffs, New Jersey: Prentice Hall, 1994.

[Robinson and Fickas 1994]. Robinson, W., and S. Fickas,
“Supporting Multi-Perspective Requirements Engineering,”
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
206-215.

2–22 © IEEE – Trial Version 1.00 – May 2001

[Rolland 1994]. Rolland, C., “Modeling and Evolution of
Artifacts,” IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
216-219.

[Schoening 1994]. Schoening, W., “The Next Big Step in
Systems Engineering Tools: Integrating Automated
Requirements Tools with Computer Simulated Synthesis
and Test,” Fourth International Symposium on Systems
Engineering, Sunnyvale, California: National Council on
Systems Engineering, August 1994, pp. 409-415.

[Shekaran 1994]. Shekaran, M., “The Role of Software
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 245.

[Siddiqi, et al. 1997]. Siddiqi, J., et al., “Towards Quality
Requirements Via Animated Formal Specifications,”
Annals of Software Engineering, 3, N. Mead, ed., 1997.

[Spanoudakis and Finkelstein 1997]. Spanoudakis, G., and
A. Finkelstein, “Reconciling Require ments: A Method for
Managing Interference, Inconsistency, and Conflict,”
Annals of Software Engineering, 3, N. Mead, ed., 1997.

[Stevens 1994]. Stevens, R., “Structured Requirements,”
Fourth International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 99-104.

[van Lamsweerde, et al. 1995] van Lamsweerde, A., et al.,
“Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt,” Second
International Symposium on Requirements Engineering,
IEEE Computer Society Press, 1995.

[White and Edwards 1995]. White, S., and M. Edwards, “A
Requirements Taxonomy for Specifying Complex
Systems,” First IEEE International Conference on
Engineering of Complex Computer Systems , IEEE
Computer Society Press, November 1995.

[Wiley 1999]. Wiley, B., Essential System Requirements:
A Practical Guide to Event-Driven Methods, Addison-
Wesley, 1999.

[Wyder 1996]. Wyder, T., “Capturing Requirements With
Use Cases,” Software Development, 4, 2 (February 1996),
pp. 36-40.

[Yen and Tiao 1997]. Yen, J., and W. Tiao, “A Systematic
Tradeoff Analysis for Conflicting Imprecise
Requirements,” IEEE International Symposium on
Requirements Engineering, Computer Society Press, March
1997.

[Yu 1997]. Yu, E., “Towards Modeling and Reasoning
Support for Early-Phase Requirements Engineering,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, March 1997.

[Zave and Jackson 1996]. Zave, P., and M. Jackson,
“Where Do Operations Come From? A Multiparadigm

Specification Technique,” IEEE Transactions on Software
Engineering, 22, 7 (July 1996), pp. 508-528.

© IEEE – Trial Version 1.00 – May2001 2–23

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE DESCRIPTION

[Acosta 1994]. Acosta, R., et al., “A Case Study of
Applying Rapid Prototyping Techniques in the
Requirements Engineering Environment,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 66-73.

[Alford 1994]. Alford, M., “Attacking Requirements
Complexity Using a Separation of Concerns,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, pp. 2-5.

[Alford 1994]. Alford, M., “Panel Session Issues in
Requirements Engineering Technology Transfer: From
Researcher to Entrepreneur,” IEEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, p. 144.

[Anderson 1985]. Anderson, T., Software Requirements:
Specification and Testing, Oxford, UK: Blackwell
Publishing, 1985.

[Anderson and Durney 1993]. Anderson, J., and B. Durney,
“Using Scenarios in Deficiency-Driven Requirements
Engineering,” International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 134-141.

[Andriole 1992]. Andriole, S., “Storyboard Prototyping For
Requirements Verification,” Large Scale Systems, 12
(1987), pp. 231-247. 14.[Andriole 1992]

[Andriole 1995]. Andriole, S., “Interactive Collaborative
Requirements Management,” Software Development,
(September 1995).

[Andriole 1996]. Andriole, S.J., Managing Systems
Requirements: Methods, Tools and Cases. McGraw-Hill,
1996.

[Anton and Potts 1998]. Anton, A., and C. Potts, “The Use
of Goals to Surface Requirements for Evolving Systems,”
Twentieth International Conference on Software
Engineering, IEEE Computer Society, 1998.

[Ardis, et al. 1995]. Ardis, M., et al., “A Framework for
Evaluating Specification Methods for Reactive Systems,”
Seventeenth IEEE International Conference on Software
Engineering, IEEE Computer Society Press, 1995.

[Bic kerton and Siddiqi 1993]. Bickerton, M., and J. Siddiqi,
“The Classification of Requirements Engineering
Methods,” IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, pp. 182-186.

[Blanchard and Fabrycky 1998]. Blanchard, B. and
Fabrycky, W.J., Systems Engineering Analysis, Prentice
Hall, 1998.

[Blum 1983]. Blum, B., “Still More About Prototyping,”
ACM Software Engineering Notes, 8, 3 (May 1983), pp. 9-
11.

[Blum 1993]. Blum, B., “Representing Open Requirements
with a Fragment-Based Specification,” IEEE Transaction
on Systems, Man and Cybernetics, 23, 3 (May-June 1993),
pp. 724-736.

[Blyth, et al. 1993a]. Blyth, A., et al., “A Framework for
Modelling Evolving Requirements,” IEEE International
Conference on Comp uter Software and Applications, IEEE
Computer Society Press, 1993.

[Boehm 1994]. Boehm, B., P. Bose, et al., “Software
Requirements as Negotiated Win Conditions,” Proc. 1st
International Conference on Requirements Engineering
(ICRE), Colorado Springs, Co, USA, (1994), pp.74-83.

[Boehm, et al. 1995]. Boehm, B., et al., “Software
Requirements Negotiation and Renegotiation Aids: A
Theory-W Based Spiral Approach,” Seventeenth IEEE
International Conference on Software Engineering, IEEE
Computer Society Press, 1995.

[Brown and Cady 1993]. Brown, P., and K. Cady,
“Functional Analysis vs. Object-Oriented Analysis: A View
From the Trenches,” Third International Symposium on
Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, July 1993.

[Byrne 1994]. Byrne, E., “IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.

[Burns and McDermid 1994]. Burns, A., and J. McDermid,
“Real-Time Safety-Critical Systems: Analysis and
Synthesis,” IEE Software Engineering Journal, 9, 6
(November 1994), pp. 267-281.

[Checkland and Scholes 1990]. Checkland, P., and J.
Scholes, Soft Sysems Methodology in Action. John Wiley
and Sons, 1990.

[Chung 1991a]. Chung, L., “Representation and Utilization
of Nonfunctional Requirements for Information System
Design,” Third International Conference on Advanced
Information Systems Engineering (CAiSE ‘90), Springer-
Verlag, 1991, pp. 5-30.

[Chung 1999]. Chung, L., Nixon, B.A., Yu. E.,
Mylopoulos, J., Non-functional Requirements in Software
Engineering, Kluwer Academic Publishers, 1999.

[Chung, et al. 1995]. Chung, L., et al., “Using Non-
Functional Requirements to Systematically Support
Change,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.

[Connell and Shafer 1989]. Connell, J., and L. Shafer,
Structured Rapid Prototyping, Englewood Cliffs, New
Jersey, 1989.

[Coombes and McDermid 1994]. Coombes, A., and J.
McDermid, “Using Quantitative Physics in Requirements
Specification of Safety Critical Systems” Workshop on

2–24 © IEEE – Trial Version 1.00 – May 2001

Research Issues in the Intersection Between Software
Engineering and Artificial Intelligence, Sorrento, Italy,
May 1994.

[Costello and Liu 1995]. Costello, R., and D. Liu, “Metrics
for Requirements Engineering,” Journal of Systems and
Software, 29, 1 (April 1995), pp. 39-63.

[Curtis 1994]. Curtis, A., “How to Do and Use
Requirements Traceability Effectively,” Fourth
International Symposium on Systems Engineering,
Sunnyvale, California: National Council on Systems
Engineering, August 1994, pp. 57-64.

[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.

[Davis 1995a]. Davis, A., 201 Principles of Software
Development, New York, New York: McGraw Hill, 1995.

[Davis 1995b]. Davis, A., “Software Prototyping,” in
Advances in Computing, 40, M. Zelkowitz, ed., New York,
New York: Academic Press, 1995.

[Davis, et al. 1997]. Davis, A., et al., “Elements Underlying
Requirements Specification,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[De Lemos, et al. 1992]. De Lemos, R., et al., “Analysis of
Timeliness Requirements in Safety-Critical Systems,”
Symposium on Formal Techniques in Real-Time and Fault
Tolerant Systems, Nijmegen, The Netherlands: Springer
Verlag, January 1992, pp. 171-192.

[Dobson 1991]. Dobson, J., “A methodology for analysing
human computer-related issues in secure systems,”
International Conference on Computer Security and
Integrity in our Changing World, Espoo, Finland, (1991),
pp. 151-170.

[Dobson, et al. 1992]. Dobson, J., et al., “The ORDIT
Approach to Requirements Identification,” IEEE
International Conference on Computer Software and
Applications, IEEE Computer Society Press, 1992, pp. 356-
361.

[Dorfman and Thayer 1997]. Dorfman, M., and R.H.
Thayer, Software Engineering. IEEE Computer Society
Press, 1997.

[Easterbrook and Nuseibeh 1996]. Easterbrook, S., and B.
Nuseibeh, “Using viewpoints for inconsistency
management,” Software Engineering Journal, 11, 1, 1996,
pp.31-43.

[Ebert 1997]. Ebert, C., “Dealing with Non-Functional
Requirements in Large Software Systems,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[El Emam 1997]. EL Amam K., J. Drouin, et al., SPICE:
The theory and Practice of Software Process Improvement
and Capability Determination. IEEE Computer Society
Press, 1997.

[El Emam and Madhavji 1995]. El Emam, K., and N.
Madhavji, “Measuring the Success of Requirements
Engineering,” Second International Symposium on

Requirements Engineering, IEEE Computer Society Press,
1995.

[Fagan 1986]. Fagan, M.E., “Advances in Software
Inspection,” IEEE Transactions on Software Engineering
12, 7, 1986, pp. 744-51.

[Feather 1991]. Feather, M., “Requirements Engineering:
Getting Right from Wrong,” Third European Software
Engineering Conference, Springer Verlag, 1991.

[Fenton 1991]. Fenton, N. E., Software metrics: A rigorous
approach. Chapman and Hall, 1991.

[Fiksel 1991]. Fiksel, J., “The Requirements Manager: A
Tool for Coordination of Multiple Engineering
Disciplines,” CALS and CE ‘91, Washington, D.C., June
1991.

[Finkelstein 1992]. Finkelstein, A., Kramer, J., B. Nuseibeh
and M. Goedicke, “Viewpoints: A framework for
integrating multiple perspectives in systems development,”
International Journal of Software Engineering and
Knowledge Engineering, 2, 10, (1992), pp.31-58.

[Garlan 1994]. Garlan, D., “The Role of Software
Architecture in Requirements Engineering,” IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, April 1994, p. 240.

[Gause and Weinberg 1989]. Gause, D.C., and G. M.
Weinberg, Exploring Requirements : Quality Before
Design, Dorset House, 1989.

[Gilb and Graham 1993]. Gilb, T., and D. Graham,
Software Inspection. Wokingham: Addison-Wesley, 1993.

[Goguen and Linde 1993]. Goguen, J., and C. Linde,
“Techniques for Requirements Elicitation,” International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1993, pp. 152-164.

[Gomaa 1995]. Gomaa, H., “Reusable Software
Requirements and Architectures for Families of Systems,”
Journal of Systems and Software, 28, 3 (March 1995), pp.
189-202.

[Grady 1993a]. Grady, J., Systems Requirements Analysis,
New York, New York: McGraw Hill, 1993.

[Graham 1998]. Graham, I., Requirements Engineering and
Rapid Development: An Object-Oriented Approach,
Addison Wesley, 1998.

[Hadden 1997]. Hadden, R., “Does Managing
Requirements Pay Off?,” American Programmer, 10, 4
(April 1997), pp. 10-12.

[Hall 1996]. Hall, A., “Using Formal Methods to Develop
an ATC Information System,” IEEE Software 13, 2, 1996,
pp.66-76.

[Hansen, et al. 1991]. Hansen, K., et al., “Specifying and
Verifying Requirements of Real-Time Systems,” ACM
SIGSOFT Conference on Software for Critical Systems,
December 1991, pp. 44-54.

© IEEE – Trial Version 1.00 – May2001 2–25

[Harel 1988]. Harel, D., “On Visual Formalisms,”
Communications of the ACM, 31, 5 (May 1988), pp. 8-20.

[Harel 1992]. Harel, D., “Biting the Silver Bullet: Towards
a Brighter Future for System Development,” IEEE
Computer, 25, 1 (January 1992), pp. 8-20.

[Harel and Kahana 1992]. Harel, D., and C. Kahana, “On
Statecharts with Overlapping,” ACM Transactions on
Software Engineering and Methodology, 1, 4 (October
1992), pp. 399-421.

[Harwell 1993]. Harwell, R., et al, “What is a
Requirement,” Proc 3rd Ann. Int’l Symp. Nat’l Council
Systems Eng., (1993), pp.17-24.

[Heimdahl and Leveson 1995]. Heimdahl, M., and N.
Leveson, “Completeness and Consistency Analysis of
State-Based Requirements,” Seventeenth IEEE
International Conference on Software Engineering, IEEE
Computer Society Press, 1995.

[Hofmann 1993]. Hofmann, H., Requirements Engineering:
A Survey of Methods and Tools, Technical Report #TR-
93.05, Institute for Informatics, Zurich, Switzerland:
University of Zurich, 1993.

[Honour 1994]. Honour, E., “Requirements Management
Cost/Benefit Selection Criteria,” Fourth International
Symposium on Systems Engineering, Sunnyvale,
California: National Council on Systems Engineering,
August 1994, pp. 149-156.

[Hooks and Stone 1992] Hooks, I., and D. Stone,
“Requirements Management: A Case Study  NASA’s
Assured Crew Return Vehicle,” Second Annual
International Symposium on Requirements Engineering,
Seattle, Washington: National Council on Systems
Engineering, July 1992.

[Hsia, et al. 1997]. Hsia, P. et al., “Software Requirements
and Acceptance Testing,” Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Humphery 1988]. Humphery, W.S., “Characterizing the
Software Process,” IEEE Software 5, 2 (1988), pp. 73-79.

[Humphery 1989]. Humphery, W., Managing the Software
Process, Reading, Massachusetts: Addison Wesley, 1989.

[Hutchings 1995]. Hutchings, A., and S. Knox, “Creating
products customers demand,” Communications of the
ACM, 38, 5, (May 1995), pp. 72-80.

[IEEE 1998a]. IEEE Std 830-1998. IEEE Recommended
Practice for Software Requirements Specifications.

[IEEE 1998b]. IEEE Std 1362-1998. IEEE Guide for
Information Technology – System Definition – Concept of
Operations (ConOps) Document.

[Ince 1994]. Ince, D., ISO 9001 and Software Quality
Assurance. London: McGraw-Hill, 1994.

[Jackson and Zave 1995]. Jackson, M., and P. Zave,
“Deriving Specifications from Requirements: An

Example,” Seventeenth IEEE International Conference on
Software Engineering, IEEE Computer Society Press, 1995.

[Jarke and Pohl 1994]. Jarke, M., and K. Pohl,
“Requirements Engineering in 2001: Virtually Managing a
Changing Reality,” IEE Software Engineering Journal, 9, 6
(November 1994), pp. 257-266.

[Jarke, et al. 1993]. Jarke, M., et al., “Theories Underlying
Requirements Engineering: An Overview of NATURE at
Genesis,” IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 19-31.

[Jenkins 1994]. Jenkins, M., “Requirements Capture,”
Conference on Requirements Elicitation for Software-
Based Systems, July 1994.

[Jirotka 1991]. Jirotka, M., Ethnomethodology and
Requirements Engineering, Centre for Requirements and
Foundations Technical Report, Oxford, UK: Oxford
University Computing Laboratory, 1991.

[Kotonya 1999]. Kotonya, G., “Practical Experience with
Viewpoint-oriented Requirements Specification,”
Requirements Engineering, 4, 3, 1999, pp.115-133.

[Kotonya and Sommerville 1996]. Kotonya, G., and I.
Sommerville, “Requirements Engineering with
viewpoints,” Software Engineering, 1, 11, 1996, pp.5-18.

[Kotonya and Sommerville 1998]. Kotonya, G., and I.
Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 1998.

[Lam, et al. 1997a]. Lam, W., et al., “Ten Steps Towards
Systematic Requirements Reuse,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1997.

[Leveson 1986]. Leveson, N.G., “Software safety - why,
what, and how,” Computing surveys, 18, 2, (1986), pp.
125-163.

[Leveson 1995]. Leveson, N.G., Safeware: System Safety
and Computers. Reading, Massachusetts: Addison-Wesley,
1995.

[Loucopulos and Karakostas 1995]. Loucopulos, P., and V.
Karakostas, Systems Requirements Engineering. McGraw-
Hill, 1995.

[Lutz 1993]. Lutz, R., “Analyzing Software Requirements
Errors in Safety-Critical, Embedded Systems,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1993, pp. 126-133.

[Lutz 1996]. Lutz, R., “Targeting Safety-Related Errors
During Software Requirements Analysis,” The Journal of
Systems and Software, 34, 3 (September 1996), pp. 223-
230.

[Maiden and Sutcliffe 1993]. Maiden, N., and A. Sutcliffe,
“Requirements Engineering By Example: An Empirical
Study,” International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 104-111.

2–26 © IEEE – Trial Version 1.00 – May 2001

[Maiden, et al., 1995] Maiden, N., et al., “How People
Categorise Requirements for Reuse: A Natural Approach,”
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.
DePablo, A. Scheffer, and R. Stevens, Software
Engineering Standards, Prentice-Hall, 1996.

[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.
DePablo, A. Scheffer, R. Stevens, M. Jones, G. Alvisi,
Software Engineering Guides, Prentice-Hall, 1996.

[Modugno, et al. 1997]. Modugno, F., et al., “Integrating
Safety Analysis of Requirements Specification,” IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society Press, January 1997.

[Morris, et al. 1994]. Morris, P., et al., “Requirements and
Traceability,” International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994.

[Paulk 1996]. Paulk, M.C., C.V. Weber, et al., Capability
Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.

[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, 1998.

[Pohl 1994]. Pohl, K., “The Three Dimensions of
Requirements Engineering: A Framework and Its
Applications,” Information Systems 19, 3 (1994), pp. 243-
258.

[Pohl 1999]. Pohl, K., Process-centered Requirements
Engineering, Research Studies Press, 1999.

[Potts 1993]. Potts, C., “Choices and Assumptions in
Requirements Definition,” International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, p. 285.

[Potts 1994]. Potts, C., K. Takahashi, et. al., “Inquiry-based
Requirements Analysis,” IEEE Software, 11, 2, 1994, pp.
21-32.

[Pressman 1997]. Pressman, R.S. Software Engineering: A
Practitioner’s Approach (4 edition). McGraw-Hill, 1997.

[Ramesh et al. 1997]. Ramesh, B., et al., “Requirements
Traceability: Theory and Practice,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[Roberston and Robertson 1999]. Robertson, S., and J.
Robertson, Mastering the Requirements Process, Addison
Wesley, 1999.

[Rosenberg 1998]. Rosenberg, L., T.F. Hammer and L.L.
Huffman, “Requirements, testing and metrics, “ 15th
Annual Pacific Northwest Software Quality Conference,
Utah, October 1998.

[Rudd and Isense 1994]. Rudd, J., and S. Isense, “Twenty-
two Tips for a Happier, Healthier Prototype,” ACM
Interactions, 1, 1, 1994.

[Rzepka 1992]. Rzepka, W., “A Requirements Engineering
Testbed: Concept and Status,” 2nd IEEE International

Conference on Systems Integration, IEEE Computer
Society Press, June 1992, pp. 118-126.

[SEI 1995]. A Systems Engineering Capability Model,
Version 1.1, CMU/SEI95-MM-003, Software Engineering
Institute, 1995.

[Siddiqi and Shekaran 1996]. Siddiqi, J., and M.C.
Shekaran, “Requirements Engineering: The Emerging
Wisdom,” IEEE Software, pp.15-19, 1996.

[Sommerville 1996].Sommerville, I. Software Engineering
(5th edition), Addison-Wesley, pp. 63-97, 117-136, 1996.

[Sommerville and Sawyer 1997]. Sommerville, I., and P.
Sawyer, “Viewpoints: Principles, Problems, and a Practical
Approach to Requirements Engineering,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Sommerville, et al. 1993]. Sommerville, I., et al.,
“Integrating Ethnography into the Requirements
Engineering Process,” International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, pp. 165-173.

[Sommerville 1997].Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, 1997

[Stevens 1998]. Stevens, R., P. Brook, K. Jackson and S.
Arnold, Systems Engineering, Prentice Hall, 1998.

[Thayer and Dorfman 1990]. Thayer, R., and M. Dorfman,
Standards, Guidelines and Examples on System and
Software Requirements Engineering. IEEE Computer
Society, 1990.

[Thayer and Dorfman 1997]. Thayer, R.H., and M.
Dorfman, Software Requirements Engineering (2nd Ed).
IEEE Computer Society Press, 1997.

[White 1993]. White, S., “Requirements Engineering in
Systems Engineering Practice,” IEEE International
Symposium on Requirements Engineering, IEEE Computer
Society Press, January 1993, pp. 192-193.

[White 1994]. White, S., “Comparative Analysis of
Embedded Computer System Requirements Methods,”
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
126-134.

© IEEE – Trial Version 1.00 – May 2001 3–1

CHAPTER 3
SOFTWARE DESIGN

Guy Tremblay
Département d’informatique

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville

Montréal, Québec, Canada, H3C 3P8
tremblay.guy@uqam.ca

Table of Contents

1. Introduction...1
2. Definition of Software Design ...1
3. Breakdown of Topics for Software Design....................2
4. Breakdown Rationale ...7
5. Matrix of Topics vs. Reference Material........................8
6. Recommended References for Software Design.........10
Appendix A – List of Further Readings13
Appendix B – References Used to Write and Justify the

Knowledge Area Description...16

1. INTRODUCTION

This chapter presents a description of the Software Design
knowledge area for the Guide to the SWEBOK (Stone Man
version). First, a general definition of the knowledge area is
given. A breakdown of topics is then presented for the
knowledge area along with brief descriptions of the various
topics. These topic descriptions are also accompanied by
references to material that provide more detailed
presentation and coverage of these topics. The
recommended references are then briefly described,
followed by a number of suggestions for further readings.

It is important to stress that various constraints had to be
satisfied by the resulting Knowledge Area (KA) description
to satisfy the requirements set forth for these descriptions
(see Appendix A of the whole Guide to the SWEBOK).
Among the major constraints were that the KA description
had to describe “generally accepted” knowledge not
specific to any application domains or development
methods and had to be compatible with typical breakdowns
found in the literature. For those interested, Section 4
presents a more detailed Breakdown Rationale explaining
how the various requirements for the KA description were
met. A final note concerning the requirements was that the
KA description had to suggest a list of “Recommended

references” with a reasonably limited number of entries.
Satisfying this requirement meant, sadly, that not all
interesting references could be included in the recom-
mended references list, thus the list of further readings.

2. DEFINITION OF SOFTWARE DESIGN

According to the IEEE definition [IEE90], design is both
“the process of defining the architecture, components,
interfaces, and other characteristics of a system or
component” and “the result of [that] process”. Viewed as a
process, software design is the activity, within the software
development life cycle, where software require ments are
analyzed in order to produce a description of the internal
structure and organization of the system that will serve as
the basis for its construction. More precisely, a software
design (the result) must describe the architecture of the
system, that is, how the system is decomposed and
organized into components and must describe the interfaces
between these components. It must also describe these
components into a level of detail suitable for allowing their
construction.

In a classical software development life cycle such as
ISO/IEC 12207 Software life cycle processes [ISO95b],
software design consist of two activities that fit between
software requirements analysis and software coding and
testing: i) software architectural design – sometimes called
top-level design, where the top-level structure and
organization of the system is described and the various
components are identified; ii) software detailed design –
where each component is sufficiently described to allow for
its coding.

Software design plays an important role in the development
of a software system in that it allows the developer to
produce various models that form a kind of blueprint of the
solution to be imple mented. These models can be analyzed
and evaluated to determine if they will allow the various
require ments to be fulfilled. Various alternative solutions
and trade-offs can also be examined and evaluated. Finally,
the resulting models can be used to plan the subsequent

3–2 © IEEE – Trial Version 1.00 – May 2001

development activities, in addition to being used as input
and starting point of the coding and testing activities.

Concerning the scope of the Software Design KA, it is
important to note that not all topics containing the word
“design” in their names will be discussed in the present KA
description. In the terminology of DeMarco [DeM99], the
present KA is concerned mainly with D-design (Decompo-
sition design), as discussed in the above paragraphs
(mapping a system into component pieces). However,
because of its importance within the growing field of
Software Architecture, FP-design (Family Pattern design,
whose goal is to establish exploitable commonalities over a
family of systems) will also be addressed. On the other
hand, I-design (Invention design, usually done by system
analysts with the objective of conceptualizing and spe-
cifying a system to satisfy discovered needs and require-
ments) will not be addressed, since this latter topic should
be considered part of the requirements analysis and
specification activity. Finally, also note that because of the
requirements that the KA description had to include
knowledge not specific to any application domains and the
fact that some topics are better addressed in knowledge
areas of related disciplines (see Appendix D of the whole
Guide), certain specialized areas – for example, User
Interface Design or Real-time Design – are not explicitly
discussed in the present Software Design KA description.
See Section 4 of the present chapter for further details
concerning these and other specialized “design” topics. Of
course, many of the topics included in the present Software
Design KA description may still apply to these specialized
areas.

3. BREAKDOWN OF TOPICS FOR SOFTWARE DESIGN

This section presents the breakdown of the Software
Design Knowledge Area together with brief descriptions of
each of the major topics. Appropriate references are also
given for each of the topic. Figure 1 gives a graphical
presentation of the top-level decomposition of the
breakdown for the Software Design Knowledge Area. The
detailed breakdown is presented in the following pages.

Note: The numbers in the reference keys, e.g., [Bud94:8,
Pre97:23], indicate specific chapter(s) of the reference. In
the case of Mar94, e.g., [Mar94:D], the letters indicates
specific entries of the encyclopedia: “D” = Design; “DR” =
Design Representation; “DD” = Design of Distributed
systems”. Note also that, contrary to the matrix presented in
Section 5, only the appropriate chapter (or part) number,
not the specific sections or pages, have been indicated.

I. Software Design Basic Concepts

This first section introduces a number of concepts and
notions which form an underlying basis to the understanding
of the role and scope of Software Design.

w General design concepts: Software is not the only field
where design is involved. In the general sense, design

can be seen as a form of problem-solving [Bud94:1]. For
example, the notion of wicked problem – a problem that
has no definitive solution – is interesting for under-
standing the limits of design [Bud94:1]. A number of
notions and concepts are also interesting to understand
design in its general sense: goals, constraints,
alternatives, repre sentations, and solutions [SB93].

w The context of software design: To understand the role
and place of software design, it is important to
understand the context in which software design fits,
i.e., the software development life cycle. Thus, the
major characteristics of software requirements analysis
vs. software design vs. software construction vs. testing
must be understood [ISO95b, LG01:11, Mar94:D,
Pfl98:2, Pre97:2].

w The software design process: Software design is
generally considered a two steps process: architectural
design describes how the system is decomposed and
organized into components (the software architecture),
whereas detailed design describes the specific behavior
of these components [DT97:7, FW83:I, ISO95b,
LG01:13, Mar94:D]. The output of this process is a set
of models and artifacts that record the major decisions
that have been taken [Bud94:2, IEE98, LG01:13,
Pre97:13].

w Enabling techniques for software design: According to
the Oxford dictionary, a prin ciple is “a basic truth or a
general law […] that is used as a basis of reasoning or a
guide to action”. Such principles for software design,
called enabling techniques in [BMR+96], are key notions
considered fundamental to many different software
design approaches, concepts and notions that form a kind
of foundation for many of those approaches. Some of the
key notions are the following [BCK98:6, BMR+96:6,
IEE98, Jal97:5,6, LG01:1,3, Pfl98: 5, Pre97:13,23]:

- Abstraction: “the process of forgetting information so
that things that are different can be treated as if they
are the same” [LG01]. In the context of software
design, two key abstraction mechanisms are
abstraction by parameterization and by specification,
which in turn lead to three major kinds of abstraction:
procedural abstraction, data abstraction and control
(iteration) abstraction [BCK98:6, LG01:1,3,5,6
Jal97:5, Pre97:13].

- Coupling and cohesion: whereas coupling measures
the strength of the relationships that exist between
modules, cohesion measures how the elements
making up a module are related [BCK98:6, Jal97:5,
Pfl98:5, Pre97:13].

- Decomposition and modularization: the operation of
decomposing a large system into a number of smaller
independent ones, usually with the goal of placing
different functionalities or responsibilities in diffe rent
components [BCK98:6, BMR+96:6, Jal97:5, Pfl98:5,
Pre97:13].

© IEEE – TrialVersion 1.00 – May 2001

Software Design

I. Software Design
Basic Concepts

II. Key Issues in
Software Design

III. Software
Structure and
Architecture

V. Software
Design Notations

VI. Software Design
Strategies and

Methods

General design
concepts

Concurrency

The context of
software design

Enabling techniques
for software design

The software design
process

Control and handling
of events

Architectural
structures and

viewpoints

Structural
descriptions
(static view)

General Strategies

Distribution

Interactive systems

Exception handling

Persistence

Design patterns
(micro-architecture)

Architectural styles
and patterns (macro-

architecture)

Families of programs
and frameworks

Behavior
descriptions

(dynamic view) Object-oriented
design

Function-oriented
design

Data-structrure
centered design

IV. Software Design
Quality Analysis and

Evaluation

Quality attributes

Measures

Quality analysis and
evaluation tools

Software design reviews

Static analysis

Simulation and
prototyping

Function-oriented
(structured) design

measures

Object-oriented design
measures

Other methods

Figure 1 Breakdown of the Software Design KA

- Encapsulation/information hiding: deals with
grouping and packaging the elements and internal
details of an abstraction and making those details
inaccessible [BCK98:6, BMR+96:6, Jal97:6, Pfl98:5,
Pre97:13, 23].

- Separation of interface and implementation: involves
defining a component by specifying a public
interface, known to the clients, separate from the
details of how the component is realized [BCK98:6,
Bos00:10, LG01:1,9].

- Sufficiency, completeness and primitiveness: deals
with ensuring that a software component captures all
the important characteristics of an abstraction, and
nothing more [BMR+96:6, LG01:5].

II. Key Issues in Software Design

A number of key issues must be dealt with when designing
software systems. Some of these are really quality concerns
that must be addressed by all systems, for example, perfor-
mance. Another important issue is how to decompose,
organize and package the software components. This is so
fundamental that it must be addressed, in one way or
another, by all approaches to design; this is discussed in the
Enabling techniques and in the Software Design Strategies

topics. On the other hand, there are also other issues that
“deal with some aspect of the system’s behaviour that is not
in the application domain, but which addresses some of the
supporting domains” [Bos00]. Such issues, which often
cross-cut the system’s functionality, have been referred to as
aspects: “[aspects] tend not to be units of the system’s func-
tional decomposition, but rather to be properties that affect
the performance or semantics of the components in systemic
ways” [KLM+97]. A number of these major, cross-cutting
issues are the following (presented in alphabetical order):

w Concurrency: how to decompose the systems into
processes, tasks and threads and deal with related
efficiency, atomicity, synchronization and scheduling
issues [Bos00:5, Mar94:DD, Mey97:30, Pre97:21].

w Control and handling of events: how to organize the flow
of data and the flow of control, how to handle reactive
and temporal events through various mechanisms, e.g.,
implicit invocation and call-backs [BCK98:5, Mey97:32,
Pfl98:5].

w Distribution: how the software is dis tributed on the
hardware, how the components commu nicate, how
middle ware can be used to deal with heterogeneous
systems [BCK98:8, BMR+96:2, Bos00:5, Mar94:DD,
Mey97:30, Pre97:28].

3–4 © IEEE – Trial Version 1.00 – May 2001

w Error and exception handling and fault tole rance: how
to prevent and tolerate faults and deal with exceptional
conditions [LG01:4, Mey97:12, Pfl98:5].

w Interactive systems: which approach to use to interact
with users [BCK98:6, BMR+96:2.4, Bos00:5, LG01:13,
Mey97:32].
(Note: this topic is not about the specifications of the details
of the user interface, which would be considered the task of
the UI design, a topic beyond the scope of the current KA.)

w Persistence: how long-lived data is to be handled
[Bos00:5, Mey97:31].

III. Software Structure and Architecture

In its strict sense, “a software architecture is a description
of the subsystems and components of a software system
and the relationships between them” [BMR+96:6]. An
architecture thus attempts to define the internal structure –
“the way in which something is constructed or organized”
(Oxford dictionary) – of the resulting software. During the
mid-90s, however, Software Architecture started to emerge
as a broader dis cipline involved with studying software
structures and architectures in a more generic way [SG96].
This gave rise to a number of interesting notions involved
with the design of software at different levels of abstrac-
tion. Some of these notions can be useful during the archi-
tectural design (e.g., architectural style) as well as during
the detailed design (e.g., lower-level design patterns) of a
specific software system. But they can also be useful for
designing generic systems, leading to the design of families
of systems (aka. product lines). Interestingly, most of these
notions can be seen as attempts to describe, and thus reuse,
generic design knowledge.

w Architectural structures and viewpoints: Different high-
level facets of a software design can and should be
described and documented. These facets are often called
views: “a view repre sents a partial aspect of a software
architecture that shows specific properties of a software
system” [BMR+96]. These different views pertain to
different issues associated with the design of software,
for example, the logical view (satisfying the functional
requirements) vs. the process view (concurrency issues)
vs. the physical view (distribution issues) vs. the
development view (how the design is broken down into
imple mentation units). Other authors use different
terminologies, e.g., behavioral vs. functional vs. struc-
tural vs. data modeling views. The key idea is that a
software design is a multi-faceted artifact produced by
the design process and generally composed of relatively
independent and orthogonal views [BCK98:2,
BMR+96:6, BRJ99:31, Bud94:5, IEE98].

w Architectural styles (macro-architectural patterns): An
architectural style is “a set of constraints on an
architecture [that] define a set or family of architectures
that satisfy them” [BCK98:2]. An architectural style can
thus be seen as a meta-model that can provide the high-
level organization (the macro-architecture) of a

software system. A number of major styles have been
identified by various authors. These styles can
(tentatively) be organized as follows [BCK98:5,
BMR+96:1,6, Bos00:6, BRJ99:28, Pfl98:5]:

- General structure (e.g., layers, pipes and filters,
blackboard);

- Distributed systems (e.g., client-server, three-tiers,
broker);

- Interactive systems (e.g., Model-View-Controller,
Presentation-Abstraction-Control);

- Adaptable systems (e.g., micro-kernel, reflection);

- Other styles (e.g., batch, interpreters, process
control, rule -based).

w Design patterns (micro-architectural patterns):
Described succinctly, a pattern is “a common solution
to a common problem in a given context”
[JBR99:p. 447]. Whereas architectural styles can be
seen as patterns describing the high-level organization
of software systems, thus their macro-architecture, other
design patterns can be used to describe details at a
lower, more local level, thus describing their micro-
architecture. A wide range of patterns have been
discussed in the literature. Such design patterns can
(tentatively) be categorized as follows [BCK98:13,
BMR+96:1, BRJ99:28]:

- Creational patterns: e.g., builder, factory, prototype,
singleton.

- Structural patterns: e.g., adapter, bridge, composite,
decorator, façade, flyweight, proxy.

- Behavioral patterns: e.g., command, interpreter,
iterator, mediator, memento, observer, state,
strategy, template, visitor.

w Families of programs and frameworks: One possible
approach to allow the reuse of software designs and
components is to design families of systems – also
known as software product lines – which can be done
by identifying the commonalities among members of
such families and by using reusable and customizable
components to account for the variability among the
various members of the family [BCK98:15, Bos00:7,10,
Pre97:26].
In the field of OO programming, a key related notion is
that of framework [BMR+96:6, Bos00:11, BRJ99:28]: a
frame work is a partially complete software subsystem
which can be extended by appropriately instantiating
some specific plug-ins (also known as hot spots).

IV. Software Design Quality Analysis and Evaluation

A whole knowledge area is dedicated to Software Quality
(see chapter 11). Here, we simply mention a number of
topics more specifically related with software design.

w Quality attributes: Various attributes are generally
considered important for obtaining a design of good

© IEEE – Trial Version 1.00 – May 2001 3–5

quality, e.g., various “ilities” (e.g., maintainability,
portability, testability, traceability), various “nesses”
(e.g., correctness, robustness), including “fitness of pur-
pose” [BMR+96:6, Bos00:5, Bud97:4, Mar94:D,
Mey97:3, Pfl98:5]. An interesting distinction is the one
between quality attributes discernable at run-time (e.g.,
performance, security, availability, functionality,
usability), those not discernable at run-time (e.g.,
modifiability, portability, reusability, integrability and
testability) and those related with the intrinsic qualities
of the architecture (e.g., conceptual integrity,
correctness and completeness, buildability) [BCK98:4].

w Quality analysis and evaluation tools: There exists a
variety of tools and techniques that can help ensure the
quality of a design. These can be decomposed into a
number of categories:

- Software design reviews: informal or semi-formal,
often group-based, techniques to verify and ensure
the quality of design artifacts, e.g., architecture
reviews [BCK98:10], design reviews and inspections
[Bud94:4, FW83:VIII, Jal97:5,7, LG01:14, Pfl98:5],
scenario-based techniques [BCK98:9, Bos00:5],
requirements tracing [DT97:6, Pfl98:10].

- Static analysis: formal or semi -formal static (non-
executable) analysis that can be used to evaluate a
design, e.g., fault-tree analysis or automated cross-
checking [Jal97:5, Pfl98:5].

- Simulation and prototyping: dynamic techniques to
evaluate a design, e.g., performance simulation or
feasibility prototype [BCK98:10, Bos00:5, Bud94:4,
Pfl98:5].

w Measures: Formal measures (a.k.a. metrics) can be used
to estimate, in a quantitative way, various aspects of the
size, structure or quality of a design. Most measures that
have been proposed generally depend on the approach
used for producing the design. These measures can thus
be classified in two broad categories:

- Function-oriented (structured) design measures:
these measures are used for designs developed using
the structured design approach, where the emphasis
is mostly on functional decomposition. The structure
of the design is generally represented as a structure
chart (sometimes called a hierarchical diagram), on
which various measures can be computed [Jal97:5,7,
Pre97:18].

- Object-oriented design measures: these measures are
used for designs based on object-oriented
decomposition. The overall structure of the design is
often represented as a class diagram, on which
various measures can be defined [Jal97:6,7,
Pre97:23]. Measures can also be defined on pro-
perties of the internal content of each class.

V. Software Design Notations

A large number of notations and languages exist to
represent software design artifacts. Some are used mainly
to describe the structural organization of a design, whereas
others are used to represent the behavior of such software
systems. Note that certain notations are used mostly during
architectural design whereas others are useful mainly
during detailed design, although some can be used in both
steps. In addition, some notations are used mostly in the
context of certain specific methods (see section VI). Here,
we categorize them into notations for describing the
structural (static) view vs. the behavioral (dynamic) view.

w Structural descriptions (static view): These notations,
mostly (but not always) graphical, can be used to
describe and represent the structural aspects of a
software design, that is, to describe what the major
components are and how they are interconnected (static
view).

- Architecture Description Languages (ADL): textual,
often formal, languages used to describe an
architecture in terms of components and connectors
[BCK98:12];

- Class and object diagrams: diagrams used to show a
set of classes (and objects) and their relationships
[BRJ99:8,14, Jal97:5-6];

- Component diagrams: used to show a set of
components (“physical and replaceable part of a
system that conforms to and provides the realization
of a set of interfaces” [BRJ99]) and their
relationships [BRJ99:12,31]

- CRC Cards: used to denote the name of components
(class), their responsibilities and the names of their
collaborating components [BRJ99:4, BMR+96];

- Deployment diagrams: used to show a set of
(physical) nodes and their relationships and, thus, to
model the physical aspects of a system [BRJ99:30];

- Entity-Relationship Diagrams (ERD): used to define
conceptual models of data stored in information
systems [Bud94:6, DT97:4, Mar94:DR];

- Interface Description Languages (IDL):
programming-like languages used to define the
interface (name and types of exported operations) of
software components [BCK98:8, BJR99:11];

- Jackson structure diagrams: used to describe the
structure of data in terms of sequence, selection and
iteration [Bud94.6, Mar94:DR];

- Structure charts: used to describe the calling structure
of programs (which procedure/module calls/is called
by which other) [Bud94:6, Jal97:5, Mar94:DR,
Pre97:14];

w Behavioral descriptions (dynamic view): These notations
and languages are used to describe the dynamic behavior
of systems and components. Such notations include

3–6 © IEEE – Trial Version 1.00 – May 2001

various graphical notations (e.g., activity diagrams,
DFD, sequence diagrams, state transition diagrams) as
well as some textual notations (e.g., formal specification
languages, pseudo-code and PDL). Many of these
notations are useful mostly, but not exclusively, during
detailed design.

- Activity diagrams: used to show the flow of control
from activity (“ongoing non-atomic execution within
a state machine”) to activity [BRJ99:19];

- Collaboration diagrams: used to show the interactions
that occur among a group of objects, where the
emphasis is on the objects, their links and the
messages they exchange on these links [BRJ99:18];

- Data flow diagrams: used to show the flow of data
among a set of processes [Bud94:6, Mar94:DR,
Pre97:14];

- Decision tables and diagrams: used to represent
complex combination of conditions and actions
[Pre97:14];

- Flowcharts and structured flowcharts: used to
represent the flow of control and the associated
actions to be performed [FW83:VII, Mar94:DR,
Pre97:14];

- Formal specification languages: textual languages
that use basic notions from mathematics (e.g., logic,
set, sequence) to rigorously and abstractly define the
interface and behavior of software components, often
in terms of pre/post-conditions: [Bud94:14, DT97:5,
Mey97:11];

- Pseudo-code and Program Design Languages (PDL):
structured, programming-like languages used to
describe, generally at the detailed design stage, the
behavior of a procedure or method [Bud94:6,
FW83:VII, Jal97:7, Pre97:12,14];

- Sequence diagrams: used to show the interactions
among a group of objects, with the emphasis on the
time-ordering of messages [BRJ99:18];

- State transition and statechart diagrams: used to show
the flow of control from state to state in a state
machine [BRJ99:24, Bud94:6, Mar94:DR, Jal97:7].

VI. Software Design Strategies and Methods

Various general strategies can be used to help guide the
design process [Bud94:8, Mar94:D]. By contrast with
general strategies, methods are more specific in that they
generally suggest and provide i) a set of notations to be
used with the method; ii) a description of the process to be
used when following the method; iii) a set of heuristics that
provide guidance in using the method [Bud97:7]. Such
methods are useful as a means of transferring knowledge
and as a common framework for teams of developers
[Bud97:7]. In the following paragraphs, a number of
general strategies are first briefly mentioned, followed by a
number of methods.

w General strategies: Some often cited examples of
general strategies useful in the design process are
divide-and-conquer and stepwise refinement [FW83:V],
top-down vs. bottom-up strategies [Jal97:5, LG01:13],
data abstraction and information hiding [FW83:V], use
of heuristics [Bud94:7], use of patterns and pattern
languages [BMR+96:5], use of an itera tive and
incremental approach [Pfl98:2].

w Function-oriented (structured) design [DT97:5,
FW83:V, Jal97:5, Pre97:13-14]: This is one of the
classical approach to software design, where the
decomposition is centered around the identification of
the major systems functions and their elaboration and
refinement in a top-down manner. Structured design is
generally used after structured analysis has been
performed, thus producing, among other things,
dataflow diagrams and associated processes
descriptions. Various strategies (e.g., transformation
analysis, transaction analysis) and heuristics (e.g., fan-
in/fan-out, scope of effect vs. scope of control) have
been proposed to transform a DFD into a software
architecture generally represented as a structure chart.

w Object-oriented design [DT97:5, FW83:VI, Jal97:6,
Mar94:D, Pre97:19,21]: Numerous software design
methods based on objects have been proposed. The field
evolved from the early object-based design of the mid-
1980’s (noun = object; verb = method; adjective =
attribute) through object-oriented design, where
inheritance and polymorphism play a key role, and to
the field of component-based design, where meta-
information can be defined and accessed (e.g., through
reflection). Although object-oriented design’s deep
roots stem from the concept of data abstraction, the
notion of responsibility-driven design has also been
proposed as an alternative approach to object-oriented
design.

w Data-structure centered design [FW83:III,VII,
Mar94:D]: Although less popular in North America
than in Europe, there has been some interesting work
(e.g., Jackson, Warnier-Orr) on designing a program
starting from the data structures it manipulates rather
than from the function it performs. The structures of the
input and output data are first described (e.g., using
Jackson structure diagrams) and then the control
structure of the program is developed based on these
data structure diagrams. Various heuristics have been
proposed to deal with special cases, for example, when
there is mismatch between the input and output
structures.

w Other methods: Although software design based on
functional decomposition or on object-oriented
approaches are probably the most well-known methods
to software design, other interesting approaches,
although probably less “mainstream”, do exist, e.g.,
formal and rigorous methods [Bud94:14, DT97:5,

© IEEE – Trial Version 1.00 – May 2001 3–7

Mey97:11, Pre97:25], transformational methods
[Pfl98:2].

4. BREAKDOWN RATIONALE

This section explains the rationale behind the breakdown of
topics for the Software Design KA. This is done informally
by going through a number of the requirements described in
the “Knowledge Area Description Specifications for the
Stone Man Version of the Guide to the SWEBOK” (see
Appendix A of the whole Guide) and by trying to explain
how these requirements influenced the organization and
content of the Software Design KA description.

First and foremost, the breakdown of topics must describe
“generally accepted” knowledge, that is, knowledge for
which there is a “widespread consensus”. Furthermore, and
this is clearly where this becomes difficult, such knowledge
must be “generally accepted” today and expected to be so
in a 3 to 5 years timeframe. This latter require ment first
explains why elements related with software architecture
(see below), inclu ding notions related with architectural
styles have been included, even though these are relatively
recent topics that might not yet be generally accepted.

The need for the breakdown to be independent of specific
application domains, life cycle models, technologies,
development methods, etc., and to be compatible with the
various schools within software engineering, is particularly
apparent within the “Software Design Strategies and
Methods” section. In that section, numerous approaches
and methods have been included and references given. This
is also the case in the “Software Design Notations”, which
incorporates pointers to many of the existing notations and
description techniques for software design artifacts.
Although many of the design methods use specific design
notations and description techniques, many of these
notations are generally useful independently of the
particular method that uses them. Note that this is also the
approach used in many software engineering books,
including the recent UML series of books by Booch,
Jacobson and Rumbaugh, which describe “The Unified
Modeling Language” apart from “The Unified Software
Development Process”.

One point worth mentioning about UML is that although
“UML” (Unified Modeling Language) is not explicitly
mentioned in the Design Notations section, many of its
elements are indeed present, for example: class and object
diagrams, collaboration diagrams, deployment diagrams,
sequence diagrams, statecharts.

The specifications document also specifically asked that the
breakdown be as inclusive as possible and that it includes
topics related with quality and measurements. Thus, a
certain number of topics have been included in the list of
topics even though they may not yet be fully considered as
generally accepted. For example, although there are a
number of books on measures and metrics, design measures
per se are rarely dis cussed in detail and few “main stream”

software engineering books formally discuss this topic. But
they are indeed discussed in some books and may become
more main stream in the coming years. Note that although
those measures can sometimes be categorized into high-
level (architectural) design vs. component-level (detailed)
design, the way such measures are defined and used gene-
rally depend on the approach used for producing the design,
for example, structured vs. object-oriented design. Thus,
the measures sub-topics have been divided into function-
(structured-) vs. object-oriented design. As the software
engineering field matures and classes of software designs
evolve, the measures appropriate to each class will become
more apparent.

Similarly, there may not yet be a generally accepted list of
basic principles and concepts (what was called here the
“enabling techniques”: see next paragraph for the choice of
these terms) on which all authors and software engineers
would agree. Only those that seemed the most commonly
cited in the literature were included.

As required by the KA Description Specifications, the
breakdown is at most three levels deep and use topic names
which, based on our survey of the exis ting literature and on
the various reviewers’ comments, should be meaningful
when cited outside Guide to the SWEBOK. One possible
exception might be the use of the terms “enabling
techniques”, taken from [BMR+96]. In the current context,
the term “concept” seemed too general, not specific
enough, whereas the term “principle”, sometimes used in
the literature for some of these notions, sounded too strong
(see the definition provided in Section 3).

The rationale for the section “Key Issues in Software
Design” is that a number of reviewers of an earlier version
suggested that certain topics, not explicitly mentioned in
that previous version, be added, e.g., concurrency and
multi-threading, exception handling. Although some of
these aspects are addressed by some of the existing design
methods, it seemed appropriate that these key issues be
explicitly identified and that more specific references be
given for them, thus the addition of this new section.
However, like for the enabling techniques, there does not
seem to yet be a complete consensus on what these issues
should be, what aspects they should really be addressing,
especially since some of those that have been indicated may
also be addressed by other topics (e.g., quality). Thus, this
section should be seen as a tentative and prototype
description that could yet be improved: the author of the
Software Design KA Description would gladly welcome
any suggestions that could improve and/or refine the con-
tent of this section.

In the KA breakdown, as mentioned earlier, an explicit
“Software Architecture” section has been included. Here,
the notion of “architecture” is to be understood in the large
sense of defining the structure, organization and interfaces
of the components of a software system, by opposition to
producing the “detailed design” of the specific components.
This is what really is at the heart of Software Design. Thus,

3–8 © IEEE – Trial Version 1.00 – May 2001

the “Software Architecture” section includes topics which
pertain to the macro-architecture of a system – what is now
becoming known as “Architecture” per se, including
notions such as “architectural styles” and “family of
programs” – as well as topics related with the micro -
architecture of the smaller subsystems – for example,
lower-level design patterns which can be used at the
detailed design state. Although some of these topics are
relatively new, they should become much more generally
accepted within the 3-5 years timeframe expected from the
Guide to the SWEBOK specifications. By contrast, note
that no explicit “Detailed Design” section has been
included: topics relevant to detailed design can implicitly
be found in many places: the “Software Design Notations”
and “Software Design Strategies and Methods” sections,
“Software Architecture” (design patterns), as well as in
“The software design process” subsection.

The “Software Design Strategies and Methods” section has
been divided, as is done in many books discussing software
design, in a first section that presents general strategies,
followed by subsequent sections that present the various
classes of approaches (data-, function-, object-oriented or
other approaches). For each of these approaches, nume rous
methods have been proposed and can be found in the
software engineering literature. Because of the limit on the
number of references, mostly general references have been
given, pointers that can then be used as starting point for
more specific references.

Another issue, alluded to in the introduction but worth
explaining in more detail, is the exclusion of a number of
topics which contain the word “design” in their name and
which, indeed, pertain to the development of software
systems. Among these are the followings: User Interface
Design, Real-time Design, Database Design, Participatory
Design, Collaborative Design. The first two topics were
specifically excluded, in the Straw Man document
[BDA+98], from the Software Design KA: User Interface
Design was considered to be a related dis cipline (see the
Relevant knowledge areas of related disciplines, where
both Computer Science and Cognitive Sciences can be
pertinent for UI Design) whereas Real-time Design was
considered a specialized sub-field of software design, thus
did not have to be addressed in this KA description. The
third one, Database Design, can also be considered a rele-
vant (specialized) knowledge area of a related discipline
(Computer Science). Note that issues related with user-
interfaces and databases still have to be dealt with during
the software design process, which is why they are
mentioned in the “Key Issues in Software Design” section.
Howe ver, the specific tasks of des igning the details of the
user interface or database structure are not considered part
of Software Design per se. Note also that UI Design is not
really part of design for an additional reason: UI Design

deals with specifying the external view of the system, not
its internal structure and organization, thus should really be
considered part of requirements specification.

As for the last two topics – Participatory and Colla borative
Design –, they are more appropriately related with the
Requirements Engineering KA, rather than Software
Design. In the terminology of DeMarco (DeM99), these
latter two topics belong more appropriately to I-Design
(invention design, done by system analysts) rather than D-
design (decomposition design, done by designers and
coders) or FP-design (family pattern design, done by
architecture groups). It is mainly D-design and FP-design,
with a major emphasis on D-design, that can be considered
as generally accepted knowledge related with Software
Design.

Finally, concerning standards, there seems to be few
standards that directly pertain to the design task or work
product per se. However, standards having some indirect
relationships with various issues of Software Design do
exist, e.g., OMG standards for UML or CORBA. Since the
need for the explicit inclusion of standards in the KA
breakdown has been put aside (“Proposed changes to the
[…] specifications […]”, Dec. 1999), a few standards
having a direct connection with the Software Design KA
were included in the Recommended references section. A
number of standards related with design in a slightly more
indirect fashion were also added to the list of further
readings. Finally, additional standards having only an
indirect yet not empty connection with design were simply
mentioned in the general References section. As for topics
related with tools, they are now part of the Software
Development Methods and Tools KA.

5. MATRIX OF TOPICS VS . REFERENCE MATERIAL

The figure below presents a matrix showing the coverage of
the topics of the Software Design KA by the various
recommended references described in more detail in the
following section. A number in an entry indicates a specific
section or chapter number. A “*” indicates a reference to
the whole document, generally either a journal paper or a
standard. An interval of the form “n1-n2” indicates a
specific range of pages, whereas an interval of the form
“n1:n2” indicates a range of sections. For Mar94, the letters
refer to one of the encyclopedia’s entry: “D” = Design;
“DR” = Design Representation; “DD” = Design of
Distributed systems”.

Note: Only the top two levels of the breakdown have been
indicated in the matrix. Otherwise, especially in the
“Software Design Notations” subsections, this would have
lead to very sparse lines (in an already quite sparse matrix).

© IEEE – Trial Version 1.00 – May 2001 3–9

 B
C

K
98

B
M

R
+96

B
os00

B
R

J99

B
ud94

D
T

97

FW
83

IEE98

ISO
95b

Jal97

L
G

01

M
ar94

M
ey97

Pfl98

Pre97

SB
93

I. Software Design
Basic Concepts

General design
concepts

 1 *

The context of
software design

 * 11.1 D 2.2 2.2 :
2.7

The software design
process

2.1,
2.4

 2 266-
276

2-22 * * 13.1
13.2

D 13.8

Enabling techniques 6.1 6.3 10.3 * 5.1,
5.2,
6.2

1.1,
1.2,

3.1:3.
3,

77-
85,
5.8,
125-
128,9
.1:9.3

 5.2,
5.5

13.4,
13.5,
23.2

II. Key issues in
software design

Concurrency 5.4.1 DD 30 21.3
Control and events 5.2 32.4,

32.5
5.3

Distribution 8.3,
8.4

2.3 5.4.1 DD 30 28.1

Exception handling 4.3:4.
5

 12 5.5

Interactive systems 6.2 2.4 5.4.1 13.3 32.2
Persistence 5.4.1 31
III. Software
structure and
architecture

Architectural structures
and viewpoints

2.5 6.1 31 5.2 *

Architectural styles
and patterns (macro-
arch.)

5.1,
5.2,
5.4

1.1:
1.3,
6.2

6.3.1 28 5.3

Design patterns
(micro-arch.)

13.3 1.1:
1.3

 28

Families of programs
and frameworks

15.1,
15.3

6.2 7.1,
7.2,

10.2:
10.4,
11.2,
11.4

28 26.4

IV. Software design
quality analysis and
evaluation

Quality attributes 4.1 6.4 5.2.3 4.1:
4.3

 D 3 5.5

Quality analysis and
evaluation

9.1,
9.2,

10.2,
10.3

 5.2.1
5.2.2
5.3,
5.4

 4.4 266-
276

542-
576

 5.5,
7.3

14.1 5.6,
5.7,
10.5

Measures 5.6,
6.5,
7.4

 18.4,
23.4,
23.5

3–10 © IEEE – Trial Version 1.00 – May 2001

 B
C

K
98

B
M

R
+96

B
os00

B
R

J99

B
ud94

D
T

97

FW
83

IEE98

ISO
95b

Jal97

L
G

01

M
ar94

M
ey97

Pfl98

Pre97

SB
93

V. Software design
notations

Structural descriptions
(static)

8.4,
12.1,
12.2

p.
429

 4, 8,
11,
12,
14,
30,
31

6.3,
6.4,
6.6

 5.3,
6.3

 DR 12.3,
12.4

Behavioral
descriptions (dynamic)

 18,
19,
24

6.2,
6.7:
6.9,
14.2.2
14.3.2

181-
192

485-
490,
506-
513

 5.3,
7.2

 DR 11 14.11
12.5

VI. Software design
strategies and
methods

General strategies 5.1:
5.4

 7.1,
7.2,
8

 304-
320,
533-
539

 5.1.4 13.13 D 2.2

Function-oriented
design

 170-
180

328-
352

 5.4 13.5,
13.6,
14.3:
14.5

OO design 148-
159,
160-
169

420-
436

 6.4 D 19.2,
19.3,
21.1:
21.3

Data-centered design 201-
210,5
14-
532

 D

Other methods 14 181-
192

395-
407

 11 2.2 25.1:
25.3

6. RECOMMENDED REFERENCES FOR SOFTWARE
DESIGN

In this section, we give a brief presentation of each of the
recommended references. Note that few references to
existing standards have been included in this list, for the
reasons explained in Section 4; instead, references to
interesting standards have been included in the list of
further readings. Also note that, because of the constraints
on the size of the recommended references list, few specific
and detailed references have been given for the various
design methods; instead, general software engineering
textbook references have been given. See the list of further
readings in section 7 for more precise and detailed
references on such methods, especially for references to
various OO design methods.

Finally, also note that, both in this section and the follo-
wing, only the author(s) and title of the recommended
reference are given, together with an appropriate key that
then refers to an entry in the general and detailed
References section at the end of the chapter.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, Addison-Wesley.

A recent and major work on software architecture. It covers
all the major topics associated with software architecture:
what software architecture is, quality attributes,
architectural styles, enabling concepts and techniques
(called unit operations), architecture description languages,
development of product lines, etc. Furthermore, it presents
a number of case studies illustrating major architectural
concepts, including a chapter on CORBA and one on the
WWW. Some sections also address the issue of product
lines design.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-oriented Software
Architecture – A System of Patterns, J. Wiley and Sons.

Probably one of the best and clearest introduction to the
notions of software architecture and patterns (both
architectural and lower-level ones). Distinct chapters are
dedicated to architectural patterns, design patterns and
lower-level idioms. Another chapter discusses the
relationships between patterns, software architecture,
methods, frameworks, etc. This chapter also includes an

© IEEE – Trial Version 1.00 – May 2001 3–11

brief presentation of “enabling techniques for software
architecture”, e.g., abstraction, encapsulation, information
hiding, coupling and cohesion, etc.

[Bos00] J. Bosch. Design & Use of Software Architectures
– Adopting and Evolving a Product-line Approach, ACM
Press.

The first part of this book is about the design of software
architectures and proposes a functionality-based approach
coupled with subsequent phases of evaluation and
transformation of the resulting architecture. These
transformations are expressed in terms of different levels of
patterns (architectural styles, architectural patterns and
design patterns) and the impact they have on a number of
key quality factors (performance, maintainability, reliability
and security). The second part of the book is more
specifically about the design of software product lines,
including a whole chapter on OO frameworks.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide, Addison-Wesley.

A comprehensive and thorough presentation of the various
elements of UML, which incorporates many of the
notations mentioned in the “Software Design Notations”
section.

[Bud94] D. Budgen. Software Design, Addison-Wesley.

One of the few books discussing software design known to
the author of the SD KA description – maybe the only one
– which is neither a general software engineering textbook
nor a book describing a specific software design method.
This is probably the book that comes closest to the spirit of
the present Software Design KA description, as it discusses
topics such as the followings: the nature of design; the
software design process; design qualities; design
viewpoints; design representations; design strategies and
methods (including brief presentations of a number of such
methods, e.g., JSP, SSASD, JSD, OOD, etc.). Worth
reading to find, in a single book, many notions, views and
approaches to/about software design.

[DT97] M. Dorfman and R.H. Thayer (eds.). Software
Engineering, IEEE Computer Society.

This book contains a collection of papers on software
engineering in general. Two chapters deal more specifically
with software design. One of them contains a general
introduction to software design, briefly presenting the
software design process and the notions of software design
methods and design viewpoints. The other chapter contains
an introduction to object-oriented design and a comparison
of some existing OO methods. The following articles are
particularly interesting for Software Design:

w D. Budgen, Software Design: An Introduction, pp. 104-
115.

w L.M. Northrop, Object-Oriented Development, pp. 148-
159.

w A.G. Sutcliffe, Object-Oriented Systems Development:
A Survey of Structured Methods, pp.160-169.

w C. Ashworth, Structured Systems Analysis and Design
Method (SSADM), pp. 170-180.

w R. Vienneau, A Review of Formal Methods, pp. 181-
192.

w J.D. Palmer, Traceability, pp. 266-276.

[FW83] P. Freeman and A.I. Wasserman. Tutorial on
Software Design Techniques, 4th edition, IEEE Computer
Society Press.

Although this is an old book, it is an interesting one
because it allows to better understand the evolution of the
software design field. This book is a collection of papers
where each paper presents a software design technique. The
techniques range from basic strategies like stepwise
refinement to, at the time, more refined methods such as
structured design à la Yourdon and Constantine. An
historically important reference. The following articles are
particularly interesting:

w P. Freeman, Fundamentals of Design, pp. 2-22.

w D.L. Parnas, On the Criteria to be Used in Decomposing
Systems into Modules, pp. 304-309.

w D.L. Parnas, Designing Software for Ease of Extension
and Contraction, pp. 310-320.

w W.P. Stevens, G.J. Myers and L.L. Constantine,
Structured Design, pp. 328-352.

w G. Booch, Object-Oriented Design, pp. 420-436.

w S.H. Caine and E.K. Gordon, PDL – A Tool for
Software Design, pp. 485-490.

w C.M. Yoder and M.L. Schrag, Nassi-Schneiderman
Charts: An Alternative to Flowcharts for Design, pp.
506-513.

w M.A. Jackson, Constructive Methods of Program
Design, pp. 514-532.

w N. Wirth, Program Development by Stepwise
Refinement, pp. 533-539.

w P. Freeman, Toward Improved Review of Software
Design, pp. 542-547.

w M.E. Fagan, Design and Code Inspections to Reduce
Errors in Program Development, pp. 548-576.

[IEE98] IEEE Std 1016-1998. IEEE Recommended
Practice for Software Design Des criptions.

This document describes the information content and
recommended organization that should be used for software
design descriptions. The attributes describing design
entities are briefly described: identification, type, purpose,
function, subordinates, dependencies, interfaces, resources,
processing and data. How these different elements should
be organized is then presented.

[ISO95b] ISO/IEC Std 12207. Information technology –
Software life cycle processes.

3–12 © IEEE – Trial Version 1.00 – May 2001

A detailed description of the ISO/IEC-12207 life cycle
model. Clearly shows where Software Design fits in the
whole software development life cycle.

[Jal97] P. Jalote. An integrated approach to software
engineering, 2nd ed., Springer-Verlag.

A general software engineering textbook with a good
coverage of software design, as three chapters discuss this
topic: one on function-oriented design, one on object-
oriented design, and the other on detailed design. Another
interesting point is that all these chapters have a section on
measures and metrics.

[LG01] B. Liskov and J. Guttag. Program Development in
Java – Abstraction, Specification, and Object-Oriented
Design, Addison-Wesley, 2000 .

A Java version of a classic book on the use of abstraction
and specification in software development [LG86]. This
new book still discusses, in a clear and insightful way, the
notions of procedural vs. data vs. control (iteration)
abstractions. It also stresses the importance of appropriate
specifications of these abstractions, although this is now
done rather informally (with stylized pre/post-conditions in
the style of Clu [LG86]). The book also contains a chapter
on design patterns. A very good introduction to some of the
basic notions of design.

[Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering, J. Wiley and Sons.

A general software engineering encyclopedia that contains
(at least) three interesting articles discussing software
design. The first one, “Design” (K. Shumate), is a general
overview of design discussing alternative development
processes (e.g., waterfall, spiral, prototyping), design
methods (structured, data-centered, modular, object-
oriented). Some issues related with concurrency are also
mentioned. The second one discusses the “Design of
distributed systems” (R.M. Adler): communication models,
client-server and services models. The third one, “Design
representation” (J. Ebert), presents a number of approaches
to the representation of design. It is clearly not a detailed
presentation of any method; however, it is interesting in
that it tries to explicitly identify, for each such method, the
kinds of components and connectors used within the
representation.

[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition), Prentice-Hall, 2000.

A detailed presentation of the Eiffel OO language and its
associated Design-By-Contract approach, which is based on
the use of formal assertions (pre/post-conditions, invariants,
etc). It introduces the basic concepts of OO design, along
with a discussion of many of the key issues associated with
software design, e.g., user interface, exceptions,
concurrency, persistence.

[Pfl98] S.L. Pfleeger. Software Engineering – Theory and
Practice, Prentice-Hall.

A general software engineering book with one chapter
devoted to design. Briefly presents and discusses some of
the major architectural styles and strategies and some of the
concepts associated with the issue of concurrency. Another
section presents the notions of coupling and cohesion and
also deals with the issue of exception handling. Techniques
to improve and to evaluate a design are also presented:
design by contract, prototyping, reviews. Although this
chapter does not delve into any topic, it can be an
interesting starting point for a number of issues not
discussed in some of the other general software engineering
textbooks.

[Pre97] R.S. Pressman. Software Engineering – A
Practitioner’s Approach (Fourth Edition), McGraw-Hill.

A classic general software engineering textbook (4th
edition!). It contains over 10 chapters that deal with notions
associated with software design in one way or another. The
basic concepts and the design methods are presented in two
distinct chapters. Furthermore, the topics pertaining to the
function-based (structured) approach are separated (part III)
from those pertaining to the object-oriented approach (part
IV). Independent chapters are also devoted to measures
applicable to each of those approaches, a specific section
addressing the measures specific to design. A chapter
discusses formal methods and another presents the Clean-
room approach. Finally, another chapter discusses client-
server systems and distribution issues.

[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving, IEEE Transactions on Systems,
Man and Cybernetics, vol. 23, no. 5 Sep-Oct. 1993, pp.
1209-1219.

A paper that discusses what is design in general. More
specifically, it presents the five basic concepts of design:
goals, constraints, alternatives, representations, and
solutions. The bibliography is a good starting point for
obtaining additional refe rences on design in general.

© IEEE – Trial Version 1.00 – May 2001 3–13

APPENDIX A – LIST OF FURTHER READINGS

The following section suggests a list of additional reading
material related with Software Design. A number of
standards are mentioned; additional standards that may be
pertinent or applicable to Software Design, although in a
somewhat less direct way, are also mentioned, although not
further described, in the general References section at the
end of the document.

[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed.

A classic in the field of OOD. The book introduces a
number of notations that were to become part of UML
(although sometimes with some slight modifications): class
vs. objects diagrams, interaction diagrams, statecharts -like
diagrams, module and deployment, process structure dia-
grams, etc. It also introduces a process to be used for OOA
and OOD, both a higher-level (life cycle) process and a
lower-level (micro-) process. (Note that a third edition of
this book is expected.)

[Cro84] N. Cross (ed.). Developments in Design
Methodology.

This book consists in a series of papers related to design in
general, that is, design in other contexts than software. Still,
many notions and principles discussed in some of these
papers do apply to Software Design, e.g., the idea of design
as wicked-problem solving.

[CY91] P. Coad and E. Yourdon. Object-Oriented Design.

This is yet another classic in the field of OOD – note that
the second author is one of the father of classical Structured
Design. An OOD model developed with their approach
consists of the following four components that attempt to
separate how some of the key issues should be handled:
problem domain, human interaction, task management and
data management.

[DW99] D.F. D’Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The Catalysis
Approach.

A thorough presentation of a specific OO approach with an
emphasis on component design. The development of static,
dynamic and interaction models is discussed. The notions
of components and connectors are presented and illustrated
with various approaches (Java Beans, COM, Corba); how
to use such components in the development of frameworks
is also discussed. Another chapter discusses various aspects
of software architecture. The last chapter introduces a
pattern system for dealing with both high-level and detailed
design, the latter level touching on many key issues of
design such as concurrency, distribution, middleware,
dialogue independence, etc.

[Fow99] M. Fowler. Refactoring – Improving the Design of
Existing Code.

A book about how to improve the design of some existing
(object-oriented) code. The first chapter is a simple and
illustrative example of the approach. Subsequent chapter
present various categories of strategies, e.g., composing
methods, moving features between objects, organizing data,
simplifying conditional expressions, making methods calls
simpler.

 [FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics –
A Rigorous & Practical Approach (Second Edition).

This book contains a detailed presentation of numerous
software measures and metrics. Although the measures are
not necessarily presented based on the software
development life cycle, many of those measures, especially
those in chapters 7 and 8, are applicable to software design.

[GHJV95] E. Gamma et al. Design Patterns – Elements of
Reusable Object-Oriented Software.

The seminal work on design patterns. A detailed catalogue
of patterns related mostly with the micro -architecture level.

[Hut94] A.T.F. Hutt. Object Analysis and Design –
Description of Methods. Object Analysis and Design –
Comparison of Methods.

These two books describe (first book) and compare (second
book), in an outlined manner, a large number of OO
analysis and design methods. Useful as a starting point for
obtaining additional pointers and references to OOD
methods, not so much as a detailed presentation of those
methods.

[IEE90] IEEE Std 610.12-1990. IEEE Standard Glossary of
Software Engineering Terminology.

This standard is not specifically targeted to Software
Design, which is why it has not been included in the
recommended references. It describes and briefly explains
many of the common terms used in the Software
Engineering field, including many terms from Software
Design.

[ISO91] ISO/IEC Std 9126. Information technology –
Software product evaluation – Quality characteristics and
guidelines for their use.

This standard describes six high-level characteristics that
describe software quality: functionality, reliability,
usability, efficiency, maintainability, portability.

[JBP+91] J. Rumbaugh et al. Object-Oriented Modeling
and Design.

This book is another classic in the field of OOA and OOD.
It was one of the first to introduce the distinctions between
object, dynamic and functional modeling. However,
contrary to [Boo94] whose emphasis is mostly on design,
the emphasis here is slightly more on analysis, although a
number of elements do apply to design too.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process.

A detailed and thorough presentation of the Unified
Software Development Process proposed by the Rational

3–14 © IEEE – Trial Version 1.00 – May 2001

Software Corporation. The notion of architecture plays a
central role in this development process, the process being
said to be architecture-centric. However, the associated
notion of architecture seems to be slightly different from
the traditional purely design-based one: an architecture
description is supposed to contain views not only from the
design model but also from the use-case, deployment and
implementation models. A whole chapter is devoted to the
presentation of the iterative and incremental approach to
software development. Another chapter is devoted to
design per se, whose goal is to produce both the design
model, which includes the logical (e.g., class diagrams,
collaborations, etc.) and process (active objects) views, and
the deployment model (physical view).

[Kru95] P.B. Kruchten. The 4+1 view model of
architecture.

A paper that explains in a clear and insightful way the
importance of having multiple views to describe an
architecture. Here, architecture is understood in the sense
mentioned earlier in reference [JBR99], not in its strictly
design-related way. The first four views discussed in the
paper are the logical, process, development and physical
views, whereas the fifth one (the “+1”) is the use case view,
which binds together the previous views. The views more
intimately related with Software Design are the logical and
process ones.

[Lar98] C. Larman. Applying UML and Patterns – An
introduction to Object-Oriented Analysis and Design.

An introductory book that covers object-oriented analysis
and design, doing so through a case study used throughout
the book. Part IV and VII are dedicated to the design phase.
They introduce a number of patterns to guide the
assignment of responsibilities to classes and objects.
Various issues regarding design are also addressed, e.g.,
multi-tiers architecture, model-view separation. The
patterns of [GHJV95] are also examined in the context of
the case study.

[McC93] S. McConnell. Code Complete.

Although this book is probably more closely related with
Software Construction, it does contain a section on
Software Design with a number of interesting chapters,
e.g., “Characteristics of a High-Quality Routines”, “Three
out of Four Programmers Surveyed Prefer Modules”,
“High-Level Design in Construction”. One of these
chapters (“Characteristics […]”) contains an interesting
discussion on the use of assertions in the spirit of Meyer’s
Design-by-Contract; another chapter (“Three […]”)
discusses cohesion and coupling as well as information
hiding; the other chapter (“High-Level […]”) gives a brief
introduction to some design methodologies (structured
design, OOD).

[otSESC98] Draft recommended practice for information
technology – System design – Architectural description.
Technical Report IEEE P1471/D4.1.

“This recommended practice establishes a conceptual
framework for architectural description. This framework
covers the activities involved in the creation, analysis, and
sustainment of architectures of software-intensive systems,
and the recording of such architectures in terms of archi tec-
tural descriptions.” (from the Abstract)

[Pet92] H. Petroski. To Engineer is Human – The role of
failure in successful design.

This book is not about software design per se. The author, a
civil engineer, discusses how a designer, an engineer can
and should learn from previous failures and how a design
should be seen as a kind of hypothesis to be tested.
Interestingly, considering that Software Design is only one
out of the 10 knowledge areas for software engineering, the
author “take[s] design and engineering to be virtually
synonymous”.

[PJ00] M. Page-Jones. Fundamentals of Object-Oriented
Design in UML.

Part III of this book (“Principles of object-oriented design”)
addresses a number of the enabling techniques in the
specific context of OO design. This part of the book
contains chapters such as the followings: Encapsulation and
connascence; Domains, encumbrance, and cohesion; Type
conformance and closed behavior; The perils of inheritance
and polymorphism. The book also contains a chapter on the
design of software components.

[Pre95] W. Pree. Design Patterns for Object-Oriented
Software Development.

This book is particularly interesting for its discussion of
framework design using what is called the “hot-spot
driven” approach to the design of frameworks. The more
specific topic of design patterns is better addressed in
[BMR+96].

[Rie96] A.J. Riel. Object-Oriented Design Heuristics.

This book, targeted mainly towards OO design, presents a
large number of heuristics that can be used in software
design. Those heuristics address a wide range of issues,
both at the architectural level and at the detailed design
level.

[SG96] M. Shaw, D. Garlan. Software architecture:
Perspectives on an emerging discipline.

One of the early book on software architecture that
addresses many facets of the topic: architectural styles
(including a chapter with a number of small case studies),
shared information systems, user-interface architectures,
formal specifications, linguistic issues, tools and education.

[Som95] I. Sommerville. Software Engineering (fifth
edition) . Addison-Wesley, 1995.

Part Three is dedicated to software design, giving an
overview of a number of topics through the following
chapters: the design process, architectural design, OO
design, functional design. (Note: a sixth edition may
already be available.)

© IEEE – Trial Version 1.00 – May 2001 3–15

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software.

A book that introduced the notion of responsibility-driven
design to OOD. Until then, OOD was often considered
synonymous with data abstraction-based design. Although
it is true that an object does encapsulate data and associated
behavior, focusing strictly on this aspect may not lead,
according to the responsibility-driven design approach, to
the best design.

[Wie98] R. Wieringa. A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques.

An interesting survey article that presents a wide range of
notations and methods for specifying software systems and
components. It also introduces an interesting framework for
comparison based on the kinds of system properties to be
specified: functions, behavior, communication or
decomposition.

3–16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley, 1998.

[BDA+98] P. Bourque, R. Dupuis, A. Abran, J.W. Moore,
L. Tripp, J. Shyne, B. Pflug, M. Maya, and G. Tremblay.
Guide to the software engineering body of knowledge – a
straw man version. Technical report, Dépt. d’Informatique,
UQAM, Sept. 1998.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-oriented Software
Architecture – A System of Patterns. John Wiley & Sons,
1996.

[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed. The Benjamin/Cummings
Publishing Company, Inc., 1994.

[Bos00] J. Bosch. Design & Use of Software Architecture –
Adopting and Evolving a Product-line Approach. ACM
Press, 2000.

[BRJ99] G. Booch, J. Rumbauch, and I. Jacobson. The
Unified Modeling Language User Guide. Addison-Wesley,
1999.

[Bud94] D. Budgen. Software Design. Addison-Wesley,
1994.

[Cro84] N. Cross (ed.). Developments in Design
Methodology. John Wiley & Sons, 1984.

[CY91] P. Coad and E. Yourdon. Object-Oriented Design.
Yourdon Press, 1991.

[DeM99] T. DeMarco. The Paradox of Software
Architecture and Design. Stevens Prize Lecture, August
1999.

[DT97] M. Dorfman and R.H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.

[DW99] D.F. D’Souza and A.C. Wills. Objects,
Components, and Frameworks with UML – The Catalysis
Approach. Addison-Wesley, 1999.

[Fow99] M. Fowler. Refactoring – Improving the Design of
Existing Code. Addison-Wesley, 1999.

[FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics –
A Rigorous & Practical Approach (Second Edition).
International Thomson Computer Press, 1997.

[FW83] P. Freeman and A.I. Wasserman. Tutorial on
Software Design Techniques, fourth edition. IEEE
Computer Society Press, 1983.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns – Elements of Reusable Object-
Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

[Hut94] A.T.F. Hutt. Object Analysis and Design –
Comparison of Methods. Object Analysis and Design –
Description of Methods. John Wiley & Sons, 1994.

[IEE88] IEEE. IEEE Standard Dictionary of Measures to
Produce Reliable Software. IEEE Std 982.1-1988, IEEE,
1988.

[IEE88b] IEEE. IEEE Guide for the Use of Standard
Dictionary of Measures to Produce Reliable Software.
IEEE Std 982.2-1988, IEEE, 1988.

[IEE90] IEEE. IEEE Standard Glossary of Software
Engineering Terminology. IEEE Std 610.12-1990, IEEE,
1990.

[IEE98] IEEE. IEEE Recommended Practice for Software
Design Descriptions. IEEE Std 1016-1998, IEEE, 1998.

[ISO91] ISO/IEC. Information technology – Software
product evaluation – Quality characteristics and guidelines
for their use. ISO/IEC Std 9126: 1991, ISO/IEC, 1991.

[ISO95] ISO/IEC. Open distributed processing – Reference
model. ISO/IEC Std 10746: 1995, ISO/IEC, 1995.

[ISO95b] ISO/IEC. Information technology – Software life
cycle processes. ISO/IEC Std 12207: 1995, ISO/IEC, 1995.

[Jal97] P. Jalote. An Integrated Approach to Software
Engineering, 2nd ed. Springer, 1997.

[JBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process. Addison-Wesley,
1999.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G.
Overgaard. Object-Oriented Software Engineering – A Use
Case Driven Approach. Addison-Wesley, 1992.
[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In ECOOP ‘97 – Object-Oriented
Programming, pages 220-242. LNCS-1241, Springer-
Verlag, 1997.
[Kru95] P.B. Kruchten. The 4+1 view model of
architecture. IEEE Software, 12(6):42–50, 1995.

[Lar98] C. Larman. Applying UML and Patterns – An
introduction to Object-Oriented Analysis and Design.
Prentice-Hall, 1998.

[LG86] B. Liskov and J. Guttag. Abstraction and
Specification in Program Development. The MIT Press,
1986.

[LG01] B. Liskov and J. Guttag. Program Development in
Java – Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley, 2001.

[Mar94] J.J. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons, Inc., 1994.

[McCr93] S. McConnell. Code Complete. Microsoft Press,
1993.

© IEEE – Trial Version 1.00 – May 2001 3–17

[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition). Prentice-Hall, 1997.

[OMG98] OMG. The common object request broker:
Architecture and specification. Technical Report Revision
2.2, Object Management Group, February 1998.

[OMG99] UML Revision Task Force. OMG Unified
Modeling Language specification, v. 1.3. document ad/99-
06-08, Object Management Group, June 1999.

[otSESC98] Architecture Working Group of the Software
Engineering Standards Committee. Draft recommended
practice for information technology – System design –
Architectural description. Technical Report IEEE
P1471/D4.1, IEEE, December 1998.

[Pet92] H. Petroski. To Engineer is Human – The role of
failure in successful design. Vintage Books, 1992.

[Pfl98] S.L. Pfleeger. Software Engineering – Theory and
Practice. Prentice-Hall, Inc., 1998.

[PJ00] M. Page-Jones. Fundamentals of Object-Oriented
Design in UML. Addison-Wesley, 2000.

[Pre95] W. Pree. Design Patterns for Object-Oriented
Software Development. Addison-Wesley and ACM Press,
1995.

[Pre97] R.S. Pressman. Software Engineering – A
Practitioner’s Approach (Fourth Edition). McGraw-Hill,
Inc., 1997.

[Rie96] A.J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving. IEEE Trans. on Systems, Man,
and Cybernetics, 23(5):1209–1219, 1993.

[SG96] M. Shaw, D. Garlan. Software architecture:
Perspectives on an emerging discipline . Prentice-Hall,
1996.

[Som95] I. Sommerville. Software Engineering (fifth
edition) . Addison-Wesley, 1995.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software. Prentice-Hall, 1990.

[Wie98] R. Wieringa. A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques.
ACM Computing Surveys, 30(4): 459–527, 1998.

© IEEE – Trial Version 1.00 – May 2001 4–1

CHAPTER 4

SOFTWARE CONSTRUCTION

Terry Bollinger
The MITRE Corporation

1820 Dolley Madison Blvd.,
W534 McLean, VA, 22102, USA

terry@mitre.org

Philippe Gabrini, Louis Martin
Department of Computer Science
Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville
Montréal, Québec, H3C 3P8, Canada

{gabrini.philippe, martin.louis}@uqam.ca

Table of Contents

1. Introduction...1
2. Definition of the Software Construction Knowledge

Area...1
3. Breakdown of Topics for Software Construction.........5
4. Matrix of Topics vs. Reference Material......................12
5. Recommended References for Software

Construction..13
Appendix A – List of Further Readings14
Appendix B – A proposed Alternate Breakdown for a

Software Construction Knowledge Area......................15

1. INTRODUCTION

Techniques of software construction are largely craft-based.
As we come to understand the techniques better, we can
explain them in terms of principles that can be explained as
part of engineering knowledge. This description will
therefore describe the underlying engineering principles in
some detail and treat the specific craft -based techniques
more briefly, usually just by naming them.

1.1. Annotated table of contents

This chapter is laid out as follows:

1. Introduction - This provides the road map to explain
the overall structure of the chapter.

2. Definition - This defines Software Construction and
provides links to other Knowledge Areas.

3. Principles of Organization - This explains the first
and most important method chosen to break the
subject matter into smaller sections, using four
principles of software construction. The subject matter
proper appears in section 5.

4. Styles of Construction - This explains a second and
less important method chosen to break down the
subject matter in each of section 5 into even smaller
subsections, using three styles/methods of software
construction.

5. Synthesis – This section contains 4 sub-sections, one
for each of the four principles (the major dissection);
each section contains 3 sub-sub-sections, one for each
of the three styles of construction (the minor
dissection).

6. Selected References

7. Additional Re ferences

8. Standards

9. References to Justify this Knowledge Area

10. Matrix of Reference Material versus Topics

2. DEFINITION OF THE SOFTWARE CONSTRUCTION
KNOWLEDGE AREA

The Guide to the Swebok places the chapter on
Construction after the one on Design and before the one on
Testing. This does not imply either that the design stage
must be complete before construction starts or that the
construction stage must be complete before testing starts. In
some development styles – such as the classic waterfall -
design, construction, and testing are meant to proceed in
that order. In others – such as the spiral method -
development proceeds in successive steps, where each step
consists of a predefined quantity of design, construction,
and testing.

An important part of software engineering is to make a
rational choice of development style for a given software
project.

Software construction is linked to all other KAs, perhaps
most strongly to Design, and Testing. This is because the
construction process consumes the output of the Design

4–2 © IEEE – Trial Version 1.00 – May 2001

process (KA3) and itself provides one of the inputs to the
Testing process (KA5).

Software construction is a fundamental act of software
engineering: the construction of working, meaningful
software through a combination of coding, validation, and
testing (unit testing) by a programmer. Far from being a
simple mechanistic “translation” of good design into
working software, software construction burrows deeply
into difficult issues of software engineering. It requires the
establishment of a meaningful dialog1 between a person
and a computer – a “communication of intent” that must
reach from the slow and fallible human to a fast and
unforgivingly literal computer. Such a dialog requires that
the computer perform activities for which it is poorly
suited, such as understanding implicit meanings and
recognizing the presence of nonsensical or incomplete
statements. On the human side, software construction
requires that developers be logical, precise, and thorough so
that their intentions can be accurately captured and
understood by the computer. The relationship works only
because each side possesses certain capabilities that the
other lacks. In the symbiosis that is software construction,
the computer provides astonishing reliability, retention, and
(once the need has been explained) speed of performance.
Meanwhile, the human being provides creativity and
insight into how to solve new, difficult problems, plus the
ability to express those solutions with sufficient precision
to be meaningful to the computer.

2.1. Software Construction and Software Design

Software construction is closely related to software design
(see Knowledge Area Description for Software Design).
Software design analyzes software requirements in order to
produce a description of the internal structure and
organization of a system that will serve as a basis for its
construction. Software design methods are used to express
a global solution as a set of smaller solutions and can be
applied repeatedly until the resulting parts of the solution
are small enough to be handled with confidence by a single
developer. It is at this point – that is, when the design
process has broken the larger problem up into easier-to-
handle chunks – that software construction is generally
understood to begin. This definition also recognizes the
distinction that while software construction necessarily
produces executable software, software design does not
necessarily produce any executable products at all.

In practice, however, the boundary between design and
construction is seldom so clearly defined. Firstly, software
construction is influenced by the scale or size of the

1 Some reviewers have commented that it is improper even to suggest

that computers “understand programs” or “speak languages”.
However we prefer to retain the language of metaphor to illuminate
the material; the reader will understand that such language is
metaphorical as opposed to literal.

software product being constructed. Very small projects in
which the design problems are already “construction size”
may neither require nor need an explicit design phase, and
very large projects may require a much more interactive
relationship between design and construction as different
prototyping alternatives are proposed, tested, and discarded
or used. Secondly, many of the techniques of software
design also apply to software construction, since dividing
problems into smaller parts is just as much a part of
construction as it is design. Thirdly, effective design
techniques always contain some degree of guessing or
approximation in how they define their sub-problems. A
few of the resulting approximations will turn out to be
wrong, and will require corrective actions during software
construction. (While another seemingly obvious solution
would be to remove guessing and approximation altogether
from design methods, that would contradict the premise
that the original problem was too large and complex to be
solved in one step. Effective design techniques instead
acknowledge risk, work to reduce it, and help make sure
that effective alternatives will be available when some
choices eventually prove wrong.)

Design and construction both require sophisticated problem
solving skills, although the two activities have somewhat
different emphases. In design the emphasis is on how to
partition a complex problem effectively, while in
construction the emphasis is on finding a complete and
executable solution to a problem. When software
construction techniques do become so well-defined that
they can be applied mechanistically, the proper route for
the software engineer is to automate those techniques and
move on to new problems, ones whose answers are not so
well defined. This trend toward automation of well-defined
tasks began with the first assemblers and compilers, and it
has continued unabated as new generations of tools and
computers have made increasingly powerful levels of
construction automation possible. Projects that do contain
highly repetitive, mechanistic software construction steps
should examine their designs, processes, and tools sets
more closely for ways to automate such needlessly
repetitive steps out of existence.

2.2. The Role of Tools in Construction

In software engineering, a tool is a hardware or software
device that is used to support performing a process. An
effective tool is one that provides significant imp rovements
in productivity and/or quality. This is a very inclusive
definition, however, since it encompasses general-purpose
hardware devices such as computers and peripherals that
are part of an overall software-engineering environment.
Software construction tools are a more specific category of
tools that are both software-based and used primarily
within the construction process. Common examples of
software construction tools include compilers, version
control systems, debuggers, code generators, specialized

© IEEE – Trial Version 1.00 – May 2001 4–3

editors, tools for path and coverage analysis, test
scaffolding and documentation tools.

The best software construction tools bridge the gap
between methodical computer efficiency and forgetful
human creativity. Such tools allow creative minds to
express their thoughts easily, but also enforce an
appropriate level of rigor. Good tools also improve
software quality by allowing people to avoid repetitive or
precise work for which a computer is better suited.

2.3. The Role of Integrated Evaluation in Construction

Another important theme of software engineering is the
evaluation of software products. This includes such diverse
activities as peer review of code and test plan, testing,
software quality assurance, and measures2 (see Knowledge
Area Description for Testing and Knowledge Area
Description for Software Quality Analysis). Integrated
evaluation means that a process (in this case a development
process) includes explicit continuous or periodic internal
checks to ensure that it is still working correctly. These
checks usually consist of evaluations of intermediate work
products such as documents, designs, source code, or
compiled modules, but they may also look at characteristics
of the development process itself. Examples of product
evaluations include design reviews, module compilations,
and unit tests. An example of process-level evaluation
would be periodic re-assessment of a code library to ensure
its accuracy, completeness, and self-consistency.

Integrated evaluation in software engineering has yet to
reach the stage achieved in hardware engineering where the
evaluation is built into the components themselves, e.g.
integrated self-test logic and built-in error recovery in
complex integrated circuits. Such features were first added
to integrated circuits when it was realized the circuits had
become so complex that the assumption of perfect start-to-
finish reliability was no longer tenable. As with integrated
circuits, the purpose of integrated checking in software
processes is to ensure that they can operate for long periods
without generating nonsensical or hazardously misleading
answers.

Historically, software construction has tended to be one of
the software engineering steps in which developers were
particularly prone to omitting checks on the process. While
nearly all developers practice some degree of informal
evaluation when constructing software, it is all too common
for them to skip needed evaluation steps because they are
too confident about the reliability and quality of their own
software constructions. Nonetheless, a wide range of
automated, semi-automated, and manual evaluation
methods have been developed for use in the software
construction phase.

2 The word metrics is commonly used by software developers to denote

the activity that practitioners in other branches of engineering refer to
as measurement.

The simplest and best-known form of software construction
evaluation is the use of unit testing after completion of each
well-defined software unit. Automated techniques such as
compile-time checks and run-time checks help verify the
basic integrity of software units, and manual techniques
such as code reviews can be used to search for more
abstract classes of errors. Tools for extracting
measurements of code quality and structure can also be
used during construction, although such measurement tools
are more commonly applied during integration of large
suites of software units. When collecting measurements, it
is important that the measurements collected be relevant to
the goals of the development process.

2.4. The Role of Standards in Construction

All forms of successful communication require a common
language. Standards are in many ways best understood as
agreements by which both concepts and technologies can
become part of the shared “language” of a broader
community of users. In many cases, standards are selected
by a customer or by an organization. Project managers
should consider the use of additional standards selected to
be suitable to the specific characteristics of the project.

Software construction is particularly sensitive to the
selection of standards, which directly affects such
construction-critical issues as programming languages,
databases, communication methods, platforms, and tools.
Although such choices are often made before construction
begins, it is important that the overall software
development process take the needs of construction into
account when standards are selected.

2.5. Manual and Automated Construction/The
Spectrum of Construction Techniques

Manual Construction

Manual construction means solving complex problems in a
language that a computer can execute. Practitioners of
manual construction need a rich mix of skills that includes
the ability to break complex problems down into smaller
parts, a disciplined formal-proof-like approach to problem
analysis, and the ability to “forecast” how constructions
will change over time. Expert manual constructors
sometimes use the skills of advanced logicians; they always
need to apply the skills they have within a complex,
changing environment such as a computer or network.

It would be easy to directly equate manual construction to
coding in a programming language, but it would also be an
incomplete definition. An effective manual construction
process should result in code that fully and correctly
processes data for its entire problem space, anticipates and
handles all plausible (and some implausible) classes of
errors, runs efficiently, and is structured to be resilient and
easy-to-change over time. An inadequate manual
construction process will in contrast result in code like an

4–4 © IEEE – Trial Version 1.00 – May 2001

amateurish painting, with critical details missing and the
entire construction stitched together poorly.

Automated Construction

While no form of software construction can be fully
automated, much or all of the overall coordination of the
software construction process can be moved from people to
the computer – that is, overall control of the construction
process can be largely automated. Automated construction
thus refers to software construction in which an automated
tool or environment is primarily responsible for overall
coordination of the software construction process. This
removal of overall process control can have a large impact
on the complexity of the software construction process,
since it allows human contributions to be divided up into
much smaller, less complex “chunks” that require different
problem solving skills to solve. Automated construction is
also reuse-intensive construction, since by limiting human
options it allows the controlling software to make more
effective use of its existing store of effective software
problem solutions. Of course, automated construction is not
necessarily low cost; sometimes the cost of setting up the
machinery is higher than the cost saved in its use.

In its most extreme form, automated construction consists
of two related but distinct activities: (1) configuring a
baseline system, which means configuring a predefined set
of options that provide a workable solution in a typical
business context and (2) implementing exceptions in the
context of the product’s usage. This may include resetting
parameters, constructing additional software chunks,
building interfaces, and moving data from existing legacy
systems and other data sources to the new system. For
example, an accounting application for small businesses
might lead users through a series of questions that will
result in a customized installation of the application. When
compared to using manual construction for the same type of
problem, this form of automated construction “swallows”
huge chunks of the overall software engineering process
and replaces them with automated selections that are
controlled by the computer. Toolkits provide a less extreme
example in which developers still have a great deal of
control over the construction process, but that process has
been greatly constrained and simplified by the use of
predefined components with well-defined relationships to
each other.

Automated construction is necessarily tool-intensive
construction, since the objective is to move as much of the
overall software development process as possible away
from the human developer and into automated processes.
Automated construction tools tend to take the form of
program generators and fully integrated environments that
can more easily provide automated control of the
construction process. To be effective in coordinating
activities, automated construction tools also need to have
easy, intuitive interfaces.

Moving Towards Automation

An important goal of software engineering is to move
construction continually towards higher levels of
automation. That is, when selection from a simple set of
options is all that is really required to make software work
for a business or system, then the goal of software
engineers should continually be to make their systems
come as close to that level of simplicity as possible. This
not only makes software more accessible, but also makes it
safer and more reliable by removing opportunities for error.

The concept of moving towards higher levels of
construction automation permeates nearly every aspect of
software construction. When simple selections from a list
of options will not suffice, software engineers often can
still develop application specific tool kits (that is, sets of
reusable parts designed to work with each other easily) to
provide a somewhat lesser level of control. Even fully
manual construction reflects the theme of automation, since
many coding techniques and good programming practices
are intended to make code modification easier and more
automated. For example, even a concept as simple as
defining a constant at the beginning of a software module
reflects the automation theme, since such constants
“automate” the appropriate insertion of new values for the
constant in the event that changes to the program are
necessary. Similarly, the concept of class inheritance in
object-oriented programming helps automate and enforce
the conveyance of appropriate sets of methods into new,
closely related or derived classes of objects.

2.6. Construction Languages

Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a computer. The simplest
type of construction language is a configuration language,
in which developers choose from a limited set of predefined
options to create new or custom installations of software.
The text -based configuration files used in both Windows
and Unix operating systems are examples, and the menu-
style selection lists of some program generators are another.
Toolkit languages are used to build applications out of
toolkits (integrated sets of application-specific reusable
parts), and are more complex than configuration languages.
Toolkit languages may be explicitly defined as application
programming languages (e.g., scripts), or may simply be
implied by the collected set of interfaces of a toolkit. As
described below, programming languages are the most
flexible type of construction languages, but they also
contain the least information about both application areas
and development processes, and so require the most
training and skill to use effectively.

2.7. Programming Languages

Since the fundamental task of software construction is to
communicate intent unambiguously between two very

© IEEE – Trial Version 1.00 – May 2001 4–5

different types of entities (people and computers), the
interface between the two is most commonly expressed as
languages. Programming languages are more literal than
natural languages, since no computer yet built has sufficient
context and understanding of the natural world to recognize
invalid language statements and constructions that would
be caught immediately in a natural language. As will be
discussed below, programming languages can also borrow
from other non-linguistic human skills such as spatial
visualization. The particular requirements of an application
domain can give rise to the development or use of a
specialized, domain-specific language such as lex, yacc,
PHP, TCL, or TK.

Programming languages are often created in response to the
needs of particular application fields, but the quest for more
universal or encompassing programming language is
ongoing. As in many relatively young disciplines, such
quests for universality are as likely to lead to short-lived
fads as they are to genuine insights into the fundamentals of
software construction. For this very reason, it is important
that software construction not be tied too greatly on any
programming language or programming methodology.
Adherence to suitable programming language standards,
and avoiding proprietary feature sets helps avoid language
obsolescence.

3. BREAKDOWN OF TOPICS FOR SOFTWARE
CONSTRUCTION3

3.1. Principles of Organization

The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed, namely

w Reduction of Complexity

w Anticipation of Diversity

w Structuring for Validation

w Use of External Standards

These are discussed below.

3.1.1. Reduction of Complexity

This principle of organization reflects the relatively limited
ability of people to work with complex systems that have
many parts or interactions. A major factor in how people
convey intent to computers is the severely limited ability of
people to “hold” complex structures and information in
their working memory, especially over long periods of
time. This need for simplicity in the human-to-computer
interface leads to one of the strongest drivers in software
construction: reduction of complexity. The need to reduce

3 An alternate, more traditional, breakdown is presented in Appendix B.

complexity applies to essentially every aspect of the
software construction, and is particularly critical to the
process of self-verification and testing of software
constructions.

There are three main techniques for reducing complexity
during software construction:

3.1.1.1 Removal of Complexity

Although trivial in concept, one obvious way to reduce
complexity during software construction is to remove
features or capabilities that are not absolutely required. This
may or may not be the right way to handle a given
situation, but certainly the general principle of parsimony –
that is, of not adding capabilities that clearly will never be
needed when constructing software – is valid.

3.1.1.2 Automation of Complexity

A much more powerful technique for removal of
complexity is to automate the handling of it. That is, a new
construction language is created in which features that were
previously time -consuming or error-prone for a human to
perform are migrated over to the computer in the form of
new software capabilities. The history of software is replete
with examples of powerful software tools that raised the
overall level of development capability of people by
allowing them to address a new set of problems. Operating
systems are one example of this principle, since they
provide a rich construction language by which efficient use
of underlying hardware resources can be greatly simplified.
Visual construction languages similarly provide automation
of the construction of software that otherwise could be very
laborious to build.

3.1.1.3 Localization of Complexity

If complexity can neither be removed nor automated, the
only remaining option is to localize complexity into small
“units” or “modules” that are small enough for a person to
understand in their entirety, and (perhaps more importantly)
sufficiently isolated that meaningful assertions can be made
about them. This might even lead to components that can
be re-used. However, one must be careful, as arbitrarily
dividing a very long sequence of code into small “modules”
does not help, because the relationships between the
modules become extremely complex and difficult to
predict. Localization of complexity has a powerful impact
on the design of programming languages, as demonstrated
by the growth in popularity of object-oriented methods that
seek to strictly limit the number of ways to interface to a
software module, even though that might end up making
components more dependent. Localization is also a key
aspect of good design of the broader category of
construction languages, since new feature that are too hard
to find and use are unlikely to be effective as tools for
construction. Classical design admonitions such as the goal
of having “cohesion” within modules and to minimize
“coupling” are also fundamentally localization of
complexity techniques, since they strive to make the

4–6 © IEEE – Trial Version 1.00 – May 2001

number and interaction of parts within a module easy for a
person to understand.

3.1.2. Anticipation of Diversity

This principle has more to do with how people use software
than with differences between computers and people. Its
motive is simple: There is no such thing as an unchanging
software construction. Any useful software construction
will change in various ways over time, and the anticipation
of change drives nearly every aspect of software
construction. Useful software constructions are
unavoidably part of a changing external environment in
which they perform useful tasks, and changes in that
outside environment trickle in to impact the software
constructions in diverse (and often unexpected) ways. In
contrast, formal mathematical constructions and formulas
can in some sense be stable or unchanging over time, since
they represent abstract quantities and relationships that do
not require direct “attachment” to a working, physical
computational machine. For example, even the software
implementations of “universal” mathematical functions
must change over time due to external factors such as the
need to port them to new machines, and the unavoidable
issue of physical limitations on the accuracy of the software
on a given machine.

Anticipation of the diversity of ways in which software will
change over time is one of the more subtle principles of
software construction, yet it is important for the creation of
software that can endure over time and add value to future
endeavors. Since it includes the ability to anticipate
changes due to design errors in software, it also helps to
make software robust and error-free. Indeed, one handy
definition of “aging” software is that it is software that no
longer has the flexibility to accommodate bug fixes without
breaking.

There are three main techniques for anticipating change
during software construction:

3.1.2.1 Generalization

It is very common for software construction to focus first
on highly specific problems with limited, rather specific
solutions. This is common because the more general cases
often simply are not obvious in the early stages of analysis.
Generalization is the process of recognizing how a few
specific problem cases fit together as part of some broader
framework of problems, and thus can be solved by a single
overarching software construction in place of several
isolated ones. Generalization of functionality is a distinctly
mathematical concept, and not too surprisingly the best
generalizations that are developed are often expressed in
the language of mathematics. Good design is equally an
aspect of generalization, however. For example, software
constructions that use stacks to store data are almost always
more generalized than similar solutions using arrays
behaving as stacks, since fixed sizes immediately place
artificial (and usually unnecessary) constraints on the range
of problem sizes that the construction can solve.

Generalization anticipates diversity because it creates
solutions to entire classes of problems that may not have
even been recognized as existing before. Thus just as
Newton’s general theory of gravity made a small number of
formulas applicable to a much broader range of physics
problems, a good generalization to a number of discrete
software problems often can lead to the easy solution of
many other development problems. For example,
developing an easily customizable graphics user interface
could solve a very broad range of development problems
that otherwise would have required individual, labor-
intensive development of independent solutions.

Anticipating diversity by using generalization is effective
only when the developer finds generalizations that actually
correspond to the eventual uses of the software. Developers
may have no particular interest (or time) to develop the
necessary generalizations under the schedule pressures of
typical commercial projects. Even when the time needed is
available, it is easy to develop the wrong set of
generalizations – that is, to create generalizations that make
the software easier to change, but only in ways that prove
not to correspond to what is really needed.

For these reasons, generalization is both safer and easier if
it can be combined with the next technique of
experimentation. Change experimentation makes
generalization safer by capturing realistic data on which
generalizations will be needed, and makes generalization
easier by providing schedule-conscious projects with
specific data on how generalizations can improve their
products.

3.1.2.2 Experimentation

Experimentation means using early (sometimes very early)
software constructions in as many different user contexts as
possible, and as early in the development process as
possible, for the explic it purpose of collecting data on how
to generalize the construction. To experiment is to
recognize how difficult it is to anticipate all the ways in
which software constructions can change.

Obviously, experimentation is a process-level technique
rather than a code-level technique, since its goal is to
collect data to help guide code-level processes such as
generalization. This means that it is constrained by whether
the overall development process allows it to be used at the
construction level. Construction-level experimentation is
most likely to be found in projects that have incorporated
experimentation into their overall development process.
The Internet-based open source development process that
Linus Torvalds used to create the Linux operating system is
an example of a process that both allowed and encouraged
construction-level use of experimentation. In Torvalds’
approach, individual code constructions were very quickly
incorporated into an overall product and then redistributed
via the Internet, sometimes on the same day. This
encouraged further use, experimentation, and updates to the
individual constructions. Development environments and

© IEEE – Trial Version 1.00 – May 2001 4–7

languages that support the rapid prototyping style of
development also encourage construction-level
experimentation.

3.1.2.3 Localization

Localization means keeping anticipated changes as
localized in a software construction as possible. It is
actually a special case of the earlier principle of
localization of complexity, since change is a particularly
difficult class of complexity. A software construction that
can be changed in a common way by making only one
change at one location within the construction thus
demonstrates good locality for that particular class of
modifications.

Localization is very common in software construction, and
often is used intuitively as the “right way” to construct
software. Objects are one example of a localization
technique, since good object designs localize
implementation changes to within the object. An even
simpler example is using compile-time constants to reduce
the number of locations in a program that must be changed
manually should the constant change. Layered architectures
such as those used in communication protocols are yet
another example of localization, since good layer designs
keep changes from crossing layers.

3.1.3. Structuring for Validation

No matter how carefully a person designs and implements
software, the creative nature of non-trivial software
construction (that is, of software that is not simply a re-
implementation of previously solved problems) means that
mistakes and omissions will occur. Structuring for
validation means building software in such a fashion that
such errors and omissions can be ferreted out more easily
during unit testing and subsequent testing activities. One
important implication of structuring for validation is that
software must generally be modular in at least one of its
major representation spaces, such as in the overall layout of
the displayed or printed text of a program. This modularity
allows both improved analysis and thorough unit-level
testing of such components before they are integrated into
higher levels in which their errors may be more difficult to
identify. As a principle of construction, structuring for
validation generally goes hand-in-hand with anticipation of
diversity, since any errors found as a result of validation
represent an important type of “diversity” that will require
software changes (bug fixes). It is not particularly difficult
to write software that cannot really be validated no matter
how much it is tested. This is because even moderately
large “useful” software components frequently cover such a
large range of outputs that exhaustive testing of all possible
outputs would take eons with even the fastest computers.
Structuring for validation thus becomes one important
constraint for producing software that can be shown to be
acceptably reliable within a reasonable time frame. The
concept of unit testing parallels structuring for validation,
and is used in parallel with the construction process to help

ensure that validation occurs before the overall structure
gets “out of hand” and can no longer be readily validated.

3.1.4. Use of External Standards

A natural language that is spoken by one person would be
of little value in communicating with the rest of the world.
Similarly, a construction language that has meaning only
within the software for which it was constructed can be a
serious roadblock in the long-term use of that software.
Such construction languages therefore should either
conform to external standards such as those used for
programming languages, or provide a sufficiently detailed
internal “grammar” (e.g., documentation) by which the
construction language can later be understood by others.
The interplay between reusing ext ernal standards and
creating new ones is a complex one, as it depends not only
on the availability of such standards, but also on realistic
assessments of the long-term viability of such external
standards. With the advent of the Internet as a major force
in software development and interaction, the importance of
selecting and using appropriate external standards for how
to construct software is more apparent than ever before.
Software that must share data and even working modules
with other software anywhere in the world obviously must
“share” many of the same languages and methods as that
other software. The result is that selection and use of
external standards – that is, of standards such as language
specifications and data formats that were not originated
within a software effort – is becoming more important. This
is a complex issue, however, because the selection of an
external standard may need to take account of such
difficult-to-predict issues as the long-term economic
viability of a particular software company or organization
that promotes that standard. Stability of the standard is
especially important. Also, selecting one level of
standardization often opens up an entire new set of
standardization issues. An example of this is the data
description language XML (eXtensible Markup Language).
Selecting XML as an external standard answers many
questions about how to describe data in an application, but
it also raises the issue of whether one of the several
customizations of XML to specific problem domains
should also be used.

Other examples of external standards include API standards
such as mathematics libraries, POSIX and SQL. In addition
there are standards such as ISO/IEC 9126 , IEEE Std 1061,
and IEEE Std 982, which are used in both Design and
Construction.

3.2. Styles of Construction

Section 3.1 explained four principles of organization. A
second and less important method of breaking the subject
of software construction into smaller units is to recognize
three styles/methods of software construction, namely

w Linguistic

4–8 © IEEE – Trial Version 1.00 – May 2001

w Formal

w Visual

The traditional hierarchical taxonomy places the items in a
tree; each item appears in one place only. Such an approach
is not suitable for the items used in software construction
because some of the items naturally belong in more than
one place. In the classification that follows, an individual
construction method may appear in many different places,
rather than in just one. The number of repetitions indicates
its breadth of application, and hence its importance in
software construction as a whole. Modularity is one
example of a construction method that has such broad
impacts.

A good construction language moves detailed, repetitive, or
memory-intensive construction tasks away from people and
into the computer, where such tasks can be performed
faster and more reliably. To accomplish this, construction
languages must present and receive information in ways
that are readily understandable to human senses and
capabilities. This need to rely on human capabilities leads
to three major styles of software construction interfaces
discussed in the subsections below.

Of course, construction languages seldom rely solely on a
single style of construction. Linguistic and formal style in
particular are both heavily used in most traditional
computer languages, and visual styles and models are a
major part of how to make software constructions
manageable and understandable in programming languages.
Relatively new “visual” construction languages such as
Visual Basic and Visual Java provide examples that
combine all three styles, with complex visual interfaces
often constructed entirely through non-textual interactions
with the software constructor. Data processing functionality
behind the interfaces can then be constructed using more
traditional linguistic and formal styles within the same
construction language.

3.2.1. Linguistic

Linguistic construction languages make statements of intent
in the form of sentences that resemble natural languages
such as English or French. In terms of human senses,
linguistic constructions are generally conveyed visually as
text, although they can (and are) also sometimes conveyed
by sound. A major advantage of linguistic construction
interfaces is that they are nearly universal among people. A
disadvantage is the imprecision of ordinary languages such
a English, which makes it hard for people to express needs
clearly with sufficient precision when using linguistic
interfaces to computers. An example of this problem is the
difficulty that most early students of computer science have
learning the syntax of even fairly readable languages such
as Pascal or Ada.

Linguistic construction methods are distinguished in
particular by the use of word-like strings of text to
represent complex software constructions, and the
combination of such word-like strings into patterns that

have a sentence-like syntax. Properly used, each such string
should have a strong semantic connotation that provides an
immediate intuitive understanding of what will happen
when the underlying software construction is executed. For
example, the term “search” has an immediate, readily
understandable semantic meaning in English, yet the
underlying software implementation of such a term in
software can be very complex indeed. The most powerful
linguistic construction methods allow users to focus almost
entirely on the language-like meanings of such term, as
opposed (for example) to frittering away mental efforts on
examining minor variations of what “search” means in a
particular context.

Linguistic construction methods are further characterized
by similar use of other “natural” language skills such as
using patterns of words to build sentences, paragraphs, or
even entire chapters to express software design “thoughts.”
For example, a pattern such as “search table for out-of-
range values” uses word-like text strings to imitate natural
language verbs, nouns, prepositions, and adjectives. Just as
having an underlying software structure that allows a more
natural use of words reduces the number of issues that a
user must address to create new software, an underlying
software structure that also allows use of familiar higher-
level patterns such as sentence further simplifies the
expression process.

Finally, it should be noted that as the complexity of a
software expression increases, linguistic construction
methods begin to overlap unavoidably with visual methods
that make it easier to locate and understand large sequences
of statements. Thus just as most written versions of natural
languages use visual clues such as spaces between words,
paragraphs, and section headings to make text easier to
“parse” visually, linguistic construction methods rely on
methods such as precise indentation to convey structural
information visually.

The use of linguistic construction methods is also limited
by our inability to program computers to understand the
levels of ambiguity typically found in natural languages,
where many subtle issues of context and background can
drastically influence interpretation. As a result, the
linguistic model of construction usually begins to weaken
at the more complex levels of construction that correspond
to entire paragraphs and chapters of text.

3.2.2. Formal

The precision and rigor of formal and logical reasoning
make this style of human thought especially appropriate for
conveying human intent accurately into computers, as well
as for verifying the completeness and accuracy of a
construction. Unfortunately, formal reasoning is not nearly
as universal a skill as natural language, since it requires
both innate skills that are not as universal as language
skills, and also many years of training and practice to use
efficiently and accurately. It can also be argued that certain
aspects of good formal reasoning, such as the ability to

© IEEE – Trial Version 1.00 – May 2001 4–9

realize all the implications of a new assertion on all parts of
a system, cannot be learned by some people no matter how
much training they receive. On the other hand, formal
reasoning styles are often notorious for focusing on a
problem so intently that all “complications” are discarded
and only a very small, very pristine subset of the overall
problem is actually addressed. This kind of excessively
narrow focus at the expense of any complicating issues can
be disastrous in software construction, since it can lead to
software that is incapable of dealing with the unavoidable
complexities of nearly any usable system.

Formal construction methods rely less on intuitive,
everyday meanings of words and text strings, and more on
definitions that are backed up by precise, unambiguous, and
fully formal (or mathematical) definitions. Formal
construction methods are at the heart of most forms of
system programming, where precision, speed, and
verifiability are more important than ease of mapping into
ordinary language. Formal constructions also use precisely
defined ways of combining symbols that avoid the
ambiguity of many natural language constructions.
Functions are an obvious example of formal constructions,
with their direct parallel to mathematical functions in both
form and meaning.

Formal construction techniques also include the wide range
of precisely defined methods for representing and
implementing “unique” computer problems such as
concurrent and multi-threaded programming, which are in
effect classes of mathematical problems that have special
meaning and utility within computers.

The importance of the formal style of programming cannot
be overstated. Just as the precision of mathematics is
fundamental to disciplines such as physics and the hard
science, the formal style of programming is fundamental to
building up a reliable framework of software “results” that
will endure over time. While the linguistic and visual styles
work well for interfacing with people, these less precise
styles can be unsuitable for building the interior of a
software system for the same reason that stained glass
should not be used to build the supporting arches of a
cathedral. Formal construction provides a foundation that
can eliminate entire classes of errors or omissions from
ever occurring, whereas linguistic and visual construction
methods are much more likely to focus on isolated
instances of errors or omissions. Indeed, one very real
danger in software quality assurance is to focus too much
on capturing isolated errors occurring in the linguistic or
visual modes of construction, while overlooking the much
more grievous (but harder to identify and understand)
errors that occur in the formal style of construction.

3.2.3. Visual

Another very powerful and much more universal
construction interface style is visual, in the sense of the
ability to use the same very sophisticated and necessarily
natural ability to “navigate” a complex three-dimensional

world of images, as perceived primarily through the eye
(but also through tactile senses). The visual interface is
powerful not only as a way of organizing information for
presentation to a human, but also as a way of conceiving
and navigating the overall design of a complex software
system. Visual methods are particularly important for
systems that require many people to work on them – that is,
for organizing a software design process – since they allow
a natural way for people to “understand” how and where
they must communicate with each other. Visual methods
are also important for single -person software construction
methods, since they provide ways both to present options to
people and to make key details of a large body of
information “pop out” to the visual system.

Visual construction methods rely much less on the text -
oriented constructions of both linguistic and formal
construction, and instead rely on direct visual interpretation
and placement of visual entities (e.g., “widgets”) that
represent the underlying software. Visual construction
tends to be somewhat limited by the difficulty of making
“complex” statements using only movement of visual
entities on a display. However, it can also be a very
powerful tool in cases where the primary programming task
is simply to build and “adjust” a visual interface to a
program whose detailed behavior was defined earlier.

Some argue that object-oriented languages belong in this
section because the style of reasoning that they encourage
is highly visual. For example, experienced object-oriented
programmers tend to view their designs literally as objects
interacting in spaces of two or more dimensions, and a
plethora of object-oriented design tools and techniques
(e.g., Unified Modeling Language, or UML) actively
encourage this highly visual style of reasoning. Others
argue that object-oriented languages are no more inherently
visual than procedural ones. They remark that SA/SD is a
popular visual notation for procedural systems.

However, object-oriented methods can also suffer from the
lack of precision that is part of the more intuitive visual
approach. For example, it is common for new – and
sometimes not-so-new – programmers in object-oriented
languages to define object classes that lack the formal
precision that will allow them to work reliably over user-
time (that is, long-term system support) and user-space
(e.g., relocation to new environments). The visual intuitions
that object-oriented languages provide in such cases can be
somewhat misleading, because they can make the real
problem of how to define a class to be efficient and stable
over user-time and user-space seem to be simpler than it
really is. A complete object-oriented construction model
therefore must explicitly identify the need for formal
construction methods throughout the object design process.
The alternative can be an object-based system design that,
like a complex stained glass window, looks impressive but
is too fragile to be used in any but the most carefully
designed circumstances.

4–10 © IEEE – Trial Version 1.00 – May 2001

More explicitly visual programming methods such as those
found in Visual C++ and Visual Basic reduce the problem
of how to make precise visual statements by
“instrumenting” screen objects with complex (and formally
precise) objects that lie behind the screen representations.
However, this is done at a substantial loss of generality
when compared to using C++ with explicit training in both
visual and formal construction, since the screen objects are
much more tightly constrained in properties.

3.3. Synthesis

The figure that follows combines the four principles of
organization with the three styles of construction. Read the

diagram by columns to see the principles, by rows to see
the styles.

3.3.1. Reduction in Complexity

3.3.1.1 Linguistic Construction Methods

The main technique for reducing complexity in linguistic
construction is to make short, semantically “intuitive” text
strings and patterns of text stand in for the much more
complex underlying software that “implement” the intuitive
meanings. Techniques that reduce complexity in linguistic
construction include:

w Design patterns

w Software templates

Linguistic
Construction

Methods

Software Construction

Reduction in
Complexity

Structuring for
Validation

Use of External
Standards

Anticipation of
Diversity

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

Linguistic
Construction

Methods

Visual Construction
Methods

Formal
Construction

Methods

w Functions, procedures, and code blocks

w Objects and data structures

w Encapsulation and abstract data types

w Objects

w Component libraries and frameworks

w Higher-level and domain-specific languages

w Physical organization of source code

w Files and libraries

w Formal inspections

3.3.1.2 Formal Construction Methods

As is the case with linguistic construction methods, formal
construction methods reduce complexity by representing
complex software constructions as simple text strings. The
main difference is that in this case the text strings follow
the more precisely defined rules and syntax of formal
notations, rather than the “fuzzier” rules of natural
language. The reading, writing, and construction of such

expressions requires generally more training, but once
mastered, the use of formal constructions tends to keep the
ambiguity of what is being specified to an absolute
minimum. However, as with linguistic construction, the
quality of a formal construction is only as good as its
underlying implementation. The advantage is that the
precision of the formal definitions usually translates into a
more precise specification for the software beneath it.

w Traditional functions and procedures

w Functional programming

w Logic programming

w Concurrent and real-time programming techniques

w Spreadsheets

w Program generators

w Mathematical libraries of functions

© IEEE – Trial Version 1.00 – May 2001 4–11

3.3.1.3 Visual Construction Methods

Especially when compared to the steps needed to build a
graphical interface to a program using text -oriented
linguistic or formal construction, visual construction can
provide drastic reductions in the total effort required. It can
also reduce complexity by providing a simple way to select
between the elements of a small set of choices.

w Object-oriented programming

w Visual creation and customization of user interfaces

w Visual programming (e.g., visual C++)

w “Style” (visual formatting) aspects of structured
programming

w Integrated development environments supporting
source browsing

3.3.2. Anticipation of Diversity

3.3.2.1 Linguistic Construction Methods

Linguistic construction anticipates diversity both by
permitting extensible definitions of “words,” and also by
supporting flexible “sentence structures” that allow many
different types of intuitively understandable statements to
be made with the available vocabulary. An excellent
example of using linguistic construction to anticipate
diversity is the use of human-readable configuration files to
specify software or system settings. Techniques and
methods that help anticipate diversity include:

w Information hiding

w Embedded documentation (commenting)

w “Complete and sufficient” method sets

w Object-oriented methods

w Creation of “glue languages” for linking legacy
components

w Table-driven software

w Configuration files, internationalization

w Naming and coding styles

w Reuse and repositories

w Self-describing software and hardware (e.g., plug and
play)

3.3.2.2 Formal Construction Methods

Diversity in formal construction is handled in terms of
precisely defined sets that can vary greatly in size. While
mathematical formalizations are capable of very flexible
representations of diversity, they require explicit
anticipation and preparation for the full range of values that
may be needed. A common problem in software
construction is to use a formal technique – e.g., a fixed-
length vector or array – when what is really needed to
accommodate future diversity is a more generic solution
that anticipates future growth – e.g., an indefinite variable-
length vector. Since more generic solutions are often harder

to implement and harder to make efficient, it is important
when using formal construction techniques to try to
anticipate the full range of future versions.

w Functional parameterization

w Macro parameterization

w Generics

w Objects

w Error handling

w Extensible mathematical frameworks

3.3.2.3 Visual Construction Methods

Provided that the total sets of choices are not overly large,
visual construction methods can provide a good way to
configure or select options for software or a system. Visual
construction methods are analogous to linguistic
configuration files in this usage, since both provide easy
ways to specify and interpret configuration information.

w Object classes

w Visual configuration specification

w Separation of GUI design and functionality
implementation (part of design)

3.3.3. Structuring for Validation

3.3.3.1 Linguistic Construction Methods

Because natural language in general is too ambiguous to
allow safe interpretation of completely free-form
statements, structuring for validation shows up primarily as
rules that at least partially constrain the free use of natural
expressions in software. The objective is to make such
constructions as “natural” sounding as possible, while not
losing the structure and precision needed to ensure
consistent interpretations of the source code by both human
users and computers.

w Modular design

w Structured programming

w Style guides

w Stepwise refinement

3.3.3.2 Formal Construction Methods

Since mathematics in general is oriented towards proof of
hypothesis from a set of axioms, formal construction
techniques provide a broad range of techniques to help
validate the acceptability of a software unit. Such methods
can also be used to “instrument” programs to look for
failures based on sets of preconditions.

w Assertion-based programming (static and dynamic)

w State machine logic

w Redundant systems, self-diagnosis, and fail-safe
methods

w Hot-spot analysis and performance tuning

4–12 © IEEE – Trial Version 1.00 – May 2001

w Numerical analysis

3.3.3.3 Visual Construction Methods

Visual construction can provide immediate, active
validation of requests and attempted configurations when
the visual constructs are “instrumented” to look for invalid
feature combinations and warn users immediately of what
the problem is.

w “Complete and sufficient” design of object-oriented
class methods

w Dynamic validation of visual requests in visual
languages

3.3.4. External Standards

3.3.4.1 Linguistic Construction Methods

Traditionally, standardization of programming languages
was one of the first areas in which external standards
appeared. The goal was (and is) to provide standard
meanings and ways of using “words” in each standardized
programming language, which makes it possible both for
users to understand each other’s software, and for the
software to be interpreted consistently in diverse
environments.

w Standardized programming languages (e.g., Ada 95,
C++, etc.)

w Standardized data description languages (e.g., XML,
SQL)

w Standardized alphabet representations (e.g., Unicode)

w Standardized documentation (e.g., JavaDoc)

w Inter-process communication standards (e.g., COM,
CORBA)

w Component-based software

w Foundation classes (e.g., MFC, JFC)

3.3.4.2 Formal Construction Methods

For formal construction techniques, external standards
generally address ways to define precise interfaces and
communication methods between software systems and the
machines they reside on.

w POSIX standards

w Data communication standards

w Hardware interface standards

w Standardized mathematical representation languages
(e.g., MathML)

w Mathematical libraries of functions

3.3.4.3 Visual Construction Methods

Standards for visual interfaces greatly ease the total burden
on users by providing familiar, easily understood “look and
feel” interfaces for those users.

w Object-oriented language standards

w Standardized screen widgets

w Visual Markup Languages

4. MATRIX OF TOPICS VS . REFERENCE MATERIAL

Topics Proposed reference material
Software Construction and Software Design [GLA95] Part III, IV

[MAZ96] Part IV
[McCO93] Chap. 1, 2, 3

The Role of Tools in Construction [HUN00] Chap. 3
[MAG93] Chap. 4
[MAZ96] Part IV
[McCO93] Chap. 20

The Role of Integrated Evaluation in Construction [HUM97]
[MAG93] Chap. 8
[McCO93] Chap. 31, 32, 33

The Role of Standards in Construction [IEEE]
Manual and Automated Construction / The Spectrum of Construction
Techniques

[HUN00] Chap. 3

Construction Languages [HUN00] Chap. 3

[SET96]
Programming Languages [SET96]
A. Reduction in Complexity
1. Reduction in Complexity (Linguistic) [BEN00] Chap. 2, 3

[KER99] Chap. 2, 3
[McCO93] Chap. 4 to 19

© IEEE – Trial Version 1.00 – May 2001 4–13

Topics Proposed reference material
2. Reduction in Complexity (Formal) [BOO94] Part II and V

[MAG93] Chap. 6
[MEY97] Chap. 6, 10

3. Reduction in Complexity (Visual) [HOR99] Part II
[WAR99] Chap. 1, 2, 3, 4, 5, 10

B. Anticipation of Diversity
1. Anticipation of Diversity (Linguistic) [BOO94] Part VI

[McCO93] Chap. 30
2. Anticipation of Diversity (Formal) [BEN00] Chap. 11, 13, 14

[KER99] Chap. 2, 9
3. Anticipation of Diversity (Visual) [WAR99] Chap. 1, 2, 3, 4, 5, 10
C. Structuring for Validation
1. Structuring for Validation (Linguistic) [BEN00] Chap. 4

[KER99] Chap. 1, 5, 6
[MAG93] Chap. 2, 5, 7
[McCO93] Chap. 23, 24, 25, 26

2. Structuring for Validation (Formal) [MAG93] Chap. 3
[MEY97] Chap. 6, 11

3. Structuring for Validation (Visual) [HOR99] Part IV
[MEY97] Chap. 11

D. Use of External Standards
1. Use of External Standards (Linguistic) http://www.xml.org/

http://www.omg.org/corba/beginners.html
2. Use of External Standards (Formal) Object Constraint Language:

http://www.omg.org/uml/
3. Use of External Standards (Visual) http://www.omg.org/uml/

5. RECOMMENDED REFERENCES FOR SOFTWARE
CONSTRUCTION

[BEN00] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)[BEN00] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)

[BOO94] Booch, Grady, and Bryan, Doug, Software
Engineering with Ada (Third edition).
Benjamin/Cummings, 1994. (Parts II, IV, V)[HOR99]

[KER99] Kernighan, Brian W., and Pike, Rob, The Practice
of Programming. Addison-Wesley, 1999. (Chapters 1, 2, 3,
5, 6, 9)

[MAG93] Maguire, Steve, Writing Solid Code –
Microsoft’s Techniques for Developing Bug-Free C
Software. Microsoft Press, 1993.

[McCO93] McConnell, Steve, Code Complete: A Practical
Handbook of Software Construction. Microsoft Press,
1993.

[MEY97] Meyer, Bertrand, Object-Oriented Software
Construction (Second Edition). Prentice-Hall, 1997.
(Chapters 6, 10, 11)

[SET96] Sethi, Ravi, Programming Languages – Concepts
& Constructs (Second Edition). Addison-Wesley, 1996.
(Parts II, III, IV, V)

[WAR99] Warren, Nigel, and Bishop, Philip, Java in
Practice – Design Styles and Idioms for Effective Java.
Addison-Wesley, 1999. (Chapters 1, 2, 3, 4, 5, 10)

4–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX A – LIST OF FURTHER READINGS

[BAR98] Barker, Thomas T., Writing Software
Documentation – A Task-Oriented Approach. Allyn &
Bacon, 1998.

[FOW99] Fowler, Martin, Refactoring – Improving the
Design of Existing Code. Addison-Wesley, 1999.

[GLA95] Glass, Robert L., Software Creativity. Prentice-
Hall, 1995.

[HEN97] Henricson, Mats, and Nyquist, Erik, Industrial
Strength C++. Prentice-Hall, 1997.

[HOR99] Horrocks, Ian, Constructing the User Interface
with Statecharts. Addison-Wesley, 1999.

[HUM97] Humphrey, Watts S., Introduction to the
Personal Software Process. Addison-Wesley, 1997.

[HUN00] Hunt, Andrew, and Thomas, David, The
Pragmatic Programmer. Addison-Wesley, 2000.

[MAZ96] Mazza, C., et al., Software Engineering Guides.
Prentice-Hall, 1996. (Part IV)

Standards

IEEE Std 829-1983 (Reaff 1991), IEEE Standard for
Software Test Documentation (ANSI)

IEEE Std 1008-1987 (Reaff 1993), IEEE Standard for
Software Unit Testing (ANSI)

IEEE Std 1028-1988 (Reaff 1993), IEEE Standard for
Software Reviews and Audits (ANSI)

IEEE Std 1063-1987 (Reaff 1993), IEEE Standard for
Software User Documentation (ANSI)

ISO/IEC 12207: 1995 Information technology – Software
Life Cycle Processes and IEEE/EIA 12207.0, 12207.1 and
12207.2 ISO/IEC 14674:1999 Information Technology –
Software Maintenance

ISO/IEC 14674:1999 Information Technology – Software
Maintenance

© IEEE – Trial Version 1.00 – May 2001 4–15

APPENDIX B – A PROPOSED ALTERNATE BREAKDOWN
FOR A SOFTWARE CONSTRUCTION KNOWLEDGE AREA

1. Construction Planning

2. Code Design

3. Data Design and Management

4. Error Processing

5. Source Code Organization

6. Code Documentation

7. Construction Quality Assurance

8. System Integration and Deployment

9. Code Tuning

10. Construction Tools

Source: Adapted from Mc Connell, Steve, “Code
Complete: A Practical Handbook of Software
Construction,” Microsoft Press, 1993.

© IEEE –Trial Version 1.00 – May 2001 5–1

CHAPTER 5

SOFTWARE TESTING

Antonia Bertolino
Istituto di Elaborazione della Informazione

Consiglio Nazionale delle Ricerche
Research Area of S. Cataldo

56100 PISA (Italy)
bertolino@iei.pi.cnr.it

Table of Contents

1 Introduction...1
2 Definition of the Software Testing Knowledge Area...1
3 Breakdown of Topics for the Software Testing

Knowledge Area...3
4 Breakdown Rationale ...14
5 Matrix of Topics vs. Reference Material......................14
6 Recommended References for Software Testing........16
Appendix A – List of Further Readings17

1 INTRODUCTION

Testing is an important, mandatory part of software
development; it is a technique for evaluating product
quality and also for indirectly improving it, by identifying
defects and problems.

As more extensively discussed in the Software Quality
chapter of the Guide to the SWEBOK, the right attitude
towards quality is one of prevention: it is obviously much
better to avoid problems, rather than repairing them.
Testing must be seen as a means primarily for checking
whether the prevention has been effective, but also for
identifying anomalies in those cases in which, for some
reason, it has been not. It is perhaps obvious, but worth
recognizing, that even after successfully completing an
extensive testing campaign, the software could still contain
faults; nor is defect free code a synonymous for quality
product. The remedy to system failures that are experienced
after delivery is provided by (corrective) maintenance
actions. Maintenance topics are covered into the Software
Maintenance chapter of the Guide to the SWEBOK.

In the years, the view of Software Testing has evolved
towards a more constructive attitude. Testing is no longer
seen as an activity that starts only after the coding phase is
complete, with the limited purpose of detecting failures.
Software testing is nowadays seen as an activity that should
encompass the whole development process, and is an
important part itself of the actual product construction.
Indeed, planning for testing should start since the early
stages of requirement analysis, and test plans and

procedures must be systematically and continuously refined
as the development proceeds. These activities of planning
and designing tests constitute themselves a useful input to
designers for highlighting potential weaknesses (like, e.g.,
design oversights or contradictions, and omissions or
ambiguities in the documentation).

In the already referred Software Quality (SQ) chapter of the
Guide to the SWEBOK, activities and techniques for
quality analysis are categorized into: static techniques (no
code execution), and dynamic techniques (code execution).
Both categories are useful. Although this chapter focuses
on testing, that is dynamic (see Sect. 2), static techniques
are as important for the purposes of evaluating product
quality and finding defects. Static techniques are covered
into the SQ Knowledge Area description.

2 DEFINITION OF THE SOFTWARE TESTING
KNOWLEDGE AREA

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the specified expected behavior.

In the above definition, and in the following as well,
underlined words correspond to key issues in identifying
the Knowledge Area of Software Testing. In particular:

w dynamic: this term means testing always implies
executing the program on (valued) inputs. To be
precise, the input value alone is not always sufficient
to determine a test, as a complex, non deterministic
system might react with different behaviors to a same
input, depending on the system state. In the following,
though, the term “input” will be maintained, with the
implied convention that it also includes a specified
input state, in those cases in which it is needed.
Different from testing, and complementary with it, are
static analysis techniques, such as peer review and
inspection (that sometimes are improperly referred to
as “static testing”); these are not considered as part of
this Knowledge Area (nor is program execution on
symbolic inputs, or symbolic evaluation);

w finite: for even simple programs, so many test cases
are theoretically possible that exhaustive testing could

5–2 © IEEE – Trial Version 1.00 – May 2001

require even years to execute. This is why in practice
the whole test set can generally be considered infinite.
But, the number of executions which can realistically
be observed in testing must obviously be finite.
Clearly, “enough” testing should be performed to
provide reasonable assurance. Indeed, testing always
implies a trade-off between limited resources and
schedules, and inherently unlimited test requirements:
this conflict points to well known problems of testing,
both technical in nature (criteria for deciding test
adequacy) and managerial in nature (estimating the
effort to put in testing);

w selected: the many proposed test techniques
essentially differ in how they select the (finite) test
set, and testers must be aware that different selection
criteria may yield largely different effectiveness. How
to identify the most suitable selection criterion under
given conditions is a very complex problem; in
practice risk analysis techniques and test engineering
expertise are applied;

w expected: it must be possible (although not always
easy) to decide whether the observed outcomes of
program execution are acceptable or not, otherwise
the testing effort would be useless. The observed
behavior may be checked against user’s expectations
(commonly referred to as testing for validation) or
against a specification (testing for verification). The
test pass/fail decision is commonly referred in the
testing literature to as the oracle problem, which can
be addressed with different approaches, for instance
by human inspection of results or by comparison with
an existing reference system. In some situations, the
expected behavior may only be partially specified,
i.e., only some parts of the actual behavior need to be
checked against some stated assertion.

2.1 Conceptual Structure of the Breakdown
Software testing is usually performed at different levels
along the development process. That is to say, the target of
the test can vary: a whole system, parts of it (related by
purpose, use, behavior, or structure), a single module.

The testing is conducted in view of a specific purpose (test
objective), which is stated more or less explicitly, and with
varying degrees of precision. Stating the objective in
precise, quantitative terms allows for establishing control
over the test process.

One of testing aims is to expose failures (as many as
possible), and many popular test techniques have been
developed for this objective. These techniques variously
attempt to “break” the program, by running one [or more]
test[s] drawn from identified classes of (deemed equivalent)
executions. The leading principle underlying such
techniques is being as much systematic as possible in
identifying a representative set of program behaviors
(generally in the form of subclasses of the input domain).
However, a comprehensive view of the Knowledge Area of
Software Testing as a means for quality must include other

as important objectives for testing, e.g., reliability
measurement, usability evaluation, contractor’s acceptance,
for which different approaches would be taken. Note that
the test objective varies with the test target, i.e., in general
different purposes are addressed at the different levels of
testing.

The test target and test objective together determine how
the test set is identified; both with regard to its consistency
-how much testing is enough for achieving the stated
objective?- and its composition -which test cases should be
selected for achieving the stated objective?- (although
usually the “for achieving the stated objective” part is left
implicit and only the first part of the two italicized
questions above is posed). Criteria for addressing the first
question are referred to as test adequacy criteria, while for
the second as test selection criteria.

Sometimes, it can happen that confusion is made between
test objectives and techniques. Test techniques are to be
viewed as aids that help to ensure the achievement of test
objectives. For instance, branch coverage is a popular test
technique. Achieving a specified branch coverage measure
should not be considered per se as the objective of testing:
it is a means to improve the chances of finding failures (by
systematically exercising every program branch out of a
decision point). To avoid such misunderstandings, a clear
distinction should be made between test measures which
evaluate the thoroughness of the test set, like measures of
coverage, and those which instead provide an evaluation of
the program under test, based on the observed test outputs,
like reliability.

Testing concepts, strategies, techniques and measures need
to be integrated into a defined and controlled process,
which is run by people. The test process supports testing
activities and provide guidance to testing teams, from test
planning to test outputs evaluation, in such a way as to
provide justified assurance that the test objectives are met
cost-effectively.

Software testing is a very expensive and labor-intensive
part of development. For this reason, tools are instrumental
for automated test execution, test results logging and
evaluation, and in general to support test activities.
Moreover, in order to enhance cost-effectiveness ratio, a
key issue has always been pushing test automation as much
as possible.

2.2 Overview
Following the above-presented conceptual scheme, the
Software Testing Knowledge Area description is organized
as follows.

Part A deals with Testing Basic Concepts and Definitions.
It covers the basic definitions within the Software Testing
field, as well as an introduction to the terminology. In the
same part, the scope of the Knowledge Area is laid down,
also in relation with other activities.

Part B deals with Test Levels. It consists of two
(orthogonal) subsections: B.1 lists the levels in which the

© IEEE –Trial Version 1.00 – May 2001 5–3

testing of large software systems is traditionally
subdivided. In B.2 testing for specific conditions or
properties is instead considered, and is referred to as
“Objectives of testing”. Clearly not all types of testing
apply to every system, nor has every possible type been
listed, but those most generally applied.

As said, several Test Techniques have been developed in
the last two decades according to various criteria, and new
ones are still proposed. “Generally accepted” techniques
are covered in Part C.

Test-related Measures are dealt in Part D.

Finally, issues relative to Managing the Test Process are
covered in Part E.

Existing tools and concepts related to supporting and
automating the activities into the test process are not
addressed here. They are covered within the Knowledge
Area description of Software Engineering Tools and
Methods in this Guide.

3 BREAKDOWN OF TOPICS FOR THE SOFTWARE
TESTING KNOWLEDGE AREA

This section gives the list of topics identified for the
Software Testing Knowledge Area, with succinct
descriptions and references. Two levels of references are
provided with topics: the recommended references within
brackets, and additional references within parentheses. In
particular, the recommended references for Software
Testing have been identified into selected book chapters
(for instance, Chapter 1 of reference Be is denoted as
Be:c1), or, in some cases, sections (for instance, Section 1.4
of Chapter 1 of Be is denoted as Be:c1s1.4). The Further
Readings list includes several refereed journal and
conference papers and some relevant standards, for a
deeper study of the pointed arguments.

A chart in Figure 1 gives a graphical presentation of the
top-level decomposition of the breakdown for the Software
Testing Knowledge Area. The finer decomposition of the
five level 1 topics into the lowest level entries is then
summarised by the following five tables (note that two
alternative decompositions are proposed for the level 1
topic of Testing Techniques)

Software Testing

A. Testing Basic
Concepts and

Definitions
B. Test Levels

C. Test
Techniques

D. Test Related
Measures

E. Managing the
Test Process

A1. Testing-
Related

Terminology

A2. Theoretical
Foundations

A3. Relationships
of Testing to

Other Activities

B1. The Target of
the Test

B2. Objectives of
Testing

C1.1 Based on
Tester's intuition
and experience

C1.2
Specification-

based

C1.3 Code-Based

C1.4 Fault-Based

C1.5 Usage-
Based

C1.6 Based on
Nature of

Application

C2.1 Black-Box
Techniques

C2.1 White-Box
Techniques

C3. Selecting and
Combining
Techniques

D1. Evaluation of
the Program
Under Test

D2. Evaluation of
the Tests

Performed

E1. Management
Concerns

E2. Test
Activities

5–4 © IEEE – Trial Version 1.00 – May 2001

Table 1-A: Decomposition for Testing Basic Concepts and Definitions
Definitions of testing and related terminology

A1. Testing-related terminology
Faults vs. Failures
Test selection criteria/Test adequacy criteria (or
stopping rules)
Testing effectiveness/Objectives for testing
Testing for defect removal
The oracle problem
Theoretical and practical limitations of testing
The problem of infeasible paths

A2. Theoretical foundations

Testability
Testing vs. Static Analysis Techniques
Testing vs. Correctness Proofs and Formal
Verification
Testing vs. Debugging
Testing vs. Programming
Testing within SQA

Testing within Cleanroom

A. Testing Basic Concepts
and Definitions

A3. Relationships of testing to other
activities

Testing and Certification

Table 1-B: Decomposition for Test Levels

Unit testing
Integration testing B1. The target of the test

System testing
Acceptance/qualification testing

Installation testing
Alpha and Beta testing
Conformance testing/ Functional testing/
Correctness testing
Reliability achievement and evaluation by
testing
Regression testing
Performance testing
Stress testing

Back-to-back testing
Recovery testing
Configuration testing

B. Test Levels

B2. Objectives of testing

Usability testing

© IEEE –Trial Version 1.00 – May 2001 5–5

Table 1-C: Decomposition for Test Techniques

C1.1 Based on tester’s
intuition and experience

Ad hoc

Equivalence partitioning
Boundary-value analysis
Decision table
Finite-state machine-based
Testing from formal specifications

C1.2 Specification-based

Random testing
Reference models for code-based testing (flow
graph, call graph)
Control flow-based criteria

C1.3 Code-based

Data flow-based criteria
Error guessing C1.4 Fault-based
Mutation testing
Operational profile C1.5 Usage-based
SRET
Object-oriented testing
Component-based testing
Web-based testing
GUI testing
Testing of concurrent programs
Protocol conformance testing
Testing of distributed systems
Testing of real-time systems

C1: (criterion “base
on which tests are

generated”)

C1.6 Based on nature of
application

Testing of scientific software
Equivalence partitioning
Boundary-value analysis
Decision table
Finite-state machine-based
Testing from formal specifications
Error guessing
Random testing
Operational profile

C2.1 Black -box techniques

SRET
Reference models for code-based testing (flow
graph, call graph)
Control flow-based criteria
Data flow-based criteria

C2: (criterion
“ignorance or
knowledge of

implementation”)

C2.2 White-box techniques

Mutation testing
Functional and structural

C. Test
Techniques

C3 Selecting and combining techniques
Coverage and operational/Saturation effect

5–6 © IEEE – Trial Version 1.00 – May 2001

Table 1-D: Decomposition for Test Related Measures

Program measurements to aid in planning and
designing testing
Types, classification and statistics of faults
Remaining number of defects/Fault density
Life test, reliability evaluation

D.1 Evaluation of the program under test

Reliability growth models
Coverage/thoroughness measures
Fault seeding
Mutation score

D. Test Related Measures

D.2 Evaluation of the tests performed

Comparison and relative effectiveness of
different techniques

Table 1-E: Decomposition for Managing the Test Process
Attitudes/Egoless programming
Test process
Test documentation and workproducts
Internal vs. independent test team
Cost/effort estimation and other process
measures
Termination

E.1 Management concerns

Test reuse and test patterns
Planning

Test case generation

Test environment development

Execution

Test results evaluation

Problem reporting/Test log

E. Managing the Test
Process

E.2 Test activities

Defect tracking

A. Testing Basic Concepts and Definitions

A1. Testing-related terminology

w Definitions of testing and related terminology [Be:c1;
Jo:c1,2,3,4; Ly:c2s2.2] (610)

A comprehensive introduction to the Knowledge Area of
Software Testing is provided by the core references.
Moreover, the IEEE Standard Glossary of Software
Engineering Terminology (610) defines terms for the whole
field of software engineering, including testing-related
terms.

w Faults vs. Failures [Ly:c2s2.2; Jo:c1; Pe:c1; Pf:c7]
(FH+; Mo; ZH+:s3.5; 610; 982.2:fig3.1.1-1;
982.2:fig6.1-1)

Many terms are used in the software literature to speak of
malfunctioning, notably fault, failure, error, and several
others. Often these terms are used interchangeably.
However, in some cases they are given a more precise
meaning (unfortunately, not in consistent ways between
different sources), in order to identify the subsequent steps

of the cause-effect chain that originates somewhere, e.g., in
the head of a designer, and eventually leads to the system’s
user observing an undesired effect. This terminology is
precisely defined in the IEEE Standard 610.12-1990,
Standard Glossary of Software Engineering Terminology
(610) and is also discussed in more depth in the Software
Quality Knowledge Area (Chapter 11, Sect. 7). What is
essential to discuss Software Testing, as a minimum, is to
clearly distinguish between the cause for a malfunctioning,
for which either of the terms fault or defect will be used
here, and an undesired effect observed in the system
delivered service, that will be called a failure. It is
important to clarify that testing can reveal failures, but then
it is the faults that can and must be removed.

However, it should also be recognized that not always the
cause of a failure can be unequivocally identified, i.e., no
theoretical criteria exists to uniquely say what the fault was
that caused a failure. One may choose to say the fault was
what had to be modified to remove the problem, but other
modifications could have worked just as well. To avoid
ambiguities, some authors instead of faults prefer to speak

© IEEE –Trial Version 1.00 – May 2001 5–7

in terms of failure-causing inputs (FH+), i.e., those sets of
inputs that when executed cause a failure.

A2. Theoretical foundations

w Test selection criteria/Test adequacy criteria (or
stopping rules) [Pf:c7s7.3; ZH+:s1.1] (We-b; WW+;
ZH+)

A test criterion is a means of deciding which a suitable set
of test cases should be. A criterion can be used for selecting
the test cases, or for checking if a selected test suite is
adequate, i.e., to decide if the testing can be stopped. In
mathematical terminology it would be a decision predicate
defined on triples (P, S, T), where P is a program, S is the
specification (intended here to mean in general sense any
relevant source of information for testing) and T is a test
set. Some generally used criteria are mentioned in Part C.

w Testing effectiveness/Objectives for testing
[Be:c1s1.4; Pe:c21] (FH+)

Testing amounts at observing a sample of program
executions. The selection of the sample can be guided by
different objectives: it is only in light of the objective
pursued that the effectiveness of the test set can be
evaluated. This important issue is discussed at some length
in the references provided.

w Testing for defect identification [Be:c1; KF+:c1]

In testing for defect identification a successful test is one
that causes the system to fail. This is quite different from
testing to demonstrate that the software meets its
specification, or other desired properties, whereby testing is
successful if no (important) failures are observed.

w The oracle problem [Be:c1] (We-a; BS)

An oracle is any (human or mechanical) agent that decides
whether a program behaved correctly on a given test, and
produces accordingly a verdict of “pass” or “fail”. There
exist many different kinds of oracles; oracle automation can
be very difficult and expensive.

w Theoretical and practical limitations of testing
[KF+:c2] (Ho)

Testing theory warns against putting a not justified level of
confidence on series of passed tests. Unfortunately, most
established results of testing theory are negative ones, i.e.,
they state what testing can never achieve (as opposed to
what it actually achieved). The most famous quotation in
this regard is Dijkstra aphorism that “program testing can
be used to show the presence of bugs, but never to show
their absence”. The obvious reason is that complete testing
is not feasible in real systems. Because of this, testing must
be driven based on risk, i.e., testing can also be seen as a
risk management strategy.

w The problem of infeasible paths [Be:c3]

Infeasible paths, i.e., control flow paths which cannot be
exercised by any input data, are a significant problem in
path-oriented testing, and particularly in the automated
derivation of test inputs for code-based testing techniques.

w Testability [Be:c3,c13] (BM; BS; VM)

The term of software testability has been recently
introduced in the literature with two related, but different
meanings: on the one hand as the degree to which it is easy
for a system to fulfill a given test coverage criterion, as in
(BM); on the other hand, as the likelihood (possibly
measured statistically) that the system exposes a failure
under testing, if it is faulty, as in (VM, BS). Both meanings
are important.

A3. Relationships of testing to other activities

Here the relation between the Software Testing and other
related activities of software engineering is considered.
Software Testing is related to, but different from, static
analysis techniques, proofs of correctness, debugging and
programming. On the other side, it is informative to
consider testing from the point of view of software quality
analysts, users of CMM and Cleanroom processes, and of
certifiers.

w Testing vs. Static Analysis Techniques [Be:c1;
Pe:c17p359-360] (1008:p19)

w Testing vs. Correctness Proofs and Formal
Verification [Be:c1s5; Pf:c7]

w Testing vs. Debugging [Be:c1s2.1] (1008:p19)

w Testing vs. Programming [Be:c1s2.3]

w Testing within SQA (see the SQ Chapter in this
Guide)

w Testing within CMM (Po:p117-123)

w Testing within Cleanroom [Pf:c8s8.9]

w Testing and Certification (WK+)

B. Test Levels

B1. The target of the test

Testing of large software systems usually involves more
steps [Be:c1; Jo:c12; Pf:c7].

Three big test stages can be conceptually distinguished,
namely Unit, Integration and System. No process model is
implied in this Guide, nor any of those three stages is
assumed to have a higher importance than the other two.
Depending on the development model followed, these three
stages will be adopted and combined in different
paradigms, and quite often more than one iteration between
them is necessary.

w Unit testing [Be:c1; Pe:c17; Pf:c7s7.3] (1008)

Unit testing verifies the functioning in isolation of software
pieces that are separately testable. Depending on the
context, these could be the individual subprograms or a
larger component made of tightly related units. A test unit
is defined more precisely in the IEEE Standard for
Software Unit Testing [1008], that also describes an
integrated approach to systematic and documented unit
testing. Typically, unit testing occurs with access to the
code being tested and with the support of debugging tools,

5–8 © IEEE – Trial Version 1.00 – May 2001

and might involve the same programmers. Clearly, unit
testing starts after coding is quite mature, for instance after
a clean compile.

w Integration testing [Jo:c12,13; Pf:c7s7.4]

Integration testing is the process of verifying the interaction
between system components (possibly, and hopefully,
already tested in isolation). Classical integration testing
strategies, such as top-down or bottom-up, are used with
traditional, hierarchically structured systems. Modern
systematic integration strategies are rather architecture
driven, which implies integrating the software components
or subsystems based on identified functional threads:
integration testing is a continuous activity, at each stage of
which testers must abstract away lower level perspectives
and concentrate on the perspectives of the level they are
integrating. Except for small, simple systems, systematic,
incremental integration testing strategies are to be preferred
to putting all components together at once, that is
pictorially said “big-bang” testing.

w System testing [Jo:c14; Pf:c8]

System testing is concerned with the behavior of a whole
system. The majority of functional failures should have
been already identified during unit and integration testing.
System testing should compare the system to the non-
functional system requirements, such as security, speed,
accuracy, and reliability. External interfaces to other
applications, utilities, hardware devices, or the operating
environment are also evaluated at this level.

B2. Objectives of Testing [Pe:c8; Pf:c8s8.3]

Testing of a software system (or subsystem) can be aimed
at verifying different properties. Test cases can be designed
to check that the functional specifications are correctly
implemented, which is variously referred to in the literature
as conformance testing, “correctness” testing, functional
testing. However several other non-functional properties
need to be tested as well, including conformance, reliability
and usability among many others.

References cited above give essentially a collection of the
potential different purposes. The topics separately listed
below (with the same or additional references) are those
most often cited in the literature. Note that some kinds of
testing are more appropriate for custom made packages
(e.g., installation testing), while others for generic products
(e.g., beta testing).

w Acceptance/qualification testing [Pe:c10; Pf:c8s8.5]
(12207:s5.3.9)

Acceptance testing checks the system behavior against the
customer’s requirements (the “contract”); the customers
undertake (or specify) typical tasks to check their
requirements. This testing activity may or may not involve
the developers of the system.

w Installation testing [Pe:c9; Pf:c8s8.6]

After completion of system and acceptance testing, the
system is verified upon installation in the target
environment, i.e., system testing is conducted according to
the hardware configuration requirements. Installation
procedures are also verified.

w Alpha and Beta testing [KF+:c13]

Before releasing the system, sometimes it is given in use to
a small representative set of potential users, in-house (alpha
testing) or external (beta testing), who report potential
experienced problems with use of the product. Alpha and
beta use is often uncontrolled, i.e., the testing does not refer
to a test plan.

w Conformance testing/Functional testing/Correctness
testing [KF+:c7; Pe:c8] (WK+)

Conformance testing is aimed at verifying whether the
observed behavior of the tested system conforms to its
specification.

w Reliability achievement and evaluation by testing
[Pf:c8s.8.4; Ly:c7] (Ha; Musa and Ackermann in
Po:p146-154)

By testing failures can be detected, and afterwards, if the
faults that are the cause of the identified failures are
efficaciously removed, the software will be more reliable.
In this sense, testing is a means to improve reliability. On
the other hand, by randomly generating test cases
accordingly to the operational profile, statistical measures
of reliability can be derived. Using reliability growth
models, both objectives can be pursued together (see also
part D.1).

w Regression testing [KF+:c7; Pe:c11,c12; Pf:c8s8.1]
(RH)

According to (610), regression testing is the “selective
retesting of a system or component to verify that
modifications have not caused unintended effects [...]”. In
practice, the idea is to show that previously passed tests,
still do. [Be] defines it as any repetition of tests intended to
show that the software’s behavior is unchanged except
insofar as required. Obviously a tradeoff must be found
between the assurance given by regression testing every
time a change is made and the resources required to do that.

Regression testing can be conducted at each of the test
levels in B.1, and may apply to functional and non-
functional testing.

w Performance testing [Pe:c17; Pf:c8s8.3] (WK+)

This is specifically aimed at verifying that the system meets
the specified performance requirements, e.g., capacity and
response time. A specific kind of performance testing is
volume testing (Pe:p185, p487; Pf:p349), in which internal
program or system limitations are tried.

w Stress testing [Pe:c17; Pf:c8s8.3]

Stress testing exercises a system at the maximum design
load as well as beyond it.

w Back-to-back testing

© IEEE –Trial Version 1.00 – May 2001 5–9

A same test set is presented to two implemented versions of
a system, and the results are compared with each other.

w Recovery testing [Pe:c17; Pf:c8s8.3]

It is aimed at verifying system restart capabilities after a
“disaster”.

w Configuration testing [KF+:c8; Pf:c8s8.3]

In those cases in which a system is built to serve different
users, configuration testing analyzes the system under the
various specified configurations.

w Usability testing [Pe:c8; Pf:c8s8.3]

It evaluates the ease of using and learning the system (and
system user documentation) by the end users, as well as the
effectiveness of system functioning in supporting user
tasks, and finally the ability of recovering from user’s
errors.

C. Test Techniques
In this section, two alternative classifications of test
techniques are proposed. It is arduous to find a
homogeneous criterion for classifying all techniques, as
there exist many and very disparate.

The first classification, from C1.1 to C1.6, is based on how
tests are generated, i.e., respectively from: tester’s intuition
and expertise, the specifications, the code structure, the
(real or artificial) faults to be discovered, the field usage or
finally the nature of application, which in some case can
require knowledge of specific test problems and of specific
test techniques.

The second classification is the classical distinction of test
techniques between black -box and white-box (pictorial
terms derived from the world of integrated circuit testing).
Test techniques are here classified according to whether the
tests rely on information about how the software has been
designed and coded (white-box, somewhere also said glass-
box), or instead only rely on the input/output behavior,
without no assumption about what happens in between the
“pins” (precisely, the entry/exit points) of the system (black
box). Clearly this second classification is more coarse than
the first one, and it does not allow us to categorize the
techniques specialized on the nature of application (section
C1.6) nor ad hoc approaches, because these can be either
black-box or white-box. Also note that as new technologies
such as Object Oriented or Component-based become more
and more widespread, this split becomes more of a
theoretical than a practical scope, as information about code
and design is hidden or simply not available.

A final section, C3, deals with combined use of more
techniques.

C1: CLASSIFICATION “based on how tests are
generated”

C1.1 Based on tester’s intuition and experience [KF+:c1]

Perhaps the most widely practiced technique remains ad
hoc testing : tests are derived relying on the tester skill and

intuition (“exploratory” testing), and on his/her experience
with similar programs. While a more systematic approach
is advised, ad hoc testing might be useful (but only if the
tester is really expert!) to identify special tests, not easily
“captured” by formalized techniques. Moreover it must be
reminded that this technique may yield largely varying
degrees of effectiveness.

C1.2 Specification-based

w Equivalence partitioning [Jo:c6; KF+:c7]

The input domain is subdivided into a collection of subsets,
or “equivalent classes”, which are deemed equivalent
according to a specified relation, and a representative set of
tests (sometimes even one) is taken from within each class.

w Boundary-value analysis [Jo:c5; KF+:c7]

Test cases are chosen on and near the boundaries of the
input domain of variables, with the underlying rationale
that many defects tend to concentrate near the extreme
values of inputs. A simple, and often worth, extension of
this technique is Robustness Testing, whereby test cases are
also chosen outside the domain, in fact to test program
robustness to unexpected, erroneous inputs.

w Decision table [Be:c10s3] (Jo:c7)

Decision tables represent logical relationships between
conditions (roughly, inputs) and actions (roughly, outputs).
Test cases are systematically derived by considering every
possible combination of conditions and actions. A related
techniques is Cause-effect graphing [Pf:c8].

w Finite-state machine-based [Be:c11; Jo:c4s4.3.2]

By modeling a program as a finite state machine, tests can
be selected in order to cover states and transitions on it,
applying different techniques. This technique is suitable for
transaction-processing, reactive, embedded and real-time
systems.

w Testing from formal specifications [ZH+:s2.2] (BG+;
DF; HP)

Giving the specifications in a formal language (i.e., one
with precisely defined syntax and semantics) allows for
automatic derivation of functional test cases from the
specifications, and at the same time provides a reference
output, an oracle, for checking test results. Methods for
deriving test cases from model-based (DF, HP) or algebraic
specifications (BG+) are distinguished.

w Random testing [Be:c13; KF+:c7]

Tests are generated purely random (not to be confused with
statistical testing from the operational profile, where the
random generation is biased towards reproducing field
usage, see C1.5). Actually, therefore, it is difficult to
categorize this technique under the scheme of “base on
which tests are generated”. It is put under the Specification-
based entry, as at least the domain must be known, to be
able to pick random points within it.

5–10 © IEEE – Trial Version 1.00 – May 2001

C1.3 Code-based

w Reference models for code-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

In code-based testing techniques, the control structure of a
program is graphically represented using a flowgraph, i.e.,
a directed graph whose nodes and arcs correspond to
program elements. For instance, nodes may represent
statements or uninterrupted sequences of statements, and
arcs the transfer of control between nodes.

w Control flow-based criteria [Be:c3; Jo:c9]
(ZH+:s2.1.1)

Control flow-based coverage criteria aim at covering all the
statements or the blocks in a program, or specified
combinations of them. Several coverage criteria have been
proposed (like Decision/Condition Coverage), in the
attempt to get good approximations for the exhaustive
coverage of all control flow paths, that is unfeasible for all
but trivial programs.

w Data flow-based criteria [Be:c5] (Jo:c10; ZH+:s2.1.2)

In data flow-based testing, the control flowgraph is
annotated with information about how the program
variables are defined and used. Different criteria exercise
with varying degrees of precision how a value assigned to a
variable is used along different control flow paths. A
reference notion is a definition-use pair, which is a triple
(d,u,V) such that: V is a variable, d is a node in which V is
defined, and u is a node in which V is used; and such that
there exists a path between d and u in which the definition
of V in d is used in u.

C1.4 Fault-based (Mo)

With different degrees of formalization, fault based testing
techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults.

w Error guessing [KF+:c7]

In error guessing, test cases are specifically designed by
testers trying to figure out those, which could be the most
plausible faults in the given program. A good source of
information is the history of faults discovered in earlier
projects, as well as tester’s expertise.

w Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

A mutant is a slightly modified version of the program
under test, differing from it by a small, syntactic change.
Every test case exercises both the original and all generated
mutants: If a test case is successful in identifying the
difference between the program and a mutant, the latter is
said to be killed. Originally conceived as a technique to
evaluate a test set (see D.2.2), mutation testing is also a
testing criterion in itself: either tests are randomly
generated until enough mutants are killed or tests are
specifically designed to kill (survived) mutants. In the latter
case, mutation testing can also be categorized as a code-
based technique. The underlying assumption of mutation
testing, the coupling effect, is that by looking for simple

syntactic faults, also more complex, (i.e., real) faults will be
found. For the technique to be effective, a high number of
mutants must be automatically derived in systematic way.

C1.5 Usage-based

w Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]

In testing for reliability evaluation, the test environment
must reproduce as closely as possible the product use in
operation. In fact, from the observed test results one wants
to infer the future reliability in operation. To do this, inputs
are assigned a probability distribution, or profile, according
to their occurrence in actual operation.

w (Musa’s) SRET [Ly:c6]

Software Reliability Engineered Testing (SRET) is a testing
methodology encompassing the whole development
process, whereby testing is “designed and guided by
reliability objectives and expected relative usage and
criticality of different functions in the field”.

C1.6 Based on nature of application

The above techniques apply to all types of software, and
their classification is based on how test cases are derived.
However, for some kinds of applications some additional
know-how is required for test derivation. Here below a list
of few “specialized” testing fields is provided, based on the
nature of the application under test.

w Object-oriented testing [Jo:c15; Pf:c7s7.5] (Bi)

w Component-based testing

w Web-based testing

w GUI testing (OA+)

w Testing of concurrent programs (CT)

w Protocol conformance testing (Sidhu and Leung in
Po:p102-115; BP)

w Testing of distributed systems

w Testing of real-time systems (Sc)

w Testing of scientific software

C2: CLASSIFICATION “ignorance or knowledge of
implementation”

As explained at the beginning of Section C, here below an
alternative classification of the same test techniques cited
so far is proposed (just the headings are mentioned), based
on whether knowledge of implementation is exploited to
derive the test cases (white-box), or not (black-box).

C2.1 Black -box techniques

w Equivalence partitioning [Jo:c6; KF+:c7]

w Boundary-value analysis [Jo:c5; KF+:c7]

w Decision table [Be:c10s3] (Jo:c7)

w Finite-state machine-based [Be:c11; Jo:c4s4.3.2]

w Testing from formal specifications [ZH+:s2.2] (BG+;
DF; HP)

© IEEE –Trial Version 1.00 – May 2001 5–11

w Error guessing [KF+:c7]

w Random testing [Be:c13; KF+:c7]

w Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]

w (Musa’s) SRET [Ly:c6]

C2.2 White-box techniques

w Reference models for code-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

w Control flow-based criteria [Be:c3; Jo:c9]
(ZH+:s2.1.1)

w Data flow-based criteria [Be:c5] (Jo:c10; ZH+:s2.1.2)

w Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

C3 Selecting and combining techniques

w Functional and structural [Be:c1s.2.2; Jo:c1, c11s11.3;
Pe:c17] (Po:p3-4; Po:Appendix 2)

Specification-based and code-based test techniques are
often contrasted as functional vs. structural testing. These
two approaches to test selection are not to be seen as
alternative, but rather as complementary: in fact, they use
different sources of information, and have proved to
highlight different kinds of problems. They should be used
in combination, compatibly with budget availability.

w Coverage and operational/Saturation effect (Ha;
Ly:p541-547; Ze)

Test cases can be selected in deterministic way, according
to one of the various listed techniques, or randomly drawn
from some distribution of inputs, such as it is usually done
in reliability testing. There are interesting considerations
one should be aware of, about the different implications of
each approach.

D. Test relate d measures
Measurement is instrumental to quality analysis. Indeed,
product evaluation is effective only when based on
quantitative measures. Measurement is instrumental also to
the optimal planning and execution of tests, and several
process measures can be used by the test manager to
monitor progress. Measures relative to the test process for
management purposes are considered in part E.

A wider coverage of the topic of quality measurement,
including fundamentals, measures and techniques for
measurement, is provided in the Software Quality chapter
of the Guide to the SWEBOK. A comprehensive reference
is provided by the IEEE Standard. 982.2 “Guide for the Use
of IEEE Standard Dictionary of Measures to Produce
Reliable Software”, which was originally conceived as a
guide to using the companion standard 982.1, that is the
Dictionary. However, the guide is also a valid and very
useful reference by itself, for selection and application of
measures in a project.

Test related measures can be divided into two classes: those
relative to evaluating the program under test, and those
relative to evaluating the test set. The first class, for

instance, includes measures that count and predict either
faults (e.g., fault density) or failures (e.g., reliability). The
second class instead evaluates the test suites against
selected test criteria; notably, this is what is usually done by
measuring the code coverage achieved by the executed
tests.

D1. Evaluation of the program under test (982.2)

w Program measurements to aid in planning and
designing testing. [Be:c7s4.2; Jo:c9] (982.2:sA16,
BMa)

Measures based on program size (e.g., Source Lines of
Code, function points) or on program structure (e.g.,
complexity) is useful information to guide the testing.
Structural measures can also include measurements among
program modules, in terms of the frequency with which
modules call each other.

w Types, classification and statistics of faults [Be:c2;
Jo:c1; Pf:c7] (1044, 1044.1; Be:Appendix; Ly:c9;
KF+:c4, Appendix A)

The testing literature is rich of classifications and
taxonomies of faults. Testing allows for discovering
defects. To make testing more effective it is important to
know which types of faults could be found in the
application under test, and the relative frequency with
which these faults have occurred in the past. This
information can be very useful to make quality predictions
as well as for process improvement. The topic “Defect
Characterization” is also covered more deeply in the SQA
Knowledge Area. An IEEE standard on how to classify
software “anomalies” (1044) exists, with a relative guide
(1044.1) to implement it. An important property for fault
classification is orthogonality, i.e., ensuring that each fault
can be unequivocally identified as belonging to one class.

w Fault density [Pe:c20] (982.2:sA1; Ly:c9)

In common industrial practice a product under test is
assessed by counting and classifying the discovered faults
by their types (see also A1). For each fault class, fault
density is measured by the ratio between the number of
faults found and the size of the program.

w Life test, reliability evaluation [Pf:c8] (Musa and
Ackermann in Po:p146-154)

A statistical estimate of software reliability, that can be
obtained by operational testing (see in B.2), can be used to
evaluate a product and decide if testing can be stopped.

w Reliability growth models [Ly:c7; Pf:c8] (Ly:c3, c4)

Reliability growth models provide a prediction of reliability
based on the failures observed under operational testing.
They assume in general that the faults that caused the
observed failures are fixed (although some models also
accept imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There exist now tens
of published models, laid down on some common
assumptions as well as on differing ones. Notably, the

5–12 © IEEE – Trial Version 1.00 – May 2001

models are divided into failures-count and time-between-
failures models.

D2. Evaluation of the tests performed

w Coverage/thoroughness measures [Jo:c9; Pf:c7]
(982.2:sA5-sA6)

Several test adequacy criteria require the test cases to
systematically exercise a set of elements identified in the
program or in the specification (see Part C). To evaluate the
thoroughness of the executed tests, testers can monitor the
elements covered, so that they can dynamically measure the
ratio (often expressed as a fraction of 100%) between
covered elements and the total number. For example, one
can measure the percentage of covered branches in the
program flowgraph, or of exercised functional requirements
among those listed in the specification document. Code-
based adequacy criteria require appropriate instrumentation
of the program under test.

w Fault seeding [Pf:c7] (ZH+:s3.1)

Some faults are artificially introduced into the program
before test. When the tests are executed, part of these
seeded faults will be revealed, as well as possibly genuine
faults. Depending on which and how many of the artificial
faults are hit, testing effectiveness can be evaluated; also,
one could estimate how many of the genuine faults should
remain.

w Mutation score [ZH+:s3.2-s3.3]

Mutation testing has been described before (within C1.4).
The proportion between killed mutants and the total
number of generated mutants can be a measure of the
effectiveness of the executed test set.

w Comparison and relative effectiveness of different
techniques [Jo:c8,c11; Pe:c17; ZH+:s5] (FW;
Weyuker in Po p64-72; FH+)

Several studies have been recently conducted to compare
the relative effectiveness of different test techniques. It is
important to be precise relative to the property against
which the techniques are being assessed, i.e., what
“effectiveness” is exactly meant for. Possible
interpretations are how many tests are needed to find the
first failure, or the ratio of the number of faults found by
the testing to all the faults found during and after the
testing, or of how much reliability is improved. Analytical
and empirical comparisons between different techniques
have been conducted according to each of the above
specified notions of “effectiveness”.

E. Managing the Test Process

E1. Management concerns

w Attitudes/Egoless programming [Be:c13s3.2; Pf:c7]

A very important component of successful testing is a
positive and collaborative attitude towards testing activities.
Managers should revert a negative vision of testers as the
destroyers of developers’ work and as heavy budget

consumers. On the contrary, they should foster a common
culture towards software quality, by which early failure
discover is an objective for all involved people, and not
only of testers.

w Test process [Be:c13; Pe:c1,c2,c3,c4; Pf:c8] (Po:p10-
11; Po:Appendix 1; 12207:s5.3.9;s5.4.2;s6.4;s6.5)

A process is defined as “a set of interrelated activities,
which transform inputs into outputs”[12207]. Test activities
conducted at different levels (see B.1) must be organized,
together with people, tools, policies, measurements, into a
well defined process, which is integral part to the life cycle.
This test process needs control and continuous
improvement. In the IEEE/EIA Standard 12207.0 testing is
not described as a stand alone process, but principles for
testing activities are included along with the five primary
life cycle processes, as well as along with the supporting
process.

w Test documentation and workproducts [Be:c13s5;
KF+:c12; Pe:c19; Pf:c8s8.8] (829)

Documentation is an integral part of the formalization of
the test process. The IEEE standard for Software Test
Documentation [829] provides a good description of test
documents and of their relationship with one another and
with the testing process. Test documents includes, among
others, Test Plan, Test Design Specification, Test
Procedure Specification, Test Case Specification, Test Log
and Test Incident or Problem Report. The program under
test, with specified version and identified hw/sw
requirements before testing can begin, is documented as the
Test Item. Test documentation should be produced and
continually updated, at the same standards as other types of
documentation in development.

w Internal vs. independent test team [Be:c13s2.2-2.3;
KF+:c15; Pe:c4; Pf:c8]

Formalization of the test process requires formalizing the
test team organization as well. The test team can be
composed of members internal to the project team (but not
directly involved in code development), or of external
members, in the latter case bringing in an unbiased,
independent perspective, or finally of both internal and
external members. The decision will be determined by
considerations of costs, schedule, maturity levels of the
involved organizations, and criticality of the application.

w Cost/effort estimation and other process measures
[Pe:c4, c21] (Pe: Appendix B; Po:p139-145;
982.2:sA8-sA9)

In addition to those discussed in Part D, several measures
relative to the resources spent on testing, as well as to the
relative effectiveness in fault finding of the different test
phases, are used by managers to control and improve the
test process. These test measures may cover such aspects
as: number of test cases specified, number of test cases
executed, number of test cases passed, number of test cases
failed, and similar.

© IEEE –Trial Version 1.00 – May 2001 5–13

Evaluation of test phase reports is often combined with root
cause analysis to evaluate test process effectiveness in
finding faults as early as possible. Moreover, the resources
that are worth spending in testing should be commensurate
to the use/criticality of the application: the techniques listed
in part C have different costs, and yield different levels of
confidence in product reliability.

w Termination [Be:c2s2.4; Pe:c2]

A critical task of the test manager is to decide how much
testing is enough and when a test stage can be terminated.
Thoroughness measures such as achieved code coverage or
functional completeness, as well as estimates of fault
density or of operational reliability, provide useful support,
but are not sufficient by themselves. The decision involves
also considerations about the costs and risks incurred by
potentially remaining failures, as opposed to the costs
implied by further continuing to test.

w Test reuse and test patterns [Be:c13s5]

To carry out testing or maintenance in an organized and
cost/effective way, the means used to test each part of the
system should be reused systematically. At all levels of
testing, test scripts, test cases, and expected results should
be carefully defined and documented so that they may be
reused. This repository of test materials must be
configuration controlled, so that changes to system
requirements or design can be reflected in changes to the
scope of the tests conducted.

The test solutions adopted for testing some application type
under certain circumstances, with the motivations behind
the decisions taken, form a test pattern, that can itself be
documented for later reuse in similar projects.

E2. Test Activities

Here below a brief overview of test activities is given; as
often implied by the following description, successful
management of test activities strongly depends from the
Software Configuration Management process (see Chapter
7 in this Guide).

w Planning [KF+:c12; Pe:c19; Pf:c7s7.6] (829:s4;
1008:s1, s2, s3)

Like any other part of project management, testing
activities must be planned. Key aspects of test planning
include co-ordination of personnel needed, management of
available test facilities and equipment (which may include
magnetic media, test plans and procedures), and planning
for possible undesirable outcomes. If more than one
baseline of the system is being maintained, then a major
planning consideration is the time and effort needed to
ensure the test environment is set to the proper
configuration.

w Test case generation [KF+:c7] (Po:c2; 1008:s4, s5)

Generation of test cases is based on the level of testing to
be performed, and the particular testing techniques. Test

cases should be configuration controlled and include the
expected results for each test.

w Test environment development [KF+:c11]

The environment used for testing should be compatible
with the software development environment. It should
facilitate development and control of test cases, as well as
logging and recovery of expected results, scripts, and other
testing materials.

w Execution [Be:c13; KF+:c11] (1008:s6, s7;)

Execution of tests is generally performed by testing
engineers with oversight by quality assurance personnel
and, in some cases, customer representatives. Execution of
tests should embody the basic principles of scientific
experimentation: everything done during testing should be
performed and documented clearly enough that another
person could replicate the same results. Hence testing
should be performed in accordance with documented
procedures using a clearly defined version of the system
under test.

w Test results evaluation [Pe:c20,c21] (Po:p18-20;
Po:p131-138)

The results of testing must be evaluated to determine if the
test was successful, and to derive specific test measures. In
most cases, ‘successful’ means that the system performed
as expected, and did not have any major unexpected
outcomes. On the other side, not all unexpected outcomes
are necessarily faults, but could be judged as just noise.
Before a failure can be removed, analysis and debugging
effort is needed to isolate, identify and describe it. When
test results are particularly important, a formal review
board may be convened to evaluate test results.

w Problem reporting/Test log [KF+:c5; Pe:c20] (829:s9-
s10)

All testing activities should be entered into a test log to
identify when a test was conducted, who performed the test,
what system configuration was the basis for testing, and
other relevant identification information. Unexpected or
incorrect test results should be recorded in a problem
reporting system. The problem reporting system’s data
forms the basis for later debugging and fixing the problems
which were observed as failures during testing. Also
anomalies not classified as faults could be documented, in
case they later turn out to be more serious than judged. Test
Reports are also an input to the Change Management
system (which is a part of the Configuration Management
system).

w Defect tracking [KF+:c6]

Failures observed during testing are often due to faults or
defects in the system. Such defects should be analyzed to
determine when they were introduced into the system, what
kind of error caused them to be created (e.g. poorly defined
requirements, incorrect variable declaration, memory leak,
programming syntax error, etc.), and when they could have
been first observed in the system. Defect tracking

5–14 © IEEE – Trial Version 1.00 – May 2001

information is used to determine what aspects of system
development need improvement and how effective have
been previous analyses and testing.

4 BREAKDOWN RATIONALE

The conceptual scheme followed in decomposing the
Software Testing Knowledge Area is described in Section
2.1. Level 1 topics include five entries, labeled from A to E,
that correspond to the fundamental and complementary
concerns forming the Software Testing knowledge: Basic
Concepts and Definitions, Levels, Techniques, Measures,
and Process. There is not a standard way to decompose the
Software Testing Knowledge Area, each book on Software
Testing would structure its table of contents in different
ways. However any thorough book on Software Testing
would cover these five topics. A sixth level 1 topic would
be Test Tools. These are not covered here, but in the
Software Engineering Tools and Methods chapter of the
Guide to the SWEBOK.

The breakdown is three levels deep. The second level is for
making the decomposition more understandable. The
selection of level 3 topics, that are the subjects of study, has
been quite difficult. Finding a breakdown of topics that is
“generally accepted” by all different communities of

potential users of the Guide to the SWEBOK is challenging
for Software Testing, because there still exists a wide gap
between the literature on Software Testing and current
industrial test practice. There are topics that have been
taking a relevant position in the academic literature for
many years now, but are not generally used in industry, for
example data-flow based or mutation testing. The position
taken in writing this document has been to include any
relevant topics in the literature, even those that are likely not
considered so relevant by practitioners at the current time.
The proposed breakdown of topics for Software Testing is
thus considered as an inclusive list, from which each
stakeholder can pick according to his/her needs.

However, under the precise definition for “generally
accepted” adopted in the Guide to the SWEBOK (i.e.,
knowledge to be included in the study material of a software
engineering with four years of work experience), some of
the included topics (like the examples above) would be only
lightly (if at all) covered in a curriculum of a software
engineer with four years of experience. The recommended
references have been therefore selected accordingly, i.e.,
they provide reading material according to this meaning of
“generally accepted”, while the more advanced topics are
covered in the Further Reading list.

5 MATRIX OF TOPICS VS . REFERENCE MATERIAL

A. Testing Basic Concepts and
Definitions

[Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]

Definitions of testing and related terminology C1 C1,2,3,4 C2S2.2
Faults vs. Failures C1 C2S2.2 C1 C7
Test selection criteria/Test adequacy criteria (or
stopping rules) C7S7.3 S1.1

Testing effectiveness/Objectives for testing C1S1.4 C21
Testing for defect identification C1 C1
The oracle problem C1
Theoretical and practical limitations of testing C2
The problem of infeasible paths C3
Testability C3,13
Testing vs. Static Analysis Techniques C1 C17
Testing vs. Correctness Proofs and Formal
Verification C1S5 C7

Testing vs. Debugging C1S2.1
Testing vs. Programming C1S2.3
Testing within SQA
Testing within CMM
Testing within Cleanroom C8S8.9
Testing and Certification

© IEEE –Trial Version 1.00 – May 2001 5–15

B. Test Levels [Be] [Jo] [Ly] [KF+] [Pe] [Pf]

Unit testing C1 C17 C7S7.3
Integration testing C12,13 C7S7.4
System testing C14 C8
Acceptance/qualification testing C10 C8S8.5
Installation testing C9 C8S8.6
Alpha and Beta testing C13
Conformance testing/ Functional testing/ Correctness
testing C7 C8

Reliability achievement and evaluation by testing C7 C8S8.4
Regression testing C7 C11,12 C8S8.1
Performance testing C17 C8S8.3
Stress testing C17 C8S8.3
Back-to-back testing
Recovery testing C17 C8S8.3
Configuration testing C8 C8S8.3
Usability testing C8 C8S8.3

C. Test Techniques [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]

Ad hoc C1
Equivalence partitioning C6 C7
Boundary-value analysis C5 C7
Decision table C10S3
Finite-state machine-based C11 C4S4.3.2
Testing from formal specifications S2.2
Random testing C13 C7
Reference models for code-based testing (flow
graph, call graph) C3 C4

Control flow-based criteria C3 C9 C7
Data flow-based criteria C5
Error guessing C7
Mutation testing C17 S3.2, 3.3
Operational profile C14S14.7.2 C5 C8
SRET C6
Object-oriented testing C15 C7S7.5
Component-based testing
Web-based testing
GUI testing
Testing of concurrent programs
Protocol conformance testing
Testing of distributed systems
Testing of real-time systems
Testing of scientific software
Functional and structural C1S2.2 C1,11S11.3 C17
Coverage and operational/Saturation effect

5–16 © IEEE – Trial Version 1.00 – May 2001

D. Test Related Measures [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]

Program measurements to aid in planning and
designing testing. C7S4.2 C9

Types, classification and statistics of faults C2 C1 C7
Remaining number of defects/Fault density C20
Life test, reliability evaluation C8
Reliability growth models C7 C8
Coverage/thoroughness measures C9 C7
Fault seeding C7
Mutation score S3.2, 3.3
Comparison and relative effectiveness of
different techniques C8,11 C17 S5

E. Managing the Test Process [Be] [Jo] [Ly] [KF+] [Pe] [Pf]
Attitudes/Egoless programming C13S3.2 C7
Test process C13 C1,2,3,4 C8
Test documentation and workproducts C13S5 C12 C19 C8S8.8
Internal vs. independent test team C13S2.2,2.3 C15 C4 C8
Cost/effort estimation and other process measures C4,21
Termination C2S2.4 C2
Test reuse and test patterns C13
Planning C12 C19 C7S7.6
Test case generation C7
Test environment development C11
Execution C13 C11
Test results evaluation C20,21
Problem reporting/Test log C5 C20
Defect tracking C6

6 RECOMMENDED REFERENCES FOR SOFTWARE
TESTING

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990. [Chapters 1, 2, 3, 5,
7s4, 10s3, 11, 13]

Jo Jorgensen, P.C., Software Testing A Craftsman’s
Approach, CRC Press, 1995. [Chapters 1, 2, 3, 4, 5, 6,
7, 8, 11, 12, 13, 14, 15]

KF+ Kaner, C., Falk, J., and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.
[Chapters 1, 2, 5, 6, 7, 8, 11, 12, 13, 15]

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996. [Chapters
2s2.2, 5, 6, 7]

Pe Perry, W. Effective Methods for Software Testing,
Wiley, 1995. [Chapters 1, 2, 3, 4, 9, 10, 11, 12, 17, 19,
20, 21]

Pf Pfleeger, S.L. Software Engineering Theory and
Practice, Prentice Hall, 1998. [Chapters 7, 8]

ZH+ Zhu, H., Hall, P.A.V., and May, J.H.R. Software Unit
Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427. [Sections 1, 2.2,
3.2, 3.3,

© IEEE –Trial Version 1.00 – May 2001 5–17

APPENDIX A – LIST OF FURTHER READINGS

Books

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990.

Bi Binder, R. V., Testing Object-Oriented Systems
Models, Patterns, and Tools, Addison-Wesley, 2000.

Jo Jorgensen, P.C., Software Testing A Craftsman’s
Approach, CRC Press, 1995.

KF+ Kaner, C., Falk, J., and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996.

Pe Perry, W. Effective Methods for Software Testing,
Wiley, 1995.

Po Poston, R.M. Automating Specification-based
Software Testing, IEEE, 1996.

Survey Papers

ZH+ Zhu, H., Hall, P.A.V., and May, J.H.R. Software Unit
Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427.

Specific Papers

BG+ Bernot, G., Gaudel, M.C., and Marre, B. Software
Testing Based On Formal Specifications: a Theory
and a Tool. Software Engineering Journal (Nov.
1991) 387-405.

BM Bache, R., and Müllerburg, M. Measures of
Testability as a Basis for Quality Assurance. Software
Engineering Journal, 5 (March 1990) 86-92.

BMa Bertolino, A., Marrè, M. “How many paths are needed
for branch testing?”, The Journal of Systems and
Software, Vol. 35, No. 2, 1996, pp.95-106.

BP Bochmann, G.V., and Petrenko, A. Protocol Testing:
Review of Methods and Relevance for Software
Testing. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 94), (Seattle, Washington, USA,
August 1994) 109-124.

BS Bertolino, A., and Strigini, L. On the Use of
Testability Measures for Dependability Assessment.
IEEE Transactions on Software Engineering, 22, 2
(Feb. 1996) 97-108.

CT Carver, R.H., and Tai, K.C., Replay and testing for
concurrent programs. IEEE Software (March 1991)
66-74

DF Dick, J., and Faivre, A. Automating The Generation
and Sequencing of Test Cases From Model-Based
Specifications. FME’93: Industrial-Strenght Formal
Method, LNCS 670, Springer Verlag, 1993, 268-284.

FH+ Frankl, P., Hamlet, D., Littlewood B., and Strigini, L.
Evaluating testing methods by delivered reliability.
IEEE Transactions on Software Engineering, 24, 8,
(August 1998), 586-601.

FW Frankl, P., and Weyuker, E. A formal analysis of the
fault detecting ability of testing methods. IEEE
Transactions on Software Engineering, 19, 3, (March
1993), 202-

Ha Hamlet, D. Are we testing for true reliability? IEEE
Software (July 1992) 21-27.

Ho Howden, W.E., Reliability of the Path Analysis
Testing Strategy. IEEE Transactions on Software
Engineering, 2, 3, (Sept. 1976) 208-215

HP Horcher, H., and Peleska, J. Using Formal
Specifications to Support Software Testing. Software
Quality Journal, 4 (1995) 309-327.

Mo Morell, L.J. A Theory of Fault-Based Testing. IEEE
Transactions on Software Engineering 16, 8 (August
1990), 844-857.

MZ Mitchell, B., and Zeil, S.J. A Reliability Model
Combining Representative and Directed Testing.
ACM/IEEE Proc. Int. Conf. Sw Engineering ICSE 18
(Berlin, Germany, March 1996) 506-514.

OA+ Ostrand, T., Anodide, A., Foster, H., and Goradia, T.
A Visual Test Development Environment for GUI
Systems. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 98), (Clearwater Beach, Florida,
USA, March 1998) 82-92.

OB Ostrand, T.J., and Balcer, M. J. The Category-
Partition Method for Specifying and Generating
Functional Tests. Communications of ACM, 31, 3
(June 1988), 676-686.

RH Rothermel, G., and Harrold, M.J., Analyzing
Regression Test Selection Techniques. IEEE
Transactions on Software Engineering, 22, 8 (Aug.
1996) 529-

Sc Schütz, W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems Journal. 7, 2,
(Sept. 1994) 129-157.

VM Voas, J.M., and Miller, K.W. Software Testability:
The New Verification. IEEE Software, (May 1995)
17-28.

We-a Weyuker, E.J. On Testing Non-testable Programs.
The Computer Journal, 25, 4, (1982) 465-470

We-b Weyuker, E.J. Assessing Test Data Adequacy
through Program Inference. ACM Trans. on
Programming Languages and Systems, 5, 4, (October
1983) 641-655

WK+ Wakid, S.A., Kuhn D.R., and Wallace, D.R.
Toward Credible IT Testing and Certification, IEEE
Software, (August 1999) 39-47.

5–18 © IEEE – Trial Version 1.00 – May 2001

WW+ Weyuker, E.J., Weiss, S.N, and Hamlet, D.
Comparison of Program Test Strategies in Proc.
Symposium on Testing, Analysis and Verification TAV
4 (Victoria, British Columbia, October 1991), ACM
Press, 1-10.

Standards

610 IEEE Std 610.12-1990, Standard Glossary of Software
Engineering Terminology.

829 IEEE Std 829-1998, Standard for Software Test
Documentation.

982.2 IEEE Std 982.2-1998, Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software.

1008 IEEE Std 1008-1987 (R 1993), Standard for Software
Unit Testing.

1044 IEEE Std 1044-1993, Standard Classification for
Software Anomalies.

1044.1 IEEE Std 1044.1-1995, Guide to Classification for
Software Anomalies.

12207 IEEE/EIA 12207.0-1996, Industry Implementation
of Int. Std. ISO/IEC 12207:1995, Standard for
Information Technology-Software Life cycle
processes.

© IEEE – Trial Version 1.00 – May 2001 6-1

CHAPTER 6

SOFTWARE MAINTENANCE

Thomas M. Pigoski
Technical Software Services (TECHSOFT), Inc.

31 West Garden Street, Suite 100
Pensacola, Florida 32501 USA

+1 850 469 0086
tmpigoski@techsoft.com

Table of Contents

1. Introduction...1
2. Definition of the Software Maintenance Knowledge

Area ..1
3. Breakdown of Topics for the Software Maintenance

Knowledge Area...2
4. Breakdown Rationale..9
5. Matrix of Topics vs. Reference Material.......................10
6. Recommended References for Software

Maintenance..11
Appendix A – List of Further Readings13
Appendix B – References Used to Write and Justify the

Software Maintenance Description15
Appendix C – Detailed Breakdown Rationale........................16

Acronyms

CASE Computer Aided Software Engineering

CM Configuration Management

CMM Capability Maturity Model

ICSM International Conference on Software Maintenance

PSM Practical Software and Systems Measurement

SCM Software Configuration Management

SW-CMM Capability Maturity Model for Software

SQA Software Quality Assurance

V&V Verification and Validation

WCRE Working Conference on Reverse Engineering

1. INTRODUCTION

Software engineering is the application of engineering to
software. The life cycle paradigm for software includes:
requirements, design, construction, testing, and
maintenance. This chapter addresses the maintenance
portion of software engineering and the software life cycle.

Software maintenance is an integral part of a software life
cycle. However, it has not historically received the same
degree of attention as the other phases. Historically,
development has had a much higher profile than
maintenance in most organizations. This is now changing as
organizations strive to obtain the most out of their
development investment by keeping software operating as
long as possible. Concerns about the Year 2000 (Y2K)
rollover did bring significant attention to this important
phase. Further, the Open Source paradigm has brought
attention to the issue of maintaining code developed by
others. Maintenance is also expensive. For these reasons,
there is an opportunity to pursue further research to
enhance productivity of maintenance activities.

This chapter presents an overview of the Knowledge Area
of software maintenance. Brief descriptions of the topics are
provided so that the reader can select the appropriate
reference material according to his/her needs.

2. DEFINITION OF THE SOFTWARE MAINTENANCE
KNOWLEDGE AREA

This section provides a definition of the Software
Maintenance Knowledge Area.

Software development efforts result in delivery of a
software product that satisfies user requirements.
Accordingly, the software product must change or evolve.
Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.

6-2 © IEEE – Trial Version 1.00 – May 2001

The maintenance phase of the life cycle commences upon
delivery but maintenance activities occur much earlier.

Software maintenance sustains the software product
throughout its life cycle. Modification requests are logged
and tracked, the impact of proposed changes is determined,
code is modified, testing is conducted, and a new version of
the software product is released. Training is provided to
users.

3. BREAKDOWN OF TOPICS FOR THE SOFTWARE
MAINTENANCE KNOWLEDGE AREA

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature and are not tied to
any particular domain, model, or business needs. The
presented topics can be used by small and medium sized
organizations, as well as by larger ones. Organizations
should use those topics that are appropriate for their unique
situations. The topics are consistent with what is found in
current software engineering literature and standards. The
common themes of quality, measurement, and standards are
included in the breakdown of topics.

The breakdown of topics, along with a brief description of
each, is provided in this section. Key references are
provided.

3.1. Basic Concepts

3.1.1 Definitions and Terminology [IEEE1219:s3.1.12;
ISO12207:s3.1,s5.5; ISO14764:s6.1]

Software maintenance is defined in the IEEE Standard for
Software Maintenance, IEEE 1219 [IEEE 1219], as the
modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to
adapt the product to a modified environment. The standard
also addresses maintenance activities prior to delivery of
the software product but only in an information annex of the
standard.

The ISO/IEC 12207 Standard for Life Cycle Processes
[ISO/IEC 12207], essentially depicts maintenance as one of
the primary life cycle processes and describes maintenance
as the process of a software product undergoing
“modification to code and associated documentation due to
a problem or the need for improvement. The objective is to
modify existing software product while preserving its
integrity.” [ISO/IEC 12207] Of note is that ISO/IEC 12207
describes an activity called “Process Implementation.” That
activity establishes the maintenance plan and procedures
that are later used during the maintenance process.

ISO/IEC 14764 [ISO14764], the International Standard for
Software Maintenance, defines software maintenance in the

same terms as ISO/IEC 12207 and places emphasis on the
predelivery aspects of maintenance, e.g., planning.

The SWEBOK definition, generally accepted by software
researchers and practitioners, is as follows:

SOFTWARE MAINTENANCE: The totality of activities
required to provide cost-effective support to a software
system. Activities are performed during the predelivery
stage as well as the postdelivery stage. Predelivery
activities include planning for postdelivery operations,
supportability, and logistics determination. Postdelivery
activities include software modification, training, and
operating a help desk.

A maintainer is defined by ISO/IEC 12207 as an organization
that performs maintenance activities [ISO12207].

ISO/IEC 12207 identifies the primary activities of software
maintenance as: process implementation; problem and
modification analysis; modification implementation;
maintenance review/acceptance; migration; and retirement.
These activities are discussed in a later section. They are
further defined by the tasks in ISO/IEC 12207.

3.1.2 Majority of Maintenance Costs [AH93:pp63-90;
Pre97:c27s27.1.2; Pig97:c3]

A common perception of maintenance is that it is merely
fixing bugs. However, studies and surveys over the years
have indicated that the majority, over 80%, of the
maintenance effort is used for non-corrective actions [AH
93] [Pre97] [Pig97]. This perception is perpetuated by users
submitting problem reports that in reality are major
enhancements to the system. This inclusion of
enhancement requests with problem reports contributes to
some of the misconceptions regarding maintenance.
Software evolves over its life cycle, as evidenced by the
fact that over 80% of the effort after initial delivery goes to
implement non-corrective actions. Thus, maintenance is
similar to software development, although some unique
processes are employed.

The focus of software development is to solve problems or
to obtain business advantage through producing code. The
generated code implements stated requirements and should
operate correctly. Maintainers look back at development
products and also the present by working with users and
operators. Maintainers also look forward to anticipate
problems and to consider functional changes.

3.1.3 The Nature of Maintenance [Pfl98:c10s10.2]

Pfleeger [Pfl98] states that maintenance has a broader scope
than development, with more changes to track and control.
Thus, configuration management is an important aspect of
software evolution and maintenance.

© IEEE – Trial Version 1.00 – May 2001 6-3

Software Maintenance

Basic Concepts Maintenance
Process

Key Issues in
Software

Maintenance

Definitions and
Terminology

Majority of
Maintenance Costs

The Nature of
Maintenance

Evolution of
Software

Need for
Maintenance

Categories of
Maintenance

 Process Models

Maintenance
Activities

Technical

Management

Cost and Estimation

Software
Maintenance
Measurement

Techniques for
Maintenance

Program
Comprehension

Re-engineering

Reverse
Engineering

Impact Analysis

Figure 1 Summary of the Software Maintenance Breakdown

Maintenance, however, can learn from the development
effort. Contact with the developers and early involvement
by the maintainer helps the maintenance effort. However, it
is difficult sometimes when the developers are no longer
around. Maintenance must take the products of the
development, e.g., code, documentation, and
evolve/maintain them over the life cycle. Chapter 10 of the
Guide to the SWEBOK discusses how tools can aid
maintenance.

3.1.4 Evolution of Software [Leh97:pp108-124; Pfl98:
c10s10.1;Art88:c1s1.0,s1.1,s1.2,c11,s1.1,s1.2]

The area of software maintenance and evolution of systems
was first addressed by Lehman in 1969. His research led to
an investigation of the evolution of OS/360 [LB85] and
continues today on the Feedback, Evolution, and Software
Technology (FEAST) research at Imperial College, England.

Over a period of twenty years, that research led to the
formulation of eight Laws of Evolution [Leh97]. Simply put,
Lehman stated that maintenance is really evolutionary
developments and that maintenance decisions are aided by
understanding what happens to systems (and software)

over time. Others state that maintenance is really continued
development, except that there is an extra input (or
constraint) – the existing software system.

Key points from Lehman include that large systems are
never complete and continue to evolve. As they evolve,
they grow more complex unless some action is taken to
reduce the complexity. As systems demonstrate regular
behavior and trends, these can be measured and predicted.
Pfleeger [Pfl98] and Arthur [Art88] have excellent
discussions regarding software evolution.

3.1.5 Need for Maintenance [Pfl98:c10.s10.2; Pig97: c2s2.3;
TG97:c1]

Maintenance is needed to ensure that the system continues
to satisfy user requirements. Maintenance is applicable to
systems developed using any software development model
(e.g., spiral). The system changes due to corrective and
non-corrective software actions. Maintenance must be
performed in order to:

Correct errors.

Correct requirements and design flaws.

6-4 © IEEE – Trial Version 1.00 – May 2001

Improve the design.

Make enhancements.

Interface with other systems.

Convert programs so that different hardware, software,
system features, and telecommunications facilities can
be used.

Migrate legacy systems.

Retire systems.

The four major aspects that maintenance focuses on are
[Pfl98]:

Maintaining control over the system’s day-to-day
functions.

Maintaining control over system modification.

Perfecting existing acceptable functions.

Preventing system performance from degrading to
unacceptable levels.

Accordingly, software must evolve and be maintained.

3.1.6 Categories of Maintenance [Art88:c1s1.2;
DT97:c8s5; IEEE1219:s3.1.1,s3.1.2,s3.1.7,A.1.7;
ISO14764:s4.1,s4.3, s4.10,s4.11,s6.2; Pfl98: c10s10.2;
Pig97:c2s2.3]

Lehman developed the concept of software evolution. E. B.
Swanson of UCLA was one of the first to examine what
really happens in evolution and maintenance, using
empirical data from industry maintainers. Swanson believed
that, by studying the maintenance phase of the life cycle, a
better understanding of the maintenance phase would
result. Swanson was able to create three different categories
of maintenance: corrective, adaptive, and perfective. [Art88]
[DT97]. There have been updated and a new category has
been defined by the International Organization of Standards
(IS0) in the Standard for Software Maintenance standard
ISO/IEC 14764, [ISO14764] and by the IEEE Computer
Society [IEEE 1219]. The categories of maintenance defined
by ISO/IEC are as follows:

Corrective maintenance. Reactive modification of a
software product performed after delivery to correct
discovered problems.

Adaptive maintenance. Modification of a software
product performed after delivery to keep a software
product usable in a changed or changing environment.

Perfective maintenance. Modification of a software
product after delivery to improve performance or
maintainability.

Preventive maintenance. Modification of a software
product after delivery to detect and correct latent
faults in the software product before they become
effective faults.

The ISO Standard on Software Maintenance [ISO14764]
classifies Adaptive and Perfective maintenance as
enhancements. It also classifies Corrective and Preventive
maintenance as corrections. Preventive maintenance, the
newest category, is defined as maintenance performed for
the purpose of preventing problems before they occur.
Preventive maintenance is most often performed on
software products where safety is critical.

3.2. Maintenance Process

The need for software processes is well documented. The
Capability Maturity Model for Software (SW-CMM)
provides a means to measure levels of maturity. Of
importance, is that there is a direct correlation between
levels of maturity and cost savings. The higher the level of
maturity, the greater the cost savings. The SW-CMM
applies equally to maintenance and maintainers should have
a documented maintenance process

3.2.1 Maintenance Process Models [IEEE1219:s4;
ISO14764:s8; ISO12207:s5.5; Pig97:c5; TG97:c2;
Par86:c7s1]

Process models provide needed operations and detailed
inputs/outputs to those operations. Maintenance process
models are provided in the software maintenance standards,
IEEE 1219 [IEEE 1219] and ISO/IEC 14764 [ISO14764].

The maintenance process model described in IEEE 1219
[IEEE 1219], the Standard for Software Maintenance, starts
the software maintenance effort during the post-delivery
stage and discusses items such as planning for
maintenance and measures outside the process model. That
process model with the IEEE maintenance phases is
depicted in Figure 2.

Figure 2 The IEEE Maintenance Process Activities

ISO/IEC 14764 [ISO14764] is an elaboration of the
maintenance process of ISO/IEC 12207 [ISO12207]. The

© IEEE – Trial Version 1.00 – May 2001 6-5

activities of the ISO/IEC maintenance process are similar to
those of IEEE although they are aggregated a little
differently. The maintenance process activities developed
by ISO/IEC are shown in Figure 3.

Migration
Retirement

Mai ntenance
Review/

Acceptance

Problem and
Modification

Analysis

Modification
Implementation

Process
Implementation

Figure 3 ISO/IEC Maintenance Process Activities

Each of the ISO/IEC 14764 primary software maintenance
activities is further broken down into tasks as follows.

Process Implementation tasks are:

Develop maintenance plans and procedures.

Establish procedures for Modification Requests.

Implement the CM process.

Problem and Modification tasks are:

Perform initial analysis.

Verify the problem.

Develop options for implementing the modification.

Document the results.

Obtain approval for modification option.

Modification Implementation tasks are:

Perform detailed analysis.

Develop, code, and test the modification.

Maintenance Review/Acceptance tasks are:

Conduct reviews.

Obtain approval for modification.

Migration tasks are:

Ensure that migration is in accordance with ISO/IEC

12207.

Develop a migration plan.

Notify users of migration plans.

Conduct parallel operations.

Notify user that migration has started.

Conduct a post-operation review.

Ensure that old data is accessible.

Software Retirement tasks are:

Develop a retirement plan.

Notify users of retirement plans.

Conduct parallel operations.

Notify user that retirement has started.

Ensure that old data is accessible.

Takang and Grubb [TG97] provide a history of maintenance
process models leading up to the development of the IEEE
and ISO/IEC process models. A good overview of a generic
maintenance process is given by Parikh [Par86]

3.2.2 Maintenance Activities

Maintenance activities are similar to those of software
development. Maintainers perform analysis, design, coding,
testing, and documenting. Maintainers must track
requirements just as they do in development. Maintainers
must update documentation as baselines change. However,
for software maintenance, the activities involve processes
unique to maintenance. Chapter 10 discusses how tools can
be used to help in the maintenance effort.

3.2.2.1 Unique Activities [Pfl98:c10s10.2; Art88:c3;
DT97: c8s9.1; IEEE1219:s4.1,s4.2; ISO14764:
s8.2.2.1, s,8.3.2.1]

Maintainers must possess an intimate knowledge of the
code’s structure and content [Pfl98]. That knowledge is
used by maintainers to perform impact analysis. Impact
analysis identifies all systems and system products affected
by a change request and develops an estimate of the
resources needed to accomplish the change [Art88].
Additionally, the risk of making the change is determined.
The change request, sometimes called a modification
request and often called a problem report, must first be
analyzed and translated into software terms [DT97]. The
maintainer then identifies the affected components. Several
potential solutions are provided and then a recommendation
is made as to the best course of action.

Problem solving skills are very important for maintenance.
Maintainers must also be concerned about the “ripple
effect” of any proposed changes.

6-6 © IEEE – Trial Version 1.00 – May 2001

3.2.2.2 Supporting Activities [IEEE1219:A.7,A.11;
Pig97: c10s10.2,c18; ISO12207:c6,c7]

Maintainers may also perform supporting activities such as
configuration management (CM), verification and
validation, quality assurance, reviews, audits, and
conducting user training. Often these supporting activities
are performed by separate entities. The IEEE Standard for
Software Maintenance, IEEE 1219 [IEEE 1219], describes
CM as a critical element of the maintenance process. CM
procedures should provide for the verification, validation,
and certification of each step required to identify, authorize,
implement, and release the software product. Training of
maintainers, a supporting process, is also a needed activity
[Pig97] [ISO12207].

3.2.2.2.1 Configuration management [ISO12207:s6.2;
IEEE1219: A.11; Art88:c2,c10; Pfl98:c10s10.5;
TG97:c7]

It is not sufficient to simply track modification requests or
problem reports. The software product and any changes
made to it must be controlled. This control is established by
implementing and enforcing an approved software
configuration management (SCM) process. SCM provides
support and makes the job of the maintainer easier. Chapter
7 of the Guide to the SWEBOK provides details of SCM and
discusses the process by which change requests are
submitted, evaluated, and approved. SCM for maintenance
is different than for development in that a change request
initiates the maintenance process. The SCM process is
implemented by developing and following a CM Plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine when
enhancements should stop and perhaps migration is
necessary. Problem severity is often used to decide how
and when a problem will be fixed.

3.2.2.2.2 Quality [ISO12207:s6.3; IEEE1219:A.7; Art98:
c7s4]

It is not sufficient to simply hope that increased quality will
result from the maintenance of software. It must be planned
and processes implemented to support the maintenance
process. The activities and techniques for Software Quality
Assurance (SQA) and V&V must be selected in concert
with all other processes to achieve the level of quality
desired. This is implemented by developing and following
SQA and V&V plans and procedures. Details of software
quality are covered in chapter 11 of the Guide to the
SWEBOK.

3.2.2.2.3 Maintenance Planning Activity [IEEE1219:A.3;
ISO14764:s7; Pig97:c7,c8]

An important activity for software maintenance is planning.
Whereas developments typically can last for 1-2 years, the
operation and maintenance phase typically lasts for many
years. Developing accurate estimates of resources is a key

element of maintenance planning. Those resources, which
include costs, should be included in project planning
budgets. Maintenance planning should begin with the
decision to develop a new system and should consider
quality objectives. A concept and then a maintenance plan
should be developed. The concept for maintenance should
address:

The scope of software maintenance.

The tailoring of the postdelivery process.

The designation of who will provide maintenance.

An estimate of life cycle costs.

Once the maintenance concept is determined, the next step
is to develop the maintenance plan. The maintenance plan
should be prepared during software development and
should specify how users will request modifications or
report problems. Maintenance planning [Pig97] is addressed
in IEEE 1219 [IEEE 1219]and ISO/IEC 14764. [ISO14764]
ISO/IEC14764 [ISO14764] provides guidelines for a
maintenance plan.

3.3. Key Issues in Software Maintenance

It is important to understand that software maintenance
provides unique technical and management problems for
software engineers. Trying to find a defect in a 500K line of
code system that the maintainer did not develop is a
challenge for the maintainer. Similarly, competing with
software developers for resources is a constant battle.
Planning for a future release, while coding the next release,
and sending out emergency patches for the current release,
is also a challenge. The following discusses some of the
technical and management problems relating to software
evolution and maintenance.

3.3.1 Technical Problems

3.3.1.1 Limited understanding [Pfl98:c10s10.3; TG97:c3;
DT97: c8s11.4]

Practitioners and researchers indicate that some 40% to 60%
of the maintenance effort is devoted to understanding the
software to be modified. Thus, the topic of program
comprehension is one of interest to maintainers.
Comprehension is more difficult for text -based
representation. It is often difficult to trace the evolution of
the software through its versions, changes are not
documented, and the developers are usually not around to
explain the code. Thus, maintainers have a limited
understanding of the software and must learn the software
on their own.

3.3.1.2 Testing [Pfl98:c10s10.3; Art88:c9]

The cost of repeating full testing on a major piece of
software can be significant in terms of time and money.

© IEEE – Trial Version 1.00 – May 2001 6-7

Regression testing, the selective retesting of a system or
component to verify the modifications have not caused
unintended effects, is important to maintenance. Research
efforts into areas such as “slicing” look at this topic.
Finding time to test is often difficult [Plf98]. Chapter 5 of the
Guide to the SWEBOK provides details of testing.

3.3.1.3 Impact analysis [DT97:c8s10.1-3; Pfl98:
c10s10.5; Art88:c3]

The software and the organization must both undergo
impact analysis. Critical skills, documentation, and
processes are needed for this area. Impact analysis is
necessary for risk abatement. Software designed for
maintainability facilitates impact analysis.

3.3.1.4 Maintainability [ISO14764:s6.8s6.8.1;Pfl98:
c8s8.4;Pig97:c16]

The IEEE Computer Society [IEEE610.12] defines
maintainability as the ease with which software can be
maintained, enhanced, adapted, or corrected to satisfy
specified requirements. ISO/IEC defines maintainability as
one of the quality characteristics. Maintainability features
must be incorporated into the software development effort
to reduce life cycle costs. If this is done, the quality of
evolution and maintenance of the code can improve.
Maintainability is often a problem in maintenance because
maintainability is not incorporated into the software
development process, documentation is lacking, and
program comprehension is difficult. Maintainability can be
achieved by including it in requirements, design, and
construction. Chapters 2, 3, and 4 provide details of these
topics. Maintainability can be enhanced by defining coding
standards, documentation standards, and standard test
tools in the software development phase of the life cycle.

3.3.2 Management

3.3.2.1 Alignment with organizational issues [DT97:
c8s6; Pfl98:c10s10.3]

Dorfman and Thayer [DT97] relate that return on investment
is not clear with maintenance. Thus, there is a constant
struggle to obtain resources.

3.3.2.2 Staffing [Pfl98:c10s10.3; Dek92:pp10-17; Par86:
c4s8-s11; DT97:c8s6]

Maintenance personnel often are viewed as second class
citizens [Pfl98] and morale suffers [DT97]. Maintenance is
not viewed as glamorous work. Deklava provides a list of
staffing related problems based on survey data [Dek92].

3.3.2.3 Process issues [DT97:c8s3]

Maintenance requires several activities that are not found in
software development, (e.g., help desk support). These
present challenges to management [DT97].

3.3.2.4 Organizational Aspects of Maintenance

The team that develops the software is not always used to
maintain the system once it is operational. A maintainer
must be identified and there are several options as
discussed below.

3.3.2.4.1 The Maintainer [Pfl98:c10s10.2; Pig97:c2s2.5;
Par86: c4s7; TG97:c8]

Often, a separate team (or maintainer) is employed to ensure
that the system runs properly and evolves to satisfy
changing needs of the users. There are many pros and cons
to having the original developer or a separate team maintain
the software [Pfl98] [Pig97] [Par86]. That decision should be
made on a case-by-case basis.

3.3.2.4.2 Outsourcing [DT97:c8s7;Pig97: c9s9.1,s9.2]

Outsourcing of maintenance is becoming a major industry.
Large corporations are outsourcing entire operations,
including software maintenance. More often outsourcing is
done for peripheral software, as companies are unwilling to
release the software used in its core business. One of the
major challenges is for the outsource maintenance company
to determine the scope of the effort. Outsourcing companies
typically spend a number of months assessing the software
before it will accept a contract [DT97]. Another challenge is
the transition of the software to the outsourced company
[Pig97].

3.3.2.4.3 Organizational Structure [Pig97:c12s12.1-s12.3]

Based on the fact there are almost as many organizational
structures as there are software maintenance organizations,
an organizational structure for maintenance is best
developed on a case-by-case basis. What is important is the
delegation or designation of maintenance responsibility to a
group [Pig97], regardless of the organizational structure. As
with other efforts, maintenance will only be successful with
full management support.

3.3.3 Maintenance Cost and Maintenance Cost Estimation

Software engineers must understand the different
categories of maintenance, previously discussed, in order to
address the cost of maintenance. For planning purposes,
estimating costs is an important aspect of software
maintenance.

3.3.3.1 Cost [Pfl98:c10s10.3; Art88:c3; Pig97:c3s3.1-3;
Pre97: c27s27.2.2]

Maintenance consumes a major share of life cycle costs.
Understanding the categories of maintenance helps to
understand why maintenance is so costly. Also
understanding the factors that influence the maintainability
of a system can help to contain costs. Pfleeger [Pfl98]
addresses some of the technical and non-technical factors
affecting maintenance.

6-8 © IEEE – Trial Version 1.00 – May 2001

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [Art88]. It is
performed after a change request enters the CM process. It
is used in concert with the cost estimation techniques
discussed below.

3.3.3.2 Cost estimation [Boe81:c30; Jon98:c27;
Pig97:c8; Pfl98:c10s10.3]

Maintenance cost estimates are affected by many technical
and non-technical factors. Primary approaches to cost
estimating include use of parametric models and experience.
Most often a combination of these is used to estimate
costs.

3.3.3.3 Parametric models [Boe81:c30; Jon98:c27;
Pfl98:c10s10.3]

One of the works in the area of parametric models for
estimating was performed by Boehm [Boe81]. COCOMO
(derived from COnstructive COst Model), puts the software
life cycle and the quantitative life cycle relationships into a
hierarchy of software cost-estimation models [Pfl98]. Of
significance is that data from past projects is needed in
order to use the models. Jones [Jon98] discusses all aspects
of estimating costs including function points, and provides
a detailed chapter on maintenance estimating. Chapter 8 of
the Guide to the SWEBOK provides additional details
regarding models.

3.3.3.4 Experience [Pig97:c8; ISO14764:s7,s7.2,s7.2.1,
c7s7.2.4]

Experience should be used to augment data from parametric
models. Sound judgment, reason, a work breakdown
structure, educated guesses, and use of empirical/historical
data are several approaches. Clearly the best approach to
maintenance estimation is to use empirical data and
experience. That data should be provided as a result of a
measurement program. In practice, cost estimation relies
much more on experience than parametric models. The
Software Engineering Institute has conducted research into
performing cost estimation based on historical data.

3.3.4 Software Maintenance Measurement [GC87:c2;
TG97: c6s6.1-3; AI98:A.2]

Software life cycle costs are growing and a strategy for
maintenance is needed. Software measurement need to be a
part of that strategy. Grady and Caswell [GC87] discuss
establishing a corporate-wide software measures program.
The Practical Software and Systems Measurement (PSM)
project describes an issue-driven measurement process
[http://www.psmsc.com] that is used by many organizations
and is quite practical. Software measures are vital for
software process improvement but the process must be
measurable. Additional discussion of measurement is
contained in chapters 8 and 11 of the Guide to the

SWEBOK.

3.3.4.1 Specific Measures [CG90:s2-3; SKV94:pp239-
249; IEEE1219:Table3; Pig97:c14s14.6; TG97:
c6s6.4]

There are software measures that are common to all efforts
and the Software Engineering Institute (SEI) identified these
as: size; effort; schedule; and quality [Pig97]. Those are a
good starting point for a maintainer.

Takang and Grubb [TG97] group software measures into
areas of: size; complexity; quality; understandability;
maintainability; and cost estimation.

Documentation regarding specific software measures to use
in maintenance is not often published. Typically generic
software engineering measures are used and the maintainer
determines which ones are appropriate for their
organization. IEEE 1219 [IEEE 1219] provides suggested
measures for software programs. Stark, et al [SKV94]
provide a suggested list of software maintenance measures
used at NASA’s Mission Operations Directorate. That list
includes:

Software size

Software staffing

Maintenance request number/status

Software enhancement numbers/status

Computer resource utilization

Fault density

Software volatility

Discrepancy report open duration

Break/fix ratio

Software reliability

Design complexity

Fault type distribution

3.4. Techniques for Maintenance

Effective software maintenance is performed using
techniques specific to maintenance. The following provides
some of the best practice techniques used by maintainers.

3.4.1 Program Comprehension [Arn92:c14; DT97:
c8s11.4; TG97:c3]

Programmers spend considerable time in reading and
comprehending programs in order to implement changes.
Code browsers are a key tool in program comprehension.
Clear and concise documentation can aid in program
comprehension. Based on the importance of this subtopic,
an annual IEEE Computer Society workshop is now held to
address program comprehension. The website
http://www.seg.iit.nrc.ca/projects/easse provides a number

© IEEE – Trial Version 1.00 – May 2001 6-9

of papers on comprehension and tools for assisting
comprehension processes. Takang and Grubb [TG97]
provide a detailed chapter on comprehension.

3.4.2 Re-engineering [Arn92:c1,c3-6, c8s11.4; IEEE1219:
B.2; DT97:c8s11.4]

Re-engineering is defined as the examination and alteration
of the subject system to reconstitute it in a new form, and
the subsequent implementation of the new form. Dorfman
and Thayer [DT97] state that re-engineering is the most
radical (and expensive) form of alteration. Others believe
that re-engineering can be used for minor changes. Re-
engineering is often not undertaken to improve
maintainability but is used to replace aging legacy systems.
Arnold [Arn92] provides a comprehensive compendium of
topics, e.g., concepts, tools and techniques, case studies,
and risks and benefits associated with re-engineering.
Refactoring, a program transformation that reorganizes a
program without changing its behavior, is now being used
in reverse engineering to improve the structure of object-
oriented programs.

3.4.3 Reverse engineering [Arn92:c12; DT97:c8s11.3;
IEEE1219:B.3; TG97:c4]

Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their inter-
relationships and to create representations of the system in
another form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the system, or
result in a new one. A simple reverse engineering effort may
merely produce call graphs and control flow graphs from
source code. One type of reverse engineering is
redocumentation. Another type is design recovery [DT97].
Date Reverse Engineering has gained great importance over
the last few years. Reverse engineering topics are discussed
at the annual Working Conference on Reverse Engineering
(WCRE).

3.4.4 Impact Analysis [Plf98:c10s10.5; Art88:c3]

Impact analysis identifies all systems and system products
affected by a change request and develops an es timate of
the resources needed to accomplish the change [Art88]. It is
performed after a change request enters the configuration
management process. Arthur [Art88] states that the
objectives of impact analysis are:

Determine the scope of a change in order to plan and
implement work.

Develop accurate estimates of resources needed to
perform the work.

Analyze the cost/benefits of the requested change.

Communicate to others the complexity of a given
change.

Resources

Beside the references listed in this chapter, there are other
resources available to learn more about software
maintenance. The IEEE Computer Society sponsors the
annual International Conference on Software Maintenance
(ICSM). That conference, started in 1983, provides a
Proceedings, which incorporates numerous research and
practical industry papers concerning evolution and
maintenance topics. Other venues, which address these
topics, include:

4. BREAKDOWN RATIONALE

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature. There is agreement
in the literature and in the standards on the topics.

A detailed discussion of the rationale for the proposed
breakdown, keyed to the Guide to the SWEBOK
development criteria, is given in Appendix B. The following
is a narrative description of the rationale for the breakdown.

The Basic Concepts sub-area was selected as the initial
topic in order to introduce Software Maintenance. The
subtopics are needed to provide definitions and to
emphasize why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
maintenance.

Maintenance Process is needed to provide the current
references and standards needed to implement the
maintenance process.

The Maintenance Activities sub-topic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities.

The sub-area on the Key Issues of Software Maintenance
was chosen to ensure that the software engineers fully
comprehended these problems.

Every organization is concerned with who will perform
maintenance. The Management topic provides some
options regarding who can perform maintenance. Every
software maintenance reference discusses the fact that
maintenance consumes a large portion of the life cycle
costs. The topic on Cost and Cost Estimation was provided
to ensure that the readers select references to help with this
difficult task.

The Software Maintenance Measurement topic is one that
is not addressed very well in the literature. Most
maintenance books barely touch on the topic. Measurement
information is most often found in generalized measurement
books. This topic was chosen to highlight the need for
unique maintenance measures and to provide specific
maintenance measurement references.

6-10 © IEEE – Trial Version 1.00 – May 2001

The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.

5. MATRIX OF TOPICS VS . REFERENCE MATERIAL

Topics AH
93

IEEE
610.1

2

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEE
E

1219

ISO
1220

7

ISO
1476

4

Jo
n

98

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

SKV
94

TG
97

1. Basic Concepts

1.1 Definitions and
Terminology

 s3.1.
12

s3.1,
s5.5

s6.1

1.2 Majority of
Maintenance Costs

pp
63-
90

 c3 c27
s27.
1.2

1.3 Nature of
Maintenance

 c10
s10.

2

1.4 Evolution of
Software

 c1
s1.0
s1.1
s1.2
c11
s1.1
s1.2

 pp
108-
124

 c10
s10.

1

1.5 Need for
Maintenance

 c10
s10.

2

c2
s2.3

 c1

1.6 Categories of
Maintenance

 c1
s1.2

 c8
s5

 c3
s3.1,
s3.1.

1,
s3.1.

2,
s3.1.

7,
A.1.7

 s4.1
s4.3
s4.1

0
s4.1

1
s6.2

 c10
s10.

2

c2
s2.3

2. Maintenance
Process

2.1 Maintenance
Process Models

 s4 s5.5 s8 c7,s
1

 c5 c2

2.2 Maintenance
Activities

Unique Activities c3 c8
s9.1

 s4.1,
s4.2

 s8.2.
2.1,

s8.3.
2.1

 c10
s10.

2

Supporting
Activities

 A.7,
A.11

c6,c7 c10
s10.

2,
c18

Configuration
Management

 c2
c10

 A.11 s6.2 c10,
s10.

5

 c7

Quality c7
s4

 A.7 s6.3

Maintenance
Planning
Activity

 A.33 c7 c7,c
8

3. Key Issues in
Software
Maintenance

3.1 Technical

Limited
Understanding

 c8
s11.

4

 c10
s10.

3

 c3

Testing c9 c1
s10.

3

Impact Analysis c3 c8
s10.

1
s10.

2
s10.

3

 c10
s10.

5

Maintainability s3 s6.8,
s6.8.

1

 c8
s8.4

c16

3.2 Management

Alignment with
organizational
issues

 c8
s6

 c10
s10.

3

Staffing pp
10-
17

c8
s6

 c4,
s8-
11

c10,
s10.

3

 c1,
s1.8

Process issues c8,
s3

Organizational

© IEEE – Trial Version 1.00 – May 2001 6-11

Topics AH
93

IEEE
610.1

2

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEE
E

1219

ISO
1220

7

ISO
1476

4

Jo
n

98

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

SKV
94

TG
97

The Maintainer c4
s7

c10
s10.

2

c2
s2.5

 c8

Outsourcing c8
s7

 c9
s9.1

,
s9.2

Organizational
Structure

 c12
s12.

1
s12.

2
s12.

3

3.3 Maintenance Cost
and Maintenance Cost
Estimation

Cost c3 c10
s10.

3

c3
s3.1

-3

c27
s27.
2.2

Cost estimation c30 c27 c10
s10.

3

c8

Parametric models c30 c27 c10
s10.

3

Experience s7
s7.2,
s7.2.

1,
s7.2.

4

 c8

3.4 Software
Maintenance
Measurement

 s2-3 Table
3

 c14
s14.

6

 pp
239-
249

c6
s6.4

4. Techniques for
Maintenance

4.1 Program
Comprehension

 c14 c8
s11.

4

 c3

4.2 Re-engineering c1,3
-6

 c8
s11.

4

 B.2

4.3 Reverse
Engineering

 c12 c8
s11.

3

 B.3 c4

4.4 Impact Analysis c3 c10
s10.

5

6. RECOMMENDED REFERENCES FOR SOFTWARE
MAINTENANCE

The following set of references provides a strong
foundation to acquire knowledge on specific topics
identified in the breakdown. They were chosen to provide
coverage of all aspects of software maintenance. Priority
was given to standards, maintenance specific publications,
and then general software engineering publications.

References

[AH93] A. Abran and H. Nguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5, no 2, 1993 [pp63-90].

[AI98] ANSI/IEEE STD 1061. IEEE Standard for a Software
Quality Metrics Methodology. IEEE Computer Society
Press, 1998. [s4, A.1, A.2]

[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1993. [c1,c3-6,c12,c14]

[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.
[c1s1.0,s1.1,s1.2; c2, c3, c7s4, c9, c10,c11s1.1,s1.2]

[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981. [c30]

[CG90] D.N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990. [s1.1,1.3,c2-3]

[Dek92] S. Dekleva. Delphi Study of Software Maintenance
Problems. Proceedings of the International Conference on
Software Maintenance, 1992. [pp10-17]

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997. [c8s3,
c8s5, c8s6, c8s7, c8s9.1, c8s10.1-3, c8s11.3-4]

[GC87] R.B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987. [c2, c3]

[IEEE610.12] IEEE STD 610.12: IEEE Standard Glossary of
Software Engineering Terminology, 1990. [s3]

[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998. [s3.1.1,s3.1.2,s3.1.7,s4,s4.1,s4.2,
A.1.7,A.3,A.7,A.11, Table3, B.2-3]

[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995. [s3.1, s5.5, c6,
s6.2,s6.3, c7]

[ISO14764] ISO/IEC 14764: Software Engineering-

6-12 © IEEE – Trial Version 1.00 – May 2001

Software Maintenance, 2000. [s4.1,s4.3,s4.10,s4.11,s6.1,
s6.2,s6.8,s6.8.1,s7,s7.2,s7.2.1,s7.2.4,s8,s8.2.2.1,s8.3.2.1]

[Jon98] T. C. Jones. Estimating Software Costs. McGraw-
Hill, 1998. [c27]

[Leh97] M.M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997. [pp108-124]

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986. [c4s7-11, c7s1]

[Pfl98] S.L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998. [c8s8.4,c10s10.1,s10.2,
s10.3,s10.5]

[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997. [c2s2.3,s2.5, c3, c3s3.1-3, c5, c7, c8, c9s9.1-2,
c10s10.2, c12s12.1-3, c14s4-5, c14 s14.6, c16, c18]

[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.
[c27s27.2.1-2]

[SKV94] G.E. Stark, L. C. Kern, and C. V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, Vol. 24, no. 3, March 1994. [pp239-
249]

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1996. [c1, c1s1.8, c2, c3, c4, c6s6.1-4, c7, c8]

© IEEE – Trial Version 1.00 – May 2001 6-13

APPENDIX A – LIST OF FURTHER READINGS

Beside the recommended references listed in this chapter,
there are other resources available to learn more about
software maintenance. The IEEE Computer Society
sponsors the annual International Conference on Software
Maintenance (ICSM). That conference, started in 1983,
provides a Proceedings, which incorporates numerous
research and practical industry papers concerning evolution
and maintenance topics. Other venues, which address
these topics, include:

The Workshop on Software Change and Evolution
(SCE). [HTTP://www.dur.ac.uk/~dcs0elb/ csm/sce99/]

Manny Lehman’s work on the FEAST project at the
Imperial College in England continues to provide
valuable research into software evolution.
[HTTP://www-dse.doc.ic.uk/~mml/]

The International Workshop on Empirical Studies of
Software Maintenance (WESS).
[HTTP://computer.org/conferences/calendar/htm]

The Research Institute for Software Evolution (RISE)
at the University of Durham, England, concentrates its
research on software maintenance and evolution.
[HTTP://www.dur.ac.uk/csm]

The Seventh Working Conference on Reverse
Engineering (WCRE-2000). [HTTP://computer.org/
conferences/calendar/htm]

The Conference on Software Maintenance and
Reengineering (CSMR). [HTTP://www.uni-koblenz.de/
~ist/SCSMR2000/]

The Journal of Software Maintenance, published by John
Wiley & Sons, also is an excellent resource for maintenance.

A list of additional readings is also provided to identify
additional reference material for the Knowledge Area of
Software Maintenance. These references also contain
generally accepted knowledge.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5, no 2, 1993.

[AI98] ANSI/IEEE STD 1061. IEEE Standard for a Software
Quality Metrics Methodology. IEEE Computer Society
Press, 1998.

[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.

[Bas85] V.R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.

[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R. Mortimer,
M. Munro, and E. Younger, “The AMES Approach to
Application Understanding: A Case Study,” Proceedings of
the International Conference on Software Maintenance-
1995, IEEE Computer Society Press, Los Alamitos, CA,
1995.

[CM94] M.A. Capretz and M. Munro, “Software
Configuration Management Issues in the Maintenance of
Existing Systems,” Journal of Software Maintenance, Vol.
6, no.2, 1994.

[CG90] D.N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.

[Car92] J. Cardow, “You Can’t Teach Software
Maintenance!,” Proceedings of the Sixth Annual Meeting
and Conference of the Software Management Association,
1992.

[Dek92] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.

[GC87] R.B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987.

[Gra92] R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[IEEE610.12] IEEE STD 610.2: IEEE Standard Glossary of
Software Engineering Terminology, 1990.

[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998.

[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

[ISO14764] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

[ISO15271] ISO/IEC TR 15271, Information Technology -
Guide for ISO/IEC 12207, (Software Life Cycle Process)

[Jon98] T.C. Jones. Estimating Software Costs. McGraw-
Hill, 1998.

[LB85] M.M. Lehman and L.A. Belady, Program Evolution
– Processes of Software Change, Academic Press Inc.
(London) Ltd., 1985.

[Leh97] M.M. Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer

6-14 © IEEE – Trial Version 1.00 – May 2001

Verlag, 1997.

[KSV95] T.M. Khoshgoftaar, R.M. Szabo, and J.M. Voas,
“Detecting Program Module with Low Testability,”
Proceedings of the International Conference on Software
Maintenance-1995, IEEE Computer Society Press, Los
Alamitos, CA, 1995.

[OHA91] P.W. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software Maintainability,
University of Idaho, Software Engineering Test Lab,
Technical Report, 91-08 TR, November 1991.

[OH92] P. Oman and J. Hagemeister, “Metrics for Assessing
Software System Maintainability,” Proceedings of the
International Conference on Software Maintenance-1992,
IEEE Computer Society Press, Los Alamitos, CA, 1992.

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.

[Pfl98] S. L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.

[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.

[Pig94] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John Wiley &
Sons, New York, NY, 1994.

[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997.

[PM97] L.H. Putman and W. Myers. Industrial Strength
Software – Effective Management Using Measurement,
IEEE Computer Society Press, Los Alamitos, CA, 1997.

[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.

[Scha99] S.R. Schach, Classical and Object-Oriented
Software Engineering With UML and C++, McGraw-Hill,
1999

[Sch87] N.F. Schneidewind. The State of Software
Maintenance. Proceedings of the IEEE, 1987.

[Schn97] S.L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

[Som01] I. Sommerville. Software Engineering. Addison-
Wesley, sixth edition, 2001.

[SKV94] G.E. Stark, L. C. Kern, and C. V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, 1994.

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.

[VCBKB] J.D. Vallett, S.E. Condon, L. Briand, Y.M. Kim and

V.R. Basili, “Building on Experience Factory for
Maintenance,” Proceedings of the Software Engineering
Workshop, Software Engineering Laboratory, 1994.

© IEEE – Trial Version 1.00 – May 2001 6-15

APPENDIX B – REFERENCES USED TO WRITE AND JUSTIFY
THE SOFTWARE MAINTENANCE DESCRIPTION

The following set of references was chosen to provide
coverage of all aspects of software evolution and
maintenance. Priority was given to standards, maintenance
specific publications, and then general software engineering
publications.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol. 5, no 2, 1993.

[AI98] ANSI/IEEE STD 1061. IEEE Standard for a Software
Quality Metrics Methodology. IEEE Computer Society
Press, 1998.

[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.

[Bas85] V. R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.

[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R. Mortimer,
M. Munro, and E. Younger, “The AMES Approach to
Application Understanding: A Case Study,” Proceedings of
the International Conference on Software Maintenance-
1995, IEEE Computer Society Press, Los Alamitos, CA,
1995.

[CG90] D.N. Card and R.L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.

[Dek92] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.

[GC87] R. B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987.

[IEEE610.12] IEEE STD 610.2: IEEE Standard Glossary of
Software Engineering Terminology, 1990.

[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998.

[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.

[ISO14764] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

[Jon98] T.C. Jones. Estimating Software Costs. McGraw-
Hill, 1998.

[Leh97] M.M. Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997.

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.

[Pfl98] S.L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.

[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.

[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997.

[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.

[SKV94] G.E. Stark, L.C. Kern, and C.V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, 1994.

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.

6-16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX C – DETAILED BREAKDOWN RATIONALE

Criterion (a): Number of topic breakdowns

One breakdown is provided.

Criterion (b): Reasonableness

The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although there is
less discussion regarding the pre-maintenance activities,
e.g., planning. Other topics such as measures are also often
not addressed although they are getting more attention
now.

Criterion (c): Generally Accepted

The breakdowns are generally accepted in that they cover
the areas typically discussed in texts and standards.

Criterion (d): No specific Application Domains

No specific application domains are assumed.

Criterion (e): Compatibility with Various Schools of
Thought

Software maintenance concepts are stable and mature.

Criterion (f): Compatible with Industry, Literature, and
Standards

The breakdown was derived from the literature and key
standards reflecting consensus opinion. The extent to
which industry implements the software maintenance
concepts in the literature and in standards varies by
company and project.

Criterion (g): As Inclusive as Possible

The primary topics are addressed within the page
constraints of the chapter.

Criterion (h): Themes of Quality, Measurement, and
Standards

Quality, Measurement and standards are discussed.

Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level

The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names Meaningful Outside the Guide

Wording is meaningful. Version 0.7/0.8 reviews indicated
that the wording is meaningful.

Criterion (k) Vincenti Categorization

Topics were applied to the Vincenti Categorization.

Criterion (l): Topics only sufficiently described to allow
reader to select appropriate material

A tutorial on maintenance was not provided. Generally
accepted concepts were introduced with appropriate
references for additional reading were provided.

Criterion (m): Text on the Rationale Underlying the

Proposed Breakdowns

The Software Maintenance Theory and Practice was
selected as the initial topic in order to introduce the topic.
The subtopics are needed to provide definitions and to
emphasis why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
maintenance. All pertinent texts use a similar introduction.

The Maintenance Activities subtopic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities.
The subtopic on the Problems of Software Maintenance
was chosen to ensure that the software engineers fully
comprehended these problems.

Maintenance Process is needed to provide the current
references and standards needed to implement the
maintenance process.

Every organization is concerned with who will perform
maintenance. The Organizational Aspect of Maintenance
provides some options. There is always a discussion that
maintenance is hard. Every software maintenance reference
discusses the fact that maintenance consumes a large
portion of the life cycle costs. The topic on Cost and Cost
Estimation was provided to ensure that the readers select
references to help with this difficult task.

The Software Maintenance Measurements topic is one that
is not addressed very well in the literature. Most
maintenance books barely touch on the topic. Measurement
information is most often found in generalized measurement
books. This topic was chosen to highlight the need for
unique maintenance measures and to provide specify
maintenance measurement references.

The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.

Finally, there are other resources besides textbooks and
periodicals that are useful to software engineers who wish
to learn more about software maintenance. This topic is
provided to list these additional resources.

© IEEE – Trial Version 1.00 – May 2001 7–1

CHAPTER 7

SOFTWARE CONFIGURATION MANAGEMENT

John A. Scott and David Nisse
Lawrence Livermore National Laboratory

7000 East Avenue
P.O. Box 808, L-632

Livermore, CA 94550, USA
(925) 423-7655
scott7@llnl.gov

Table of Contents

1 Introduction...1
2 Definition of the SCM Knowledge Area........................1
3 Breakdown of Topics for SCM ..2
4 Breakdown Rationale ...10
5 Matrix of Topics vs. Reference Material......................10
6 Recommended References for SCM11
Appendix A – List of Further Readings13
Appendix B – References Used to Write and Justify the

Knowledge Area Description...14
Appendix C – Rationale Details ..16

1 INTRODUCTION

This paper presents an overview of the knowledge area of
software configuration management (SCM) for the Guide
to the Software Engineering Body of Knowledge
(SWEBOK) project. A breakdown of topics is presented for
the knowledge area along with a succinct description of
each topic. References are given to materials that provide
more in-depth coverage of the key areas of software
configuration management. Important knowledge areas of
related disciplines are also identified.

Keywords

Software configuration management, software
configuration identification, software configuration control,
software configuration status accounting, software
configuration auditing, software release management.

Acronyms

CCB Configuration Control Board

CM Configuration Management

DBMS Database Management System
FCA Functional Configuration Audit

PCA Physical Configuration Audit

SCI Software Configuration Item

SCR Software Change Request

SCM Software Configuration Management

SCMP Software Configuration Management Plan

SCSA Software Configuration Status Accounting

SDD Software Design Description

SQA Software Quality Assurance

SRS Software Requirements Specification

2 DEFINITION OF THE SCM KNOWLEDGE AREA

A system can be defined as a collection of components
organized to accomplish a specific function or set of
functions [IEEE 610]. The configuration of a system is the
function and/or physical characteristics of hardware,
firmware, software or a combination thereof as set forth in
technical documentation and achieved in a product
[Buckley]. It can also be thought of as a collection of
specific versions of hardware, firmware, or software items
combined according to specific build procedures to
accomplish a particular purpose. Configuration
management (CM), then, is the discipline of identifying the
configuration of a system at distinct points in time for the
purpose of systematically controlling changes to the
configuration and maintaining the integrity and traceability
of the configuration throughout the system life cycle
[Bersoff, (3)]. CM is formally defined [IEEE 610] as:

“A discipline applying technical and administrative
direction and surveillance to: identify and document the
functional and physical characteristics of a
configuration item, control changes to those
characteristics, record and report change processing and
implementation status, and verify compliance with
specified requirements.”

The concepts of configuration management apply to all
items to be controlled although there are some differences
in implementation between hardware CM and software
CM.

7–2 © IEEE – Trial Version 1.00 – May 2001

This chapter presents a breakdown of the key software
configuration management (SCM) concepts along with a
succinct description of each concept. The concepts are
generally accepted in that they cover the areas typically
addressed in texts and standards. The descriptions cover the
primary activities of SCM and are only intended to be
sufficient for allowing the reader to select appropriate
reference material according to the reader’s needs. The
SCM activities are: the management of the software
configuration management process, software configuration
identification, software configuration control, software
configuration status accounting, software configuration
auditing, and software release management and delivery.

Figure 1 shows a stylized representation of these activities

Mgmt. &
Planning

SCMP

Configuration Identification

Control Status
Accounting

Release
Processing

Auditing

Management

Development
Team

Coordination of Change Activities (“Code Management”)

Authorization of Changes
 (Should changes be made?)

Project Management
 Product Assurance
 Development Team

Status for:

Supports
 Customer
 Maintenance Team

Physical &
 Functional
 Completeness

Figure 1. SCM Activities
Following the breakdown of SCM topics, key references
for SCM are listed along with a cross-reference of topics
that each listed reference covers. Finally, topics in related
disciplines that are important to SCM are identified.

3 BREAKDOWN OF TOPICS FOR SCM

Breakdown of Topics

An outline of the breakdown of topics is shown below in
Figure 2. Following the chart, a brief description of each
breakdown topic is provided. The breakdown covers the
concepts and activities of SCM. The variety of SCM tools
and tool systems now available, as well as the variety of
characteristics of the projects to which they are applied,
may make the implementation of these concepts and the
nature of the activities appear quite different from project to
project. However, the underlying concepts and types of
activities still apply.

I. Management of the SCM Process

Software configuration management is a supporting
software life cycle process [ISO/IEC 12207] that benefits
project and line management, development and
maintenance activities, assurance activities, and the
customers and users of the end product. From a
management perspective, SCM controls the evolution and
integrity of a product by identifying its elements, managing
and controlling change, and verifying, recording and
reporting on configuration information. From the

developer’s perspective, SCM facilitates the development
and change implementation activities. A successful SCM
implementation requires careful planning and management.
This, in turn, requires an understanding of the
organizational context for, and the constraints placed upon,
the design and implementation of the SCM process.

I.A Organizational Context for SCM

To plan an SCM process for a project, it is necessary to
understand the organizational structure and the
relationships among organizational elements. SCM
interacts with several other activities or organizational
elements.

SCM, like other processes such as software quality
assurance and software verification and validation (V&V),
is categorized as a supporting life cycle process. The
organizational elements responsible for these processes
may be structured in various ways. Although the
responsibility for performing certain SCM tasks might be
assigned to other organizations, such as the development
organization, the overall responsibility for SCM typically
rests with a distinct organizational element or designated
individual.

Software is frequently developed as part of a larger system
containing hardware and firmware elements. In this case,
SCM activities take place in parallel with hardware and
firmware CM activities and must be consistent with system
level CM. Buckley [5] describes SCM within this context.
Note that firmware contains hardware and software and,
therefore, both hardware and software CM concepts are
applicable.

SCM is closely related to the software quality assurance
(SQA) activity. The goals of SQA can be characterized
[Humphrey] as monitoring the software and its
development process, ensuring compliance with standards
and procedures, and ensuring that product, process, and
standards defects are visible to management. SCM
activities help in accomplishing these SQA goals. In some
project contexts, e.g. see [IEEE 730], specific SQA
requirements prescribe certain SCM activities.

SCM might also interface with an organization’s quality
assurance activity on issues such as records management
and non-conforming items. Regarding the former, some
items under SCM control might also be project records
subject to provisions of the organization’s quality assurance
program. Managing non-conforming items is usually the
responsibility of the quality assurance activity, however,
SCM might assist with tracking and reporting on software
items that fall in this category.

Perhaps the closest relationship is with the software
development and maintenance organizations. The
environment for software engineering includes such things
as the:

w software life cycle model and its resulting plans and
schedules,

© IEEE – Trial Version 1.00 – May 2001 7–3

w project strategies such as concurrent or distributed
development activities,

w software reuse processes,

w development and target platforms, and

w software development tools.

Software Configuration Management

Management
of the SCM

Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status
Accounting

Software
Configuration

Auditing

Software
Release

Management
and Delivery

Organizational
Context for

SCM
Constraints and
Guidance for

SCM
Planning for

SCM

Software
Configuration
Management

Plan

SCM
Organization and
Responsabilities

SCM Resources
and Schedules

Tool Selection
and

Implementation

Vendor/
Subcontractor

Control

Interface Control

Surveillance of
Software

Configuration
Management
SCM Measures

and
Measurement

In-Process
Audits of SCM

Identifying
Items to be
Controlled

Requesting,
Evaluating and

Approving
Software
Changes

Software
Configuration

Software
Configuration

Items
Software

Configuration
Item

Relationships
Software
Versions

Baselines

Acquiring
Software

Configuration
Items

Software
Library

Software
Configuration
Control Board

Software Change
Request Process

Implementing
Software
Changes

Deviations and
Waivers

Software
Configuration

Status
Information

Software
Configuration

Status
Reporting

Software
Functional

Configuration
Audit

Software
Physical

Configuration
Audit

In-Process
Audits of a
Software
Baseline

Software
Building

Software
Release

Management

Figure 2 Breakdown of SCM Topics

This environment is also the environment within which
many of the software configuration control tasks are
conducted. Frequently, the same tools support
development, maintenance and SCM purposes.

I.B Constraints and Guidance for SCM

Constraints affecting, and guidance for, the SCM process
come from a number of sources. Policies and procedures
set forth at corporate or other organizational levels might
influence or prescribe the design and implementation of the
SCM process for a given project. In addition, the contract
between the acquirer and the supplier might contain

provisions affecting the SCM process. For example, certain
configuration audits might be required or it might be
specified that certain items be placed under configuration
management. When software products to be developed
have the potential to affect the public safety, external
regulatory bodies may impose constraints. For example, see
[USNRC]. Finally, the particular software life cycle model
chosen for a software project and the tools selected to
implement the software affect the design and
implementation of the SCM process [Bersoff, (4)].

Guidance for designing and implementing an SCM process
can also be obtained from ‘best practice’ as reflected in the

7–4 © IEEE – Trial Version 1.00 – May 2001

standards on software engineering issued by the various
standards organizations. Moore [31] provides a roadmap to
these organizations and their standards. Best practice is als o
reflected in process improvement and process assessment
models such as the Software Engineering Institute’s
Capability Maturity Model (SEI/CMM) [Paulk] and the
International Organization for Standardization’s Software
Process Improvement and Capability determination project
(ISO SPICE) [El Emam].

I.C Planning for SCM

The planning of an SCM process for a given project should
be consistent with the organizational context, applicable
constraints, commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major activities
covered are Software Configuration Identification,
Software Configuration Control, Software Configuration
Status Accounting, Software Configuration Auditing, and
Software Release Management and Delivery. In addition,
issues such as organization and responsibilities, resources
and schedules, tool selection and implementation, vendor
and subcontractor control, and interface control are
typically considered. The results of the planning activity are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP is typically subject to SQA review and
audit.

I.C.1 SCM Organization and Responsibilities

To prevent confusion about who will perform given SCM
activities or tasks, organizations to be involved in the SCM
process need to be clearly identified. Specific
responsibilities for given SCM activities or tasks also need
to be assigned to organizational entities, either by title or
organizational element. The overall authority and reporting
channels for SCM should also be identified, although this
might be accomplished in the project management or
quality assurance planning.

I.C.2 SCM Resources and Schedules

The planning for SCM identifies the staff and tools
involved in carrying out SCM activities and tasks. It
addresses schedule questions by establishing necessary
sequences of SCM tasks and identifying their relationships
to the project schedules and milestones established in the
project management planning. Any training requirements
necessary for implementing the plans and training new staff
members are also specified.

I.C.3 Tool Selection and Implementation

Different types of tool capabilities, and procedures for their
use, support the SCM activities. Depending on the
situation, these tool capabilities can be made available with
some combination of manual tools, automated tools
providing a single SCM capability, automated tools
integrating a range of SCM (and, perhaps other)
capabilities, or integrated tool environments that serve the
needs of multiple participants in the software development

process (e.g., SCM, development, V&V). Automated tool
support becomes increasingly important, and increasingly
difficult to establish, as projects grow in size and as project
environments get more complex. These tool capabilities
provide support for:

w the SCM Library,

w the software change request (SCR) and approval
procedures,

w code (and related work products) and change
management tasks,

w reporting software configuration status and collecting
SCM measurements,

w software auditing,

w managing and tracking software documentation,

w performing software builds, and

w managing and tracking software releases and their
distribution.

The use of tools in these areas increases the potential for
obtaining product and process measurements to be used for
project management and process improvement purposes.
Royce [37] describes seven core measures of value in
managing software processes. Information available from
the various SCM tools relates to Royce’s Work and
Progress management indicator and to his quality indicators
of Change Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF (mean time between
failures) and Maturity. Reporting on these indicators can be
organized in various ways, such as by software
configuration item or by type of change requested. Details
on specific goals and measures for software processes are
described in [Grady].

Figure 3 shows a representative mapping of tool
capabilities and procedures to the SCM Activities.

Planning

SCMP

Control

Management

Development
Team

Status
Accounting

Release
Processing

Auditing

Change
Implementation

Change
Evaluation &

Approval

Release
Authorization
& Preparation

Audit
Procedures

Configuration Identification

Code Mgmt
Systems

Baselines,
Libraries,

SCRs

CCBs DBMS, Code Mgmt Systems

Figure 3 Characterization of SCM Tools and Related
Procedures

In this example, code management systems support the
operation of software libraries by controlling access to
library elements, coordinating the activities of multiple
users, and helping to enforce operating procedures. Other
tools support the process of building software and release

© IEEE – Trial Version 1.00 – May 2001 7–5

documentation from the software elements contained in the
libraries. Tools for managing software change requests
support the change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for management,
development, and quality assurance activities. As
mentioned above, the capabilities of several tool types
might be integrated into SCM systems, which, in turn, are
closely coupled to various other software activities.

The planning activity assesses the SCM tool needs for a
given project within the context of the software engineering
environment to be used and selects the tools to be used for
SCM. The planning considers issues that might arise in the
implementation of these tools, particularly if some form of
culture change is necessary. An overview of SCM systems
and selection considerations is given in [Dart, (7)], a recent
case study on selecting an SCM system is given in [Midha],
and [Hoek] provides a current web-based resource listing
web links to various SCM tools.

I.C.4 Vendor/Subcontractor Control

A software project might acquire or make use of purchased
software products, such as compilers. The planning for
SCM considers if and how these items will be taken under
configuration control (e.g., integrated into the project
libraries) and how changes or updates will be evaluated and
managed.

Similar considerations apply to subcontracted software. In
this case, the SCM requirements to be imposed on the
subcontractor’s SCM process as part of the subcontract and
the means for monitoring compliance also need to be
established. The latter includes consideration of what SCM
information must be available for effective compliance
monitoring.

I.C.5 Interface Control

When a software item will interface with another software
or hardware item, a change to either item can affect the
other. The planning for the SCM process considers how the
interfacing items will be identified and how changes to the
items will be managed and communicated. The SCM role
may be part of a larger system-level process for interface
specification and control and may involve interface
specifications, interface control plans, and interface control
documents. In this case, SCM planning for interface control
takes place within the context of the system level process.
A discussion of the performance of interface control
activities is given in [Berlack].

I.D Software Configuration Management Plan

The results of SCM planning for a given project are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP is a ‘living document’ that serves as a
reference for the SCM process. It is maintained (i.e.,
updated and approved) as necessary during the software life
cycle. In implementing the plans contained in the SCMP, it
is typically necessary to develop a number of more

detailed, subordinate procedures that define how specific
requirements will be carried out during day-to-day
activities.

Guidance for the creation and maintenance of an SCMP,
based on the information produced by the planning activity,
is available from a number of sources, such as [IEEE 828
and IEEE 1042]. This reference provides requirements for
the information to be contained in an SCMP. It also defines
and describes six categories of SCM information to be
included in an SCMP:

1. Introduction (purpose, scope, terms used)

2. SCM Management (organization, responsibilities,
authorities, applicable policies, directives, and
procedures)

3. SCM Activities (configuration identification,
configuration control, etc.)

4. SCM Schedules (coordination with other project
activities)

5. SCM Resources (tools, physical, and human
resources)

6. SCMP Maintenance

I.E Surveillance of Software Configuration Management

After the SCM process has been implemented, some degree
of surveillance may be conducted to ensure that the
provisions of the SCMP are properly carried out (e.g., see
[Buckley]). There are likely to be specific SQA
requirements for ensuring compliance with specified SCM
processes and procedures. This could involve an SCM
authority ensuring that the defined SCM tasks are
performed correctly by those with the assigned
responsibility. The software quality assurance authority, as
part of a compliance auditing activity, might also perform
this surveillance.

The use of integrated SCM tools that have capabilities for
process control can make the surveillance task easier. Some
tools facilitate process compliance while providing
flexibility fo r the developer to adapt procedures. Other
tools enforce process, leaving the developer less flexibility.
Surveillance requirements and the level of developer
flexibility to be provided are important considerations in
tool selection.

I.E.1 SCM Measures and Measurement

SCM measures can be designed to provide specific
information on the evolving product or to provide insight
into the functioning of the SCM process. A related goal of
monitoring the SCM process is to discover opportunities
for process improvement. Quantitative measurements
against SCM process measures provide a good means for
monitoring the effectiveness of SCM activities on an
ongoing basis. These measurements are useful in
characterizing the current state of the process as well as in
providing a basis for making comparisons over time.
Analysis of the measurements may produce insights leading

7–6 © IEEE – Trial Version 1.00 – May 2001

to process changes and corresponding updates to the
SCMP.

The software libraries and the various SCM tool
capabilities provide sources for extracting information
about the characteristics of the SCM process (as well as
providing project and management information). For
example, information about the processing time required
for various types of changes would be useful in an
evaluation of the criteria for determining what levels of
authority are optimal for authorizing certain types of
changes.

Care must be taken to keep the focus of the surveillance on
the insights that can be gained from the measurements, not
on the measurements themselves.

I.E.2 In-process Audits of SCM

Audits can be carried out during the development process
to investigate the current status of specific elements of the
configuration or to assess the implementation of the SCM
process. In-process auditing of SCM provides a more
formal mechanism for monitoring selected aspects of the
process and may be coordinated with the SQA auditing
function.

II. Software Configuration Identification

The software configuration identification activity identifies
items to be controlled, establishes identification schemes
for the items and their versions, and establishes the tools
and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the
other SCM activities.

II.A Identifying Items to be Controlled

A first step in controlling change is to identify the software
items to be controlled. This involves understanding the
software configuration within the context of the system
configuration, selecting software configuration items,
developing a strategy for labeling software items and
describing their relationships, and identifying the baselines
to be used, along with the procedure for a baseline’s
acquisition of the items.

II.A.1 Software Configuration

A software configuration is the set of functional and
physical characteristics of software as set forth in the
technical documentation or achieved in a product [IEEE
610]. It can be viewed as a part of an overall system
configuration.

II.A.2 Software Configuration Item

A software configuration item (SCI) is an aggregation of
software that is designated for configuration management
and is treated as a single entity in the SCM process [IEEE
610]. A variety of items, in addition to the code itself, are
typically controlled by SCM. Software items with potential
to become SCIs include plans, specifications and design
documentation, testing materials, software tools, source and

executable code, code libraries, data and data dictionaries,
and documentation for installation, maintenance, operations
and software use.

Selecting SCIs is an important process that must achieve a
balance between providing adequate visibility for project
control purposes and providing a manageable number of
controlled items. A list of criteria for SCI selection is given
in [Berlack].

II.A.3 Software Configuration Item Relationships

The structural relationships among the selected SCIs, and
their constituent parts, affect other SCM activities or tasks,
such as software building or analyzing the impact of
proposed changes. Proper tracking of these relationships is
also important for supporting traceability verifications. The
design of the identification scheme for SCIs should
consider the need to map the identified items to the
software structure as well as the need to support the
evolution of the software items and their relationships.

II.A.4 Software Versions

Software items evolve as a software project proceeds. A
version of a software item is a particular identified and
specified item. It can be thought of as a state of an evolving
item [Conradi]. A revision is a new version of an item that
is intended to replace the old version of the item. A variant
is a new version of an item that will be added to the
configuration without replacing the old version. The
management of software versions in various software
engineering environments is a current research topic; for
example, see [Conradi], [Estublier], and [Sommerville,
(39)].

II.A.5 Baseline

A software baseline is a set of software items formally
designated and fixed at a specific time during the software
life cycle. The term is also used to refer to a particular
version of a software item that has been agreed upon. In
either case, the baseline can only be changed through
formal change control procedures. A baseline, together with
all approved changes to the baseline, represents the current
approved configuration.

Commonly used baselines are the functional, allocated,
developmental, and product baselines; e.g. see [Berlack].
The functional baseline corresponds to the reviewed system
requirements. The allocated baseline corresponds to the
reviewed software requirements specification and software
interface requirements specification. The developmental
baseline represents the evolving software configuration at
selected times during the software life cycle. Change
authority for this baseline typically rests primarily with the
development organization, but may be shared by other
organizations (e.g., SCM or Test). The product baseline
corresponds to the completed software product delivered
for system integration. The baselines to be used for a given
project, along with their associated levels of authority

© IEEE – Trial Version 1.00 – May 2001 7–7

needed for change approval, are typically identified in the
SCMP.

II.A.6 Acquiring Software Configuration Items

Software configuration items are placed under SCM control
at different times; i.e. they are incorporated into a particular
baseline at a particular point in the software life cycle. The
triggering event is the completion of some form of formal
acceptance task, such as a formal review. Figure 4
characterizes the growth of baselined items as the life cycle
proceeds. This figure is based on a waterfall model for
purposes of illustration only; the subscripts used in the
figure indicate versions of the evolving items. The software
change request (SCR) is described in section III.A.

SRSA SRSB

SDDA

SRSC

SDDB

CodeA

Test
PlansA

SRSD

SDDC

CodeB

Test
PlansB

User
ManualA

Regression
Test DBA

Requirements
 Review

Design
 Review

Test Readiness
 Review

Acceptance

SCR control
of SRS mods

SCR control
of SRS, SDD
mods

SCR control
of SRS, SDD
Code, Test
Plans

Figure 4 Acquisition of Items

Following the acquisition of an SCI, changes to the item
must be formally approved as appropriate for the SCI and
the baseline involved, as defined in the SCMP. Following
the approval, the item is incorporated into the software
baseline according to the appropriate procedure.

II.B Software Library

A software library is a controlled collection of software and
related documentation designed to aid in software
development, use, and maintenance [IEEE 610]. It is also
instrumental in software release and delivery activities.
Several types of libraries might be used, each
corresponding to a particular level of maturity of the
software item. For example a working library could support
coding and a project support library could support testing,
whereas a master library could be used for finished
products. An appropriate level of SCM control (associated
baseline and level of authority for change) is associated
with each library. Security, in terms of access control and
the backup facilities, is a key aspect of library management.
A model of a software library is described in [Berlack].

The tool(s) used for each library must support the SCM
control needs for that library, both in terms of controlling
SCIs and controlling access to the library. At the working
library level, this is a code management capability serving

developers, maintainers and SCM. It is focused on
managing the versions of software items while supporting
the activities of mu ltiple developers. At higher levels of
control, access is more restricted and SCM is the primary
user.

These libraries are also an important source of information
for measurements of work and progress.

III. Software Configuration Control

Software configuration control is concerned with managing
changes during the software life cycle. It covers the process
for determining what changes to make, the authority for
approving certain changes, support for the implementation
of those changes, and the concept of formal deviations and
waivers from project requirements. Information derived
from these activities is useful in measuring change traffic,
breakage, and aspects of rework.

III.A. Requesting, Evaluating and Approving Software
Changes

The first step in managing changes to controlled items is
determining what changes to make. The software change
request process (see Figure 5) provides formal procedures
for submitting and recording change requests, evaluating
the potential cost and impact of a proposed change, and
accepting, modifying or rejecting the proposed change.
Requests for changes to software configuration items may
be originated by anyone at any point in the software life
cycle and may include a suggested solution and requested
priority. One source of change requests is the initiation of
corrective action in response to problem reports. Regardless
of the source, the type of change (e.g. defect or
enhancement) usually recorded on the SCR.

Need for
Change

Change
 identified for
controlled item

SCR generated
or updated

SCR evaluated incomplete

Preliminary
Investigation

CCB Review

Assign to
 Software
 Engineer

Schedule,
 design, test,
complete change

Approved

Rejected Inform
Requester

‘Emergency Path’
usually also exists.

Changes can be
implemented with
change process
performed afterward

complete
Figure 5 Flow of a Change Control Process

This provides an opportunity for tracking defects and
collecting change activity measurements by change type.
Once an SCR is received, a technical evaluation (also
known as an impact analysis) is performed to determine the
extent of modifications that would be necessary should the
change request be accepted. A good understanding of the
relationships among software (and possibly, hardware)
items is important for this task. Finally, an established

7–8 © IEEE – Trial Version 1.00 – May 2001

authority, commensurate with the affected baseline, the SCI
involved, and the nature of the change, will evaluate the
technical and managerial aspects of the change request and
either accept, modify, reject or defer the proposed change.

III.A.1. Software Configuration Control Board

The authority for accepting or rejecting proposed changes
rests with an entity typically known as a Configuration
Control Board (CCB). In smaller projects, this authority
actually may reside with the responsible leader or an
assigned individual rather than a multi-person board. There
can be multiple levels of change authority depending on a
variety of criteria, such as the criticality of the item
involved, the nature of the change (e.g., impact on budget
and schedule), or the current point in the life cycle. The
composition of the CCBs used for a given system varies
depending on these criteria (an SCM representative would
always be present). All stakeholders, appropriate to the
level of the CCB, are represented. When the scope of
authority of a CCB is strictly software, it is known as a
software configuration control board (SCCB). The
activities of the CCB are typically subject to SQA audit or
review.

III.A.2 Software Change Request Process

An effective SCR process requires the use of supporting
tools and procedures ranging from paper forms and a
documented procedure to an electronic tool for originating
change requests, enforcing the flow of the change process,
capturing CCB decisions, and reporting change process
information. A link between this tool capability and the
problem reporting system can facilitate the tracking of
solutions for reported problems. Change process
descriptions and supporting forms (information) are given
in a variety of references, e.g. [Berlack] and [IEEE 1042].
Typically, change management tools are tailored to local
processes and tool suites and are often locally developed.
The current trend is towards integration of these kinds of
tools within a suite referred to as a software engineering
environment.

III.B. Implementing Software Changes

Approved change requests are implemented using the
defined software procedures in accordance with the
applicable schedule requirements. Since a number of
approved change requests might be implemented
simultaneously, it is necessary to provide a means for
tracking which change requests are incorporated into
particular software versions and baselines. As part of the
closure of the change process, completed changes may
undergo configuration audits and SQA verification. This
includes ensuring that only approved changes were made.
The change request process described above will typically
document the SCM (and other) approval information for
the change.

The actual implementation of a change is supported by the
library tool capabilities that provide version management

and code repository support. At a minimum, these tools
provide check-in/out and associated version control
capabilities. More powerful tools can support parallel
development and geographically distributed environments.
These tools may be manifested as separate specialized
applications under control of an independent SCM group.
They may also appear as an integrated part of the software
development environment. Finally, they may be as
elementary as a rudimentary change control system
provided with an operating system.

III.C. Deviations and Waivers

The constraints imposed on a software development effort
or the specifications produced during the development
activities might contain provisions that cannot be satisfied
at the designated point in the life cycle. A deviation is an
authorization to depart from a provision prior to the
development of the item. A waiver is an authorization to
use an item, following its development, that departs from
the provision in some way. In these cases, a formal process
is used for gaining approval for deviations to, or waivers of,
the provisions.

IV. Software Configuration Status Accounting

Software configuration status accounting (SCSA) is the
recording and reporting of information needed for effective
management of the software configuration. The design of
the SCSA capability can be viewed from an information
systems perspective, utilizing accepted information systems
design techniques.

IV.A. Software Configuration Status Information

The SCSA activity designs and operates a system for the
capture and reporting of necessary information as the life
cycle proceeds. As in any information system, the
configuration status information to be managed for the
evolving configurations must be identified, collected, and
maintained. Various information and measurements are
needed to support the SCM process and to meet the
configuration status reporting needs of management,
software engineering, and other related activities. The types
of information available include the approved configuration
identification as well as the identification and current
implementation status of changes, deviations and waivers.
A partial list of important data elements is given in
[Berlack].

Some form of automated tool support is necessary to
accomplish the SCSA data collection and reporting tasks.
This could be a database capability, such as a relational or
object-oriented database management system. This could
be a stand-alone tool or a capability of a larger, integrated
tool environment.

IV.B. Software Configuration Status Reporting

Reported information can be used by various organizational
and project elements, including the development team, the
maintenance team, project management, and quality

© IEEE – Trial Version 1.00 – May 2001 7–9

assurance activities. Reporting can take the form of ad hoc
queries to answer specific questions or the periodic
production of pre-designed reports. Some information
produced by the status accounting activity during the
course of the life cycle might become quality assurance
records.

In addition to reporting the current status of the
configuration, the information obtained by SCSA can serve
as a basis for various measurements of interest to
management, development, and SCM. Examples include
the number of change requests per SCI and the average
time needed to implement a change request.

V. Software Configuration Auditing

A software audit is an activity performed to independently
evaluate the conformance of software products and
processes to applicable regulations, standards, guidelines,
plans, and procedures [IEEE 1028]. Audits are conducted
according to a well-defined process consisting of various
auditor roles and responsibilities. Consequently, each audit
must be carefully planned. An audit can require a number
of individuals to perform a variety of tasks over a fairly
short period of time. Tools to support the planning and
conduct of an audit can greatly facilitate the process.
Guidance for conducting software audits is available in
various references, such as [Berlack], [Buckley], and [IEEE
1028].

The software configuration auditing activity determines the
extent to which an item satisfies the required functional and
physical characteristics. Informal audits of this type can be
conducted at key points in the life cycle. Two types of
formal audits might be required by the governing contract
(e.g., in contracts covering critical software): the Functional
Configuration Audit (FCA) and the Physical Configuration
Audit (PCA). Successful completion of these audits can be
a prerequisite for the establishment of the product baseline.
Buckley [5] contrasts the purposes of the FCA and PCA in
hardware versus software contexts and recommends careful
evaluation of the need for the software FCA and PCA
before performing them.

V.A. Software Functional Configuration Audit

The purpose of the software FCA is to ensure that the
audited software item is consistent with its governing
specifications. The output of the software verification and
validation activities is a key input to this audit.

V.B. Software Physical Configuration Audit

The purpose of the software PCA is to ensure that the
design and reference documentation is consistent with the
as-built software product.

V.C. In-process Audits of a Software Baseline

As mentioned above, audits can be carried out during the
development process to investigate the current status of
specific elements of the configuration. In this case, an audit
could be applied to sampled baseline items to ensure that
performance was consistent with specification or to ensure

that evolving documentation was staying consistent with
the developing baseline item.

VI. Software Release Management and Delivery

The term “release” is used in this context to refer to the
distribution of a software configuration item outside the
development activity. This includes internal releases as
well as distribution to customers. When different versions
of a software item are available for delivery, such as
versions for different platforms or versions with varying
capabilities, it is frequently necessary to recreate specific
versions and package the correct materials for delivery of
the version. The software library is a key element in
accomplishing release and delivery tasks.

VI.A. Software Building

Software building is the activity of combining the correct
versions of software items, using the appropriate
configuration data, into an exe cutable program for delivery
to a customer or other recipient, such as the testing activity.
For systems with hardware or firmware, the executable is
delivered to the system building activity. Build instructions
ensure that the proper build steps are taken and in the
correct sequence. In addition to building software for new
releases, it is usually also necessary for SCM to have the
capability to reproduce previous releases for recovery,
testing, or additional release purposes.

Software is built using particular versions of supporting
tools, such as compilers. It might be necessary to rebuild an
exact copy of a previously built software item. In this case,
the supporting tools and associated build instructions need
to be under SCM control to ensure availability of the
correct versions of the tools.

A tool capability is useful for selecting the correct versions
of software items for a given target environment and for
automating the process of building the software from the
selected versions and appropriate configuration data. For
large projects with parallel development or distributed
development environments, this tool capability is
necessary. Most software development environments
provide this capability. These tools vary in complexity from
requiring the engineer to learn a specialized scripting
language to graphics-oriented approaches that hide much of
the complexity of an “intelligent” build facility.

The build process and products are often subject to SQA
verification. Outputs of the build process might be needed
for future reference and may become quality assurance
records.

VI.B Software Release Management

Software release management encompasses the
identification, packaging and delivery of the elements of a
product, for example, the executable, documentation,
release notes, and configuration data. Given that product
changes can be occurring on a continuing basis, one issue
for release management is determining when to issue a
release. The severity of the problems addressed by the

7–10 © IEEE – Trial Version 1.00 – May 2001

release and measurements of the fault densities of prior
releases affect this decision [Sommerville, (38)]. The
packaging task must identify which product items are to be
delivered and select the correct variants of those items,
given the intended application of the product. The set of
information documenting the physical contents of a release
is known as a version description document and may exist
in hardcopy or electronic form. The release notes typically
describe new capabilities, known problems, and platform
requirements necessary for proper product operation. The
package to be released also contains loading or upgrading
instructions. The latter can be complicated by the fact that
some current users might have versions that are several
releases old. Finally, in some cases, the release
management activity might be required to track the
distribution of the product to various customers or target
systems. An example would be a case where the supplier
was required to notify a customer of newly reported
problems.

A tool capability is needed for supporting these release
management functions. It is useful to have a connection
with the tool capability supporting the change request
process in order to map release contents to the SCRs that
have been received. This tool capability might also

maintain information on various target platforms and on
various customer environments.

4 BREAKDOWN RATIONALE

One of the primary goals of the Guide to the SWEBOK is
to arrive at a breakdown that is ‘generally accepted’.
Consequently, the breakdown of SCM topics was
developed largely by attempting to synthesize the topics
covered in the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on Software
Release Management and Delivery is an exception since it
has not commonly been broken out separately in the past.
The precedent for this was set by the ISO/IEC 12207
standard [23], which identifies a ‘Release Management and
Delivery’ activity.

There is widespread agreement in the literature on the SCM
activity areas and their key concepts. However, there
continues to be active research on implementation aspects
of SCM. Examples are found in ICSE workshops on SCM
such as [Estublier] and [Sommerville, (39)].

5 MATRIX OF TOPICS VS . REFERENCE MATERIAL

Table 1. Coverage of the Breakdown Topics by the Recommended References
 Babich Berlack Buckley Conradi Dart Hoek IEEE

828
IEEE/EIA

12207
Midha Moore Paulk Pressman Royce Sommerville

I. Management of the SCM Process

A. Organizational Context for SCM C4 C2 C2 4.2.1
B. Constraints and Guidance for
SCM

 C5 4.1,
4.2.3

 X

C. Planning for SCM C2 6.2.1 C33
1. SCM Organization and
Responsibilities

 C7 C3 4.2

2. SCM Resources and Schedules C7 C3 4.4, 4.5

3. Tool Selection and
Implementation

 C15 C6 C3,
App A

X X C29

4. Vendor/Subcontractor Control C13 C11 4.3.6

5. Interface Control C12 4.3.5

D. SCM Plan C7 C3 4 L2-81
E. Surveillance of SCM L2-87

1. SCM Measures and
Measurement

 C3 202,283-

2. In-Process Audits of SCM C15

II. Software Configuration
Identification

 6.2.2

A. Identifying Items to be Controlled C8 4.3.1 L2-83 C33
1. Software Configuration C4,6 C9

2. Software Configuration Item C4,6 C2 C9
3. Software Configuration Item
Relationships

 C2 C9

4. Software Versions C2 C3,C4,C5 C9
5. Baseline C5 C4 C9

6. Acquiring Software
Configuration Items

 C4

B. Software Library C2,5 C14 C4 4.3.1 L2-82 C33
III. Software Configuration
Control

 6.2.3 L2-84

A. Requesting, Evaluating and
Approving Software Changes

 4.3.2 C9 C33

1. Software Configuration Control
Board

 C9 C9,11 C9

2. Software Change Request
Process

 C9 C9,11 C9

© IEEE – Trial Version 1.00 – May 2001 7–11

 Babich Berlack Buckley Conradi Dart Hoek IEEE
828

IEEE/EIA
12207

Midha Moore Paulk Pressman Royce Sommerville

B. Implementing Software Changes C6 C9 C9,11 4.3.2.4 C9 C33
C. Deviations & Waivers C9 C12

IV. Software Configuration Status
Accounting

 6.2.4 L2-85 C9 C33

A. Software Configuration Status Inf. C10 C13 4.3.3
B. Software Configuration Status
Rptg.

 C10 C13

V. Software Configuration
Auditing

 4.3.4 6.2.5 L2-86 C9,C17

A. Software Functional Configuration
Audit

 C11 C15

B. Software Physical Configuration
Audit

 C11 C15

C. In-Process Audits of a Software
Baseline

 C15

VI. Software Release Management
and Delivery

 6.2.6

A. Software Building C6 C33
B. Software Release Management C33

6 RECOMMENDED REFERENCES FOR SCM

Cross Reference Matrix

Table 1, in Appendix A, provides a cross reference between
the recommended references and the topics of the
breakdown. Note that, where a recommended reference is
also shown in the Further Reading section, the cross
reference reflects the full text rather than just the specific
passage referenced in the Recommended References.

Recommended References

Specific recommendations are made here to provide
additional information on the topics of the SCM
breakdown.

W.A. Babich, Software Configuration Management,
Coordination for Team Productivity, Addison-Wesley,
1986 [1]

Pages 20-43 address the basics of code management.

H.R. Berlack, Software Configuration Management, Wiley
1992 [2]

See pages 101-175 on configuration identification,
configuration control and configuration status accounting,
and pages 202-206 on libraries.

F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware 2nd edition, IEEE
Computer Society Press, 1996 [5]

See pages 10-19 on organizational context, pages 21-38 on
CM planning, and 228-250 on CM auditing.

R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management”, ACM Computing
Surveys, vol. 30, no. 2, June 1998 [6]

An in-depth article on version models used in software
configuration management. It defines fundamental concepts
and provides a detailed view of versioning paradigms. The
versioning characteristics of various SCM systems are
discussed.

S.A. Dart, Spectrum of Functionality in Configuration
Management Systems [7]

This report covers features of various CM systems and the
scope of issues concerning users of CM systems. As of this
writing, the report can be found on the Internet at:
http://www.sei.cmu.edu/about/website/search.html

Hoek, “Configuration Management Yellow Pages,” [13]

This web page provides a current compilation of SCM
resources.
http://www.cmtoday.com/yp/configuration_management.ht
ml

IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, [20] and IEEE/EIA Std 12207.1-1996, Software
Life Cycle Processes - Life Cycle Data, [21]

These standards provide the ISO/IEC view of software
processes along with specific information on life cycle data
keyed to software engineering standards of other standards
bodies.

IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans [17] and IEEE Std.1042-
1987, IEEE Guide to Software Configuration Management
[19]

These standards focus on SCM activities by specifying
requirements and guidance for preparing the SCMP. These
standards reflect commonly accepted practice for software
configuration management.

A.K. Midha, “Software Configuration Management for the
21st Century”, Bell Technical Labs Journal, vol. 2 no. 1,
Winter 1997, pp. 154-165 [30]

This article discusses the characteristics of SCM systems,
assessment of SCM needs in a particular environment, and
the issue of selecting and implementing an SCM system. It
is a current case study on this issue.

J.W. Moore, Software Engineering Standards, A User’s
Road Map, IEEE Computer Society Press, 1998 [31]

Pages 118-119 cover SCM and pages 194-223 cover the
perspective of the 12207 standards.

7–12 © IEEE – Trial Version 1.00 – May 2001

M.C. Paulk, et al., Key Practices of the Capability Maturity
Model, Software Engineering Institute, 1993 [32]

Pages 180-191 cover the SCM key process area of the SEI
CMM.

R.S. Pressman, Software Engineering: A Practitioner’s
Approach, 4th edition, McGraw-Hill, 1997 [36]

Pages 209-226 address SCM in the context of a textbook on
software engineering.

Walker Royce, Software Project Management, A Unified
Framework, Addison-Wesley, 1998 [37]

Pages 188-202 and 283-298 cover measures of interest to
software project management that are closely related to
SCM.

I. Sommerville, Software Engineering, 5th edition, Addison-
Wesley, 1996 [38]

Pages 675-696 cover SCM with an emphasis on software
building and release management.

© IEEE – Trial Version 1.00 – May 2001 7–13

APPENDIX A – LIST OF FURTHER READINGS

The following set of references was chosen to provide
coverage of all aspects of SCM, from various perspectives
and to varying levels of detail. The author and title are
cited; the complete reference is given in the References
section. Some items overlap with those in the
Recommended References since they cover the full texts
rather than specific passages.

W.A. Babich, Software Configuration Management,
Coordination for Team Productivity [1]

This text is focused on code management issues from the
perspective of the development team.

H.R. Berlack, Software Configuration Management [2]

This textbook provides detailed, comprehensive coverage
of the concepts of software configuration management.
This is one of the more recent texts with this focus.

F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware [5]

This text presents an integrated view of configuration
management for projects in which software, hardware and
firmware are involved. It is a recent text that provides a
view of software configuration management from a systems
perspective.

J. Estublier, Software Configuration Management, ICSE
SCM-4 and SCM-5 Workshops Selected Papers [10]

These workshop proceedings are representative of current
experience and research on SCM. This reference is
included with the intention of directing the reader to the
whole class of conference and workshop proceedings.

The suite of IEEE/EIA and ISO/IEC 12207 standards, [20]-
[24]

These standards cover software life cycle processes and
address SCM in that context. These standards reflect
commonly accepted practices for software life cycle
processes. Note - the developing ISO/IEC TR 15504
(SPICE99) expands on SCM within the context of the
ISO/IEC 12207 standard.

IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management [19]

This standard provides guidance, keyed to IEEE 828, for
preparing the SCMP.

J.W. Moore, Software Engineering Standards, A User’s
Road Map [31]

This text provides a comprehensive view of current
standards and standards activities in the area of software
engineering.

7–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

These references were used in preparing this paper; the
recommended references for SCM are lis ted in Section 3.1.

1. W.A. Babich, Software Configuration Management:
Coordination for Team Productivity, Addison-Wesley,
Reading, Massachusetts, 1986.

2. H.R. Berlack, Software Configuration Management,
John Wiley & Sons, New York, 1992.

3. E.H. Bersoff, “Elements of Software Configuration
Management,” Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society Press, Los
Alamitos, CA, 1997.

4. E.H. Bersoff and A.M. Davis, “Impacts of Life Cycle
Models on Software Configuration Management,”
Communications of the ACM, Vol. 34, No. 8, August
1991, pp104-118.

5. F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware,
Second Edition, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

6. R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management,” ACM
Computing Surveys, Vol. 30, No. 2, June 1998, pp.
232-282.

7. S.A. Dart, Spectrum of Functionality in Configuration
Management Systems, Technical Report CMU/SEI -90-
TR-11, Software Engineering Institute, Carnegie
Mellon University, 1990.

8. S.A. Dart, “Concepts in Configuration Management
Systems,” Proceedings of the Third International
Workshop on Software Configuration Management,
ACM Press, New York, 1991, pp1-18.

9. Khaled El Emam, et al., SPICE, The Theory and
Practice of Software Process Improvement and
Capability Determination, IEEE Computer Society,
Los Alamitos, CA, 1998.

10. J. Estublier, Software Configuration Management,
ICSE SCM -4 and SCM -5 Workshops Selected Papers,
Springer-Verlag, Berlin, 1995.

11. P.H. Feiler, Configuration Management Models in
Commercial Environments, Technical Report
CMU/SEI -91-TR-7, Software Engineering Institute,
Carnegie Mellon University, 1991.

12. R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewook Cliffs, NJ, 1992.

13. Hoek, “Configuration Management Yellow Pages,”
http://www.cs.colorado.edu/users/andre/configuration_
management.html

14. W.S. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1989.

15. IEEE Std.610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, IEEE, Piscataway,
NJ, 1990.

16. IEEE Std.730-1998, IEEE Standard for Software
Quality Assurance Plans, IEEE, Piscataway, NJ, 1998.

17. IEEE Std.828-1998, IEEE Standard for Software
Configuration Management Plans, IEEE, Piscataway,
NJ, 1998.

18. IEEE Std.1028-1997, IEEE Standard for Software
Reviews, IEEE, Piscataway, NJ, 1997.

19. IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management, IEEE, Piscataway, NJ,
1987.

20. IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, IEEE, Piscataway, NJ, 1996.

21. IEEE/EIA Std 12207.1-1996, Guide for Software Life
Cycle Processes – Life Cycle Data, IEEE, Piscataway,
NJ, 1996.

22. IEEE/EIA Std 12207.2-1996, Guide for Software Life
Cycle Processes – Implementation Considerations,
IEEE, Piscataway, NJ, 1996.

23. ISO/IEC 12207:1995(E), Information Technology -
Software Life Cycle Processes, ISO/IEC, Geneve,
Switzerland, 1995.

24. ISO/IEC TR 15846:1998, Information Technology -
Software Life Cycle Processes - Configuration
Management , ISO/IEC, Geneve, Switzerland, 1998.

25. ISO/DIS 9004-7 (now ISO 10007), Quality
Management and Quality System Elements, Guidelines
for Configuration Management, International
Organization for Standardization, Geneve,
Switzerland, 1993.

26. P. Jalote, An Integrated Approach to Software
Engineering, Springer-Verlag, New York, 1997

27. John J. Marciniak and Donald J. Reifer, Software
Acquisition Management, Managing the Acquisition of
Custom Software Systems, John Wiley & Sons, 1990.

28. J.J. Marciniak, “Reviews and Audits,” Software
Engineering, M. Dorfman and R.H. Thayer ed., IEEE
Computer Society Press, Los Alamitos, CA, 1997.

29. K. Meiser, “Software Configuration Management
Terminology,” Crosstalk, 1995,
http://www.stsc.hill.af.mil/crosstalk/1995/jan/terms.ht
ml, February 1999.

30. A.K. Midha, “Software Configuration Management for
the 21st Century,” Bell Labs Technical Journal, Winter
1997.

31. J.W. Moore, Software Engineering Standards, A
User’s Roadmap, IEEE Computer Society, Los
Alamitos, CA, 1998.

© IEEE – Trial Version 1.00 – May 2001 7–15

32. M.C. Paulk, et al., Key Practices of the Capability
Maturity Model, Version 1.1, Technical Report
CMU/SEI -93-TR-025, Software Engineering Institute,
Carnegie Mellon University, 1993

33. M.C. Paulk, et al., The Capability Maturity Model,
Guidelines for Improving the Software Process,
Addison-Wesley, Reading, Massachusetts, 1995.

34. S.L. Pfleeger, Software Engineering: Theory and
Practice, Prentice Hall, Upper Saddle River, NJ, 1998

35. R.K. Port, “Software Configuration Management
Technology Report, September 1994, “
http://www.stsc.hill.af.mil/cm/REPORT.html,
February 1999.

36. R.S. Pressman, Software Engineering: A Practitioner’s
Approach, McGraw-Hill, New York, 1997.

37. Walker Royce, Software Project Management, A
United Framework, Addison-Wesley, Reading,
Massachusetts, 1998.

38. Sommerville, Software Engineering, Fifth Edition,
Addison-Wesley, Reading, Massachusetts, 1995.

39. Sommerville, Software Configuration Management,
ICSE SCM -6 Workshop, Selected Papers, Springer-
Verlag, Berlin, 1996.

40. USNRC Regulatory Guide 1.169, Configuration
Management Plans for Digital Computer Software
Used in Safety Systems of Nuclear Power Plants, U.S.
Nuclear Regulatory Commission, Washington DC,
1997.

41. J.P. Vincent, et al., Software Quality Assurance,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

42. W.G. Vincenti, What Engineers Know and How They
Know It, The Johns Hopkins University Press,
Baltimore, MD, 1990.

43. D. Whitgift, Methods and Tools for Software
Configuration Management, John Wiley & Sons,
Chichester, England, 1991.

M.C. Paulk, et al., Key Practices of the Capability Maturity
Model [32]

This report describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices provides a
view of SCM from a software process assessment
perspective.

R.S. Pressman, Software Engineering: A Practitioner’s
Approach [36]

This reference and the Sommerville reference address SCM
in the context of a textbook on software engineering.

I. Sommerville, Software Engineering [38]

This reference and the Pressman reference address SCM in
the context of a textbook on software engineering.

J.P. Vincent, et al., Software Quality Assurance [41]

In this text, SCM is described from the perspective of a
complete set of assurance processes for a software
development project.

D. Whitgift, Methods and Tools for Software Configuration
Management [43]

This text covers the concepts and principles of SCM. It
provides detailed information on the practical questions of
implementing and using tools. This text is out of print but
still available in libraries.

7–16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX C – RATIONALE DETAILS

Criterion (a): Number of topic breakdowns

One breakdown is provided.

Criterion (b): Reasonableness

The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although there is
somewhat less discussion of release management as a
separate topic. In response to comments on version 0.5 of
the paper, the tool discussion under ‘Planning for SCM’ has
been expanded. The various tool subheadings used
throughout the text have been removed (so they do not
appear as topics), however, the supporting text has been
retained and incorporated into the next higher level topics.

Criterion (c): Generally Accepted

The breakdowns are generally accepted in that they cover
the areas typically discussed in texts and standards.

At level 1, the breakdown is identical to that given in IEC
12207 (Section 6.2) except that the term “Management of
the Software Configuration Management Process” was
used instead of “Process Implementation” and the term
“Software Configuration Auditing” was used instead of
“Configuration Evaluation.” The typical texts discuss
Software Configuration Management Planning (our topic
A.3); We have expanded this to a “management of the
process” concept in order to capture related ideas expressed
in many of the references that we have used. These ideas
are captured in topics A.1 (organizational context), A.2
(constraints and guidance), and A.4 (surveillance of the
SCM process). A similar comparison can also be made to
[Buckley] except for the addition of “Software Release
Management and Delivery.”

We have chosen to include the word “Software” as a prefix
to most of the configuration topics to distinguish the topics
from hardware CM or system level CM activities. We
would reserve “Configuration Management” for system
purposes and then use HCM and SCM for hardware and
software respectively.

The topic A.1, “Software Configuration Management
Organizational Context,” covers key topics addressed in
multiple texts and articles and it appears within the level 1
headings consistently with the placement used in the
references. This new term on organizational context was
included as a placeholder for capturing three concepts
found in the references. First, [Buckley] discusses SCM in
the overall context of a project with hardware, software,
and firmware elements. We believe that this is a link to a
related discipline of system engineering. (This is similar to
what IEEE 828 discusses under the heading of “Interface
Control”). Second, SCM is one of the product assurance
processes supporting a project, or in IEC 12207
terminology, one of the supporting lifecycle processes. The
processes are closely related and, therefore, interfaces to
them should be considered in planning for SCM. Finally,

some of the tools for implementing SCM might be the same
tools used by the developers. Therefore, in planning SCM,
there should be awareness that the implementation of SCM
is strongly affected by the environment chosen for the
development activities.

The inclusion of the topic “Release Management and
Delivery” is somewhat controversial since the majority of
texts on software configuration management devote little or
no attention to the topic. We believe that most writers
assume the library function of configuration identification
would support release management and delivery but,
perhaps, assume that these activities are the responsibility
of project or line management. The IEC 12207 standard,
however, has established this as a required area for SCM.
Since this has occurred and since this topic should be
recognized somewhere in the overall description of
software activities, “Release Management and Delivery”
has been included.

Criterion (d): No Specific Application Domains

No specific application domains have been assumed.

Criterion (e): Compatible with Various Schools of
Thought

SCM concepts are fairly stable and mature.

Criterion (f): Compatible with Industry, Literature, and
Standards

The breakdown was derived from the literature and from
key standards reflecting consensus opinion. The extent to
which industry implements the SCM concepts in the
literature and in standards varies by company and project.

Criterion (g): As Inclusive as Possible

The inclusion of the level 1 topic on management of SCM
expands the planning concept into a larger area that can
cover all management-related topics, such as surveillance
of the SCM process. For each level 1 topic, the level 2
topics categorize the main areas in various references’
discussions of the level 1 topic. These are intended to be
general enough to allow an open-ended set of subordinate
level 3 topics on specific issues. The level 3 topics cover
specifics found in the literature but are not intended to
provide an exhaustive breakdown of the level 2 topic.

Criterion (h): Themes of Quality and Measurement

The relationship of SCM to product assurance and
measurement is provided for in the breakdowns. The
description also conveys the role of SCM in achieving a
consistent, verified, and validated product.

Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level

The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names Meaningful Outside the
Guide

For the most part, we believe this is the case. Some terms,
such a “Baselines” or “Physical Configuration Audit”

© IEEE – Trial Version 1.00 – May 2001 7–17

require some explanation but they are obviously the terms
to use since appear throughout the literature.

Criterion (k): Topics only sufficiently described to allow
reader to select appropriate material

We believe this has been accomplished. We have not
attempted to provide a tutorial on SCM.

Criterion (l): Text on the Rationale Underlying the
Proposed Breakdowns

This document provides the rationale.

© IEEE – Trial Version 1.00 – May 2001 8–1

CHAPTER 8

SOFTWARE ENGINEERING MANAGEMENT

Stephen G. MacDonell and Andrew R. Gray
University of Otago,

Dunedin, New Zealand
+64 3 479 8135 (phone) +64 3 479 8311 (fax)

stevemac@infoscience.otago.ac.nz

Table of Contents

1 Introduction...1
2 Definition of the Software Engineering Management

Knowledge Area...1
3 Breakdown of Topics for Software Engineering

Management..3
4 Breakdown Rationale ...9
5 Matrix of Topics vs. Reference Material......................10
6 Recommended References for Software Engineering

Management..11
Appendix A – List of Further Readings12
Appendix B – References Used to Write and Justify the

Description ..14
Appendix C – Table of Correspondence with PMBOK15

1 INTRODUCTION

This is the current draft (version 0.9) of the knowledge area
description for Software Engineering Management. The
primary goals of this document are to:

1) define the Software Engineering Management
knowledge area,

2) present a breakdown of the knowledge area in an
hierarchical topic framework,

3) provide a list of references that addresses the topics in
the breakdown,

4) provide a topic-reference matrix,

5) provide a list of further readings and supplementary
references that also address topics in this knowledge
area.

2 DEFINITION OF THE SOFTWARE ENGINEERING
MANAGEMENT KNOWLEDGE AREA

Before defining the Software Engineering Management
knowledge area it is first necessary to set out the scope or
context in which it is placed. As an organizational process,
it is also important that its relationship to other related
standards and to other knowledge areas is clear.

2.1 Scope and definition

The scope of this knowledge area follows the general focus
of the Guide; that is, “emphasis… is placed upon the
construction of useful software artifacts” (page i, Preface to
the Guide to the SWEBOK). As a result we are principally
concerned with issues related to software development – the
acquisition of software solutions receives less attention
here.

Software engineering is characterized in this Guide
according to the IEEE definition: “(1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that
is, the application of engineering to software.” Management
generally incorporates the following activities: planning,
coordinating, measuring, monitoring, controlling and
reporting. Combining these two definitions leads us to an
understanding of Software Engineering Management: the
application of management activities – planning,
coordinating, measuring, monitoring, controlling and
reporting – to ensure that the development of software is
systematic, disciplined and measured.

The Software Engineering Management knowledge area
therefore addresses the management of software
development and the measurement and modeling of
software development. Whilst measurement is an important
aspect of all Guide to the SWEBOK knowledge areas, it is
here that the topic is most focused, particularly with regard
to issues involved in goal-driven measurement selection,
model development and testing for the purposes of software
engineering management.

2.2 The management of software engineering

Whilst it is true to say that in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects particular

8–2 © IEEE – Trial Version 1.00 – May 2001

to software products and the software engineering process
that complicate effective management – just a few of them
are as follows:

§ the perception of clients is such that there is a lack of
appreciation for the complexity inherent in software
engineering, particularly in relation to the impact of
changing requirements

§ related to the point just made, it is almost inevitable
that the software engineering process itself will
generate the need for new or changed client
requirements

§ as a result, software is often built in an iterative
process rather than a concrete sequence of closed tasks

§ software engineering necessarily incorporates aspects
of creativity and discipline – maintaining an
appropriate balance between the two is often difficult

§ unlike many other disciplines, we are largely lacking
an underlying theory (e.g. engineering is founded on
the principles of physics and mathematics)

§ software engineers create intangible products that
cannot easily be tested in the same sense that a
physical product can

§ the degree of novelty and complexity of the software
we are asked to build is extremely high, in that most (if
not all) of the common and simple products have
already been built

§ we are faced with an extremely rapid rate of change in
the underlying technology.

2.3 Relationship to general management and project
management

With respect to software engineering, management
activities occur at two levels. Aspects of general
organizational management are relevant in terms of their
impact on software engineering. For instance, planning at
the strategic, tactical and operational level, organizational
culture and behavior, and functional enterprise management
in terms of procurement, supply chain management,
marketing, sales, and distribution all have an influence,
albeit indirectly, on an organization’s software engineering
process. Perhaps more pertinent to this knowledge area is
the notion of project management, as “the construction of
useful software artifacts” is normally managed in the form
of (perhaps programs of) individual projects. In this regard
we find extensive support in the Guide to the Project
Management Body of Knowledge (PMBOK) [PMI, 1996],
which itself includes the following project management
knowledge areas: integration, scope, time, cost, quality,
human resource, communications, risk, and procurement.
Clearly all of these topics have direct relevance to this
knowledge area. Rather than attempt to duplicate the
content of the Guide to the PMBOK here, which would be
both impossible and inappropriate, we instead provide a

cross-reference table at the end of this document so that the
relationship between the two is evident.

2.4 Relationship to other Guide to the SWEBOK
knowledge areas and standards

Not unexpectedly this knowledge area is closely related to
others in the Guide to the SWEBOK, and reading the
following knowledge area documents in conjunction with
this one would be particularly useful. Material that is
covered in these separate documents is not duplicated here.

Software Configuration Management, as this deals
with the administration, monitoring and control of
collections of [software] components.

Software Engineering Process, where these process
activities must be managed.

Software Quality, as quality is constantly a goal of
management and is an aim of many activities that
must be managed.

In order to provide a broader context in which these
knowledge areas can be considered it is useful to map them
to the IEEE/EIA Standard for Information Technology
(ISO/IEC 12207) – Software life cycle processes. This sees
the four management-oriented knowledge areas principally
aligned to ‘6. Supporting Life Cycle Processes’ and to ‘7.
Organizational Life Cycle Processes’ as follows:

Guide to the SWEBOK ISO/IEC 12207
Chapter 7 Software
Configuration
Management

6.2 Configuration
Management

Chapter 8 Software
Engineering Management

7.1 Management

Chapter 9 Software
Engineering Process

7.3 Improvement

Chapter 11 Software
Quality

6.3 Quality Assurance
6.6 Joint Review
6.4 Verification
6.7 Audit
6.5 Validation

Chapters 2 through 6 of the Guide to the SWEBOK
represent the phases of the software development process
(and map to sections 5.3 Development and 5.5 Maintenance
of ISO/IEC 12207). Clearly each process must be managed
– issues of particular relevance to each process are dealt
with in the associated knowledge area. Our focus is on the
relevant aspects of enterprise, process and project
management as they apply to software engineering rather
than to individual development processes.

2.5 Management and measurement

As alluded to above, the Software Engineering
Management knowledge area consists of both the
management process and measurement sub-areas. Whilst
these two topics are often regarded as being separate, and

© IEEE – Trial Version 1.00 – May 2001 8–3

indeed they do possess many mutually unique aspects, their
close relationship has led to their combined treatment here
as part of the Guide to the SWEBOK. Unfortunately the
public perception of the software industry is that it delivers
products late, over budget, with poor quality and uncertain
functionality. Measurement-informed management – an
assumed principle of any true engineering discipline – can
help to turn this perception around. In essence,
management without measurement, qualitative and
quantitative, suggests a lack of rigor, and measurement
without management suggests a lack of purpose or context.
In the same way, however, management and measurement
without expert knowledge is equally ineffectual so we must
be careful to avoid over-emphasizing the quantitative
aspects of Software Engineering Management. Effective
management requires a combination of both numbers and
stories.

The following working definitions are adopted here:

Management process refers to the activities that are
undertaken in order to ensure that the software
development process is performed in a manner
consistent with the organization’s policies, goals, and
standards.

Measurement (a.k.a. Metrics) refers to the assignment
of values and labels to aspects of software
development (products, processes, and resources as
defined by [Fenton and Pfleeger, 1997]) and the
models that are derived from them whether these
models are developed using statistical, expert
knowledge, or other techniques.

The management process sub-area makes extensive use of
the measurement sub-area. This exchange between the two
sub-areas occurs continuously throughout the software
development processes.

3 BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING MANAGEMENT

As the Software Engineering Management knowledge area
is viewed here as an organizational process that
incorporates the notion of process and project management,
we have created a breakdown that is both topic-based and
life cycle -based. There are three major topic areas:
organizational management, which deals with high-level
management activities that have a relevant but somewhat
indirect impact on software engineering; process/project
management, which deals with generally accepted software
engineering management activities; and software
engineering measurement, which deals with the effective
development and implementation of measurement
programs in software engineering organizations. Within
each main topic area relevant sub-topics are listed, and
described where necessary. In particular, further
explanation is provided in the process/project management
and software engineering measurement topic areas where

distinct issues relating to software engineering management
warrant more detailed attention.

A. Organizational management

1. Policy management – organizational policies and
standards provide the framework in which software
engineering is undertaken. As such, they
operationalize overall organizational strategies and
have an indirect influence on the software engineering
process and its management. It is important that those
charged with the management of software engineering
both understand and influence the development,
dissemination, deployment and enforcement of
policies and standards. [Pfle: c2; Reif: c2; Somm: c30;
Thay: c2,c4]

1. Means of policy development

2. Policy dissemination and enforcement

3. Development and deployment of standards

2. Personnel management – policies and procedures used
at the organizational level to recruit, select, motivate
and reward personnel also affect the management of
software engineering teams and individuals. It is
acknowledged that in order to recruit and retain high-
quality personnel in the software engineering industry
it is vital that training, motivation, career development
and the like are given adequate attention. [F&P: c11;
Pfle: c3; Press: c3; Reif: c7,c8; Somm: c28; Thay:
c7,c8]

1. Hiring and retention

2. Training and motivation

3. Mentoring for career development

3. Communication management – even if project-based
communication is effective, an organization is
unlikely to survive long-term without clear policies
and procedures that are applicable in the wider
context. An awareness of communication channels
(formal and informal), conventions in terms of
terminology, form and style, mechanisms for feedback
and the impact of organizational structures on
communication, has an indirect but important
influence on communication within the software
engineering process. [Press: c3; Somm: c28; Thay:
c1,c3]

1. Communication channels and media
2. Meeting procedures

8–4 © IEEE – Trial Version 1.00 – May 2001

Software Engineering Management

Organizational
Management

Process/Project
Management

Software
Engineering

Measurement

Policy Management

Personnel
Management

Communication
Management

Portfolio
Management

Procurement
Management

Initiation and scope
definition

Planning

Enactment

Review and
Evaluation

Closure

Goals

Measurement
Selection

Measuring Software
and its

Development

Collection of data

Software
Measurement

Models

3. Written presentations
4. Oral presentations
5. Negotiation

4. Portfolio management – organizations that deal with
multiple clients and/or multiple projects are often
faced with the need to prioritize their effort in terms of
the projects they undertake. It is important that those
involved in software engineering management both
contribute to and are guided by the organizational
management of project portfolios, where portfolios
are constructed in light of the advantages and
disadvantages of undertaking individual projects using
a variety of cost/benefit and similar analysis methods.
[Press: c10]

1. Strategy development and coordination

2. General investment management techniques

3. Project selection

4. Portfolio construction (risk minimization and
value maximization)

5. Procurement management – in cases where an
organization outsources (part of) their operation to an
external agency this process must be managed
effectively in order to ensure a successful outcome.
As it is not uncommon for organizations to purchase
some or all of their software engineering activity in
such a way, organizational policies and procedures

should exist to facilitate effective provider-consumer
relationships. [Press: c5; Reif: c15; Somm: c2]

1. Procurement planning and selection

2. Supplier contract management

B. Process/project management (largely following
7.1 ISO/IEC 12207 Management Process)

1. Initiation and scope definition – the focus of this set of
activities is on the effective determination of process
and/or project requirements via various elicitation
methods and the assessment of the process/project’s
feasibility from a variety of standpoints. Once
feasibility has been established, the remaining task
within this process is the specification of requirements
review and modification procedures (see also Chapter
2 of the Guide to the SWEBOK).

1. Determination and negotiation of requirements –
methods of requirements engineering, elicitation
(e.g. observation), analysis (e.g. data modelling,
use case modelling), specification, and validation
(e.g. prototyping) must be selected and applied
in cognizance of various stakeholder
perspectives. This leads to the determination of
process/project scope, objectives and constraints.
This is always an important activity, as it sets the
visible boundaries for the set of tasks being
undertaken, and is particularly so where the
novelty of the undertaking is high. [D&T: c4;
Pfle: c4; Press: c5,c11,c12; Somm: c4-11]

© IEEE – Trial Version 1.00 – May 2001 8–5

2. Feasibility analysis (technical, operational,
financial, social/political) – the software
engineering manager must be assured that
adequate capability and resources are available
in the form of people, expertise, facilities,
infrastructure, and support (either internally or
externally) to ensure that the process/project can
be successfully completed in a timely and cost-
effective manner (using, for example, a
requirement-capability matrix). This often
requires some ‘ball-park’ estimation of effort
and cost based on appropriate methods (e.g.
expert-informed analogy techniques). [Press:
c10]

3. Process for the review and revision of
requirements – given the inevitability of change,
it is vital that agreement among stakeholders is
reached at this early point as to the means by
which scope and requirements are to be reviewed
and revised (e.g. via agreed change management
procedures). This clearly implies that scope and
requirements will not be ‘set in stone’ but can
and should be revisited at pre-determined points
as the process occurs (e.g. at design reviews,
acceptance tests). If changes are accepted then
some form of traceability analysis and risk
analysis (see below) should be used to ascertain
the impact of those changes. A managed change
approach should also be useful when it comes
time to review the outcome of the
process/project, as the scope and requirements
should form the basis for evaluation of success.
[Somm: c4]

2. Planning – the iterative planning process is informed
by the scope and requirements and the establishment
of feasibility. At this point, software processes are
evaluated and the most appropriate (given the nature
of the process/project, its degree of novelty, its
functional and technical complexity, its quality
requirements, and so on) is selected. Where relevant,
the project itself is then planned in the form of an
hierarchical decomposition of tasks, the associated
deliverables of each task are specified and
characterized in terms of quality and other attributes
in line with stated requirements, and detailed effort,
schedule and cost estimation is undertaken. Resources
are then allocated to tasks so as to optimize personnel
productivity (at individual, team, and organizational
levels), equipment and materials utilization and
adherence to schedule. Detailed risk management is
undertaken and the ‘risk profile’ of the process/project
is discussed among and accepted by all relevant
stakeholders. Comprehensive quality management
processes are determined as part of the planning
process in the form of procedures and responsibilities
for quality assurance, verification and validation (see
also Chapter 11 of the Guide to the SWEBOK). As an

iterative process, it is vital that the processes and
responsibilities for ongoing plan management, review
and revision are also clearly stated and agreed.

1. Process planning – selection of the appropriate
software process (e.g. spiral, cleanroom) and the
specification and deployment of appropriate
process standards are undertaken in the light of
the particular scope and requirements of the
process/project. Relevant methods and tools are
also selected. [D&T: c5,c11; Pfle: c2; Press: c2;
Reif: c1,c2,c4; Somm: c1; Thay: c3]

2. Project planning – appropriate methods and tools
are used to decompose the project into tasks,
with associated inputs, outputs and completion
conditions (e.g. work breakdown structure).
[D&T: c10; Pfle: c3; Press: c3,c5; Reif: c3,c4;
Somm: c3; Thay: c4,c6]

3. Determine deliverables – the product(s) of each
task (e.g. high level architectural design,
inspection report) are specified and
characterized. [Pfle: c3; Press: c3,c7; Somm: c3;
Thay: c4]

4. Effort, schedule and cost estimation – based on
the breakdown of tasks, inputs and outputs, the
expected effort range required for each is
determined using a calibrated estimation model
based on historical size-effort data where
available and relevant (e.g. analogy-based
estimation, function point analysis); task
dependencies are established and potential
bottlenecks are identified using suitable methods
(e.g. critical path analysis); bottlenecks are
resolved where possible and the expected
schedule of tasks with projected start times,
durations and end times is produced (e.g. PERT
chart); resource requirements (people, tools) are
translated into cost estimates. [D&T: c10; F&P:
c12; Pfle: c3; Press: c5,c7; Reif: c4,c5; Somm:
c3,c29; Thay: c5]

5. Resource allocation – equipment, facilities and
people are associated with the scheduled tasks,
including the allocation of responsibilities for
completion (using, for example, a Gantt chart).
This activity is informed and constrained by the
availability of resources and their optimal use
under these circumstances, as well as by issues
relating to personnel e.g. productivity of
individuals/teams, team dynamics,
organizational and team structures. [Pfle: c3;
Press: c5; Reif: c7,c8; Somm: c3; Thay: c6,c7]

6. Risk management – risk identification and
analysis (what can go wrong, how and why, and
what are the likely consequences), critical risk
assessment (which are the most significant risks
in terms of exposure, which can we do

8–6 © IEEE – Trial Version 1.00 – May 2001

something about in terms of leverage), risk
mitigation and contingency planning
(formulating a strategy to deal with risks and to
manage the risk profile) are all undertaken. Risk
assessment methods (e.g. decision trees and
process simulations) should be used in order to
highlight and evaluate risks. Project
abandonment policies should also be determined
at this point in discussion with all other
stakeholders. [D&T: c10; Pfle: c3; Press: c6;
Reif: c11; Thay: c4]

7. Quality management – quality is defined in
terms of pertinent attributes of the specific
process/project and any associated product(s),
perhaps in both quantitative and qualitative
terms. (These quality attributes will have been
determined in the specification of detailed
requirements.) Thresholds for adherence to
quality are set for each attribute as appropriate to
stakeholder expectations for the software at
hand. Procedures relating to ongoing software
quality assurance (SQA) throughout the process
and for product (deliverable) verification and
validation are also specified at this stage (e.g.
reviews and inspections) (see also Chapter 11 of
the Guide to the SWEBOK). [D&T: c7,c9; Press:
c8; Reif: c10; Somm: c30,c31; Thay: c9,c10]

8. Plan management – in an environment where
change is an expectation rather than a shock, it is
vital that plans are themselves managed. This
requires that adherence to plans is systematically
directed, monitored, reviewed, reported, and,
where appropriate, revised. Plans associated with
other management-oriented support processes
(e.g. documentation, configuration management
and problem resolution) also need to be managed
in the same manner. [Somm: c3; Thay: c4]

3. Enactment – the plans are then implemented and the
processes embodied in the plans are enacted.
Throughout, there is a focus on adherence to the
plans, with an over-riding expectation that such
adherence will lead to the successful satisfaction of
stakeholder requirements and achievement of the
process/project objectives. Fundamental to enactment
are the ongoing management activities of measuring,
monitoring, controlling and reporting.

1. Implementation of plans – the process is initiated
and the process/project activities are undertaken
according to the schedule. In the process,
resources are utilized (e.g. personnel effort,
funding) and deliverables are produced (e.g.
architectural design documents, test cases). [Pfle:
c3; Somm: c3]

2. Implementation of measurement process – the
measurement process is enacted alongside the
software development process/project, ensuring

that relevant and useful data is collected (see also
section C of this knowledge area breakdown).
[F&P: c13,c14; Press: c4; Reif: c9,c10,c12;
Thay: c3,c10]

3. Monitor process – adherence to the various plans
is systematically assessed continually and at pre-
determined intervals. Outputs and completion
conditions for each task are analyzed,
deliverables are evaluated in terms of their
required characteristics (e.g. via joint reviews,
test audits), effort expenditure, schedule
adherence and costs to date are investigated,
resource usage is examined, the process/project
risk profile is revisited, and adherence to quality
requirements is evaluated. Measurement data is
modeled and analyzed. Variance analysis based
on the deviation of actual from expected
outcomes and values is undertaken. This may be
in the form of cost overruns, schedule slippage
and the like. Outlier identification and analysis
of quality and other measurement data is
performed (e.g. defect density analysis). Risk
exposure and leverage are recalculated and
decisions trees, simulations and so on are re-run
in the light of new data. These activities enable
problem detection and exception identification
based on exceeded thresholds. Outcomes are
reported as needed and certainly where
acceptable thresholds are surpassed. [D&T:
c7,c9,c10; Press: c7; Reif: c9,c10; Somm: c31;
Thay: c3;c9]

4. Control process – the outcomes of the process
monitoring activities provide the basis on which
action decisions are taken. Where appropriate,
and where the impact and associated risks are
modeled and managed, changes can be made to
the process/project. This may take the form of
corrective action (e.g. re-testing certain
components), it may involve the incorporation of
contingencies so that similar occurrences are
avoided (e.g. the decision to use prototyping to
assist in requirements validation), and/or it may
entail the revision of the various plans and other
project documents (e.g. requirements
specification) to accommodate the unexpected
outcomes and their flow-on implications. In
some instances it may lead to abandonment of
the process/project. In all cases, change control
and configuration management procedures are
adhered to (see Chapter 7 of the Guide to the
SWEBOK), decisions are documented and
communicated to all relevant parties, plans are
revisited and revised where necessary, and
relevant data is recorded in the central database
(see also section C of this knowledge area
breakdown). [D&T: c10; Press: c9; Reif: c9,c10;
Thay: c3,c9]

© IEEE – Trial Version 1.00 – May 2001 8–7

5. Reporting – at specified and agreed periods,
adherence to the plans is reported, both within
the organization (e.g. to the project portfolio
steering committee) and to external stakeholders
(e.g. clients, users). Reports of this nature should
focus on overall adherence as opposed to the
detailed reporting required frequently within the
process/project team. [Reif: c9,c10; Thay:
c3,c10]

4. Review and evaluation – at critical points in the
process/project overall progress towards achievement
of the stated objectives and satisfaction of stakeholder
requirements is evaluated. Similarly, assessments of
the effectiveness of the overall process to date, the
personnel involved, and the tools and methods
employed are also undertaken at particular milestones.

1. Determining satisfaction of requirements – since
attaining stakeholder (user and customer)
satisfaction is one of our principal aims, it is
important that progress towards this aim is
formally and periodically assessed. This occurs
at the achievement of major process/project
milestones (e.g. confirmation of software design
architecture, software integration joint review).
Variances from expectations are identified and
appropriate action is taken. As in the Control
process activity above, in all cases change
control and configuration management
procedures are adhered to (see Chapter 7 of the
Guide to the SWEBOK), decisions are
documented and communicated to all relevant
parties, plans are revisited and revised where
necessary, and relevant data is recorded in the
central database (see also section C of this
knowledge area breakdown). [Reif: c9,c10;
Thay: c3,c10]

2. Reviewing and evaluating performance –
periodic performance reviews for process/project
personnel provide insights as to the likelihood of
adherence to plans as well as possible areas of
difficulty (e.g. team member conflicts). The
various methods, tools and techniques employed
are evaluated for their effectiveness and
appropriateness, and the process itself is
systematically and periodically assessed for its
relevance, utility and efficacy in the
process/project context (see also the other
SWEBOK chapters). Where appropriate,
changes are made and managed. [D&T: c7; Pfle:
c7,c8; Press: c8; Reif: c9,c10; Thay: c3,c10]

5. Closure – the process/project reaches closure when all
of the plans and embodied processes have been
enacted and completed. At this stage the criteria for
process/project success are revisited. Once closure is
established, archival, post mortem and process
improvement activities are performed.

1. Determining closure – the tasks as specified in
the plans are complete and satisfactory
achievement of completion criteria is confirmed.
All planned products have been delivered with
acceptable characteristics. Requirements are
checked off and confirmed as satisfied and the
objectives of the process/project have been
achieved. These processes generally involve all
stakeholders and result in the documentation of
client acceptance and any remaining known
problem reports. [D&T: c7; Reif: c9,c10; Thay:
c3,c10]

2. Closure activities – after closure has been
confirmed, archival of process/project materials
takes place in line with stakeholder-agreed
methods, location and duration. The
organization’s measurement database is updated
with final process/project data and post-project
analyses are undertaken. A process/project post
mortem is undertaken so that issues, problems
and opportunities encountered during the process
(particularly via Review and Evaluation) are
analyzed, lessons are drawn from the process,
and are fed into organizational learning and
improvement endeavors (see also Chapter 9 of
the Guide to the SWEBOK). [Pfle: c11; Somm:
c31]

(Software then moves into operation,
maintenance and, perhaps eventually, retirement.
Whilst these tasks also need to be managed they
are not explicitly addressed here – software
maintenance as a set of activities is addressed in
Chapter 6 of the Guide to the SWEBOK, and the
other topics (software operation and retirement)
are outside the scope of the Guide.)

C. Software engineering measurement

1. Determining the goals of a measurement program –
the ad hoc approach to software engineering
measurement that characterized early efforts – that is,
measuring everything possible – often failed to
provide genuine insights in terms of organizational
improvement, or worse, it led to spurious outcomes
that did not generalize to other cases. Each
measurement endeavor should be guided by
organizational objectives and driven by an over-riding
goal that has organizational improvement at its
foundation. In this way, measurement effort
expenditure should ultimately result in some sort of
cost-effective gain to the organization, based on
justified prioritization of efforts. An emerging
international standard, ISO/IEC FCD 15939, describes
a generic process that defines the activities and tasks
necessary to implement a software measurement
process and includes as well a measurement
information model. [ISO/IEC, 2000]

8–8 © IEEE – Trial Version 1.00 – May 2001

1. Organizational objectives – organizational
strategies inform software engineering
management in terms of identifying the broad
issues and objectives that hold principal
relevance at the organizational level (e.g. being
first-to-market with new products). [F&P:
c3,c13; Press: c4]

2. Software process improvement goals –
organizational objectives are translated into
specific software-related goals that, if achieved,
can assist the organization in attaining its
objectives (e.g. optimizing software
development with a view to shortening the
product life-cycle whilst maintaining process and
product quality). [F&P: c3,c13; Pfle: c12; Press:
c4; Reif: c2; Somm: c31]

2. Measurement selection – development of an effective
measurement process is informed by the
organizational objectives and software process
improvement goals as specified. This provides the
necessary context for more specific and detailed
measurement selection. Some understanding of the
validity, accuracy and reliability of the selected
measures is also crucial in terms of assessing the
value of the measurement program and the confidence
that can be placed in the results generated from it.

1. Goal-driven measurement selection – once
software process improvement goals are set, we
are then in a position to utilize a decomposition
process in order to ask questions of direct
relevance and interest, leading finally to the
selection of useful and relevant measures (e.g.
the Goal/Question/Metric approach incorporates
just such a decomposition process). In relation to
shortening the product life -cycle we may adopt a
measurement goal of maximizing software
development productivity. In turn, we might ask
questions such as: how much effort is expended
on rework? what is the range of developer
productivity rates? is developer productivity in
line with changes in developer experience? All
require quite different measures in order to
provide the answers needed to achieve the over-
riding goals. [F&P: c1,c3,c13,c14; Reif: c12;
Thay: c10]

2. Measurement validity – an awareness of issues
relating to measurement validity and reliability is
essential if the measurement program is to
provide effective and bounded results. In
particular, an appreciation of measurement scales
and the implications of each scale type in
relation to the subsequent selection of data
analysis methods is especially important. [F&P:
c2; Pfle: c11]

3. Measuring software and its development – whilst the
application of measurement to software engineering

can be complex, particularly in terms of modeling and
analysis methods (see below), there are several
aspects of software engineering measurement that are
fundamental and that underlie much of the more
advanced measurement and analysis processes.
Furthermore, achievement of process and product
improvement efforts can only be assessed if a set of
baseline measures has been established. Software
engineering management therefore includes, as a
minimum, the measurement of product size, product
structure, resource utilization and product and process
quality.

1. Size measurement – software product size is
most often assessed by measures of length (e.g.
lines of source code in a module, pages in a
requirements specification document) or
functionality (e.g. function points in a
specification or design, COCOMO evaluation of
a system design). The standard for functional
size measurement methods is [ISO/IEC 1998]
and additional supporting standards are under
development. A number of specific methods,
suitable for different purposes, are available.
[F&P: c7; Press: c4,c18,c23; Reif: c12; Somm:
c30].

2. Structure measurement – a diverse range of
measures of software product structure may be
applied to both high- and low-level design and
code artifacts to reflect control-flow (e.g. the
cyclomatic number, code knots), data-flow (e.g.
measures of slicing), nesting (e.g. nesting
polynomial measure, the BAND measure),
control structures (e.g. the vector measure, the
NPATH measure), and modular structure and
interaction (e.g. information flow, tree-based
measures, coupling and cohesion). [F&P: c8;
Press: c18,c23]

3. Resource measurement – whilst some effort can
be made to assess the utilization of tools and
hardware, the primary resource that needs to be
managed in software engineering is personnel.
As a result the main measures of interest are
those related to productivity of individuals and
of teams (e.g. using a measure of function points
produced per unit of person-effort) and their
associated levels of experience in software
engineering in general and perhaps in particular
technologies. [F&P: c3,c11; Somm: c29]

4. Quality measurement – as a multi-dimensional
attribute, quality measurement is less
straightforward to define than those above.
Furthermore, some of the dimensions of quality
(e.g. usability, maintainability, and value to the
client) are likely to require measurement in
qualitative rather than quantitative form. A more
detailed discussion of software quality

© IEEE – Trial Version 1.00 – May 2001 8–9

assessment is provided in Chapter 11 of the
Guide to the SWEBOK. [F&P: c9,c10; Press: c4;
Reif: c12; Somm: c30]

4. Collection of data – when developing a measurement
process it is important to ensure that the optimal set of
measures is chosen. By optimal it is not just meant
that the measures are those that necessarily provide
the greatest (predictive) power for the desired
purpose. It is also important that the cost of data
collection is minimized or at least balanced against the
benefits to be gained from the outputs of the program.
The possibility of reusing measures collected for other
purposes is also considered as part of the collection
process. The data collected is also useful from the
perspective of enabling appropriate models to be
developed for analysis, classification and prediction.
1. Survey techniques and form design – data

collection forms and questionnaires are pilot
tested before they are used on actual
processes/projects. Forms are logically laid out,
require minimum completion, and make use of
default values where possible. Assistance for
form and survey completion is made available.
[F&P: c4,c5]

2. Automated and manual data collection – all data
collection has associated costs, both direct (in
terms of people employed and software
purchased) and indirect (in the costs of
interruptions and delays as measurement data are
analyzed). For this reason, the measurement
process is treated as an investment in the
development process, with justification for
expenditure and quantification of the resulting
benefits. Procedures relating to data collection
detail the point at which the data is available, the
way in which it is collected, the personnel
responsible for collection, and the cost
associated with collection. Where possible,
unobtrusive automated data collection is
preferred. This information is important in
ensuring that that program is actually feasible.
The potential exists for a measurement process
to be created, only to find that some of the data
cannot physically be collected, or not in
sufficient quantities. [F&P: c5; Press: c4; Somm:
c30]

5. Software measurement models – as the data is
collected and the measurement database is populated
we become able to build models using both data and
knowledge. These models exist for the purposes of
analysis, classification and prediction. Such models
need to be evaluated to ensure that their levels of
accuracy are sufficient and that their limitations are
known and understood. The refinement of models,
which takes place both during and after projects are
completed, is another important activity. The

implementation of measurement models is more
management-oriented since the use of such models
has an influential effect on personnel behavior.

1. Model building, calibration and evaluation – the
goal-driven approach to measurement informs
the model building process to the extent that
models are constructed to answer relevant
questions and achieve software improvement
goals. This process is also influenced by the
implied limitations of particular measurement
scales in relation to the choice of analysis
method. The models are calibrated (by using
particularly relevant observations e.g. recent
projects, projects using similar technology) and
their effectiveness is evaluated (e.g. by testing
their performance on holdout samples). [F&P:
c4,c6,c13; Pfle: c3,c11,c12; Somm: c29]

2. Implementation, interpretation and refinement of
models – the calibrated models are applied to the
process/project (see Process/project enactment),
their outcomes are interpreted and evaluated in
the context of the process/project, and the models
are then refined where appropriate. [F&P: c6;
Pfle: c3,c11,c12; Press: c4; Somm: c29]

4 BREAKDOWN RATIONALE

The following subsections each describe how the proposed
draft of the knowledge area description meets the criteria
given in the project guidelines.

One or two breakdowns with identical topics

A single breakdown of topics is shown.

Soundness and reasonableness

The primary references and secondary sources were
examined quite thoroughly in order to list all main topics.
The division of the management process into life-cycle
based topics seems both plausible and useful in terms of
educational presentation.

Generally acceptable

In our view the material in this knowledge area description
meets the criterion of being generally acceptable in terms of
being “applicable to most projects, most of the time” and
having “widespread consensus about their value and
usefulness” [PMI, 1996]. These topics are those that
receive the greatest coverage in both the original texts and
additional materials suggested here.

Similarly, the Industrial Advisory Board definition of
“study material of a software engineering licensing exam
that a graduate would pass after completing four years of
work experience” appears to be met. However, in this case
the specific responsibilities of the graduate will obviously
influence in what areas they have the opportunity to gain
experience. Project management is often a more senior
position and as such, graduates with four years of practice

8–10 © IEEE – Trial Version 1.00 – May 2001

may not have had significant experience in managing, at
least large-scale, projects.

The importance of measurement and its role in better
management practices is widely acknowledged and so its
importance can only increase in coming years. Effective
measurement has become one of the cornerstones of
organizational maturity.

Compatible with various schools of thought within software
engineering

Excluding debate on measurement theoretic issues there is
little intense debate in the measurement field. There is
nothing that appears to be controversial in the management
process sub-area.

Compatible with breakdown in industry, literatures, and
standards

The breakdown is in line with others proposed, and is
particularly aligned with the IEEE/EIA Standard for
Information Technology (ISO/IEC 12207) – Software life
cycle processes and the Guide to the Project Management
Body of Knowledge.

Depth and node density

The suggested guidelines have been met here.

Meaningful topic names

Key terms on software measures and measurement methods
have been defined in [ISO/IEC 2000] on the basis of the

ISO international vocabulary of metrology [ISO93].
Nevertheless, readers will encounter terminology
differences in the literature; for example, the term “metrics”
is sometimes used in place of “measures”. We recognize
that this could make less obvious the connection between
this work and many papers and books (including [Fenton
and Pfleeger, 1997]).

Brevity of topic descriptions

Although they have been expanded significantly between
the last draft and this, the descriptions remain adequately
brief and to the point.

Specific reference material

Additional reference material for more specialized topics
not covered adequately in the primary reference material
has been added.

Proposed reference material (publicly available)

All material is publicly available.

Maximum number of core reference materials is 15

We have adhered to this limit.

Preference to IEEE or ACM copyrighted material

This is evident in the selection of reference material,
especially the collections of papers.

5 MATRIX OF TOPICS VS . REFERENCE MATERIAL

The level of granularity used in Table 1 is a mixture of second and third level topics, depending on the specificity of the topic
in question.

Topic D&T F&P Pfle Press Reif Somm Thay
A. Organizational Management

Policy management Ch. 2 Ch. 2 Ch. 30 Ch. 2,4

Personnel management Ch. 11 Ch. 3 Ch. 3 Ch. 7,8 Ch. 28 Ch. 7,8

Communication management Ch. 3 Ch. 28 Ch. 1,3

Portfolio management Ch. 10

Procurement management Ch. 5 Ch. 15 Ch. 2

B. Process/project Management

Initiation and scope definition

Determination and negotiation of requirements Ch. 4 Ch. 4 Ch. 5,11,12 Ch. 4-11

Feasibility analysis Ch. 10

Review/revision of requirements Ch. 4

Planning

Process planning Ch. 5,11 Ch. 2 Ch. 2 Ch. 1,2,4 Ch. 1 Ch. 3

Project planning Ch. 10 Ch. 3 Ch. 3,5 Ch. 3,4 Ch. 3 Ch. 4,6

Determine deliverables Ch. 3 Ch. 3,7 Ch. 3 Ch. 4

Effort, schedule and cost estimation Ch. 10 Ch. 12 Ch. 3 Ch. 5,7 Ch. 4,5 Ch. 3,29 Ch. 5

Resource allocation Ch. 3 Ch. 5 Ch. 7,8 Ch. 3 Ch. 6,7

Risk management Ch. 10 Ch. 3 Ch. 6 Ch. 11 Ch. 4

Quality management Ch. 7,9 Ch. 8 Ch. 10 Ch. 30,31 Ch. 9,10

Plan management Ch. 3 Ch. 4

© IEEE – Trial Version 1.00 – May 2001 8–11

Topic D&T F&P Pfle Press Reif Somm Thay
Enactment

Implementation of plans Ch. 3 Ch. 3

Implementation of measurement process Ch. 13,14 Ch. 4 Ch. 9,10,12 Ch. 3,10

Monitor process Ch. 7,9,10 Ch. 7 Ch. 9,10 Ch. 31 Ch. 3,9

Control process Ch. 10 Ch. 9 Ch. 9,10 Ch. 3,9

Reporting Ch. 9,10 Ch. 3,10

Review and evaluation

Determining satisfaction of requirements Ch. 9,10 Ch. 3,10

Reviewing and evaluating performance Ch. 7 Ch. 7,8 Ch. 8 Ch. 9,10 Ch. 3,10

Closure

Determining closure Ch. 7 Ch. 9,10 Ch. 3,10

Closure activities Ch. 11 Ch. 31

C. Software Engineering Measurement

Determining the goals of a measurement
program

Organizational objectives Ch. 3,13 Ch. 4

Software process improvement goals Ch. 3,13 Ch. 12 Ch. 4 Ch. 2 Ch. 31

Measurement selection

Goal-driven measurement selection Ch. 1,3,13,
14

 Ch. 12 Ch. 10

Measurement validity Ch. 2 Ch. 11

Measuring software and its development

Size measurement Ch. 7 Ch. 4,18,23 Ch. 12 Ch. 30

Structure measurement Ch. 8 Ch. 18,23

Resource measurement Ch. 3,11 Ch. 29

Quality measurement Ch. 9,10 Ch. 4 Ch. 12 Ch. 30

Collection of data

Survey techniques and form design Ch. 4,5

Automated and manual data collection Ch. 5 Ch. 4 Ch. 30

Software measurement models

Model building, calibration and evaluation Ch. 4,6,13 Ch. 3,11,12 Ch. 29

Implementation, interpretation and refinement
of models

 Ch. 6 Ch. 3,11,12 Ch. 4 Ch. 29

Table 1: Topics and their references

6 RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING MANAGEMENT

The Topic-Reference matrix shown above requires the
following references to be included in the Guide to the
SWEBOK.

1) [D&T: Dorfman and Thayer, 1997] Merlin Dorfman
and Richard H. Thayer (eds.). 1997. Software
engineering. IEEE Computer Society. [Chapters 4, 5, 7,
9-11]

2) [F&P: Fenton and Pfleeger, 1997] Norman E. Fenton
and Shari Lawrence Pfleeger. 1997. Software metrics: a
rigorous and practical approach. PWS Publishing
Company. [Chapters 1-14]

3) [Pfle: Pfleeger, 1998] Shari Lawrence Pfleeger. 1998.
Software engineering: theory and practice. Prentice
Hall. [Chapters 2-4, 7, 8, 11, 12]

4) [Press: Pressman, 1997] Roger S. Pressman. 1997.
Software engineering: a practitioner’s approach.
(Fourth edition) McGraw-Hill. [Chapters 2-12, 18, 23]

5) [Reif: Reifer, 1997] Donald J. Reifer (ed.). 1997.
Software management, 5th edition. IEEE Computer
Society. [Chapters 1-5, 7-12, 15]

6) [Somm: Sommerville, 1996] Ian Sommerville. 1996.
Software engineering. Addison-Wesley. [Chapters 1-11,
28-31]

7) [Thay: Thayer, 1997] Richard H. Thayer (ed.). 1997.
Software engineering project management. IEEE
Computer Society. [Chapters 1-10]

8–12 © IEEE – Trial Version 1.00 – May 2001

APPENDIX A – LIST OF FURTHER READINGS

The following readings are useful sources of information
for this knowledge area.

Process/Project Management:

Adler, T.R., Leonard, J.G. and Nordgren, R.K. Improving
risk management: moving from risk elimination to risk
avoidance. Information and Software Technology 41: 29-34
(1999).

Baines, R. Across disciplines: risk, design, method,
process, and tools. IEEE Soft. (July/Aug): 61-64 (1998)

Binder, R.V. Can a manufacturing quality model work for
software? IEEE Soft. (September/October): 101-102,105
(1997).

Boehm, B.W. and DeMarco, T. Software risk management
(Guest editors’ introduction). IEEE Soft. (May/June): 17-19
(1997).

Carr, M.J. Risk management may not be for everyone.
IEEE Soft. (May/June): 21,24 (1997).

Charette, R.N. Large-scale project management is ris k
management. IEEE Soft. (July): 110-117 (1996).

Charette, R.N., Adams, K.M. and White, M.B. Managing
risk in software maintenance. IEEE Soft. (May/June): 43-50
(1997).

Collier, B., DeMarco, T. and Fearey, P. A defined process
for project postmortem review. IEEE Soft. (July): 65-72
(1996).

Conrow, E.H. and Shishido, P.S. Implementing risk
management on software intensive projects. IEEE Soft.
(May/June): 83-89 (1997).

DeMarco, T. and Lister, T. Peopleware: productive
projects and teams. Dorset House Publishing, 1987.

DeMarco, T. and Miller, A. Managing large software
projects. IEEE Soft. (July): 24-27 (1996).

Favaro, J. and Pfleeger, S.L. Making software development
investment decisions. ACM SIGSoft Software Engineering
Notes 23(5): 69-74 (1998).

Fayad, M.E and Cline, M. Managing object-oriented
software development. Computer (Sept): 26-31 (1996)

Fleming, R. A fresh perspective on old problems. IEEE
Soft. (January/February): 106-113 (1999).

Garvey, P.R., Phair, D.J. and Wilson, J.A. An information
architecture for risk assessment and management. IEEE
Soft. (May/June): 25-34 (1997).

Gemmer, A. Risk management: moving beyond process.
Computer (May): 33-43 (1997).

Glass, R.L. The ups and downs of programmer stress.
Communications of the ACM 40(4): 17-19 (1997).

Glass, R.L. Short-term and long-term remedies for runaway
projects. Comm. ACM 41(7): 13-15 (1998).

Glass, R.L. How not to prepare for a consulting assignment,
and other ugly consultancy truths. Communications of the
ACM 41(12): 11-13 (1998).

Henry, S.M. and Stevens, K.T. Using Belbin’s leadership
role to improve team effectiveness: an empirical
investigation. Journal of Systems and Software 44: 241-250
(1999).

Hohmann, L. Coaching the rookie manager. IEEE Soft.
(January/February): 16-19 (1999).

Hsia, P. Making software development visible. IEEE Soft.
(March): 23-26 (1996).

Humphrey, W.S. Managing Technical People: Innovation,
Teamwork, and the Software Process. Addison-Wesley,
1997.

Jackman, M. Homeopathic remedies for team toxicity.
IEEE Soft. (July/August): 43-45 (1998).

Kansala, K. Integrating risk assessment with cost
estimation. IEEE Soft. (May/June): 61-67 (1997).

Karlsson, J. and Ryan, K. A cost-value aproach for
prioritizing requirements. IEEE Soft. (September/October):
87-74 (1997).

Karolak, D.W. Software engineering risk management.
IEEE Computer Society, 1996.

Keil, M., Cule, P.E., Lyytinen, K. and Schmict, R.C. A
framework for identifying software project risks.
Communications of the ACM 41(11): 76-83 (1998).

Kitchenham, B. and Linkman, S. Estimates, uncertainty,
and risk. IEEE Soft. (May/June): 69-74 (1997).

Leung, H.K.N. A risk index for software producers.
Software Maintenance: Research and Practice 8: 281-294
(1996).

Lister, T. Risk management is project management for
adults. IEEE Soft. (May/June): 20,22 (1997).

Mackey, K. Why bad things happen to good projects. IEEE
Soft. (May): 27-32 (1996).

Mackey, K. Beyond Dilbert: creating cultures that work.
IEEE Soft. (January-February): 48-49 (1998).

Madachy, R.J. Heuristic risk assessment using cost factors.
IEEE Soft. (May/June): 51-59 (1997).

Martin, C. The need for software risk management tools.
Application Development Trends. p.20,22.

McConell, S.C. Rapid Development: Taming Wild Software
Schedules. Microsoft Press, 1996.

McConell, S.C. Software Project Survival Guide. Microsoft
Press, 1997.

Moynihan, T. How experienced project managers assess
risk. IEEE Soft. (May/June): 35-41 (1997).

Nesi, P. Managing OO projects better. IEEE Soft.
(July/August): 50-60 (1998).

© IEEE – Trial Version 1.00 – May 2001 8–13

Nolan, A.J. Learning from success. IEEE Soft.
(January/February): 97-105 (1999).

Parris, K.V.C. Implementing accountability. IEEE Soft.
(July): 83-93 (1996).

Putnam, L.H. and Myers, W. Industrial Strength Software:
Effective Management Using Measurement. Los Alamitos
CA, IEEE Computer Society Press (1997) 309p.

Rodrigues, A.G. and Williams, T.M. System dynamics in
software project management: towards the development of
a formal integrated framework. European Journal of
Information Systems 6: 51-66 (1997).

Ropponen, J. and Lyytinen, K. Can software risk
management improve system development: an exploratory
study. European Journal of Information Systems 6: 41-50
(1997).

Schmidt, C., Dart, P., Johnston, L., Sterling, L. and Thorne,
P. Disincentives for communicating risk: a risk paradox.
Information and Software Technology 41: 403-411 (1999).

Slaughter, S.A., Harter, D.E. and Krishnan, M.S.
Evaluating the cost of software quality. Communications of
the ACM 41(8): 67-73 (1998).

van Scoy, R.L. Software development risk: opportunity, not
problem. CMU/SEI-92-TR-30, Software Engineering
Institute, Carnegie Mellon University, 1992.

van Solingen, R., Berghout, E. and van Latum, F.
Interrupts: just a minute never is. IEEE Soft.
(September/October): 97-103 (1998).

Whitten, N. Managing Software Development Projects:
Formulas for Success. Wiley, 1995.

Williams, R.C., Walker, J.A. and Dorofee, A.J. Putting risk
management into practice. IEEE Soft. (May/June): 75-82
(1997).

Software Engineering Measurement:

Briand, L.C., Morasca, S. and Basili, V.R. Property-based
software engineering measurement. IEEE Transactions on
Software Engineering 22(1): 68-86 (1996).

Briand, L., El Emam, K. and Morasca, S. On the
application of measurement theory in software engineering.
Empirical Software Engineering 1: 61-88 (1996).

Briand, L.C., Morasca, S. and Basili, V.R. Response to:
Comments on “Property-based software engineering
measurement: refining the addivity properties”. IEEE
Transactions on Software Engineering 23(3): 196-197
(1997).

Brooks, F.P., Jr. No silver bullet: essence and accidents of
software engineering. Computer (Apr.): 10-19 (1987).

Davis, A.M. Predictions and farewells. IEEE Soft.
(July/August): 6-9 (1998).

Fenton, N.E. and Pfleeger, S.L. Software Metrics: A
Rigorous and Practical Approach. London, International
Thomson Computer Press (1997) 638p.

Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano,
G. and Orazi, E. Applying GQM in an industrial software
factory. ACM Transactions on Software Engineering and
Methodology 7(4): 411-448 (1998).

Glass, R.L. The realities of software technology payoffs.
Communications of the ACM 42(2): 74-79 (1999).

Grable, R., Jernigan, J., Pogue, C. and Divis, D. Metrics for
small projects: experiences at the SED. IEEE Soft.
(March/April): 21-29 (1999).

Grady, R.B. and Caswell, D.L. Software Metrics:
Establishing A Company-Wide Program. Englewood Cliffs
NJ, USA, Prentice-Hall (1987).

Hall, T. and Fenton, N. Implementing effective software
metrics programs. IEEE Soft. (Mar/Apr): 55-64 (1997).

Kautz, K. Making sense of measurement for small
organizations. IEEE Soft. (March/April): 14-20 (1999).

Kernighan, B. and Pike, R. Finding performance
improvements. IEEE Soft. (March/April): 61-65 (1999).

McConnell, S. Software engineering principles. IEEE Soft.
(March/April): 6-8 (1999).

Offen, R.J. and Jeffery, R. Establishing software
measurement programs. IEEE Soft. (Mar/Apr): 45-53
(1997).

Pfleeger, S.L. Assessing measurement (Guest editor’s
introduction). IEEE Soft. (Mar/Apr): 25-26 (1997).

Pfleeger, S.L., Jeffery, R., Curtis, B. and Kitchenham, B.
Status report on software measurement. IEEE Soft.
(March/April): 33-43 (1997).

Robillard, P.N. The role of knowledge in software
development. Comm. of the ACM 42(1): 87-92 (1999).

van Latum, F., van Solingen, R., Oivo, M., Hoisl, B.,
Rombach, D. and Ruhe, G. Adopting GQM-based
measurement in an industrial environment. IEEE Soft.
(January-February): 78-86 (1998).

Zelkowitz, M.V. and Wallace, D.R. Experimental models
for validating technology. Computer (May): 23-31 (1998).

8–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE DESCRIPTION

[IEEE/EIA, 1998] IEEE/EIA. 1998. Standard for
Information Technology (ISO/IEC 12207) – Software life
cycle processes. Institute of Electrical and Electronics
Engineers/Electronic Industries Association Engineering
Department.

[ISO93] ISO 1993. International Vocabulary of Basic and
General Terms in Metrology, International Organization for
Standardization.

[ISO/IEC, 1998] ISO/IEC 1998. 14143-1 Software
engineering - Software measurement - Functional size
measurement - Definition of concepts, International
Organization for Standardization/International
Electrotechnical Commission.

[ISO/IEC, 1999] ISO/IEC. 1999. Draft Technical Report
(DTR) 16326 – Software engineering – guide for the
application of ISO/IEC 12207 to project management.
International Organization for Standardization/International
Electrotechnical Commission.

[ISO/IEC, 2000] ISO/IEC Committee Draft (CD) 15939:
Information technology - Software Measurement Process,
International Organization for Standardization/International
Electrotechnical Commission.

[Moore, 1998] James W. Moore. 1998. Software
engineering standards: a user’s road map. IEEE Computer
Society.

[PMI, 1996] Project Management Institute Standards
Committee. 1996. A guide to the project management body
of knowledge (PMBOK). Project Management Institute.

© IEEE – Trial Version 1.00 – May 2001 8–15

APPENDIX C – TABLE OF CORRESPONDENCE WITH PMBOK

 7.1 ISO/IEC 12207 Management Process Activities
PMBOK

Knowledge
Areas

PMBOK Knowledge Area
Processes

7.1.1 Initiation
and Scope
Definition

7.1.2
Planning

7.1.3
Enactment

7.1.4
Review and
Evaluation

7.1.5
Closure

4.1 Project Plan Development X X
4.2 Project Plan Execution X X

4. Project
Integration
Management 4.3 Overall Change Control X X

5.1 Initiation X X
5.2 Scope Planning X X
5.3 Scope Definition X X
5.4 Scope Verification X X X

5. Project Scope
Management

5.5 Scope Change Control X X X X
6.1 Activity Definition X X
6.2 Activity Sequencing X
6.3 Activity Duration Estimating X X X
6.4 Schedule Development X

6. Project Time
Management

6.5 Schedule Control X X
7.1 Resources Planning X X
7.2 Cost Estimating X X X
7.3 Cost Budgeting X

7. Project Cost
Management

7.4 Cost Control X X
8.1 Quality Planning X X
8.2 Quality Assurance X X

8. Project Quality
Management

8.3 Quality Control X X
9.1 Organizational Planning X X X
9.2 Staff Acquisition X X

9. Project Human
Resource
Management 9.3 Team Development X X

10.1 Communications Planning X X
10.2 Information Distribution X
10.3 Performance Reporting X X

10. Project
Communications
Management

10.4 Administrative Closure X X
11.1 Risk Identification X X
11.2 Risk Quantification X X
11.3 Risk Response Development X X X

11. Project Risk
Management

11.4 Risk Response Control X X X X
12.1 Procurement Planning X X
12.2 Solicitation Planning X X
12.3 Solicitation X X
12.4 Source Selection X X X
12.5 Contract Administration X X

12. Project
Procurement
Management

12.6 Contract Close-out X X

Table 2: Correspondence between PMBOK knowledge areas and ISO/IEC 12207 management process activities (taken from
ISO/IEC Draft Technical Report (DTR) 16326)

© IEEE – Trial Version 1.00 – May 2001 9–1

CHAPTER 9

SOFTWARE ENGINEERING PROCESS

Khaled El Emam
Institute for Information Technology

National Research Council
Building M-50, Montreal Road

Ottawa, Ontario K1A 0R6, Canada
+1 (613) 998 4260

Khaled.el-emam@iit.nrc.ca

Table of Contents

1 Introduction...1
2 Definition of the Software Engineering Process

Knowledge Area...1
3 Breakdown of Topics for Software Engineering

Process and Breakdown Rationale2
4 Key References vs. Topics Mapping.............................10
5 Recommended References for Software Process........12
Appendix A – List of Further Readings14

1 INTRODUCTION

The software engineering process Knowledge Area has
witnessed dramatic growth over the last decade. This was
partly due to a recognition by major acquirers of systems
where software is a major component that process issues
can have an important impact on the ability of their
suppliers to deliver. Therefore, they encouraged a focus on
the software engineering process as a way to remedy this.
Furthermore, the academic community has recently pursued
an active research agenda in developing new tools and
techniques to support software engineering processes, and
also empirically studying these processes and their
improvement. It should also be recognized that many
software engineering process issues are closely related to
other disciplines, namely those in the management
sciences, albeit they have used a different terminology. The
industrial adoption of software engineering process
technology has also been increasing, as demonstrated by a
number of published success stories. Therefore, there is in
fact an extensive body of knowledge on the software
engineering process.

Keywords

software process, software process improvement, software
process modeling, software process measurement,
organizational change, software process assessment.

Acronyms

CBA IPI CMM Based Appraisal for Internal Process
Improvement

CMM Capability Maturity Model

EF Experience Factory

FP Function Points

G/Q/M Goal/Question/Metric

HRM Human Resources Management

IDEAL Initiating-Diagnosing-Establishing-Acting-
Leaning (model)

MIS Management Information Systems

PDCA Plan-Do-Check-Act (cycle)

QIP Quality Improvement Paradigm

ROI Return on Investment

SCE Software Capability Evaluation

SEPG Software Engineering Process Group

SW-CMM Capability Maturity Model for Software

2 DEFINITION OF THE SOFTWARE ENGINEERING
PROCESS KNOWLEDGE AREA

The software engineering process Knowledge Area (KA)
can potentially be examined at two levels. The first level
encompasses the technical and managerial activities within
the software engineering process that are performed during
software acquisition, development, maintenance, and
retirement. The second is the meta-level, which is
concerned with the definition, implementation,

9–2 © IEEE – Trial Version 1.00 – May 2001

measurement, management, change and improvement of
the software engineering process itself. The latter we will
term software process engineering.

The first level is covered by the other KA’s of this Guide to
the Software Engineering Body of Knowledge. This
Knowledge Area is concerned with the second: software
process engineering .

2.1 Scope

This Knowledge Area does not explicitly address the
following topics:

w Human resources management (for example, as
embodied in the People CMM [30][31])

w Systems engineering processes

While important topics in themselves, they are outside the
direct scope of software process engineering. However,
where relevant, interfaces (or references to interfaces) to
HRM and systems engineering will be addressed.

2.2 Currency of Material

The software process engineering discipline is rapidly
changing, with new paradigms and new models. The
breakdown and references included here are pertinent at the
time of writing. An attempt has been made to focus on
concepts to shield the knowledge area description from
changes in the field, but of course this cannot be 100%
successful, and therefore the material here must be evolved
over time. A good example is the on-going CMM
Integration effort (see
http://www.sei.cmu.edu/cmmi/products/models.html for the
latest document suite) and the Team Software Process
effort [71], both of which are likely to have a considerable
influence on the software process community once widely
disseminated, and would therefore have to be
accommodated in the knowledge area description.

In addition, where Internet addresses are provided for
reference material, these addresses were verified at the time
of press. However, there are no guarantees that the
documents will still be available on-line at the same
location in the future.

2.3 Structure of the KA

To structure this KA in a way that is directly related to
practice, we have defined a generic process model for
software process engineering (see Figure 1). This model
identifies the activities that are performed in a process
engineering context. The topics are mapped to these
activities. The advantage of such a structure is that one can
see, in practice, where each of the topics is relevant, and
provides an overall rationale for the topics. This generic
model is based on the PDCA (plan-do-check-act) cycle
(also see [79]).

3 BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING PROCESS AND BREAKDOWN
RATIONALE

The following figure shows the breakdown of topics in this
knowledge area. Further explanation is provided in the
subsequent sections.

Software Engineering Process Concepts

 Themes

 Terminology

Process Infrastructure

 The Software Engineering Process Group

 The Experience Factory

Process Measurement

 Methodology in Process Measurement

 Process Measurement Paradigms

 Analytic Paradigm

 Benchmarking Paradigm

Process Definition

 Types of Process Definitions

 Life Cycle Framework Models

 Software Life Cycle Process Models

 Notations for Process Definitions

 Process Definition Methods

 Automation

Qualitative Process Analysis

 Process Definition Review

 Root Cause Analysis

Process Implementation and Change

 Paradigms for Process Implementation and
Change

 Guidelines for Process Implementation and
Change

 Evaluating the Outcome of Process
Implementation and Change

3.1 Software Engineering Process Concepts

3.1.1 Themes

Dowson [35] notes that “All process work is ultimately
directed at ‘software process assessment and
improvement’”. This means that the objective is to
implement new or better processes in actual practices, be
they individual, project or organizational practices.

© IEEE – Trial Version 1.00 – May 2001 9–3

Sofware Engineering Process

Software
Engineering

Process
Concepts

Process
Infrastructure

Process
Measurement

Process
Definition

Qualitative
Process Analysis

Process
Implementation

and Change

Themes

Terminology

Software
Engineering

Process Group

Experience
Factory

Methodology in
Process

Measurement

Process
Measurement

Paradigms

Types of Process
Definitions

Life Cycle
Framework

Models

Software Life
Cycle Process

Models

Notations for
Process

Definitions

Process
Definition
Methods

Automation

Process
Definition

Review

Root Cause
Analysis

Paradigms for
Process

Implementation
and Change

Guidelines for
Process

Implementation
and Change

Evaluating the
Outcome of

Process
Implementation

and Change

We describe the main topics in the software process
engineering (i.e., the meta-level that has been alluded to
earlier) area in terms of a cycle of process change, based on
the commonly known PDCA cycle. This cycle highlights
that individual process engineering topics are part of a
larger process to improve practice, and that process
evaluation and feedback is an important element of process
engineering.

Software process engineering consists of four activities as
illustrated in the model in Figure 1. The activities are
sequenced in an iterative cycle allowing for continuous
feedback and improvement of the software process.

The “Establish Process Infrastructure” activity consists of
establishing commit ment to process implementation and
change (including obtaining management buy-in), and
putting in place an appropriate infrastructure (resources and
responsibilities) to make it happen.

The activities “Planning of Process Implementation and
Change” and “Process Implementation and Change” are the
core ones in process engineering, in that they are essential
for any long-lasting benefit from process engineering to
accrue. In the planning activity the objective is to
understand the current business objectives and process
needs of the organization1, identify its strengths and
weaknesses, and make a plan for process implementation
and change. In “Process Implementation and Change”, the

1 The term “organization” is meant in a loose sense here. It could be a

project, a team, or even an individual.

objective is to execute the plan, deploy new processes
(which may involve, for example, the deployment of tools
and training of staff), and/or change existing processes.

The fourth activity, “Process Evaluation” is concerned with
finding out how well the implementation and change went;
whether the expected benefits materialized. This is then
used as input for subsequent cycles.

At the centre of the cycle is the “Process Experience Base”.
This is intended to capture lessons from past iterations of
the cycle (e.g., previous evaluations, process definitions,
and plans). Evaluation lessons can be qualitative or
quantitative. No assumptions are made about the nature or
technology of this “Process Experience Base”, only that it
be a persistent storage. It is expected that during subsequent
iterations of the cycle, previous experiences will be adapted
and reused. It is also important to continuously re-assess
the utility of information in the experience base to ensure
that obsolete information does not accumulate.

With this cycle as a framework, it is possible to map the
topics in this knowledge area to the specific activities
where they would be most relevant. This mapping is also
shown in Figure 1. The bulleted boxes contain the
Knowledge Area topics.

It should be noted that this cycle is not intended to imply
that software process engineering is relevant to only large
organizations. To the contrary, process-related activities
can, and have been, performed successfully by small
organizations, teams, and individuals. The way the
activities defined in the cycle are performed would be

9–4 © IEEE – Trial Version 1.00 – May 2001

different depending on the context. Where it is relevant, we
will present examples of approaches for small
organizations.

Establish
Process

Infrastructure Planning of
Process

Implementation
and Change

Process
Implementation

and Change

Process
Evaluation

Process
Experience

Base

! Process
Infrastructure (9.3.2)

!
!
!

 Process Measurement (9.3.3)

 Process Definition (9.3.4)
 Qualitative Process Analysis
(9.3.5)

!
!
!

 Process Measurement (9.3.3)
 Qualitative Process Analysis
(9.3.5)

 Process Implementation and
Change (9.3.6)

! Process
Implementation and
Change (9.3.6)

Figure 1 A model of the software process engineering
cycle, and the relationship of its activities to the KA topics.
The circles are the activities in the process engineering
cycle. The square in the middle of the cycle is a data store.
The bulleted boxes are the topics in this Knowledge Area
that map to each of the activities in the cycle. The numbers
refer to the topic sections in this chapter.

The topics in this KA are as follows:

Process Infrastructure: This is concerned with
putting in place an infrastructure for software process
engineering.

Process Measurement: This is concerned with
quantitative techniques to diagnose software processes;
to identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and afterwards to evaluate the consequences of
process implementation and change.

Process Definition: This is concerned with defining
processes in the form of models, plus the automated
support that is available for the modeling task, and for
enacting the models during the software process.

Qualitative Process Analysis: This is concerned with
qualitative techniques to analyze software processes, to
identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and afterwards to evaluate the consequences of
process imp lementation and change.

Process Implementation and Change: This is
concerned with deploying processes for the first time
and with changing existing process. This topic focuses
on organizational change. It describes the paradigms,
infrastructure, and critical success factors necessary for
successful process implementation and change. Within
the scope of this topic, we also present some
conceptual issues about the evaluation of process
change.

The main, generally accepted, themes in the software
engineering process field have been described by Dowson
in [35]. His themes are a subset of the topics that we cover
in this KA. Below are Dowson’s themes:

w Process definition: covered in topic 3.4 of this KA
breakdown

w Process assessment: covered in topic 3.3 of this KA
breakdown

w Process improvement: covered in topics 3.2 and 3.6 of
this KA breakdown

w Process support: covered in topic 3.4 of this KA
breakdown

We also add one theme in this KA description, namely the
qualitative process analysis (covered in topic 3.5).

3.1.2 Terminology

There is no single universal source of terminology for the
software engineering process field, but good sources that
define important terms are [51][96], and the vocabulary
(Part 9) in the ISO/IEC TR 15504 documents [81].

3.2 Process Infrastructure

At the initiation of process engineering, it is necessary to
have an appropriate infrastructure in place. This includes
having the resources (competent staff, tools and funding),
as well as the assignment of responsibilities. This is an
indication of management commitment to and ownership of
the process engineering effort. Various committees may
have to be established, such as a steering committee to
oversee the process engineering effort.

It is widely recognized that a team separate from the
developers/maintainers must be set up and tasked with
process analysis, implementation and change [16]. The
main reason for this is that the priority of the
developers/maintainers is to produce systems or releases,
and therefore process engineering activities will not receive
as much attention as they deserve or need. This, however,
should not mean that the project organization is not
involved in the process engineering effort at all. To the
contrary, their involvement is essential. Especially in a
small organization, outside help (e.g., consultants) may be
required to assist in making up a process team.

Two types of infrastructure are have been used in practice:
the Experience Factory [8][9] and the Software Engineering
Process Group [54]. The IDEAL handbook [100] provides

© IEEE – Trial Version 1.00 – May 2001 9–5

a good description of infrastructure for process
improvement in general.

3.2.1 The Software Engineering Process Group

The SEPG is intended to be the central focus for process
improvement within an organization. The SEPG typically
has the following ongoing activities:

w Obtains and maintains the support of all levels of
management

w Facilitates software process assessments (see below)

w Works with line managers whose projects are affected
by changes in software engineering practice

w Maintains collaborative working relationships with
software engineers

w Arranges and supports any training or continuing
education related to process implementation and
change

w Tracks, monitors, and reports on the status of
particular improvement efforts

w Facilitates the creation and maintenance of process
definitions

w Maintains a process database

w Provides process consultation to development projects
and management

w Participate in integrating software engineering
processes with other organizational processes, such as
systems engineering

Fowler and Rifkin [54] suggest the establishment of a
steering committee consisting of line and supervisory
management. This would allow management to guide
process implementation and change, align this effort with
strategic and business goals of the organization, and also
provides them with visibility. Furthermore, technical
working groups may be established to focus on specific
issues, such as selecting a new design method to setting up
a measurement program.

3.2.2 The Experience Factory

The concept of the EF separates the project organization
(e.g., the software development organization) from the
improvement organization. The project organization
focuses on the development and maintenance of
applications. The EF is concerned with improvement. Their
relationship is depicted in Figure 2.

The EF is intended to institutionalize the collective learning
of an organization by developing, updating, and delivering
to the project organization experience packages (e.g., guide
books, models, and training courses).2 The project
organization offers to the experience factory their products,
the plans used in their development, and the data gathered

2 Also refered to as process assets.

during development and operation. Examples of experience
packages include:

w resource models and baselines3 (e.g., local cost
models, resource allocation models)

w change and defect baselines and models (e.g., defect
prediction models, types of defects expected for the
application)

w project models and baselines (e.g., actual vs. expected
product size)

w process definitions and models (e.g., process models
for Cleanroom, Ada waterfall model)

w method and technique evaluations (e.g., best method
for finding interface faults)

w products and product parts (e.g., Ada generics for
simulation of satellite orbits)

w quality models (e.g., reliability models, defect
slippage models, ease of change models), and

w lessons learned (e.g., risks associated with an Ada
development).

Application
Developers

Experience Factory:
Capture, Analyze, and Package

Experiences

Project
Organization:

Develop
Applications

Mission
Analysts

Application
Testers

Data Base
Personnel

Researchers

Packagers

metrics &
lessons
learned

guide books,
models,
training

Application

Figure 2 The relationship between the Experience Factory
and the project organization as implemented at the
Software Engineering Laboratory at NASA/GSFC. This
diagram is reused here from [10] with permission of the
authors.

3.3 Process Measurement

Process measurement, as used here, means that quantitative
information about the process is collected, analyzed, and
interpreted. Measurement is used to identify the strengths
and weaknesses of processes, and to evaluate processes
after they have been implemented and/or changed (e.g.,
evaluate the ROI from implementing a new process).4

3 Baselines can be interpreted as descriptive reports presenting the

current status.
4 Process measurement may serve other purposes as well. For example,

process measurement is useful for managing a software project. Some
of these are covered in the Software Engineering Management and

9–6 © IEEE – Trial Version 1.00 – May 2001

An important assumption made in most process engineering
work is illustrated by the path diagram in Figure 3. Here,
we assume that the process has an impact on process
outcomes. Process outcomes could be, for example, product
quality (faults per KLOC or per FP), maintainability (effort
to make a certain type of change), productivity (LOC or FP
per person month), time-to-market, the extent of process
variation, or customer satisfaction (as measured through a
customer survey). This relationship depends on the
particular context (e.g., size of the organization, or size of
the project).

Process Process
Outcomes

Context

Figure 3 Path diagram showing the relationship between
process and outcomes (results). The context affects the
relationship between the process and process outcomes.
This means that this process to process outcome
relationship depends on the context value.

Not every process will have a positive impact on all
outcomes. For example, the introduction of software
inspections may reduce testing effort and cost, but may
increase interval time if each inspection introduces large
delays due to the scheduling of large inspection meetings
[131]. Therefore, it is preferred to use multiple process
outcome measures that are important for the organization’s
business.

In general, we are most concerned about the process
outcomes. However, in order to achieve the process
outcomes that we desire (e.g., better quality, better
maintainability, greater customer satisfaction) we have to
implement the appropriate process.

Of course, it is not only process that has an impact on
outcomes. Other factors such as the capability of the staff
and the tools that are used play an important role.5
Furthermore, the extent to which the process is
institutionalized or implemented (i.e., process fidelity) is
important as it may explain why “good” processes do not
give the desired outcomes.

One can measure the quality of the software process itself,
or the process outcomes. The methodology in Section 3.3.1
is applicable to both. We will focus in Section 3.3.2 on
process measurement since the measurement of process

other KA’s. Here we focus on process measurement for the purpose of
process implementation and change.

5 And when evaluating the impact of a process change, for example, it
is important to factor out these other influeneces.

outcomes is more general and applicable in other
Knowledge Areas.

3.3.1 Methodology in Process Measurement

A number of guides for measurement are available
[108][109][126]. All of these describe a goal-oriented
process for defining measures. This means that one should
start from specific information needs and then identify the
measures that will satisfy these needs, rather than start from
specific measures and try to use them. A good practical text
on establishing and operating a measurement program has
been produced by the Software Engineering Laboratory
[123]. This also discusses the cost of measurement. Texts
that present experiences in implementing measurement in
software organizations include [86][105][115]. An
emerging international standard that defines a generic
measurement process is also available (ISO/IEC CD 15939:
Information Technology – Software Measurement Process)
[82].

Two important issues in the measurement of software
engineering processes are the reliability and validity of
measurement. Reliability is concerned with random
measurement error. Validity is concerned with the ability of
the measure to really measure what we think it is
measuring.

Reliability becomes important when there is subjective
measurement, for example, when assessors assign scores to
a particular process. There are different types of validity
that ought to be demonstrated for a software process
measure, but the most critical one is predictive validity.
This is concerned with the relationship between the process
measure and the process outcome. A discussion of both of
these and different methods for achieving them can be
found in [40][59]. An IEEE Standard describes a
methodology for validating metrics (IEEE Standard for a
Software Quality Metrics Methodology. IEEE Std 1061-
1998) [76].

An overview of existing evidence on reliability of software
process assessments can be found in [43][49], and for
predictive validity in [44][49][59][88].

3.3.2 Process Measurement Paradigms

Two general paradigms that are useful for characterizing
the type of process measurement that can be performed
have been described by Card [21]. The distinction made by
Card is a useful conceptual one. Although, there may be
overlaps in practice.

The first is the analytic paradigm. This is characterized as
relying on “quantitative evidence to determine where
improvements are needed and whether an improvement
initiative has been successful”.6 The second, the
benchmarking paradigm, “depends on identifying an
‘excellent’ organization in a field and documenting its

6 Although qualitative evidence also can play an important role. In such

a case, see Section 3.5 on qualitative process analysis.

© IEEE – Trial Version 1.00 – May 2001 9–7

practices and tools”. Benchmarking assumes that if a less-
proficient organization adopts the practices of the excellent
organization, it will also become excellent. Of course, both
paradigms can be followed at the same time, since they are
based on different types of information.

We use these paradigms as general titles to distinguish
between different types of measurement.

3.3.2.1 Analytic Paradigm7

The analytic paradigm is exemplified by the Quality
Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [124].

Experimental and Observational Studies

w Experimentation involves setting up controlled or
quasi experiments in the organization to evaluate
processes [101]. Usually, one would compare a new
process with the current process to determine whether
the former has better process outcomes. Correlational
(nonexperimental) studies can also provide useful
feedback for identifying process improvements (e.g.,
for example, see the study described by Agresti [2]).

Process Simulation

w The process simulation approach can be used to
predict process outcomes if the current process is
changed in a certain way [117]. Initial data about the
performance of the current process needs to be
collected, however, as a basis for the simulation.

Orthogonal Defect Classification

w Orthogonal Defect Classification is a technique that
can be used to link faults found with potential causes.
It relies on a mapping between fault types and fault
triggers [22][23]. There exists an IEEE Standard on
the classification of faults (or anomalies) that may
also be useful in this context (IEEE Standard for the
Classification of Software Anomalies. IEEE Std 1044-
1993) [74].

Statistical Process Control

w Placing the software process under statistical process
control, through the use of control charts and their
interpretations, is an effective way to identify
stability, or otherwise, in the process. One recent book
provides a good introduction to SPC in the context of
software engineering [53].

The Personal Software Process

w This defines a series of improvements to an
individual’s development practices in a specified
order [70]. It is ‘bottom-up’ in the sense that it
stipulates personal data collection and improvements
based on the data interpretations.

7 These are intended as examples of the analytic paradigm, and reflect

what is currently done in practice. Whether a specific organization
uses all of these techniaues will depend, at least partially, on its
maturity.

3.3.2.2 Benchmarking Paradigm

This paradigm involves measuring the maturity of an
organization or the capability of its processes. The
benchmarking paradigm is exemplified by the software
process assessment8 work. A general introductory overview
of process assessments and their application is provided in
[135].

w Process assessment models

An assessment model captures what are believed to be
good practices. The good practices may pertain to
technical software engineering activities only, or may
also encompass, for example, management, systems
engineering, and human resources management
activities as well.

Architectures of assessment models

There are two general architectures for an assessment
model that make different assumptions about the order
in which processes must be measured: the continuous
and the staged architectures [110]. At this point it is
not possible to make a recommendation as to which
approach is better than another. They have
considerable differences. An organization should
evaluate them to see which are most pertinent to their
needs and objectives when selecting a model.

Assessment models

The most commonly used assessment model in the
software community is the SW-CMM [122]. It is also
important to recognize that ISO/IEC 15504 is an
emerging international standard on software process
assessments [42][81]. It defines an exemplar
assessment model and conformance requirements on
other assessment models. ISO 9001 is also a common
model that has been applied by software organizations
(usually in conjunction with ISO 9000-1) [132]. Other
notable examples of assessment models are Trillium
[25], Bootstrap [129], and the requirements
engineering capability model [128]. There are also
maturity models for other software processes
available, such as for testing [18][19][20], a
measurement maturity model [17], and a maintenance
maturity model [36] (although, there have been many
more capability and maturity models that have been
defined, for example, for design, documentation, and
formal methods, to name a few). A maturity model for
systems engineering has also been developed, which
would be useful where a project or organization is
involved in the development and maintenance of
systems including software [39]. The applicability of
assessment models to small organizations is addressed
in [85][120], where assessments models tailored to
small organizations are presented.

8 In some instances the term “appraisal” is used instead of assessment,

and the term “capabillity evaluation” is used when the appraisal is for
the purpose of contract award.

9–8 © IEEE – Trial Version 1.00 – May 2001

w Process assessment methods

In order to perform an assessment, a specific
assessment method needs to be followed. In addition
to producing a quantitative score that characterizes the
capability of the process (or maturity of the
organization), an important purpose of an assessment
is to create a climate for change within the
organization [37]. In fact, it has been argued that the
latter is the most important purpose of doing an
assessment [38].

The most well known method that has a reasonable
amount of publicly available documentation is the
CBA IPI [37]. This method focuses on assessments
for the purpose of process improvement using the
SW-CMM. Many other methods are refinements of
this for particular contexts. Another well known
method using the SW-CMM, but for supplier
selection, is the SCE [6]. The activities performed
during an assessment, the distribution of effort on
these activities, as well as the atmosphere during an
assessment is different if it is for the purpose of
improvement versus contract award. Requirements on
both types of methods that reflect what are believed to
be good assessment practices are provided in [81][99].

There have been criticisms of various models and methods
following the benchmarking paradigm, for example
[12][50][62][87]. Most of these criticisms were concerned
with the empirical evidence supporting the use of
assessments models and methods. However, since the
publication of these articles, there has been an
accumulation of systematic evidence supporting the
efficacy of process assessments
[24][47][48][60][64][65][66][94].

3.4 Process Definition

Software engineering processes are defined for a number of
reasons, including: facilitating human understanding and
communication, supporting process improvement,
supporting process management, providing automated
process guidance, and providing automated execution
support [29][52][68]. The types of process definitions
required will depend, at least partially, on the reason.

It should be noted also that the context of the project and
organization will determine the type of process definition
that is most important. Important variables to consider
include the nature of the work (e.g., maintenance or
development), the application domain, the structure of the
delivery process (e.g., waterfall, incremental, evolutionary),
and the maturity of the organization.

There are different approaches that can be used to define
and document the process. Under this topic the approaches
that have been presented in the literature are covered,
although at this time there is no data on the extent to which
these are used in practice.

3.4.1 Types of Process Definitions

Processes can be defined at different levels of
abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs.
proscriptive). The differentiation amongst these has
been described in [69][97][111].

Orthogonal to the levels above, there are also types of
process definitions. For example, a process definition
can be a procedure, a policy, or a standard.

3.4.2 Life Cycle Framework Models

These framework models serve as a high level
definition of the phases that occur during
development. They are not detailed definitions, but
only the high level activities and their
interrelationships. The common ones are: the waterfall
model, throwaway prototyping model, evolutionary
prototyping model, incremental/iterative development,
spiral model, reusable software model, and automated
software synthesis. (see [11][28][84][111][113]).
Comparisons of these models are provided in
[28][32], and a method for selection amongst many of
them in [3].

3.4.3 Software Life Cycle Process Models

Definitions of life cycle process models tend to be
more detailed than framework models. Another
difference being that life cycle process models do not
attempt to order their processes in time. Therefore, in
principle, the life cycle processes can be arranged to
fit any of the life cycle frameworks. The two main
references in this area are ISO/IEC 12207:
Information Technology – Software Life Cycle
Processes [80] and ISO/IEC TR 15504: Information
Technology – Software Process Assessment [42][81].
Extensive guidance material for the application of the
former has been produced by the IEEE (Guide for
Information Technology - Software Life Cycle
Processes - Life cycle data , IEEE Std 12207.1-1998,
and Guide for Information Technology - Software Life
Cycle Processes – Implementation. Considerations.
IEEE Std 12207.2-1998) [77][78]. The latter defines a
two dimensional model with one dimension being
processes, and the second a measurement scale to
evaluate the capability of the processes. In principle,
ISO/IEC 12207 would serve as the process dimension
of ISO/IEC 15504.

The IEEE standard on developing life cycle processes
also provides a list of processes and activities for
development and maintenance (IEEE Standard for
Developing Software Life Cycle Processes, IEEE Std
1074-1991) [73], and provides examples of mapping
them to life cycle framework models. A standard that
focuses on maintenance processes is also available
from the IEEE (IEEE Standard for Software
Maintenance, IEEE Std 1219-1992) [75].

© IEEE – Trial Version 1.00 – May 2001 9–9

3.4.4 Notations for Process Definitions

Different elements of a process can be defined, for
example, activities, products (artifacts), and resources [68].
Detailed frameworks that structure the types of information
required to define processes are described in [4][98].

There are a large number of notations that have been used
to define processes. They differ in the types of information
defined in the above frameworks that they capture. A text
that describes different notations is [125].

Because there is no data on which of these was found to be
most useful or easiest to use under which conditions, this
Guide covers what seemingly are popular approaches in
practice: data flow diagrams [55], in terms of process
purpose and outcomes [81], as a list of processes
decomposed in constituent activities and tasks defined in
natural language [80], Statecharts [89][117] (also see [63]
for a comprehensive description of Statecharts), ETVX
[116], Actor-Dependency modeling [14][134], SADT
notation [102], Petri nets [5], IDEF0 [125], rule -based [7],
and System Dynamics [1]. Other process programming
languages have been devised, and these are described in
[29][52][68].

3.4.5 Process Definition Methods

These methods specify the activities that must be
performed in order to develop and maintain a process
definition. These may include eliciting information from
developers to build a descriptive process definition from
scratch, and to tailoring an existing standard or commercial
process. Examples of methods that have been applied in
practice are [13][14][90][98][102]. In general, there is a
strong similarity amongst them in that they tend to follow a
traditional software development life cycle.

3.4.6 Automation

Automated tools either support the execution of the process
definitions, or they provide guidance to humans performing
the defined processes. In cases where process analysis is
performed, some tools allow different types of simulations
(e.g., discrete event simulation).

There exist tools that support each of the above process
definition notations. Furthermore, these tools can execute
the process definitions to provide automated support to the
actual processes, or to fully automate them in some
instances. An overview of process modeling tools can be
found in [52], and of process-centered environments in
[57][58].

Recent work on the application of the Internet to the
provision of real-time process guidance is described in [91].

3.5 Qualitative Process Analysis

The objective of qualitative process analysis is to identify
the strengths and weaknesses of the software process. It can
be performed as a diagnosis before implementing or
changing a process. It could also be performed after a

process is implemented or changed to determine whether
the change has had the desired effect.

Below we present two techniques for qualitative analysis
that have been used in practice. Although it is plausible that
new techniques would emerge in the future.

3.5.1 Process Definition Review

Qualitative evaluation means reviewing a process definition
(either a descriptive or a prescriptive one, or both), and
identifying deficiencies and potential process
improvements. Typical examples of this are presented in
[5][89]. An easily operational way to analyze a process is to
compare it to an existing standard (national, international,
or professional body), such as ISO/IEC 12207 [80].

With this approach, one does not collect quantitative data
on the process. Or if quantitative data is collected, it plays a
supportive role. The individuals performing the analysis of
the process definition use their knowledge and capabilities
to decide what process changes would potentially lead to
desirable process outcomes.

3.5.2 Root Cause Analysis

Another common qualitative technique that is used in
practice is a “Root Cause Analysis”. This involves tracing
back from detected problems (e.g., faults) to identify the
process causes, with the aim of changing the process to
avoid the problems in the future. Examples of this for
different types of processes are described in
[13][27][41][107].

With this approach, one starts from the process outcomes,
and traces back along the path in Figure 3 to identify the
process causes of the undesirable outcomes. The
Orthogonal Defect Classification technique described in
Section 3.3.2.1 can be considered a more formalized
approach to root cause analysis using quantitative
information.

3.6 Process Implementation and Change

This topic describes the situation when processes are
deployed for the first time (e.g., introducing an inspection
process within a project or a complete methodology, such
as Fusion [26] or the Unified Process [83]), and when
current processes are changed (e.g., introducing a tool, or
optimizing a procedure).9 In both instances, existing
practices have to be modified. If the modifications are
extensive, then changes in the organizational culture may
be necessary.

3.6.1 Paradigms for Process Implementation and Change

Two general paradigms that have emerged for driving
process implementation and change are the Quality
Improvement Paradigm (QIP) [124] and the IDEAL model

9 This can also be termed “process evolution”.

9–10 © IEEE – Trial Version 1.00 – May 2001

[100]. The two paradigms are compared in [124]. A
concrete instantiation of the QIP is described in [16].

3.6.2 Guidelines for Process Implementation and Change

Process implementation and change is an instance of
organizational change. Most successful organizational
change efforts treat the change as a project in its own right,
with appropriate plans, monitoring, and review.

Guidelines about process implementation and change
within software engineering organizations, including action
planning, training, management sponsorship and
commitment, and the selection of pilot projects, and that
cover both the transition of processes and tools, are given in
[33][92][95][104][114][120][127][130][133]. An empirical
study evaluating success factors for process change is
reported in [46]. Grady describes the process improvement
experiences at Hewlett-Packard, with some general
guidance on implementing organizational change [61].

The role of change agents in this activity should not be
underestimated. Without the enthusiasm, influence,
credibility, and persistence of a change agent,
organizational change has little chance of succeeding. This
is further discussed in [72].

Process implementation and change can also be seen as an
instance of consulting (either internal or external). A
suggested text, and classic, on consulting is that of Schein
[121].

One can also view organizational change from the
perspective of technology transfer. The classic text on the
stages of technology transfer is that by Rogers [119].
Software engineering articles that discuss technology
transfer, and the characteristics of recipients of new
technology (which could include process related
technologies) are [112][118].

3.6.3 Evaluating the Outcome of Process Implementation
and Change

Evaluation of process implementation and change
outcomes can be qualitative or quantitative. The topics
above on qualitative analysis and measurement are relevant
when evaluating implementation and change since they
describe the techniques. Below we present some conceptual
issues that become important when evaluating the outcome
of implementation and change.

There are two ways that one can approach evaluation of
process implementation and change. One can evaluate it in
terms of changes to the process itself, or in terms of
changes to the process outcomes (for example, measuring
the Return on Investment from making the change). This
issue is concerned with the distinction between cause and
effect (as depicted in the path diagram in Figure 3), and is
discussed in [16].

Sometimes people have very high expectations about what
can be achieved in studies that evaluate the costs and
benefits of process implementation and change. A
pragmatic look at what can be achieved from such
evaluation studies is given in [67].

Overviews of how to evaluate process change, and
examples of studies that do so can be found in
[44][59][88][92][93][101].

4 KEY REFERENCES VS . TOPICS MAPPING

Below are the matrices linking the topics to key references.
In an attempt to limit the number of references and the total
number of pages, as requested, some relevant articles are
not included in this matrix. The reference list below
provides a more comprehensive coverage.

In the cells, where there is a check mark it indicates that the
whole reference (or most of it) is relevant. Otherwise,
specific chapter numbers are provided in the cell.

 Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Madhavji
[97]

Dowson
[35]

Software Engineering
Process Concepts

Themes √
Terminology

Process Infrastructure
The Software Engineering
Process Group

The Experience Factory
Process Measurement

Methodology in Process
Measurement

Process Measurement
Paradigms

Ch. 1, 7 Ch. 3

Process Definition
Types of Process
Definitions

 √

© IEEE – Trial Version 1.00 – May 2001 9–11

 Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Madhavji
[97]

Dowson
[35]

Definitions
Life Cycle Framework
Models

 Ch. 2

Software Life Cycle
Process Models

 Ch. 13

Notations for Process
Definitions

 Ch. 1

Process Definition
Methods

Ch. 7

Automation Ch. 2 Ch. 2
Qualitative Process
Analysis

Process Definition Review Ch. 7
Root Cause Analysis Ch. 7

Process Implementation
and Change

Paradigms for Process
Implementation and
Change

Ch. 1, 7

Guidelines for Process
Implementation and
Change

Ch. 11 Ch. 4 Ch. 16

Evaluating the Outcome of
Process Implementation
and Change

 Ch. 7

 Feiler &
Humphrey

[51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer

[34]

El Emam &
Goldenson

[49]
Software Engineering
Process Concepts

Themes
Terminology √

Process Infrastructure
The Software Engineering
Process Group

 √

The Experience Factory √

Process Measurement
Methodology in Process
Measurement

 √ √

Process Measurement
Paradigms

 √

Process Definition
Types of Process Definitions

Life Cycle Framework
Models

 Ch. 11

Software Life Cycle Process
Models

Notations for Process
Definitions

Process Definition Methods

9–12 © IEEE – Trial Version 1.00 – May 2001

 Feiler &
Humphrey

[51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer

[34]

El Emam &
Goldenson

[49]
Automation

Qualitative Process Analysis
Process Definition Review √

Root Cause Analysis √

Process Implementation and
Change

Paradigms for Process
Implementation and Change

 √ √

Guidelines for Process
Implementation and Change

 √ √ √

Evaluating the Outcome of
Process Implementation and
Change

 √ √

5 RECOMMENDED REFERENCES FOR SOFTWARE
PROCESS

The following are the key references that are recommended
for this knowledge area. The mapping to the topics is given
in Section 4.

K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press,
1999.

This IEEE edited book provides detailed chapters on the
software process assessment and improvement area. It
could serve as a general reference for this knowledge area,
however, specifically chapters 1, 7, and 11 cover quite a bit
of ground in a succinct manner.

K. El Emam, J-N Drouin, W. Melo (eds.): SPICE: The
Theory and Practice of Software Process Improvement and
Capability Determination . IEEE CS Press, 1998.

This IEEE edited book describes the emerging ISO/IEC
15504 international standard and its rationale. Chapter 3
provides a description of the overall architecture of the
standard, which has since then been adopted in other
assessment models.

S-L. Pfleeger: Software Engineering: Theory and Practice.
Prentice-Hall, 1998.

This general software engineering reference has a good
chapter, chapter 2, that discusses many issues related to the
process modeling area.

Fuggetta and A. Wolf: Software Process, John Wiley &
Sons, 1996.

This edited book provides a good overview of the process
area, and covers modeling as well as assessment and
improvement. Chapters 1 and 2 are reviews of modeling
techniques and tools, and chapter 4 gives a good overview
of the human and organizational issues that arise during
process implementation and change.

R. Messnarz and C. Tully (eds.): Better Software Practice
for Business Benefit: Principles and Experiences, IEEE CS
Press, 1999.

This IEEE edited book provides a comprehensive
perspective on process assessment and improvement efforts
in Europe. Chapter 7 is a review of the costs and benefits of
process improvement, with many references to prior work.
Chapter 16 describes factors that affect the success of
process improvement.

J. Moore: Software Engineering Standards: A User’s Road
Map. IEEE CS Press, 1998.

This IEEE book provides a comprehensive framework and
guidance on software engineering standards. Chapter 13 is
the process standards chapter.

N. H. Madhavji: “The Process Cycle”. In Software
Engineering Journal, 6(5):234-242, 1991.

This article provides an overview of different types of
process definitions and relates them within an
organizational context.

M. Dowson: “Software Process Themes and Issues”. In
Proceedings of the 2nd International Conference on the
Software Process, pages 54-62, 1993.

This article provides an overview of the main themes in the
software process area. Although not recent, most of the
issues raised are still valid today.

P. Feiler and W. Humphrey: “Software Process
Development and Enactment: Concepts and Definitions”.
In Proceedings of the Second International Conference on
the Software Process, pages 28-40, 1993.

This article was one of the first attempts to define
terminology in the software process area. Most of its terms
are commonly used nowadays.

L. Briand, C. Differding, and H. D. Rombach: “Practical
Guidelines for Measurement-Based Process Improvement”.

© IEEE – Trial Version 1.00 – May 2001 9–13

In Software Process Improvement and Practice, 2:253-280,
1996.

This article provides a pragmatic look at using
measurement in the context of process improvement, and
discusses most of the issues related to setting up a
measurement program.

Software Engineering Laboratory: Software Process
Improvement Guidebook . NASA/GSFC, Technical Report
SEL-95-102, April 1996. (available from
http://sel.gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf)

This is a standard reference on the concepts of the QIP and
EF.

P. Fowler and S. Rifkin: Software Engineering Process
Group Guide. Software Engineering Institute, Technical
Report CMU/SEI-90-TR-24, 1990. (available from
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.
90.pdf)

This is the standard reference on setting up and running an
SEPG.

M. Dorfmann and R. Thayer (eds.): Software Engineering,
IEEE CS Press, 1997.

Chapter 11 of this IEEE volume gives a good overview of
contemporary life cycle models.

K. El Emam and D. Goldenson: “An Empirical Review of
Software Process Assessments”. In Advances in
Computers, vol. 53, pp. 319-423, 2000.

This chapter provides the most up-to-date review of
evidence supporting process assessment and improvement,
as well as a historical perspective on some of the early MIS
work.

9–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX A – LIST OF FURTHER READINGS

[1] T. Abdel-Hamid and S. Madnick, Software Project
Dynamics: An Integrated Approach, Prentice-Hall,
1991.

[2] W. Agresti, “The Role of Design and Analysis in
Process Improvement,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), IEEE CS Press, 1999.

[3] L. Alexander and A. Davis, “Criteria for Selecting
Software Process Models,” in Proceedings of
COMPSAC’91, pp. 521-528, 1991.

[4] J. Armitage and M. Kellner, “A Conceptual Schema
for Process Definitions and Models,” in Proceedings
of the Third International Conference on the
Software Process, pp. 153-165, 1994.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and
G. Picco, “Modeling and Improving an Industrial
Software Process,” IEEE Transactions on Software
Engineering, vol. 21, no. 5, pp. 440-454, 1995.

[6] R. Barbour, “Software Capability Evaluation -
Version 3.0 : Implementation Guide for Supplier
Selection,” Software Engineering Institute,
CMU/SEI -95-TR012, 1996. (available at
http://www.sei.cmu.edu/publications/documents/95.
reports/95.tr.012.html)

[7] N. Barghouti, D. Rosenblum, D. Belanger, and C.
Alliegro, “Two Case Studies in Modeling Real,
Corporate Processes,” Software Process -
Improvement and Practice, vol. Pilot Issue, pp. 17-
32, 1995.

[8] V. Basili, G. Cald iera, and G. Cantone, “A
Reference Architecture for the Component Factory,”
ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 1, pp. 53-80, 1992.

[9] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G.
Page, and S. Waligora, “The Software Engineering
Laboratory - An Operational Software Experience
Factory,” in Proceedings of the International
Conference on Software Engineering , pp. 370-381,
1992.

[10] V. Basili, S. Condon, K. El-Emam, R. Hendrick, and
W. Melo, “Characterizing and Modeling the Cost of
Rework in a Library of Reusable Software
Components,” in Proceedings of the 19th
International Conference on Software Engineering ,
pp. 282-291, 1997.

[11] B. Boehm, “A Spiral Model of Software
Development and Enhancement,” Computer, vol.
21, no. 5, pp. 61-72, 1988.

[12] T. Bollinger and C. McGowan, “A Critical Look at
Software Capability Evaluations,” IEEE Software,
pp. 25-41, July, 1991.

[13] L. Briand, V. Basili, Y. Kim, and D. Squire, “A
Change Analysis Process to Characterize Software

Maintenance Projects,” in Proceedings of the
International Conference on Software Maintenance,
1994.

[14] L. Briand, W. Melo, C. Seaman, and V. Basili,
“Characterizing and Assessing a Large-Scale
Software Maintenance Organization,” in
Proceedings of the 17th International Conference on
Software Engineering, pp. 133-143, 1995.

[15] L. Briand, C. Differding, and H.D. Rombach,
“Practical Guidelines for Measurement-Based
Process Improvement,” Software Process
Improvement and Practice, vol. 2, pp. 253-280,
1996.

[16] L. Briand, K. El Emam, and W. Melo, “An
Inductive Method for Software Process
Improvement: Concrete Steps and Guidelines,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. Madhavji (eds.),
IEEE CS Press, 1999.

[17] F. Budlong and J. Peterson, “Software Metrics
Capability Evaluation Guide,” The Software
Technology Support Center, Ogden Air Logistics
Center, Hill Air Force Base, 1995.

[18] I. Burnstein, T. Suwannasart, and C. Carlson,
“Developing a Testing Maturity Model: Part II,”
Crosstalk , pp. 19-26, September, 1996. (available at
http://www.stsc.hill.af.mil/crosstalk/)

[19] I. Burnstein, T. Suwannasart, and C. Carlson,
“Developing a Testing Maturity Model: Part I,”
Crosstalk , pp. 21-24, August, 1996. (available at
http://www.stsc.hill.af.mil/crosstalk/)

[20] I. Burnstein, A. Homyen, T. Suwanassart, G.
Saxena, and R. Grom, “A Testing Maturity Model
for Software Test Process Assessment and
Improvement,” Software Quality Professional , vol.
1, no. 4, pp. 8-21, 1999.

[21] D. Card, “Understanding Process Improvement,”
IEEE Software, pp. 102-103, July, 1991.

[22] R. Chillarege, I. Bhandhari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, and M. Wong, “Orthogonal
Defect Classification - A Concept for In-Process
Measurement,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, 1992.

[23] R. Chillarege, “Orthogonal Defect Classification,”
in Handbook of Software Reliability Engineering ,
M. Lyu (eds.), IEEE CS Press, 1996.

[24] B. Clark, “The Effects of Software Process Maturity
on Software Development Effort,” University of
Southern California, PhD Thesis, 1997.

[25] F. Coallier, J. Mayrand, and B. Lague, “Risk
Management in Software Product Procurement,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

© IEEE – Trial Version 1.00 – May 2001 9–15

[26] D. Coleman, P. Arnold, S. Godoff, C. Dollin, H.
Gilchrist, F. Hayes, and P. Jeremaes, Object-
Oriented Development: The Fusion Method.,
Englewood Cliffs, NJ:Prentice Hall., 1994.

[27] J. Collofello and B. Gosalia, “An Application of
Causal Analysis to the Software Production
Process,” Software Practice and Experience, vol.
23, no. 10, pp. 1095-1105, 1993.

[28] E. Comer, “Alternative Software Life Cycle
Models,” in Software Engineering, M. Dorfmann
and R. Thayer (eds.), IEEE CS Press, 1997.

[29] B. Curtis, M. Kellner, and J. Over, “Process
Modeling,” Communications of the ACM, vol. 35,
no. 9, pp. 75-90, 1992.

[30] B. Curtis, W. Hefley, and S. Miller, “People
Capability Maturity Model,” Software Engineering
Institute, CMU/SEI-95-MM-02, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/mm002.95.pdf)

[31] B. Curtis, W. Hefley, S. Miller, and M. Konrad,
“The People Capability Maturity Model for
Improving the Software Workforce,” in Elements of
Software Process Assessment and Improvement, K.
El-Emam and N. Madhavji (eds.), IEEE CS Press,
1999.

[32] A. Davis, E. Bersoff, and E. Comer, “A Strategy for
Comparing Alternative Software Development Life
Cycle Models,” IEEE Transactions on Software
Engineering, vol. 14, no. 10, pp. 1453-1461, 1988.

[33] R. Dion, “Starting the Climb Towards the CMM
Level 2 Plateau,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

[34] M. Dorfmann and R. Thayer (eds.), “Software
Engineering,” IEEE CS Press, 1997.

[35] M. Dowson, “Software Process Themes and Issues,”
in Proceedings of the 2nd International Conference
on the Software Process, pp. 54-62, 1993.

[36] D. Drew, “Tailoring the Software Engineering
Institute’s (SEI) Capability Maturity Model (CMM)
to a Software Sustaining Engineering Organization,”
in Proceedings of the International Conference on
Software Maintenance, pp. 137-144, 1992.

[37] D. Dunnaway and S. Masters, “CMM-Based
Appraisal for Internal Process Improvement (CBA
IPI): Method Description,” Software Engineering
Institute, CMU/SEI-96-TR-007, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/tr007.96.pdf)

[38] K. Dymond, “Essence and Accidents in SEI-Style
Assessments or ‘Maybe this Time the Voice of the
Engineer Will be Heard’,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), IEEE CS Press, 1999.

[39] EIA, “EIA/IS 731 Systems Engineering Capability
Model,”. (available at
http://www.geia.org/eoc/G47/index.html)

[40] K. El-Emam and D. R. Goldenson, “SPICE: An
Empiricist’s Perspective,” in Proceedings of the
Second IEEE International Software Engineering
Standards Symposium, pp. 84-97, 1995.

[41] K. El-Emam, D. Holtje, and N. Madhavji, “Causal
Analysis of the Requirements Change Process for a
Large System,” in Proceedings of the International
Conference on Software Maintenance, pp. 214-221,
1997.

[42] K. El-Emam, J-N Drouin, and W. Melo, SPICE: The
Theory and Practice of Software Process
Improvement and Capability Determination, IEEE
CS Press, 1998.

[43] K. El-Emam, “Benchmarking Kappa: Interrater
Agreement in Software Process Assessments,”
Empirical Software Engineering: An International
Journal , vol. 4, no. 2, pp. 113-133, 1999.

[44] K. El-Emam and L. Briand, “Costs and Benefits of
Software Process Improvement,” in Better Software
Practice for Business Benefit: Principles and
Experiences, R. Messnarz and C. Tully (eds.), IEEE
CS Press, 1999.

[45] K. El-Emam and N. Madhavji, Elements of Software
Process Assessment and Improvement, IEEE CS
Press, 1999.

[46] K. El-Emam, B. Smith, and P. Fusaro, “Success
Factors and Barriers in Software Process
Improvement: An Empirical Study,” in Better
Software Practice for Business Benefit: Principles
and Experiences, R. Messnarz and C. Tully (eds.),
IEEE CS Press, 1999.

[47] K. El-Emam and A. Birk, “Validating the ISO/IEC
15504 Measures of Software Development Process
Capability,” Journal of Systems and Software, vol.
51, no. 2, pp. 119-149, 2000. (available at
E:\Articles\ElEmam_Birk_JSS.pdf)

[48] K. El-Emam and A. Birk, “Validating the ISO/IEC
15504 Measures of Software Requirements Analysis
Process Capability,” IEEE Transactions on Software
Engineering, vol. 26, no. 6, pp. 541-566, June, 2000.

[49] K. El-Emam and D. Goldenson, “An Empirical
Review of Software Process Assessments,”
Advances in Computers, vol. 53, pp. 319-423, 2000.

[50] M. Fayad and M. Laitinen, “Process Assessment:
Considered Wasteful,” Communications of the
ACM, vol. 40, no. 11, November, 1997.

[51] P. Feiler and W. Humphrey, “Software Process
Development and Enactment: Concepts and
Definitions,” in Proceedings of the Second
International Conference on the Software Process,
pp. 28-40, 1993.

9–16 © IEEE – Trial Version 1.00 – May 2001

[52] A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.),
“Software Process Modeling and Technology,”
Research Studies Press Ltd., 1994.

[53] W. Florac and A. Carleton, Measuring the Software
Process: Statistical Process Control for Software
Process Improvement, Addison Wesley, 1999.

[54] P. Fowler and S. Rifkin, “Software Engineering
Process Group Guide,” Software Engineering
Institute, CMU/SEI-90-TR-24, 1990. (available at
http://www.sei.cmu.edu/pub/documents/90.reports/p
df/tr24.90.pdf)

[55] D. Frailey, “Defining a Corporate-Wide Software
Process,” in Proceedings of the 1st International
Conference on the Software Process, pp. 113-121,
1991.

[56] A. Fuggetta and A. Wolf, Software Process, John
Wiley & Sons, 1996.

[57] P. Garg and M. Jazayeri, Process-Centered Software
Engineering Environments, IEEE CS Press, 1995.

[58] P. Garg and M. Jazayeri, “Process-Centered
Software Engineering Environments: A Grand
Tour,” in Software Process, A. Fuggetta and A.
Wolf (eds.), John Wiley & Sons, 1996.

[59] D. Goldenson, K. El-Emam, J. Herbsleb, and C.
Deephouse, “Empirical Studies of Software Process
Assessment Methods,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. H. Madhavji (eds.), IEEE CS Press, 1999.

[60] D.R. Goldenson and J. Herbsleb, “After the
Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that
Influence Success,” Software Engineering Institute,
CMU/SEI -95-TR-009, 1995.

[61] R. Grady, Successful Software Process
Improvement, Prentice Hall, 1997.

[62] E. Gray and W. Smith, “On the Limitations of
Software Process Assessment and the Recognition
of a Required Re-Orientation for Global Process
Improvement,” Software Quality Journal, vol. 7, pp.
21-34, 1998.

[63] D. Harel and M. Politi, Modeling Reactive Systems
with Statecharts: The Statemate Approach ,
McGraw-Hill, 1998.

[64] J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and
D.Zubrow, “Benefits of CMM-based Software
Process Improvement: Initial Results,” Software
Engineering Institute, CMU/SEI-94-TR-13, 1994.

[65] J. Herbsleb and D. Goldenson, “A Systematic
Survey of CMM Experience and Results,” in
Proceedings of the International Conference on
Software Engineering, pp. 25-30, 1996.

[66] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes,
and M. Paulk, “Software Quality and the Capability
Maturity Model,” Communications of the ACM, vol.
40, no. 6, pp. 30-40, 1997.

[67] J. Herbsleb, “Hard Problems and Hard Science: On
the Practical Limits of Experimentation,” IEEE
TCSE Software Process Newsletter, vol. 11, pp. 18-
21, 1998. (available at
http://www.seg.iit.nrc.ca/SPN)

[68] K. Huff, “Software Process Modeling,” in Software
Process, A. Fuggetta and A. Wolf (eds.), John Wiley
& Sons, 1996.

[69] W. Humphrey, Managing the Software Process,
Addison Wesley, 1989.

[70] W. Hump hrey, A Discipline for Software
Engineering, Addison Wesley, 1995.

[71] W. Humphrey, An Introduction to the Team
Software Process, Addison-Wesley, 1999.

[72] D. Hutton, The Change Agent’s Handbook: A
Survival Guide for Quality Improvement
Champions, Irwin, 1994.

[73] IEEE, “IEEE Standard for Developing Software Life
Cycle Processes,” IEEE Computer Society, IEEE
Std 1074-1991, 1991.

[74] IEEE, “IEEE Standard for the Classification of
Software Anomalies,” IEEE Computer Society,
IEEE Std 1044-1993, 1993.

[75] IEEE, “IEEE Standard for Software Maintenance,”
IEEE Computer Society, IEEE Std 1219-1998,
1998.

[76] IEEE, “IEEE Standard for a Software Quality
Metrics Methodology,” IEEE Computer Society,
IEEE Std 1061-1998, 1998.

[77] IEEE, “Guide for Information Technology -
Software Life Cycle Processes - Life cycle data,”
IEEE Computer Society, IEEE Std 12207.1-1998,
1998.

[78] IEEE, “Guide for Information Technology -
Software Life Cycle Processes - Implementation.
Considerations,” IEEE Computer Society, IEEE Std
12207.2-1998, 1998.

[79] K. Ishikawa, What Is Total Quality Control ? The
Japanese Way, Prentice Hall, 1985.

[80] ISO/IEC, “ISO/IEC 12207: Information Technology
- Software Life Cycle Processes,” International
Organization for Standardization and the
International Electrotechnical Commission, 1995.

[81] ISO/IEC, “ISO/IEC TR 15504: Information
Technology - Software Process Assessment (parts 1-
9),” International Organization for Standardization
and the International Electrotechnical Commission,
1998 (part 5 was published in 1999). (available at
http://www.seg.iit.nrc.ca/spice)

[82] ISO/IEC, “ISO/IEC CD 15939: Information
Technology - Software Measurement Process,”
International Organization for Standardization and
the International Electrotechnical Commission,
2000. (available at

© IEEE – Trial Version 1.00 – May 2001 9–17

http://www.info.uqam.ca/Labo_Recherche/Lrgl/sc7/
private_files/07n2274.pdf)

[83] I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process, Addison-
Wesley, 1998.

[84] P. Jalote, An Integrated Approach to Software
Engineering, Springer, 1997.

[85] D. Johnson and J. Brodman, “Tailoring the CMM
for Small Businesses, Small Organizations, and
Small Projects,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[86] C. Jones, Applied Software Measurement, McGraw-
Hill, 1994.

[87] C. Jones, “Gaps in SEI Programs,” Software
Development, vol. 3, no. 3, pp. 41-48, March, 1995.

[88] C. Jones, “The Economics of Software Process
Improvements,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

[89] M. Kellner and G. Hansen, “Software Process
Modeling: A Case Study,” in Proceedings of the
22nd International Conference on the System
Sciences, 1989.

[90] M. Kellner, L. Briand, and J. Over, “A Method for
Designing, Defining, and Evolving Software
Processes,” in Proceedings of the 4th International
Conference on the Software Process, pp. 37-48,
1996.

[91] M. Kellner, U. Becker-Kornstaedt, W. Riddle, J.
Tomal, and M. Verlage, “Process Guides: Effective
Guidance for Process Participants,” in Proceedings
of the 5th International Conference on the Software
Process, pp. 11-25, 1998.

[92] B. Kitchenham, “Selecting Projects for Technology
Evaluation,” IEEE TCSE Software Process
Newsletter, no. 11, pp. 3-6, 1998. (available at
http://www.seg.iit.nrc.ca/SPN)

[93] H. Krasner, “The Payoff for Software Process
Improvement: What it is and How to Get it,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

[94] M. S. Krishnan and M. Kellner, “Measuring Process
Consistency: Implications for Reducing Software
Defects,” IEEE Transactions on Software
Engineering, vol. 25, no. 6, pp. 800-815,
November/December, 1999.

[95] C. Laporte and S. Trudel, “Addressing the People
Issues of Process Improvement Activities at
Oerlikon Aerospace,” Software Process -
Improvement and Practice, vol. 4, no. 4, pp. 187-
198, 1998.

[96] J. Lonchamp, “A Structured Conceptual and
Terminological Framework for Software Process

Engineering,” in Proceedings of the Second
International Conference on the Software Process,
pp. 41-53, 1993.

[97] N. Madhavji, “The Process Cycle,” Software
Engineering Journal, vol. 6, no. 5, pp. 234-242,
1991.

[98] N. Madhavji, D. Hoeltje, W. Hong, and T.
Bruckhaus, “Elicit: A Method for Eliciting Process
Models,” in Proceedings of the Third International
Conference on the Software Process, pp. 111-122,
1994.

[99] S. Masters and C. Bothwell, “CMM Appraisal
Framework - Version 1.0,” Software Engineering
Institute, CMU/SEI-TR-95-001, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/tr001.95.pdf)

[100] B. McFeeley, “IDEAL: A User’s Guide for Software
Process Improvement,” Software Engineering
Institute, CMU/SEI -96-HB-001, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/hb001.96.pdf)

[101] F. McGarry, R. Pajerski, G. Page, S. Waligora, V.
Basili, and M. Zelkowitz, “Software Process
Improvement in the NASA Software Engineering
Laboratory,” Software Engineering Institute,
CMU/SEI -94-TR-22, 1994. (available at
http://www.sei.cmu.edu/pub/documents/94.reports/p
df/tr22.94.pdf)

[102] C. McGowan and S. Bohner, “Model Based Process
Assessments,” in Proceedings of the International
Conference on Software Engineering , pp. 202-211,
1993.

[103] R. Messnarz and C. Tully (eds.), “Better Software
Practice for Business Benefit: Principles and
Experiences,” IEEE CS Press, 1999.

[104] D. Moitra, “Managing Change for Software Process
Improvement Initiatives: A Practical Experience-
Based Approach,” Software Process - Improvement
and Practice, vol. 4, no. 4, pp. 199-207, 1998.

[105] K. Moller and D. Paulish, Software Metrics,
Chapman & Hall, 1993.

[106] J. Moore, Software Engineering Standards: A
User’s Road Map, IEEE CS Press, 1998.

[107] T. Nakajo and H. Kume, “A Case History Analysis
of Software Error Cause-Effect Relationship,” IEEE
Transactions on Software Engineering, vol. 17, no.
8, 1991.

[108] Office of the Under Secretary of Defense for
Acquisitions and Technology, “Practical Software
Measurement: A Foundation for Objective Project
Management,” 1998. (available at
http://www.psmsc.com)

[109] R. Park, W. Goethert, and W. Florac, “Goal-Driven
Software Measurement - A Guidebook,” Software
Engineering Institute, CMU/SEI -96-HB-002, 1996.

9–18 © IEEE – Trial Version 1.00 – May 2001

(available at http://www.sei.cmu.edu/pub/documents
/96.reports/pdf/hb002.96.pdf)

[110] M. Paulk and M. Konrad, “Measuring Process
Capability Versus Organizational Process Maturity,”
in Proceedings of the 4th International Conference
on Software Quality , 1994.

[111] S-L. Pfleeger, Software Engineering: Theory and
Practice, Prentice-Hall, 1998.

[112] S-L. Pfleeger, “Understanding and Improving
Technology Transfer in Software Engineering,”
Journal of Systems and Software, vol. 47, pp. 111-
124, 1999.

[113] R. Pressman, Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 1997.

[114] J. Puffer, “Action Planning,” in Elements of
Software Process Assessment and Improvement, K.
El-Emam and N. H. Madhavji (eds.), IEEE C S
Press, 1999.

[115] L. Putnam and W. Myers, Measures for Excellence:
Reliable Software on Time, Within Budget, Yourdon
Press, 1992.

[116] R. Radice, N. Roth, A. O’Hara Jr., and W. Ciarfella,
“A Programming Process Architecture,” In IBM
Systems Journal, vol. 24, no. 2, pp. 79-90, 1985.

[117] D. Raffo and M. Kellner, “Modeling Software
Processes Quantitatively and Evaluating the
Performance of Process Alternatives,” in Elements
of Software Process Assessment and Improvement,
K. El-Emam and N. Madhavji (eds.), IEEE CS
Press, 1999.

[118] S. Raghavan and D. Chand, “Diffusing Software -
Engineering Methods,” IEEE Software, pp. 81-90,
July, 1989.

[119] E. Rogers, Diffusion of Innovations, Free Press,
1983.

[120] M. Sanders (eds.), “The SPIRE Handbook: Better,
Faster, Cheaper Software Development in Small
Organisations,” European Comission, 1998.

[121] E. Schein, Process Consultation Revisited: Building
the Helping Relationship , Addison-Wesley, 1999.

[122] Software Engineering Institute, The Capability
Maturity Model: Guidelines for Improving the
Software Process, Addison Wesley, 1995.

[123] Software Engineering Laboratory, “Software
Measurement Guidebook (Revision 1),”, SEL-94-
102, 1995. (available at http://sel.gsfc.nasa.gov/
website/documents/online-doc/94-102.pdf)

[124] Software Engineering Laboratory, “Software
Process Improvement Guidebook. NASA/GSFC,”,
SEL-95-102, 1996. (available at
http://sel.gsfc.nasa.gov/website/documents/online-
doc/95-102.pdf)

[125] Software Productivity Consortium, “Process
Definition and Modeling Guidebook,”, SPC-92041-
CMC, 1992.

[126] R. van Solingen and E. Berghout, The
Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development,
McGraw Hill, 1999.

[127] I. Sommerville and T. Rodden, “Human, Social and
Organisational Influences on the Software Process,”
in Software Process, A. Fuggetta and A. Wolf
(eds.), John Wiley & Sons, 1996.

[128] I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practice Guide, John Wiley &
Sons, 1997.

[129] H. Steinen, “Software Process Assessment and
Improvement: 5 Years of Experiences with
Bootstrap,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[130] D. Stelzer and W. Mellis, “Success Factors of
Organizational Change in Software Process
Improvement,” Software Process: Improvement and
Practice, vol. 4, no. 4, pp. 227-250, 1998.

[131] L. Votta, “Does Every Inspection Need a Meeting
?,” ACM Software Engineering Notes, vol. 18, no. 5,
pp. 107-114, 1993.

[132] S. Weissfelner, “ISO 9001 for Software
Organizations,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[133] K. Wiegers, Creating a Software Engineering
Culture, Dorset house, 1996.

[134] E. Yu and J. Mylopolous, “Understanding ‘Why’ in
Software Process Modeling, Analysis, and Design,”
in Proceedings of the 16th International Conference
on Software Engineering , 1994.

[135] S. Zahran, Software Process Improvement: Practical
Guidelines for Business Success, Addison Wesley,
1998.

© IEEE – Trial Version 1.00 – May 2001 10–1

CHAPTER 10

SOFTWARE ENGINEERING TOOLS AND METHODS

David Carrington
Department of Computer Science and Electrical Engineering

The University of Queensland
Brisbane, Qld 4072 Australia

+61 7 3365 3310
davec@csee.uq.edu.au

Table of Contents

1 Introduction...1
2 Definition of the Software Engineering Tools and

Methods Knowledge Area ..1
3 Breakdown of Topics for Software Engineering Tools

and Methods ..2
4 Breakdown Rationale ...6
5 Matrix of Topics vs. Reference Material........................7
6 Recommended References for Software Engineering

tools and Methods..8
Appendix A – References Used to Write and Justify the

Knowledge Area Description ...10

1 INTRODUCTION

This chapter provides an initial breakdown of topics within
the Software Engineering Infrastructure Knowledge Area
as defined by the document “Approved Baseline for a List
of Knowledge Areas for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge”.
Earlier versions of this Knowledge Area included material
on integration and reuse, but this has been removed.
Consequently the Knowledge Area has been renamed from
“Software Engineering Infrastructure” to “Software
Engineering Tools and Methods”.

The five general software engineering texts [DT97, Moo98,
Pfl98, Pre97, and Som96] have been supplemented as
primary sources by “The Computer Science and
Engineering Handbook” [Tuc96], which provides nine
chapters on software engineering topics. Chapter 112,
“Software Tools and Environments” by Steven Reiss
[Rei96] is particularly helpful for this Knowledge Area.
Additional specialized references are identified for
particular topics.

One observation from assembling the guide to this
knowledge area is that there is a scarcity of recent technical
writing on practical software engineering tools. Obviously,

there are detailed manuals on specific tools and numerous
research papers on innovative software tools, but there is a
gap between the two. One difficulty is the high rate of
change in software tools. Specific details alter regularly,
making it difficult to provide up-to-date concrete examples.
There also seems to be an attitude that software engineering
tools are prosaic and not worthy of study beyond the level
required for use.

2 DEFINITION OF THE SOFTWARE ENGINEERING
TOOLS AND METHODS KNOWLEDGE AREA

The Software Engineering Tools and Methods Knowledge
Area includes both the software development environments
and the development methods knowledge areas identified in
the Straw Man version of the guide.

Software development environments are the computer-
based tools that are intended to assist the software
development process. Tools allow repetitive, well-defined
actions to be automated, thus reducing the cognitive load
on the software engineer. The engineer is then free to
concentrate on the creative aspects of the process. Tools are
often designed to support particular methods, reducing any
administrative load associated with applying the method
manually. Like methods, they are intended to make
development more systematic, and they vary in scope from
supporting individual tasks to encompassing the complete
life cycle.

Development methods impose structure on the software
development activity with the goal of making the activity
systematic and ultimately more likely to be successful.
Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope, from a single
life cycle phase to the complete life cycle. The emphasis in
this Knowledge Area is on methods that encompass
multiple lifecycle phases since phase-specific methods are
likely to be covered in other Knowledge Areas.

10–2 © IEEE – Trial Version 1.00 – May 2001

3 BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING TOOLS AND METHODS

This section contains a breakdown of topics in the Software
Engineering Tools and Methods Knowledge Area, with
brief descriptions and references. The Knowledge Area is
partitioned at the top level into Software Tools and
Software Methods. Two levels of references are provided
with topics: the recommended references within brackets
and additional references within parentheses. References to
a particular chapter are denoted as Ref:cN where N is the
chapter number. A similar denotation is used for references
to a particular section Ref:sN. Figure 1 provides a
diagrammatic representation of the breakdown of topics.

I. Software Tools

The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) that correspond to a phase of a software
lifecycle, so these sections provide a location for phase-
specific tools. The next four subsections correspond to the
remaining Knowledge Areas (Process, Quality,
Configuration Management and Management), and provide
locations for phase-independent tools that are associated
with activities described in these Knowledge Areas. Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool
integration techniques, that are potentially applicable to all
classes of tools. Because software engineering tools evolve
rapidly and continuously, the hierarchy and description
avoids discussing particular tools as far as possible.

A. Software Requirements Tools

Tools for dealing with software requirements have been
partitioned into two topics: modeling and traceability. More
fine-grained partitioned would certainly be possible but this
partition was considered adequate based on the coverage of
tools in the literature.

Requirements modeling tools

Tools used for eliciting, recording, analyzing and validating
software requirements belong in this section.

Traceability tools

[Pre97:s29.3, DT97:s4.1, DT97:s12.3]

Requirements traceability tools are becoming increasingly
important as the complexity of software systems grow, and
since traceability tools are relevant also in other lifecycle
phases, they have been separated from the other tools for
requirements.

B. Software Design Tools

[]

This section covers tools for creating and checking
software designs. There is a variety of such tools, with
much of this variety being a consequence of the diversity of
design notations and methods. While this variety of tools
exists, no compelling partitions for this topic were found.

C. Software Construction Tools

Software construction tools are concerned with the
production and translation of the program representation
(commonly known as source code) that is sufficiently
detailed and explicit to enable machine execution.

Program editors

Program editors are tools used for creation and
modification of programs (and possibly associated
documents). These tools can be general-purpose text or
document editors, or they can be specialized for a target
language. Editing refers to human-controlled development
tools.

Compilers and code generators

Traditionally, compilers have been non-interactive
translators of source code but there has been a trend to
integrate compilers and program editors to provide
integrated programming environments. This topic also
covers pre-processors, linker/loaders, and code generators.

Interpreters

Interpreters provide software execution through emulation.
They can support software construction activities by
providing a more controllable and observable environment
for program execution.

Debuggers

Debugging tools have been made a separate topic since
they support the construction process but are different from
program editors or compilers.

D. Software Testing Tools

Testing tools are categorized according to where in the
testing process they are used.

Test generators

Test generators assist the development of test cases.

Test execution frameworks

Test execution frameworks enable the execution of test
cases in a controlled environment where the behavior of the
object under test is observed.

Test evaluation tools

Test evaluation tools support the assessment of the results
of test execution, helping to determine whether the
observed behavior conforms to the expected behavior.

Test management tools

Test management tools provide support for managing all
aspects of the testing process.

Performance analysis tools []

© IEEE – Trial Version 1.00 – May 2001 10–3

This topic covers tools for measuring and analyzing
software performance. It is a specialized form of testing
where the goal is to assess the performance behavior rather
than the functional behavior (correctness).

10–4 © IEEE – Trial Version 1.00 – May 2001

Software Engineering Tools and Methods

I. Software Tools II. Software Methods

Software Requirements
Tools

Heuristic Methods

Software Design Tools

Software Construction
Tools

Requirements modeling
Traceability

Program editors
Compilers
Interpreters
Debuggers

Software Testing Tools
Test generators

Test execution frameworks
Test evaluation

Test management
Performance analysis

Software Maintenance
Tools

Comprehension
Re-engineering

Software Engineering
Process Tools
Process modeling

Process management
Integrated CASE environments

Process-centered software
engineering environments

Inspection

Software Quality Tools

Static analysis

Software Configuration
Management Tools

Defect, enhancement, issue and
problem tracking

Version managment
Release and build

Software Engineering
Management Tools

Project planning and tracking
Risk management

Measurement

Infrastructure Support
Tools

Miscellaneous Tools
Issues

Formal Methods

Interpersonal communication
Information retrieval

System administrative and
support

Tool integration techniques
Meta tools

Tool evaluation

Structured methods

Data-oriented methods

Object-oriented methods

Domain specific methods

Specification languages

Refinement

Verification

Prototyping Methods

Miscellaneous Method
Issues

Styles
Prototyping target

Evaluation techniques

Method evaluation

Figure 1 – Breakdown of topics in the software tools and methods knowledge area

© IEEE – Trial Version 1.00 – May 2001 10–5

E. Software Maintenance Tools

Software maintenance is often presented as additional
iterations of the development lifecycle and consequently
makes use of tools for all other phases. This category
encompasses tools that have particular importance in
software maintenance where an existing system is being
modified. Two categories are identified: comprehension
tools and re-engineering tools.

Comprehension tools

This topic concerns tools to assist human comprehension of
programs. Examples include visualization tools such as
animators and program slicers.

Re-engineering tools

Re-engineering tools allow translation of a program to a
new programming language, or a database to a new format.
Reverse engineering tools assist the process by working
backwards from an existing product to create abstract
artifacts such as design and specification descriptions,
which then can be transformed to generate a new product
from an old one.

F. Software Engineering Process Tools

Process modeling tools

This topic covers tools to model and investigate software
processes.

Process management tools

Integrated CASE environments

(ECMA93, ECMA94, IEEE-1209, IEEE-1348, MNS96)

Computer-aided software engineering tools or
environments that cover multiple phases of the software
development lifecycle belong in this section. Such tools
perform multiple functions and hence potentially interact
with the software process that is being enacted.

Process-centered software engineering environments

(GJ96)

This topic covers those environments that explicitly
incorporate software process information and that guide
and monitor the user according to a defined process.

G. Software Quality Tools

Inspection tools

This topic covers tools to support reviews and inspections.

Static analysis tools

This topic deals with tools that analyze software artifacts,
such as syntactic and semantic analyzers, and data, control
flow and dependency analyzers. Such tools are intended for
checking software artifacts for conformance or for
verifying desired properties.

H. Software Configuration Management Tools

Tools for configuration management have been categorized
as related to tracking issues associated with a particular
software product, management of multiple versions of a
product or to managing the task of software release and
build.

Defect, enhancement, issue and problem tracking tools

Version management tools

Release and build tools

This category includes installation tools that have become
widely used for configuring the installation of software
products.

I. Software Engineering Management Tools

Management tools are subdivided into three categories:
project planning and tracking, risk management, and
measurement.

Project planning and tracking tools

Risk management tools

Measurement tools

J. Infrastructure support tools

This section covers tools that provide interpersonal
communication, information retrieval, and system
administration and support. These tools, such as e-mail,
databases, web browsers and file backup tools, are
generally not specific to a particular lifecycle stage, nor to a
particular development method.

Interpersonal communication tools

Information retrieval tools

System administration and support tools

K. Miscellaneous tool issues

This section covers issues that are applicable to all classes
of tools. Three categories are identified: tool integration
techniques, meta-tools and tool evaluation.

Tool integration techniques

[Som96:s25.2]

(Bro94)

Tool integration is important for making individual tools
cooperate. This category potentially overlaps with
integrated software engineering environments where
integration techniques are applied, but it was felt that this
topic is sufficiently distinct to merit its own category. The
typical kinds of tool integration are platform, presentation,
process, data, and control.

Meta tools

Meta-tools generate other tools; compiler-compilers are the
classic example.

Tool evaluation

(IEEE-1209, IEEE-1348, Mos92, VB97)

10–6 © IEEE – Trial Version 1.00 – May 2001

Because of the continuous evolution of software
engineering tools, tool evaluation is an essential topic.

II. Software Development Methods

The software development section is divided into four
subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneous method issues. The first
three subsections are not disjoint; rather they represent
distinct concerns. For example, an object-oriented method
may incorporate formal techniques and rely on prototyping
for verification and validation. Like software engineering
tools, methodologies evolve continuously. Consequently,
the Knowledge Area description avoids naming particular
methodologies as far as possible.

A. Heuristic methods

This subsection contains four categories: structured, data-
oriented, object-oriented and domain-specific. The domain-
specific category includes specialized methods for
developing systems that involve real-time, safety or
security aspects.

Structured methods

Data-oriented methods

Object-oriented methods

Domain-specific methods

B. Formal methods

This subsection deals with mathematically based
development methods and is subdivided by different
aspects of formal methods. The first topic is the
specification notation or language used. Specification
languages are commonly classified as model-oriented,
property-oriented or behavior-oriented. The second topic
deals with how the method refines (or transforms) the
specification into a form that is closer to the desired final
form of an executable program. The third topic covers the
verification properties that are specific to the formal
approach and covers both theorem proving and model
checking.

Specification languages & notations

Refinement

Verification/proving properties

C. Prototyping methods

This subsection covers methods involving software
prototyping and is subdivided into prototyping styles,
targets and evaluation techniques.
Styles

(PB92:c1)

The topic of prototyping styles identifies the different
approaches: throwaway, evolutionary and the executable
specification.
Prototyping target

(PB92:c2)
Example targets of a prototyping method may be
requirements, architectural design or the user interface.
Evaluation techniques

This topic covers how the results of a prototype exercise
are used.

D. Miscellaneous method issues

The final subsection is intended to cover topics not covered
elsewhere in the software method area. The only topic
identified so far is method evaluation.

1. Method evaluation

4 BREAKDOWN RATIONALE

The Stone Man Version of the Guide to the Software
Engineering Body of Knowledge conforms at least partially
with the partitioning of the software life cycle in the
ISO/IEC 12207 Standard [ISO95]. Some Knowledge
Areas, such as this one, are intended to cover knowledge
that applies to multiple phases of the life cycle. One
approach to partitioning topics in this Knowledge Area
would be to use the software life cycle phases. For
example, software methods and tools could be classified
according to the phase with which they are associated. This
approach was not seen as effective. If software engineering
tools and methods could be cleanly partitioned by lifecycle
phase, it would suggest that this Knowledge Area could be
eliminated by allocating each part to the corresponding life
cycle Knowledge Area, e.g., tools and methods for software
design to the Software Design Knowledge Area. Such an
approach would fail to identify the commonality of, and
interrelationships between, both methods and tools in
different life cycle phases. However since tools are a
common theme to most Knowledge Areas, several
reviewers of Version 0.5 of this Knowledge Area suggested
that a breakdown based on Knowledge Area for tools
would be helpful. The Industry Advisory Board endorsed
this suggestion.

There are many links between methods and tools, and one
possible structure would seek to exploit these links.
However because the relationship is not a simple “one-to-
one” mapping, this structure has not been used to organize
topics in this Knowledge Area. This means that these links
are not always explicitly identified.

Some topics in this Knowledge Area do not have
corresponding reference materials identified in the matrices
in Appendix 2. There are two possible conclusions: either
the topic area is not relevant to this Knowledge Area, or
additional reference material needs to be identified.
Feedback from the experimentation phase will be helpful to
resolve this issue.

© IEEE – Trial Version 1.00 – May 2001 10–7

5 MATRIX OF TOPICS VS . REFERENCE MATERIAL

I. Software Tools CW96 DT97 Pfl98 Pre97 Rei96 Som96 Was96
 A. Software Requirements Tools 4.1

12.3
 11.4.2,

29.3
 26.2

 Requirements modeling tools
 Traceability tools 7.4
 B. Software Design Tools 12.3 29.3 26.2
 C. Software Construction Tools 12.3 29.3 112.2 26.1
 Program editors
 Compilers and code generators
 Interpreters
 Debuggers
 D. Software Testing Tools 12.3 7.7, 8.7 29.3 112.3 26.3
 Test generators
 Test execution frameworks
 Test evaluation tools
 Test management tools
 Performance analysis tools 112.5
 E. Software Maintenance Tools 12.3 10.5 29.3
 Comprehension tools 112.5
 Re-engineering tools
 F. Software Engineering Process Tools 12.3 25, 26,

27

 Process modeling tools 2.3, 2.4
 Process management tools
 Integrated CASE environments 29 112.3,

112.4

 Process-centered software engineering
environments

 29.6 112.5

 G. Software Quality Tools 12.3
 Inspection tools
 Static analysis tools X 7.7 29.3 112.5 24.3
 H. Software Configuration Management

Tools
 12.3 10.5 112.3

 Defect, enhancement, issue and problem
tracking tools

 29.3

 Version management tools 29
 I. Software Engineering Management

Tools
 12.3

 Project planning and tracking tools 29.3
 Risk management tools
 J. Infrastructure Support Tools 12.3
 Interpersonal communication tools 29.3
 Information retrieval tools 29.3
 System administration and support tools 29.3
 K. Miscellaneous Tool Issues 12.3
 Tool integration techniques 1.8 112.4 X
 Meta tools
 Tool evaluation 8.10

10–8 © IEEE – Trial Version 1.00 – May 2001

II. Development Methods CW96 DT97 Pfl98 Pre98 Som96 Was96 CW96

 A. Heuristic Methods X

 1. Structured methods 4.2, 5.2 4.5 10-18 15

 2 Data-oriented methods 4.2, 5.2 12.8

 3 Object-oriented methods 5.1, 5.2 4.4, 7.5 19-23 6.3, 14

 4 Domain-specific methods 15 16

 B. Formal Methods 5.4 24, 25 9-11,
24.4

 1. Specification languages X 4.5 24.4

 2. Refinement 25.3

 3. Verification/proving properties X 5.7, 7.3 24.2

 C. Prototyping Methods 2.5 8 X

 1. Styles 12.2 4.6, 5.6 11.4

 2. Prototyping targets 12.2

 3. Evaluation techniques

 D. Miscellaneous Method Issues

 1. Method evaluation

6 RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING TOOLS AND METHODS

This section briefly describes each of the recommended
references.

[CW96] Edmund M. Clarke et al. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
vol. 28, no. 4, dec. 1996, p. 626-643.

This tutorial on formal methods explains techniques for
formal specification, model checking and theorem proving,
and describes some successful case studies and tools.

[DT97] Merlin Dorfman and Richard H. Thayer (eds.).
Software Engineering, IEEE Computer Society Press.

This tutorial volume contains a collection of papers
organized into chapters. The following papers are
referenced (section numbers have been added to reference
individual papers more conveniently in the matrices in the
Appendix):

Chapter 4: Software Requirements Engineering and
Software Design

4.1 Software Requirements: A Tutorial, Stuart Faulk

4.2 Software Design: An Introduction, David Budgen

Chapter 5: Software Development Methodologies

5.1 Object-oriented Development, Linda M. Northrup

5.2 Object-oriented Systems Development: Survey of
Structured Methods, A.G. Sutcliffe

5.4 A Review of Formal Methods, Robert Vienneau

Chapter 7: Software Validation, Verification and Testing

7.4 Traceability, James D. Palmer

Chapter 12 Software Technology

12.2 Prototyping: Alternate Systems Development
Methodology, J.M. Carey

12.3 A Classification of CASE Technology, Alfonso
Fuggetta

 [Pfl98] S.L. Pfleeger. Software Engineering  Theory and
Practice, Prentice-Hall.

This text is structured according to the phases of a life cycle
so that discussion of methods and tools is distributed
throughout the book.

[Pre97] R.S. Pressman. Software Engineering  A
Practitioner’s Approach (4th Ed.), McGraw-Hill

Chapter 29 covers “Computer-Aided Software
Engineering” including a taxonomy of case tools (29.3).
There is not much detail about any particular class of tool
but it does illustrate the wide range of software engineering
tools. The strength of this book is its description of
methods with chapters 10-23 covering heuristic methods,
chapters 24 and 25 covering formal methods. Section 11.4
describes prototyping methods and tools.
[Rei96] Steven P. Reiss. Software Tools and Environments
in The Computer Science and Engineering Handbook. CRC
Press, 1996 .
This chapter from [Tuc96] provides an overview of
software tools. The emphasis is on programming tools

© IEEE – Trial Version 1.00 – May 2001 10–9

rather than tools for analysis and design although CASE
tools are mentioned briefly.

[Som96] Ian Sommerville. Software Engineering (5th Ed.),
Addison-Wesley.

Chapters 25, 26 and 27 introduce computer-aided software
engineering with the emphasis being on tool integration and
large-scale environments. Static analysis tools are covered
in Section 24.3. Chapter 9, 10 and 11 introduce formal
methods with formal verification being described in Section
24.2 and the Cleanroom method in Section 24.4.
Prototyping is discussed in Chapter 8.

[Was96] Anthony I. Wasserman. Toward a Discipline of
Software Engineering, IEEE Software, vol. 13, no. 6 Nov.
1996, pp. 23-31.

This general article discusses the role of both methods and
tools in software engineering. Although brief, the paper
integrates the major themes of the discipline.

10–10 © IEEE – Trial Version 1.00 – May 2001

 APPENDIX A – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

[Ber92] Edward V. Berard. Essays on Object-Oriented
Software Engineering. Prentice-Hall, 1993.
[BP92] W. Bischofberger and G Pomberger. Prototyping-
oriented Software Development: Concepts and Tools.
Springer-Verlag, 1992.
[Bro94] Alan W. Brown et al. Principles of CASE Tool
Integration. Oxford University Press, 1994.
[CB95] D.J. Carney and A.W. Brown. On the Necessary
Conditions for the Composition of Integrated Software
Engineering Environments. In Advances in Computers,
Volume 41, pages 157-189. Academic Press, 1995.
[CW96] Edmund M. Clarke, Jeanette M. Wing et al.
Formal Methods: State of the Art and Future Directions.
ACM Computer Surveys, 28(4):626-643, 1996.
[Col94] Derek Coleman et al. Object-Oriented
Development: The Fusion Method. Prentice Hall, 1994.
[CGR95] Dan Craigen, Susan Gerhart and Ted Ralston.
Formal Methods Reality Check: Industrial Usage, IEEE
Transactions on Software Engineering, 21(2):90-98,
February 1995.
[DT97] Merlin Dorfman and Richard H. Thayer, Editors.
Software Engineering. IEEE Computer Society, 1997.
[ECMA93] ECMA. TR/55 Reference Model for
Frameworks of Software Engineering Environments, 3rd
edition, June 1993.
[ECMA94] ECMA TR/69 Reference Model for Project
Support Environments, December 1994.
[Fin00] Anthony Finkelstein, Editor. The Future of
Software Engineering. ACM, 2000.
[GJ96] Pankaj K. Garg and Mehdi Jazayeri. Process-
Centered Software Engineering Environments, IEEE
Computer Society, 1996.
[HOT00] William Harrison, Harold Ossher and Peri Tarr.
Software Engineering Tools and Environments: A
Roadmap. In [Fin00], pp. 263-277, 2000.
[IEEE-1175] IEEE. Trial-Use Standard Reference Model
for Computing System Tool Interconnections, IEEE Std
1175-1992.
[IEEE-1209] IEEE. Recommended Practice for the
Evaluation and Selection of CASE Tools, IEEE Std 1209-
1992 (ISO/IEC 14102, 1995).
[IEEE-1348] IEEE Recommended Practice for the
Adoption of CASE Tools, IEEE Std 1348-1995 (ISO/IEC
14471).
[ISO-12207] ISO/IEC Standard for Information
Technology Software Life Cycle Processes, ISO/IEC
12207 (IEEE/EIA 12207.0-1996), 1995.
[JH98] Stan Jarzabek and Riri Huang. The Case for User-
Centered CASE Tools, Communications of the ACM,
41(8):93-99, August 1998.

[KPP95] B. Kitchenham, L. Pickard, and S.L. Pfleeger.
Case Studies for Method and Tool Evaluation, IEEE
Software, 12(4):52-62, July 1995.
[Lam00] Axel van Lamsweerde. Formal Specification: A
Roadmap. In [fin00], pp. 149-159, 2000.
[Mey97] Bertrand Meyer. Object-oriented Software
Construction (2nd Ed.). Prentice Hall, 1997.
[Mul00] Hausi Müller et al. Reverse Engineering: A
Roadmap. In [Fin00], pp. 49-60, 2000.
[Moo98] James W. Moore. Software Engineering
Standards: A User’s Road Map. IEEE Computer Society,
1998.
[Mos92] Vicky Mosley. How to Assess Tools Efficiently
and Quantitatively, IEEE Software, 9(3):29-32, May 1992.
(MNS96] H.A. Muller, R.J. Norman and J. Slonim (eds.).
Computer Aided Software Engineering, Kluwer, 1996. (A
special issue of Automated Software Engineering, 3(3/4),
1996).
[PB96] Gustav Pomberger and Günther Blaschek. Object-
orientation and Prototyping in Software Engineering.
Prentice Hall, 1996.
[Pfl98] Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.
[Pos96] R.M. Poston. Automating specification-based
Software Testing. IEEE, 1996.
[Pre97] Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. 4th edition, McGraw-Hill, 1997.
[Rei96] Steven P. Reiss. Software Tools and Environments,
Ch. 112, pages 2419-2439. In Tucker [Tuc96], 1996.
[RW92] C. Rich and R.C. Waters. Knowledge Intensive
Software Engineering Tools, IEEE Transactions on
Knowledge and Data Engineering, 4(5):424-430, October
1992.
[Som96] Ian Sommerville. Software Engineering. 5th
edition, Addison-Wesley, 1996.
[SO92] Xiping Song and Leon J. Osterweil. Towards
Objective, Systematic Design-Method Comparisons, IEEE
Software, 9(3):43-53, May 1992.
[Tuc96] Allen B. Tucker, Jr., Editor-in-chief. The
Computer Science and Engineering Handbook. CRC Press,
1996.
[VB97] Laura A. Valaer and Robert C. Babb II. Choosing a
User Interface Development Tool. IEEE Software,
14(4):29-39, 1997
[Vin90] Walter G. Vincenti. What Engineers Know and
How They Know It: Analytical Studies from Aeronautical
History. John Hopkins University Press, 1990.
[Was96] Anthony I. Wasserman. Toward a Discipline of
Software Engineering, IEEE Software, 13(6): 23-31,
November 1996.
[Wie98] Roel Wieringa. A Survey of Structured and
Object-Oriented Software Specification Methods and
Techniques. ACM Computing Surveys, 30(4):459-527,
1998.

© IEEE – Trial Version 1.00 – May 2001 11–1

CHAPTER 11

SOFTWARE QUALITY

Dolores Wallace* and Larry Reeker
National Institute of Standards and Technology

Gaithersburg, Maryland 20899 USA
{Dolores.Wallace, Larry.Reeker}@NIST.gov

*Dolores Wallace has retired from NIST (but is still available via her NIST e-mail address at the time of publication.)

Table of Contents

1. Introduction and Definition of the Software Quality
Knowledge Area ...1

2. Breakdown of Topics for Software Quality...................2
3. Breakdown Rationale ...12
4. Matrix of Topics vs. Reference material13
5. Recommended References for Software Quality........16

1. INTRODUCTION AND DEFINITION OF THE SOFTWARE
QUALITY KNOWLEDGE AREA

This chapter deals with software quality considerations that
transcend the life cycle processes. Of course, software
quality is a ubiquitous concern in software engineering, so
it is considered in many of the other KAs (and the reader
will notice pointers those KAs through this KA. There will
also be some inevitable duplication with those other KAs as
a consequence.

Software Quality Assurance (SQA) and Verification and
Validation (V&V) are the major processes discussed in this
KA, as they bear directly on the quality of the software
product. The term “product” will, however, be extended to
mean any artifact that is the output of any process used to
build the final software product. Examples of a product
include, but are not limited to, an entire system
specification, a software requirements specification for a
software component of a system, a design module, code,
test documentation, or reports from quality analysis tasks.
While most treatments of quality are described in terms of
the final system’s performance, sound engineering practice
requires that intermediate products relevant to quality be
checked throughout the development and maintenance
process. The reason for this extension of “product” is that
SQA and V&V can be used to evaluate the intermediate
products and the final product. In addition to intermediate
products and code, it can be applied to user documentation,
which is best developed together with code and can often
force issues regarding requirements and code.

Another major topic of this KA is just trying to answer the
question “What is software quality?” this is not a simple
question, as was concluded by David Garvin [Gar84,
Hya96]. Though we will not go into the complexities that
he studied, we will present a view for the working software
engineer.

The discussion of the purpose and planning of SQA and
V&V is a bridge between the discussion of quality and the
activities and techniques discussion for SQA and V&V, but
it is also an important activity in itself. In the planning
process, the activities are designed to be fitted to the
product and its purposes, including the quality attributes in
the requirements.

Because determining quality of both the final product and
intermediate products requires measurement, the topic of
measurement is relevant to the other parts of this KA. A
separate section is therefore included on the subject of
measurement. Measurement of product quality at all levels
of the project will in the future become more important
than it has been in the past or is today. With increasing
sophistication of systems (moving, for example, into areas
like intelligent web agents), the questions of quality go
beyond whether the system works or not, to how well it
achieves measurable quality goals. In addition, the
availability of more data about software and its production,
along with data mining techniques for analysis of the data,
will help to advance measurement definitions and
procedures. A more relevant, widely-accepted, robust set of
measures will be a sign of maturation in software
engineering.

It has been suggested that this chapter should also deal with
models and criteria that evaluate the capabilities of
software organizations, but those are primarily project
organization and management considerations. Of course it
is not possible to disentangle the quality of the process
from the quality of the product, but the quality of the
software engineering process is not a topic specific to this
KA, whereas the quality of the software product the
assigned topic. So an ability to perform Software Quality
Assurance, for instance, is a major component of a quality
software engineering program, but SQA is itself relevant to

11–2 © IEEE – Trial Version 1.00 – May 2001

software quality.

2. BREAKDOWN OF TOPICS FOR SOFTWARE QUALITY

The quality of a given product is sometimes defined as “the
totality of characteristics [of the product or services] that
bear on its ability to satisfy stated or implied needs”1.
Quality software is sometimes also defined as “the
efficient, effective, and comfortable use by a given set of
users for a set of purposes under specified conditions”.
These two definitions can be related to requirements
conformance - provided the requirements are well
engineered. Both agreement on quality requirements and
communication to the engineer information on what will
constitute quality requires that the aspects of quality be
defined and discussed. For that reason, the first topic is
description of product quality and some of the product
characteristics that relate to it. The importance of
requirements engineering is clearly an issue here.

Sections on the processes  SQA and V&V  that focus
on software quality follow the discussion on software
quality concepts. These quality-focused processes help to
ensure better software in a given project. They also provide,
as a by-product, general information to management that
can improve the quality of the entire software and
maintenance processes. The knowledge areas Software
Engineering Process and Software Engineering
Management, discuss quality programs for the
organization developing software systems. SQA and V&V
can provide relevant feedback for these areas.

Engineering for quality requires the measurement of quality
in a concrete way, so this knowledge area contains a section
on measurement as applied to SQA and V&V. Other
processes for assuring software product quality are
discussed in other parts of the SWEBOK. One of these,
singled out as a separate KA within the software life cycle,
Software Testing , is also used in both SQA and V&V.

2.1. Software quality concepts

What is software quality, and why is it so important that it
is pervasive in the Software Engineering Body of
Knowledge? Within a system, software is a tool, and tools
have to be selected for quality and for appropriateness. That
is the role of requirements. But software is more than a
tool. The software dictates the performance of the system,
and is therefore important to the system quality. Much
thought must therefore go into the value to place on each
quality attribute desired and on the overall quality of the
system. This section discusses the value and the attributes
of quality.

The notion of “quality” is not as simple as it may seem. For
any engineered product, there are many desired qualities
relevant to a particular project, to be discussed and

1 From Quality—Vocabulary, (ISO 8402: 1986, note 1).

determined at the time that the product requirements are
determined. Quality attributes may be present or absent, or
may be present in greater or lesser degree, with tradeoffs
among them, with practicality and cost as major
considerations. The software engineer needs first of all to
determine the real purpose for the software, which is a
prime point to keep in mind: The customer’s needs come
first, and they include particular levels of quality, not just
functionality. Thus the software engineer has a
responsibility to elicit quality requirements that may not
even be explicit at the outset and to discuss their
importance and the difficulty of attaining them. All
processes associated with software quality (e.g. building,
checking, improving quality) will be designed with these in
mind and carry costs based on the design. Therefore, it is
important to have in mind some of the possible attributes of
quality.

w Various researchers have produced models (usually
taxonomic) of software quality characteristics or
attributes that can be useful for discussing, planning,
and rating the quality of software products. The
models often include measures to “measure” the
degree of each quality attribute the product attains.
They are not always direct measures of the quality
characteristics discussed in the texts of Pressman [Pr],
Pfleeger [Pf] and Kan [Kan94]. Each model may have
a different set of attributes at the highest level of the
taxonomy, and selection of and definitions for the -
attributes at all levels may differ. The important point
is that requirements define the required quality of the
respective software, the definitions of the attributes
for quality, and the measurement methods and
acceptance criteria for the attributes. Some of the
classical thinking in this area is found in McCall
[McC77] and Boehm [Boe78].

2.1.1. Measuring the Value of Quality

A motivation behind a software project is a determination
that it has a value, and this value may or not be quantified
as a cost, but the customer will have some maximum cost
in mind. Within that cost, the customer expects to attain the
basic purpose of the software and may have some
expectation of the necessary quality, or may not have
thought through the quality issues or their related costs. The
software engineer, in discussing software quality attributes
and the processes necessary to assure them, should keep in
mind the value of each attribute and the sensitivity of the
value of the product to changes in it. Is it merely an
adornment or is it essential to the system? If it is
somewhere in between, as almost everything is, it is a
matter of making the customer a part of the decision
process and fully aware of both costs and benefits. Ideally,
most of this decision process goes on in the Requirements
phase (see that KA), but these issues may arise throughout
the software life cycle. There is no definite rule for how the
decisions are made, but the software engineer should be
able to present quality alternatives and their costs. A

© IEEE – Trial Version 1.00 – May 2001 11–3

discussion of measuring cost and value of quality
requirements can be found in [Wei93], Chapter 8, pp118-
134] and [Jon96], Chapter 5.

2.1.2. ISO 9126 Quality Description

Terminology for quality attributes differs from one
taxonomy or model of software quality to another; each
model may have different numbers of hierarchical levels
and a different total number of attributes. A software
engineer should understand the underlying meanings of
quality characteristics regardless of their names, as well as
their value to the system under development or
maintenance. An attempt to standardize terminology in an
inclusive model resulted in ISO 9126 (Information
Technology-Software Product Quality, Part 1: Quality
Model, 1998), of which a synopsis is included in this KA as
Table 1. ISO 9126 is concerned primarily with the
definition of quality characteristics in the final product. ISO
9126 sets out six quality characteristics, each very broad in
nature. They are divided into 21 sub-characteristics. In the
1998 revision, “compliance” to application-specific
requirements is included as a sub-characteristic of each
characteristic The approach taken in the 1998 version is
discussed in [Bev97].

2.1.3. Dependability

For systems whose failure may have extremely severe
consequences, dependability of the overall system
(hardware, software, and humans) is the main goal in
addition to the realization of basic functionality. Software
dependability is the subject of IEC 50-191 and the IEC 300
series of standards. Some types of systems (e.g., radar
control, defense communications, medical devices) have
particular needs for high dependability, including such
attributes as fault tolerance, safety, security, usability.
Reliability is a criterion under dependability and also is
found among the ISO/IEC 9126 (Table 1). In Moore’s
treatment [M], Kiang’s factors [Kia95] are used as shown
in the following list, with the exception of the term
Trustability from Laprie [Lap91].

w Availability: The product’s readiness for use on
demand

w Reliability: The longevity of product performance

w Maintainability: The ease of maintenance and upgrade

w Maintenance support: Continuing support to achieve
availability performance objectives

w Trustability: System’s ability to provide users with
information about service correctness.

There is a large body of literature for systems that must be
highly dependable (“high confidence” or “high integrity
systems”). Terminology from traditional mechanical and
electrical systems that may not include software have been
imported for discussing threats or hazards, risks, system
integrity, and related concepts, and may be found in the
references cited for this section.

2.1.4. Special Types of Systems and Quality Needs

As implied above, there are many particular qualities of
software that may or may not fit under ISO 9126. Particular
classes of application systems may have other quality
attributes to be judged. This is clearly an open-ended set,
but the following are examples:

w Intelligent and Knowledge Based Systems –
“Anytime” property (guarantees best answer that can
be obtained within a given time if called upon for an
answer in that amount of time), Explanation
Capability (explains reasoning process in getting an
answer).

w Human Interface and Interaction Systems – Adaptivity
(to user’s traits, interests), Intelligent Help, Display
Salience.

w Information Systems – Ease of query, High recall
(obtaining most relevant information), High Precision
(not returning irrelevant information), tradeoffs. 3.5
Quality Attributes of Programming Products

Other considerations of software systems are known to
affect the software engineering process while the system is
being built and during its future evolution or modification,
and these can be considered elements of product quality.
These software qualities include, but are not limited to:

w “Stylishness” of Code

w Code and object reusability

w Traceability: From requirements to code/test
documentation, and from code/test documentation to
requirements

w Modularity of code and independence of modules.

These quality attributes can be viewed as satisfying
organizational or project requirements for the software in
the effort to improve the overall performance of the
organization or project. See the Software Engineering
Management and Software Engineering Process KAs for
related material.

11–4 © IEEE – Trial Version 1.00 – May 2001

Software Quality

Software Quality
Concepts

Purpose and
Planning of SQA

and V&V

Activities and
Techniques for
SQA and V&V

Measurement
Applied to SQA

and V&V

Measuring the
Value of Quality

ISO 9126 Quality
Description

Dependability

Special Types of
Systems and Quality

Needs

Common Planning
Activities

The SQA Plan

The V&V Plan

Static Techniques

Dynamic Techiques

Other SQA and
V&V Testing

Fundamentals of
Measurement

Measures

Measurement
Analysis

Techniques

Additional Uses
of SQA and
V&V data

Defect
Characterization

Table 1. Software Quality Characteristics and Attributes – ISO 9126-1998 View
Characteristics & Subcharacteristics Short Description of the Characteristics and Subcharacteristics
Functionality Characteristics relating to achievement of the basic purpose for which the software is being engineered
. Suitability The presence and appropriateness of a set of functions for specified tasks

. Accuracy The provision of right or agreed results or effects

. Interoperability Software’s ability to interact with specified systems

. Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data.

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Reliability Characteristics relating to capability of software to maintain its level of performance under stated

conditions for a stated period of time
. Maturity Attributes of software that bear on the frequency of failure by faults in the software

. Fault tolerance Ability to maintain a specified level of performance in cases of software faults or unexpected inputs

. Recoverability Capability and effort needed to reestablish level of performance and recover affected data after possible failure

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Usability Characteristics relating to the effort needed for use, and on the individual assessment of such

use, by a stated or implied set of users
. Understandability The effort required for a user to recognize the logical concept and its applicability

. Learnability The effort required for a user to learn its application, operation, input, and output

. Operability The ease of operation and control by users

. Attractiveness The capability of the software to be attractive to the user

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Efficiency Characteristic related to the relationship between the level of performance of the software

and the amount of resources used, under stated conditions
. Time behavior The speed of response and processing times and throughput rates in performing its function
. Resource utilization The amount of resources used and the duration of such use in performing its function

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Maintainability Characteristics related effort needed to make modifications, including corrections, improvements or

adaptation of software to changes in environment, requirements and functional specifications

© IEEE – Trial Version 1.00 – May 2001 11–5

Table 1. Software Quality Characteristics and Attributes – ISO 9126-1998 View
Characteristics & Subcharacteristics Short Description of the Characteristics and Subcharacteristics
. Analyzability The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be modified

. Changeability The effort needed for modification fault removal or for environmental change

. Stability The risk of unexpected effect of modifications

. Testability The effort needed for validating the modified software

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Portability Characteristics related to the ability to transfer the software from one organization or hardware or software

environment to another
. Adaptability The opportunity for its adaptation to different specified environments

. Installability The effort needed to install the software in a specified environment

. Co-existence The capability of a software product to co-exist with other independent software in common environment

. Replaceability The opportunity and effort of using it in the place of other software in a particular environment

. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

2.2. Purpose and Planning of SQA and V&V

The KA Software Requirements describes how the
requirements and their individual features are defined,
prioritized and documented and how the quality of that
documentation can be measured. The set of requirements
has a direct effect on both the intermediate software
engineering products, and the delivered software. Building
in quality as the process takes place and making careful
reference to well-engineered requirements that define the
needed measures and attributes of quality are the most
important determiners of overall software quality.

The Software Engineering Process (discussed overall in
that KA) employs multiple supporting processes to
examine and assure software products for quality. These
supporting processes conduct activities to ensure that the
software engineering process required by the project is
followed. Two related (and sometimes combined)
supporting processes most closely related to product
quality, SQA and V&V, are discussed in this section. These
processes both encourage quality and find possible
problems. But they differ somewhat in their emphasis.

SQA and V&V also provide management with visibility
into the quality of products at each stage in their
development or maintenance. The visibility comes from the
data and measurements produced through the performance
of tasks to assess and measure quality of the outputs of any
software life cycle processes as they are developed. Where
strict quality standards are an overriding factor, the tasks
used to assess quality and capture data and measurements
may be performed by an organization independent of the
project organization, in order to provide a higher degree of
objectivity to the quality assessment.

The SQA process provides assurance that the software
products and processes in the project life cycle conform to
their specified requirements by planning a set of activities
to help build quality into the software. This means ensuring
that the problem is clearly and adequately stated and that
the solution’s requirements are properly defined and
expressed. SQA seeks to retain the quality throughout the

development and maintenance of the product by execution
of a variety of activities at each stage that can result in early
identification of problems, which are almost inevitable in
any complex activity. The SQA role with respect to process
is to ensure that planned processes are appropriate and are
later implemented according to plan and that relevant
measurement processes are provided to the appropriate
organization.

The Verification and Validation process determines
whether products of a given development or maintenance
activity conform to the needs of that activity and those
imposed by previous activities, and whether the final
software product satisfies its intended use and user needs.
Verification attempts to ensure that the product is built
correctly, in the sense that the, output products of an
activity fulfill requirements imposed on them in previous
activities. Validation attempts to ensure that the right
product is built, that is, the product fulfills its specific
intended use. Both verification and validation processes
begin early in the development or maintenance process.
They provide an examination of every product relative both
to its immediate predecessor and to the system
requirements it must satisfy.

In summary, the SWEBOK describes a number of pro ways
of achieving software quality. As described in this KA, the
SQA and V&V processes are closely related processes that
can overlap and are sometimes even combined. They seem
largely reactive in nature because they address the
processes as practiced and the products as produced; but
they have a major role at the planning stage in being
proactive as to the procedures needed to attain the quality
attributes and degree needed by the stakeholders in the
software. They should also produce feedback that can
improve the software engineering process. In summary:

w SQA governs the procedures meant to build the
desired quality into the products by assuring that the
process is well-planned and then applied as prescribed
and defined. It helps keep the organization from
sliding back into less effective processes and habits,
and may provide direct assistance or guidance in
applying the current practices.

11–6 © IEEE – Trial Version 1.00 – May 2001

w V&V is aimed more directly at product quality, in that
it is based on testing that can locate deviations and fix
them. But it also validates the intermediate products
and therefore the intermediate steps of the software
engineering process. So it too can affect the software
engineering process through that evaluation.

It should be noted that sometimes the terms SQA and V&V
are associated with organizations rather than processes.
SQA often is the name of a unit within an organization.
Sometimes an independent organization is contracted to
conduct V&V. Testing may occur in Both SQA and V&V
and is discussed in this KA in relation to those processes.
Details on testing within the software life cycle are found in
the KA on Software Testing . The Software Quality KA is
not intended to define organizations but rather the purposes
and procedures of SQA and V&V, insofar as they relate to
software quality. The organizational aspect is mentioned
here, however, to tie together different KAs and to help
avoid confusion. Some discussion on organizational issues
appears in [Hum98], and the IEEE Std. 1012.

2.2.1. Common Planning Activities

Planning for software quality involves (1) defining, the
required product in terms of its quality attributes and (2)
planning the processes to achieve the required product.
Planning of these processes is discussed in other KAs:
Software Engineering Management, Software
Engineering Design, and Software Engineering Methods
and Tools. These topics are different from planning the
SQA and V&V processes. The SQA and V&V processes
assess predicted adequacy and actual implementation of
those plans, that is, how well software products will or do
satisfy customer and stakeholder requirements, provide
value to the customers and other stakeholders, and meet the
software quality needed to meet the system requirements.

System requirements vary among systems, as do the
activities selected from the disciplines of SQA and V&V.
Various factors influence planning, management and
selection of activities and techniques, including:

1. the environment of the system in which the software
will reside;

2. system and software requirements;

3. the commercial or standard components to be used in
the system;

4. the specific software standards used in developing the
software;

5. the software standards used for quality;

6. the methods and software tools to be used for
development and maintenance and for quality
evaluation and improvement;

7. the budget, staff, project organization, plans and
schedule (size is inherently included) of all the
processes;

8. the intended users and use of the system, and

9. the integrity level of the system.

Information from these factors influences how the SQA and
V&V processes are organized, and documented, how
specific SQA and V&V activities are selected, and what
resources are needed or will impose bounds on the efforts.
The integrity level of a system can be used as an example.
The integrity level is determined based on the possible
consequences of failure of the system and the probability of
failure. For software systems where safety or security is
important, techniques such as hazard analysis for safety or
threat analysis for security may be used to develop a
planning process that would identify where potential
trouble spots lie. Failure history of similar systems may
also help in identifying which activities will be most useful
in detecting faults and assessing quality.

If the SQA and V&V organizations are the same, their
plans may be combined, but we will treat them as separate
plans below, as they are often distinguished from one
another.

2.2.2. The SQA Plan

The SQA plan defines the processes and procedures that
will be used to ensure that software developed for a specific
product meets its requirements and is of the highest quality
possible within project constraints. To do so, it must first
ensure that the quality target is clearly defined and
understood. The plan may be governed by software quality
assurance standards, life cycle standards, quality
management standards and models, company policies and
procedures for quality and quality improvement. It must
consider management, development and maintenance plans
for the software. Standards and models such as ISO9000,
CMM, Baldrige, SPICE, TickIT are related to the Software
Engineering Process and may influence the SQA plan.

The specific activities and tasks are laid our, with their
costs and resource requirements, their overall management,
and their schedule in relation to those in the software
management, development or maintenance plans. The SQA
plan should be cognizant of the software configuration plan
also (see the KA for Software Configuration
Management) The SQA plan identifies documents,
standards, practices, and conventions that govern the
project and how they will be checked and monitored to
ensure adequacy or compliance. The SQA plan identifies
measures, statistical techniques, procedures for problem
reporting and corrective action, resources such as tools,
techniques and methodologies, security for physical media,
training, and SQA reporting and documentation to be
retained. The SQA plan addresses assurance of any other
type of function addressed in the software plans, such as
supplier software to the project or commercial off-the-shelf
software (COTS), installation, and service after delivery of
the system. It can also contain some items less directly
related to quality: acceptance criteria, activity deadlines,
reporting, and management activities that feed experiences
into the development process.

© IEEE – Trial Version 1.00 – May 2001 11–7

2.2.3. The V&V Plan

The V&V plan is the instrument to explain the
requirements and management of V&V and the role of each
technique in satisfying the objectives of V&V. An
understanding of the different purposes of each verification
and validation activity will help in planning carefully the
techniques and resources needed to achieve their purposes.
IEEE standard 1012, section 7, specifies what ordinarily
goes into a V&V plan.

Verification activities examine a specific product, that is,
output of a process, and provide objective evidence that
specified requirements have been fulfilled. The “specified
requirements” refer to the requirements of the examined
product, relative to the product from which it is derived.
For example, code is examined relative to requirements of a
design description, or the software requirements are
examined relative to system requirements.

Validation examines a specific product to provide objective
evidence that the requirements for a specific intended use
are fulfilled. The validation confirms that the product traces
back to the software system requirements and satisfies
them. This includes planning for system testing more or
less in parallel with the system and software requirements
process. This aspect of validation often serves as part of a
requirements verification activity. While some
communities separate completely verification from
validation, the activities of each actually service the other.

V&V activities can be exercised at every step of the life
cycle, often on the same product, possibly using the same
techniques in some instances. The difference is in the
technique’s objectives for that product, and the supporting
inputs to that technique. Sequentially, verification and
validation will provide evidence from requirements to the
final system, a step at a time. This process holds true for
any life cycle model, gradually iterating or incrementing
through the development. The process holds in
maintenance also.

The plan for V&V addresses the management,
communication, policies and procedures of the V&V
activities and their iteration, evaluation of methods,
measures, and tools for the V&V activities, defect reports,
and documentation requirements. The plan describes V&V
activities, techniques and tools used to achieve the goals of
those activities.

The V&V process may be conducted in various
organizational arrangements. First, to re-emphasize, many
V&V techniques may be employed by the software
engineers who are building the product. Second, the V&V
process may be conducted in varying degrees of
independence from the development organization. Finally,
the integrity level of the product may drive the degree of
independence.

2.3. Activities and techniques for SQA and V&V

The SQA and V&V processes consist of activities to
indicate how software plans (e.g., management,
development, configuration management) are being
implemented and how well the evolving and final products
are meeting their specified requirements. Results from
these activities are collected into reports for management
before corrective actions are taken. The management of
SQA and V&V are tasked with ensuring the quality of
these reports, that is, that the results are accurate.

Specific techniques to support the activities software
engineers perform to assure quality may depend upon their
personal role (e.g., programmer, quality assurance staff)
and project organization (e.g., test group, independent
V&V). To build or analyze for quality, the software
engineer understands development standards and methods
and the genesis of other resources on the project (e.g.,
components, automated tool support) and how they will be
used. The software engineer performing quality analysis
activities is aware of and understands considerations
affecting quality assurance: standards for software quality
assurance, V&V, testing, the various resources that
influence the product, techniques, and measurement (e.g.,
what to measure and how to evaluate the product from the
measurements).

The SQA and V&V activities consist of many techniques;
some may directly find defects and others may indicate
where further examination may be valuable. These may be
referred to as direct-defect finding and supporting
techniques. Some often serve as both, such as people-
intensive techniques like reviews, audits, and inspection (as
used here, not to be confused with the term “inspection”
used for static analysis of work products) and some static
techniques like complexity analysis and control flow
analysis. The SQA and V&V techniques can be categorized
as two types: static and dynamic. Static techniques do not
involve the execution of code, whereas dynamic techniques
do. Static techniques involve examination of the
documentation (e.g., require ments specification, design,
plans, code, test documentation) by individuals or groups of
individuals and sometimes with the aid of automated tools.
Often, people tend to think of testing as the only dynamic
technique, but simulation is an example of another one.
Sometimes static techniques are used to support dynamic
techniques, and vice-versa. An individual, perhaps with the
use of a software tool, may perform some techniques; in
others, several people are required to conduct the
technique. Such techniques, requiring two or more people,
are “people-intensive”. Depending on project size, other
techniques, such as testing, may involve many people, but
are not people-intensive in the sense described here.

Static and dynamic techniques are used in either SQA or
V&V. Their selection, specific objectives and organization
depend on project and product requirements. Discussion in
the following sections and the tables in the appendices
provide only highlights about the various techniques; they

11–8 © IEEE – Trial Version 1.00 – May 2001

are not inclusive. There are too many techniques to define
in this document but the lists and references provide a
flavor of SQA and V&V techniques and will yield insights
for selecting techniques and for pursuing additional reading
about techniques.

2.3.1. Static Techniques

Static techniques involve examination of the project’s
documentation, software and other information about the
software products without executing them. The techniques
may include people intensive activities, as defined above,
or analytic activities conducted by individuals, with or
without the assistance of automated tools. These support
both SQA and V&V processes and their specific
implementation can serve the purpose of SQA, verification,
or validation, at every stage of development or
maintenance.

2.3.1.1. People-Intensive Techniques

The setting for people-intensive techniques, including
audits, reviews, and inspections, may vary. The setting may
be a formal meeting, an informal gathering, or a desk-check
situation, but (usually, at least) two or more people are
involved. Preparation ahead of time may be necessary.
Resources in addition to the items under examination may
include checklists and results from analytic techniques and
testing. Another technique that may be included in this
group is the walkthrough. They may also be done on-line.
These activities are discussed in IEEE Std. 1028 on reviews
and audits, [Fre82], [Hor96], and [Jon96], [Rak97].

Reviews that specifically fall under the SQA process are
technical reviews, that is, on technical products. However,
the SQA organization may be asked to conduct
management reviews as well. Persons involved in the
reviews are usually a leader, a recorder, technical staff, and
-in the management review - management staff.

Management reviews determine adequacy of and monitor
progress or inconsistencies against plans and schedules and
requirements. These reviews may be exercised on products
such as audit reports, progress reports, V&V reports and
plans of many types including risk management, project
management, software configuration management, software
safety, and risk assessment, among others. See the
Software Engineering Management KA for related
material.

Technical reviews examine products (again, anything
produced a stage of the software engineering project, such
as software requirement specifications, software design
documents, test documentation, user documentation,
installation procedures), but the coverage of the material
may vary with purpose of the review. The subject of the
review is not necessarily the comp leted product, but may be
a portion of it. For example, a subset of the software
requirements may be reviewed for a particular set of
functionality, or several design modules may be reviewed,
or separate reviews may be conducted for each category of

test for each of its associated documents (plans, designs,
cases and procedures, reports).

An audit is an independent evaluation of conformance of
software products and processes to applicable regulations,
standards, plans, and procedures. Audits may examine
plans like recovery, SQA, and maintenance, design
documentation. The audit is a formally organized activity,
with participants having specific roles, such as lead auditor,
other auditors, a recorder, an initiator, and a representative
of the audited organization. While for reviews and audits
there may be many formal names such as those identified in
the IEEE Std. 1028, the important point is that they can
occur on almost any product at any stage of the
development or maintenance process.

Software inspections generally involve the author of a
product, while reviews likely do not. Other persons include
a reader and some inspectors. The inspector team may
consist of different expertise, such as domain expertise, or
design method expertise, or language expertise, etc.
Inspections are usually conducted on a relatively small
section of the product. Often the inspection team may have
had a few hours to prepare, perhaps by applying an analytic
technique to a small section of the product, or to the entire
product with a focus only on one aspect, e.g., interfaces. A
checklist, with questions germane to the issues of interest,
is a common tool used in inspections. Inspection sessions
can last a couple of hours or less, whereas reviews and
audits are usually broader in scope and take longer.

The walkthrough is similar to an inspection, but is
conducted by only members of the development group,
who examine a specific part of a product. With the
exception of the walkthrough – primarily an assurance
technique used only by the developer, these people-
intensive techniques are traditionally considered to be SQA
techniques, but may be performed by others. The technical
objectives may also change, depending on who performs
them and whether they are conducted as verification or as
validation activities. Often, when V&V is an organization,
it may be asked to support these techniques, either by
previous examination of the products or by attending the
sessions to conduct the activities.

2.3.1.2 Analytic Techniques

An individual generally applies analytic techniques.
Sometimes several people may be assigned the technique,
but each applies it to different parts of the product. Some
are tool-driven; others are primarily manual. With the
References (Section 7.1) there are tables of techniques
according to their primary purpose. However, many
techniques listed as support may find some defects directly
but are typically used as support to other techniques. Some
however are listed in both categories because they are used
either way. The support group of techniques also includes
various assessments as part of overall quality analysis.
Examples of this group of techniques includes complexity

© IEEE – Trial Version 1.00 – May 2001 11–9

analysis, control flow analysis, algorithm analysis, and use
of formal methods.

Each type of analysis has a specific purpose and not all are
going to be applied to every project. An example of a
support technique is complexity analysis, useful for
determining that the design or code may be too complex to
develop correctly, to test or maintain; the results of a
complexity analysis may be used in developing test cases.
Some listed under direct defect finding, such as control
flow analysis, may also be used as support to another
activity. For a software system with many algorithms,
algorithm analysis is important, especially when an
incorrect algorithm could cause a catastrophic result. There
are too many analytic techniques to define in this document
but the lists and references provide a flavor of software
analysis and will yield to the software engineer insights for
selecting techniques and for pursuing additional reading
about techniques.

A class of analytic techniques that is gaining greater
acceptance is the use of formal methods to verify software
requirements and designs. Proof of correctness may also be
applied to different parts of programs. Their acceptance to
date has mostly been in verification of crucial parts of
critical systems, such as specific security and safety
requirements [NAS97].

2.3.2. Dynamic Techniques

Different kinds of dynamic techniques are performed
throughout the development and maintenance of software
systems. Generally these are testing techniques, but
techniques such as simulation, model checking, and
symbolic execution may be considered dynamic. Code
reading is considered a static technique but experienced
software engineers may execute the code as they read
through it. In this sense, code reading may also fit under
dynamic. This discrepancy in categorizing indicates that
people with different roles in the organization may consider
and apply these techniques differently.

Some testing may fall under the development process, the
SQA process, or V&V, again depending on project
organization. The discipline of V&V encompasses testing
and requires activities for testing at the very beginning of
the project. Because both the SQA and V&V plans address
testing, this section includes some commentary about
testing. The knowledge area on Software Testing provides
discussion and technical references to theory, techniques
for testing, and automation. Supporting techniques for
testing fall under test management, planning and
documentation. V&V testing generally includes component
or module, integration, system, and acceptance testing.
V&V testing may include test of commercial off-the-shelf
software (COTS) and evaluation of tools to be used in the
project (see section 5.3).

The assurance processes of SQA and V&V examine every
output relative to the software requirement specification to
ensure the output’s traceability, consistency, completeness,

correctness, and performance. This confirmation also
includes exercising the outputs of the development and
maintenance processes, that is, the analysis consists of
validating the code by testing to many objectives and
strategies, and collecting, analyzing and measuring the
results. SQA ensures that appropriate types of tests are
planned, developed, and implemented, and V&V develops
test plans, strategies, cases and procedures.

2.4. Other SQA and V&V Testing

Two types of testing fall under SQA and V&V because of
their responsibility for quality of materials used in the
project:

Evaluation and test of tools to be used on the project (See
ISO/IEC 12119 Information Technology – Guidance for the
Evaluation and Selection of CASE Tools)

Conformance test (or review of conformance test) of
components and COTS products to be used in the product.
There now exists a standard for software packages (see
section 7.2.4.)

The SWEBOK knowledge area on Software Testing
addresses special purpose testing. Many of these types are
also considered and performed during planning for SQA or
V&V testing. Occasionally the V&V process may be asked
to perform these other testing activities according to the
project’s organization. Sometimes an independent V&V
organization may be asked to monitor the tes t process and
sometimes to witness the actual execution, to ensure that it
is conducted in accordance with specified procedures. And,
sometimes, V&V may be called on to evaluate the testing
itself: adequacy of plans and procedures, and adequacy and
accuracy of results.

Another type of testing that may fall under a V&V
organization is third party testing. The third party is not the
developer or in any way associated with the development of
the product. Instead, the third party is an independent
facility, usually accredited by some body of authority.
Their purpose is to test a product for conformance to a
specific set of requirements. Discussion on third party
testing appears in the July/August 1999 IEEE Software
special issue on software certification.

2.5. Measurement applied to SQA and V&V

SQA and V&V discover information at all stages of the
development and maintenance process that provides
visibility into the software development and maintenance
processes. Some of this information involves counting and
classifying defects, where “defect” refers to errors, faults,
and failures. Typically, if the word “defect” is used, it
refers to “fault” as defined below, but different cultures and
standards may differ somewhat in their meaning for these
same terms, so there have been attempts to define them.
Partial definitions taken from the IEEE Std 610.12-1990

11–10 © IEEE – Trial Version 1.00 – May 2001

(“IEEE Standard Glossary of Software Engineering
Terminology”) are these:

w Error: “A difference…between a computed result and
the correct result”

w Fault: “An incorrect step, process, or data definition in
a computer program”

w Failure: “The [incorrect] result of a fault”

w Mistake: “A human action that produces an incorrect
result”.

Mistakes (as defined above) are the subject of the quality
improvement process, which is covered in the Knowledge
Area Software Engineering Process. Failures found in
testing as the result of software faults are included as
defects in the discussion of this section. Reliability models
are built from failure data collected during system testing or
from systems in service, and thus can be used to predict
failure and to assist decisions on when to stop testing.

Information on inadequacies and defects found during SQA
and V&V techniques may be lost unless it is recorded. For
some techniques (e.g., reviews, audits, inspections),
recorders are usually present to record such information,
along with issues, and decisions. When automated tools are
used, the tool output may provide the defect information.
Sometimes data about defects are collected and recorded on
a “trouble report” form and may further be entered into
some type of database, either manually or automatically
from an analysis tool. Reports about the defects are
provided to the software management and development
organizations.

One probable action resulting from SQA and V&V reports
is to remove the defects from the product under
examination. Other actions enable achieving full value
from the findings of the SQA and V&V activities. These
actions include analyzing and summarizing the findings
with use of measurement techniques to improve the product
and the process ands to track the defects and their removal.
Process improvement is primarily discussed in Software
Engineering Process with SQA and V&V process being a
source of information..

2.5.1. Fundamentals of Measurement

The theory of measurement establishes the foundation on
which meaningful measurements can be made. It tells us,
for instance, that the statement that it is twice as warm
today as yesterday if it is 40 degrees Fahrenheit today but
only 20 degrees yesterday is not meaningful because
degrees Fahrenheit is not a “ratio scale” but a similar
statement concerning degrees Kelvin would have a physical
meaning. Measurement is defined in the theory as “the
assignment of numbers to objects in a systematic way to
represent properties of the object.” If the property is just a
constant assigned by counting some aspect it is an
“absolute” measure, but usually not very meaningful. More
meaningful scales are relative to a classification or scale,
and for those, measurement theory provides a succession of

more and more constrained ways of assigning the measures.
If the numbers assigned are merely to provide labels to
classify the objects, they are called “nominal”. If they are
assigned in a way that ranks the objects (e.g. good, better,
best), they are called “ordinal”. If they deal with
magnitudes of the property relative to a defined
measurement unit, they are “interval” (and the intervals are
uniform between the numbers unless otherwise specified,
and are therefore additive). Measurements are at the “ratio”
level if they have an absolute zero point, so ratios of
distances to the zero point are meaningful (as in the
example of temperatures given earlier).

Key terms on software measures and measurement methods
have been defined in ISO/IEC FCD 15939 on the basis of
the ISO international vocabulary of metrology [ISO93].
Nevertheless, readers will encounter terminology
differences in the literature; for example, the term “metric”
is sometimes used in place of “measure”.
Software measures of all of these types have been defined.
A simple example of a ratio scale in software, for instance,
is the number of defects discovered per module. In module
1, there may be 10 defects per function point (where a
function point is a measure of size based on functionality)
in module 2, 15 and in module 3, 20. The difference
between module 1 and 2 is 5 and module 3 has twice as
many defects as module 1. Theories of measurement and
scales are discussed in [Kan94], pp. 54-82. The standard for
functional size measurement is ISO/IEC 14143-1 and
additional, supporting standards are under development. A
number of specific methods, suitable for different purposes,
are available.

Measurement for measurement’s sake does not help define
quality. Instead, the software engineer needs to define
specific questions about the product, and hence the
objectives to be met to answer those questions. Only then
can specific measures be selected. ISO/IEC FCD 15939
defines the activities and tasks necessary to implement a
software measurement process and includes as well a
measurement information model. Another approach is
“Plan-Do-Check-Act” discussed in [Rak97] . Others are
discussed in the references on software measurement. The
point is that there has to be a reason for collecting data, that
is, there is a question to be answered.

Measurement programs are considered useful if they help
project stakeholders (1) understand what is happening
during their processes, and (2) control what is happening on
their projects [Fen95,97, Pf]. For measurement to work
well, it is critical to establish measurement planning,
collection, interpretation and reporting activities as part of a
larger organizational process, for example requirements
engineering, design, or software construction. The
measurement process and its implementation should be
documented in the form of a measurement plan. It defines
the measurement process with exact information on
stakeholders involved, measurement frequency, sources of
measurement data, measurement rules, measurement data

© IEEE – Trial Version 1.00 – May 2001 11–11

interpretation rules, tools support, reports to be produced,
and action items that can be taken based on the
measurement data. In this way, the plan represents a
communication vehicle to ensure that all team members
agree with the measurement approach, while also serving as
the ongoing reference model to manage the implementation
of reuse measures.

Other important measurement practices deal with
experimentation and data collection. Experimentation is
useful in determin ing the value of a development,
maintenance, or assurance technique and results may be
used to predict where faults may occur. Data collection is
non-trivial and often too many types of data are collected.
Instead, it is important to decide what is the purpose, that
is, what question is to be answered from the data, then
decide what data is needed to answer the question and then
to collect only that data. While a measurement program has
costs in time and money, it may result in savings. Methods
exist to help estimate the costs of a measurement program.
Discussion on the following key topics for measurement
planning are found in ([Bas84], [Kan94], [Pr], [Pf],
[Rak97], [Zel98]:

w Experimentation

w Selection of approach for measurement

w Methods

w Costing

w Data Collection process.

2.5.2. Measures

Measurement models and frameworks for software quality
enable the software engineer to establish specific product
measures as part of the product concept. Models and
frameworks for software quality are discussed in [Kan94],
[Pf], and [Pr].

If they are designed properly measures can support
software quality (among other aspects of the software
engineering process) in multiple ways. They can help
management decision-making. They can find problematic
areas and bottlenecks in the software product; and they can
help the developers in assessing the quality of their work
for SQA purposes and for longer term process quality
assessment.

Data can be collected on various characteristics of software
products. Many of the measures are related to the quality
characteristics defined in Section 2 of this Knowledge
Area. Much of the data can be collected as results of the
static techniques previously discussed and from various
testing activities (see Software Testing Knowledge Area).
The types of measures for which data are collected
generally fall into one or more of these categories and are
discussed in [Jon96], [Lyu96], [Pf], [Pr], [Lyu96], and
[Wei93]:

w Quality characteristics measures

w Reliability models & measures

w Defect features (e.g., counts, density)

w Customer satisfaction

w Product features (e.g., size, which includes source
lines of code)and/or function points [Abr96], number
of requirements)

w Structure measures (e.g., modularity, complexity,
control flow)

w Object-oriented measures.

2.5.3. Measurement Analysis Techniques

While the measures for quality characteristics and product
features may be useful in themselves (for example, the
number of defective requirements or the proportion of
requirements that are defective), mathematical and
graphical techniques can be applied to aid in interpretation
of the measures. These fit into the following categories and
are discussed in [Fen97], [Jon96], [Kan94], [Lyu96] and
[Mus98].

w Statistically based (e.g., Pareto analysis, run charts,
scatter plots, normal distribution)

w Statistical tests (e.g., binomial test; chi-squared test)

w Trend analysis

w Prediction, e.g., reliability models.

The statistically based techniques and tests often provide a
snapshot of the more troublesome areas of the software
product under examination. The resulting charts and graphs
are visualization aids that the decision-makers can use to
focus resources where they appear most needed. Results
from trend analysis may indicate whether a schedule may
be slipped, such as in testing, or may indicate that certain
classes of faults will gain in intensity unless some
corrective action is taken in development. And the
predictive techniques assist in planning test time and
predicting failure. More discussion on these appears in
Software Engineering Process and Software Engineering
Management.

2.5.4. Defect Characterization

SQA and V&V processes discover defects. Characterizing
those defects enables understanding of the product,
facilitates corrections to the process or the product, and
informs the project management or customer of the status
of the process or product. Many defect (fault) taxonomies
exist and while attempts have been made to get consensus
on a fault and failure taxonomy, the literature indicates that
quite a few are in use (IEEE Std. 1044, [Bei90], [Chi92],
[Gra92]). Defect (anomaly) characterization is used in
audits and reviews, too, with the review leader often
presenting a list of anomalies provided by team members
for consideration at a review meeting.

As new design methodologies and languages evolve, along
with advances in overall application technologies, new
classes of defects appear, or, the connection to previously
defined classes requires much effort to realize. When

11–12 © IEEE – Trial Version 1.00 – May 2001

tracking defects, the software engineer is interested not
only in the count of defects, but the types. Without some
classification, information will not really be useful in
identifying the underlying causes of the defects because no
one will be able to group specific types of problems and
make determinations about them. The point, again, as in
selecting a measurement approach with quality
characteristics, measures and measurement techniques, is to
establish a defect taxonomy that is meaningful to the
organization and software system.

The above references as well as [Kan94], [Fen95] and [Pf],
and [Jon89] all provide discussions on analyzing defects.
This is done by measuring defect occurrences and then
applying statistical methods to understand the types of
defects that occur most frequently, that is, answering
questions about where mistakes occur most frequently
(their density). They also aid in understanding the trends
and how well detection techniques are working, and, how
well the development and maintenance processes are
doing.2 Measuring test coverage helps to estimate how
much test effort remains and to predict possible remaining
defects. From these measurement methods, one can develop
defect profiles for a specific application domain. Then, for
the next software system within that organization, the
profiles can be used to guide the SQA and V&V processes,
that is, to expend the effort where the problems are likeliest
to occur. Similarly, benchmarks, or defect counts typical of
that domain, may serve as one aid in determining when the
product is ready for delivery.

The following topics are useful for establishing
measurement approaches for the software products:

w Defect classification and descriptions

w Defect analysis

w Measuring adequacy of the SQA and V&V activities

w Test coverage

w Benchmarks, profiles, baselines, defect densities.

2.5.5. Additional Uses of SQA and V&V data

The measurement section of this KA on SQA and V&V
touches only minimally on measurement, for measurement
is a major topic itself. The purpose here is only to provide
some insight on how the SQA and V&V processes use
measurement directly to support achieving their goals.
There are a few more topics which measurement of results
from SQA and V&V may support. These include some
assistance in deciding when to stop testing. Reliability
models and benchmarks, both using fault and failure data,
are useful for this objective. Again, finding a defect, or
perhaps trends among the defects, may help to locate the
source of the problem.

2 Discussion on using data from SQA and V&V to improve

development and maintenance processes appears in Software
Engineering Management and Software Engineering Process.

The cost of SQA and V&V processes is almost always an
issue raised in deciding how to organize a project. Often
generic models of cost, based on when the defect is found
and how much effort it takes to fix the defect relative to
finding the defect earlier, are used. Data within an
organization from that organization’s projects may give a
better picture of cost for that organization. Discussion on
this topic may be found in [Rak97], pp. 39-50. Related
information can be found in the Software Engineering
Process and Software Engineering Management KAs.

Finally, the SQA and V&V reports themselves provide
valuable information not only to these processes but to all
the other software engineering processes for use in
determining how to improve them. Discussions on these
topics are found in [McC93] and IEEE Std. 1012.

3. BREAKDOWN RATIONALE

One breakdown of topics is provided for this area. The
rationale for that breakdown is largely stated in the KA
introduction. This has been developed through an
evolutionary process as the various rewrites and review
cycles took place.

The original name of the topic, as it came out of the first
meeting of the Industrial Review Board, was “Software
Quality Analysis, and it had resulted from a fusion of

• Software Quality Assurance

• Verification and Validation

• Dependability and Quality

• The jump -start document (produced by the same
authors as this current KA version) suggested
three breakdowns . They were based on

• Criteria for Quality of Software (Basic General
Criteria, Examples of Implicit Requirements,
Special Situations with Additional Quality
Criteria)

• Maintaining and Improving Quality in Software
(Process or Project Quality, Product Quality,
Techniques for Effective V&V)

• Verification and Validation Across the Software
Life Cycle (Initial Project V&V Management,
Software Requirements V&V, Software Design
V&V, Coding V&V, Testing Phase)

It soon became clear that the topic was intended to
transcend life cycle divisions, and that the third suggested
breakdown could be covered by references to the KAs
covering stages of the life cycle. The first two breakdowns
did not really have major overlaps, but each dealt with
topics that related to quality, so they were merged into a
single breakdown.

An attempt to define the title “Software Quality Analysis”
was included in early versions, and it distinguished Quality
Process and Quality Product. The Product portion dwelt in

© IEEE – Trial Version 1.00 – May 2001 11–13

some detail on views of quality characteristics. The Process
section included SQA and V&V and some management-
oriented considerations.

Later it was determined that the management portions were
covered well elsewhere in the SWEBOK, and that the
purpose of this KA was really Quality Product. Other KAs
were describing the process, including quality concerns, in
their descriptions. Nevertheless, there was a place for the
processes (SQA and V&V) whose major concern was
quality, as this would pull together fragmented discussions
in the life cycle KAs and emphasize that these processes
were in principle the same over all stages.

Since the ISO 9126 characteristics are well set out in the
standard, and there are other views of quality characteristics
as well, the detailed examination of them that appeared in
earlier versions has also been reduced and dealt with

through references. This was suggested by reviewers and
by space considerations.

In summary, the breakdown is a product of the original
concept of the editorial team; the suggestions of the
Industrial Advisory Board; the material developed by other
KA authors; and the opinions voiced by dozens of
individuals, representing different points of view, who have
reviewed this KA. During the process, the word “Analysis”
was dropped from the KA title, since it was causing
confusion as to the purpose of the KA by implying to some
readers a scholarly area, rather than an area of concern to
the practitioner.

It is intended that the KA as a whole and its breakdown of
the topic will now evolve based on experience by users,
reflecting its usefulness in fulfilling the multiple objectives
of the SWEBOK.

4. MATRIX OF TOPICS VS . REFERENCE MATERIAL

Software Quality Concepts

[B
oe

78
]

[D
]

[F
en

97
]

[K
ia

95
]

[L
ap

91
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
]

[W
al

96
]

[W
ei

93
]

Value of Quality X X X

Functionality X

Reliability X X X X X X X X

Efficiency X X X

Usability X X X X X X X

Maintainability X X X X X X X

Portability X X X X X

Dependability X X X X X X X X X

Other Qualities X X X X X X X

Definition & Planning
for Quality

[G
ra

92
]

[H
or

96
]

[K
az

99
]

[L
ew

92
]

[L
yu

96
]

[M
cC

93
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

Overall X X X X

SQA X X X X X X X X X

VV X X X X X X X X X

Independent V&V X X X X X X X

Hazard, threat anal. X X X X X

Risk assessment X X X X X X X

Performance analysis X X X

Techniques Requiring
Two or More People

[A
ck

97
]

[E
be

94
]

[F
re

82
]

[G
ra

92
]

[H
or

96
]

[L
ew

92
]

[M
cC

93
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

Audit X X X X X

Inspection X X X X X X X X X X X X X

Review X X X X X X X X X

Walkthrough X X X X X X X X

11–14 © IEEE – Trial Version 1.00 – May 2001

Support to Other
Techniques

[B
ei

90
]

[C
on

86
]

[F
ri

95
]

[H
et

84
]

[L
ev

95
]

[L
ew

92
]

 [L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
]

[F
ri

95
]

[W
al

89
]

[W
al

96
]

Change Impact Anal. X X X X

Checklists X X X X

Complexity Analysis X X X X X

Coverage Analysis X X X

Consistency Analysis X X X

Criticality Analysis X X X X

Hazard Analysis X X X X X

Sensitivity Analysis X X

Slicing X X X

Test documents X X X X X X

Tool evaluation X X X

Traceability Analysis X X X X X X

Threat Analysis X X X X X

Testing Special to SQA
or V&V

[F
ri

95
]

[L
ev

95
]

[L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[V
oa

99
]

[W
ak

99
]

[W
al

89
]

Conformance Test. X X

Configuration Test. X

Certification Testing X X X X X X X

Reliability Testing X X X X X

Safety Testing X X X X

Security Testing X

Statistical Testing X X X X X X

Usability Testing X X

Test Monitoring X

Test Witnessing X

Defect Finding

Techniques

[B
ei

90
]

[F
en

95
]

[F
ri

95
]

H
et

ze
l

[H
or

96
]

[I
pp

95
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
al

89
]

Algorithm Analysis X X X X X

Boundary Value Anal. X X X X X X

Change Impact Anal. X X X X X X

Checklists X X X

Consistency Analysis X X

Control Flow Analysis X X X X X X X X

Database Analysis X X X X X X X

Data Flow Analysis X X X X X X X X X

Distrib. Arch. Assess. X

Evaluation of Docts.:

Concept, Reqmts.

 X X X X X X

© IEEE – Trial Version 1.00 – May 2001 11–15

Defect Finding

Techniques

[B
ei

90
]

[F
en

95
]

[F
ri

95
]

H
et

ze
l

[H
or

96
]

[I
pp

95
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
al

89
]

Evaluation of Docts.:

Design, Code, Test

 X X X X X

Evaluation of Doc.:

User, Installation

 X X X X X

Event Tree Analysis X X

Fault Tree Analysis X X X X X

Graphical Analysis X X X X

Hazard Analysis X X X X X X X

Interface Analysis X X X X X X X

Formal Proofs X X X X X

Mutation Analysis X X X X

Perform. Monitoring X X

Prototyping X X X X X

Reading X X

Regression Analysis X X X X X X

Simulation X X

Sizing & Timing Anal. X X X X X X

Threat Analysis X X X

Measurement in
Software Quality

Analysis [B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

95
]

[F
en

97
]

[F
ri

95
]

[G
ra

92
]

[H
et

84
]

[H
or

96
]

[J
on

96
]

[K
an

94
]

[L
ew

92
]

[L
yu

96
]

[M
us

89
]

[M
us

98
]

[P
en

92
]

[P
f]

[P
r]

[M
cC

93
]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
ei

93
]

[Z
el

98
]

Benchmarks, profiles, etc. X X X X X
Company Measures
Progs.

 X X X X X X

Costing X X X X X X X X X X X X
Customer satisfaction X X X
Data Collection process X X X X X X
Debugging X X X X X X
Defect Analysis X X X X X X X X X X X X X X
Defect Classif. and Descr. X X X X X X X X X X X X
Defect Features X X X X X X X X
Example of applied GQM X X
Experimentation: X X X X X X
Framework X X
GQM X X X X X X
Methods X X X X X X X
Measures X X X X X X X X X X X X
Models X X X X
Prediction X X X X X
Prod. features: O/O Metr. X
Prod. Features: Structure X X X X X X
Product features: Size X X X X X

11–16 © IEEE – Trial Version 1.00 – May 2001

Measurement in
Software Quality

Analysis [B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

95
]

[F
en

97
]

[F
ri

95
]

[G
ra

92
]

[H
et

84
]

[H
or

96
]

[J
on

96
]

[K
an

94
]

[L
ew

92
]

[L
yu

96
]

[M
us

89
]

[M
us

98
]

[P
en

92
]

[P
f]

[P
r]

[M
cC

93
]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
ei

93
]

[Z
el

98
]

Quality Attributes X X X X
Quality Character. Meas. X X X X
Reliab. Models & Meas. X X X X X X X X
Scales X X X X
SQA & V&V reports * X X X X
Statistical tests X X X X X X
Statistical Analysis &
measurement

 X X X X X X X X X

Test coverage X X
Theory X X X X
Trend analysis X
When to stop testing* X X X

Standards
Quality

Requirements &
planning

Reviews/
Audits

SQA/V&V
planning

Safety/security
analysis, tests

Documentation of
quality analysis Measurement

ISO 9000 X X X X
ISO 9126 X
IEC 61508 X X X
ISO/IEC 14598 X X X
ISO/IEC 15026 X
ISO FDIS 15408 X X
FIPS 140-1 X X
IEEE 730 X X X
IEEE 1008 X
IEEE 1012 X X X X
IEEE 1028 X
IEEE 1228 X
IEEE 829 X
IEEE 982.1,.2 X
IEEE 1044 X
IEEE 1061 X

5. RECOMMENDED REFERENCES FOR SOFTWARE
QUALITY

5.1. Basic SWEBOK References

Dorfman, M., and R.H. Thayer, Software Engineering.
IEEE Computer Society Press, 1997. [D]

Moore, J.W., Software Engineering Standards: A User’s
Road Map. IEEE Computer Society Press, 1998. [M]

Pfleeger, S.L., Software Engineering – Theory and
Practice. Prentice Hall, 1998. [Pf]

Pressman, R.S., Software Engineering: A Practitioner’s
Approach (4th edition). McGraw-Hill, 1997. [Pr]

Sommerville, I., Software Engineering (5th edition).
Addison-Wesley, 1996. [S]

5.2. Software Quality KA References

Ackerman, Frank A., “Software Inspections and the Cost
Effective Production of Reliable Software,” in [D] pp. 235-
255. [Ack97]

Basili, Victor R. and David M. Weiss, A Methodology for
Collecting Valid Software Engineering Data, IEEE

© IEEE – Trial Version 1.00 – May 2001 11–17

Transactions on Software Engineering, pp. 728-738, Vol.
SE-10, no. 6, November 1984. [Bas84]

Beizer, Boris, Software Testing Techniques, International
Thomson Press, 1990. [Bei90]

Boehm, B.W. et al., Characteristics of Software Quality”,
TRW series on Software Technologies, Vol. 1, North
Holland, 1978. [Boe78]

Chilllarege, Ram, Chap. 9, pp359-400, in [Lyu96]. [Chi96]

Conte, S.D., et al, Software Engineering Metrics and
Models, The Benjamin / Cummings Publishing Company,
Inc., 1986. [Con86]

Ebenau, Robert G., and Susan Strauss, Software Inspection
Process, McGraw-Hill, 1994. [Ebe94]

Fenton, Norman E., Software Metrics: A rigorous and
practical approach (2nd edition), International Thomson
Computer Press, 1995. [Fen95]

Fenton, Norman E., and Shari Lawrence Pfleeger, Software
Metrics, International Thomson Computer Press, 1997.
[Fen97]

Freedman, Daniel P., and Gerald M. Weinberg, Handbook
of Walkthroughs, Inspections, and Technical Reviews,
Little, Brown and Company, 1982. [Fre82]

Friedman, Michael A., and Jeffrey M. Voas, Software
Assessment: reliability, safety testability, John Wiley &
Sons, Inc., 1995. [Fri95]

Grady, Robert B, Practical Software Metrics for project
Management and Process Management, Prentice Hall,
Englewood Cliffs, NJ 07632, 1992. [Gra92]

Hetzel, William, The Complete Guide to Software Testing,
QED Information Sciences, Inc., 1984, pp177-197. [Het84]

Horch, John W., Practical Guide to Software Quality
Management, Artech-House Publishers, 1996. [Hor96]

Ippolito, Laura M. and Dolores R. Wallace, NISTIR 5589,
A Study on Hazard Analysis in High Integrity Software
Standards and Guidelines,@ U.S. Department. of
Commerce, Technology Administration, National Institute
of Standards and Tech., Jan 1995.
http://hissa.nist.gov/HAZARD/ [Ipp95]

Jones, Capers, Applied Software Measurement: Assuring
Productivity and Quality, McGraw-Hill, Inc., 2nd edition,
1996.; (Chapters on Mechanics of Measurement and User
Satisfaction). [Jon96]

Kan, Stephen, H., Metrics and Models in Software Quality
Engineering, Addison-Wesley Publishing Co., 1995.
[Kan94]

Kazman, R., M. Barbacci, M. Klein, S. J. Carriere, S. G.
Woods, Experience with Performing Architecture Tradeoff
Analysis, Proceedings of ICSE 21, (Los Angeles, CA),
IEEE Computer Society, May 1999, 54-63. [Kaz99]

Kiang, David, Harmonization of International Software
Standards on Integrity and Dependability, Proc. IEEE
International Software Engineering Standards Symposium,

IEEE Computer Society Press, Los Alamitos, CA, 1995,
pp. 98-104. [Kia95]

Laprie, J.C., Dependability: Basic Concepts and
Terminology in English, French, German, Italian and
Japanese, IFIP WG 10.4, Springer-Verlag, New York
1991. [Lap91]

Leveson, Nancy, SAFEWARE: System Safety and
Computers, Addison-Wesley, 1995. [Lev95]

Lewis, Robert O., Independent Verification and Validation:
A Life Cycle Engineering Process for Quality Software ,
John Wiley & Sons, Inc., 1992. [Lew92]

Lyu , Michael R., Handbook of Software Reliability
Engineering, McGraw Hill, 1996. [Lyu96]

McCall, J.A. - Factors in Software Quality - General
Electric, n77C1502, June 1977 [McC77]

McConnell, Steve C., Code Complete: a practical
handbook of software construction, Microsoft Press, 1993.
[McC93]

Musa, John D., and A. Frank Ackerman, “Quantifying
Software Validation: When to stop testing?” IEEE
Software, vol. 6, no. 3, May 1989, 19-27. [Mus89]

Musa, John, Software Reliability Engineering: More
Reliable Software, Faster Development and Testing,
McGraw Hill, 1999. [Mus98]

Peng, Wendy W. and Dolores R. Wallace, “Software Error
Analysis,” NIST SP 500-209, National Institute of
Standards and Technology, Gaithersburg, MD 20899,
December 1993.] http://hissa.nist.gov/SWERROR/.
[Pen92]

Rakitin, Steven R., Software Verification and Validation, A
Practitioner’s Guide, Artech House, Inc., 1997. [Rak97]

Rubin, Jeffrey, Handbook of Usability Testing: How to
Plan, Design, and Conduct Effective Tests, John Wiley &
Sons, 1994. [Rub94]

Schulmeyer, Gordon C., and James I. McManus, Handbook
of Software Quality Assurance, Third Edition, Prentice
Hall, NJ, 1999. [Sch98]

Voas, Jeffrey, “Certifying Software For High Assurance
Environments, “ IEEE Software, Vol. 16, no. 4, July-
August, 1999, pp. 48-54. [Voa99]

Wakid, Shukri, D. Richard Kuhn, and Dolores R. Wallace,
“Toward Credible IT Testing and Certification,” IEEE
Software, July-August 1999, 39-47. [Wak99]

Wallace, Dolores R., and Roger U. Fujii, “Software
Verification and Validation: An Overview,” IEEE
Software, Vol. 6, no. 3, May 1989, 10-17. [Wal89]

Wallace, Dolores R., Laura Ippolito, and Barbara Cuthill,
Reference Information for the Software Verification and
Validation Process,@ NIST SP 500-234, NIST,
Gaithersburg, MD 20899, April, 1996.
http://hissa.nist.gov/VV234/ . [Wal96]

11–18 © IEEE – Trial Version 1.00 – May 2001

Weinberg, Gerald M., Quality Software Management, Vol
2: First-Order Measurement, Dorset House, 1993. (Ch. 8,
Measuring Cost and Value). [Wei93]

Zelkowitz, Marvin V. and Dolores R. Wallace,
Experimental Models for Validating Technology,
Computer, Vol. 31 No.5, 1998 pp.23-31. [Zel98]

© IEEE – Trial Version 1.00 – May 2001 11–19

APPENDIX A – LIST OF FURTHER READINGS

A.1 Books and Articles

Abran, A.; Robillard, P.N. , Function Points Analysis: An
Empirical Study of its Measurement Processes, in IEEE
Transactions on Software Engineering, vol. 22, 1996, pp.
895-909. [Abr96]

Bevan, N., “Quality and usability: a new framework”, in
Achieving Software Product Quality, ed. E. van
Veenendaal & J. McMullan, Uitgeverij Tutein Nolthenius,
Holland, 1997.[Bev97]

Department of Defense and US Army, Practical Software
and Systems Measurement : A Foundation for Objective
Project Management, Version 4.0b, October 2000.
Available at : www.psmsc.com [DOD00]

Garvin, D., “What Does ‘Product Quality’ Really Mean?”
Sloan Management Review, Fall 1984, pp 25-45. [Gar84]

Humphrey, Watts S., Managing the Software Process,
Addison Wesley, 1989 Chapters 8, 10, 16. [Hum89]

Hyatt, L.E. and L. Rosenberg, A Software Quality Model
and Metrics for Identifying Project Risks and Assessing
Software Quality, 8th Annual Software Technology
Conference, Utah, April 1996. [Hya96]

Ince, Darrel, ISO 9001 and Software Quality Assurance,
McGraw-Hill, 1994. [Inc94]

NASA, Formal Methods Specification and Analysis
Guidebook for the Verification of Software and Computer
Systems, Volume II: A Practitioner’s Companion , [NASA-
GB-001-97], 1997, http://eis.jpl.nasa.gov/quality/Formal_
Methods/. [NAS97]

Palmer, James D., “Traceability,” In: [Dorf], pp. 266-276.
[Pal97]

Rosenberg, Linda, Applying and Interpreting Object-
Oriented Metrics, Software Tech. Conf. 1998,
http://satc.gsfc.nasa.gov/support/index.html . [Ros98]

Vincenti, W.G., What Engineers Know and How They
Know It – Analytical Studies form Aeronautical History.
Baltimore and London: John Hopkins, 1990. [Vin90]

A.2 Relevant Standards

FIPS 140-1, 1994, Security Requirements for
Cryptographic Modules

IEC 61508 Functional Safety - Safety -related Systems
Parts 1,2,3

IEEE 610.12-1990, Standard Glossary of Software
Engineering Terminology

IEEE 730-1998 Software Quality Assurance Plans

IEEE 829 -1998 Software Test Documentation

IEEE Std 982.1 and 982.2 Standard Dictionary of Measures
to Produce Reliable Software

IEEE 1008-1987 Software Unit Test

IEEE 1012-1998 Software Verification and Validation

IEEE 1028 -1997 Software Reviews

IEEE 1044 -1993 Standard Classification for Software
Anomalies

IEEE Std 1061-1992 Standard for A Software Quality
Metrics Methodology

IEEE Std 1228-1994 Software Safety Plans

ISO 8402-1986 Quality - Vocabulary

ISO 9000-1994 Quality Management and Quality
Assurance Standards

ISO 9001-1994 Quality Systems

ISO/IEC 9126-1999: Software Product Quality

ISO 12207 Software Life Cycle Processes 1995

ISO/IEC 12119 Information technology - Software package
- Quality requirements and test

ISO/IEC 14598-1998: Software Product Evaluation

ISO/IEC 15026:1998, Information technology -- System
and software integrity levels.

ISO/IEC 25939: Information Technology – Software
Measurement Process, International Organization for
Standardization and the International Electrotechnical
Commission, 2000. Available at www.info.uqam.ca/
Labo_Recherche/Lrgl/sc7/private_files/07n2410.pdf

The Common Criteria for Information Technology Security
Evaluation (CC) VERSION 2.0 / ISO FDIS 15408.

© IEEE – Trial Version 1.00 – May 2001 A–1

APPENDIX A

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS
FOR THE TRIAL VERSION

OF THE GUIDE TO THE SOFTWARE ENGINEERING
BODY OF KNOWLEDGE

Pierre Bourque and
Alain Abran

École de technologie
supérieure

Robert Dupuis
Université du Québec à

Montréal

James W. Moore
The MITRE Corporation

Leonard Tripp
1999 President IEEE

Computer Society

1 INTRODUCTION

This document presents a final version (version 0.9) of the
specifications provided by the Editorial Team to the
Knowledge Area Specialist regarding the Knowledge Area
Descriptions of the Guide to the Software Engineering Body
of Knowledge (Trial Version). The Editorial Team definitely
views the development of these specifications as an
iterative process and strongly encourages comments,
suggested improvements and feedback on these
specifications from all involved.

This set of specifications may of course be improved
through feedback obtained from the next phase – Ironman –
of the project.

This document begins by presenting specifications on the
contents of the Knowledge Area Description. Criteria and
requirements are defined for proposed breakdowns of
topics, for the rationale underlying these breakdowns and
the succinct description of topics, for the rating of these
topics according to Bloom’s taxonomy, for selecting
reference materials, and for identifying relevant Knowledge
Areas of Related Disciplines. Important input documents
are also identified and their role within the project is
explained. Non-content issues such as submission format
and style guidelines are also discussed in the document.

2 CONTENT GUIDELINES

The following guidelines are presented in a schematic form
in the figure found below. While all components are part of
the Knowledge Area Description, it must be made very clear
that some components are essential, while other are not.
The breakdown(s) of topics, the selected reference material
and the matrix of reference material versus topics are
essential. Without them there is no Knowledge Area
Description. The other components could be produced by

other means if, for whatever reason, the Specialist cannot
provide them within the given timeframe and should not be
viewed as major stumbling blocks.

2.1 Criteria and requirements for proposing the
breakdown(s) of topics within a Knowledge Area

The following requirements and criteria should be used
when proposing a breakdown of topics within a given
Knowledge Area:

a) Knowledge Area Specialists are expected to propose
one or possibly two complementary breakdowns that
are specific to their Knowledge Area. The topics found
in all breakdowns within a given Knowledge Area
must be identical.

b) These breakdowns of topics are expected to be
“reasonable”, not “perfect”. The Guide to the Software
Engineering Body of Knowledge is definitely viewed
as a multi-phase effort and many iterations within each
phase as well as multiple phases will be necessary to
continuously improve these breakdowns. At least for
the Stone Man version, “soundness and
reasonableness” are being sought after, not
“perfection”.

c) The proposed breakdown of topics within a
Knowledge Area must decompose the subset of the
Software Engineering Body of Knowledge that is
“generally accepted”. See section found below for a
more detailed discussion on this.

d) The proposed breakdown of topics within a
Knowledge Area must not presume specific
application domains, business needs, sizes of
organizations, organizational structures, management
philosophies, software life cycle models, software
technologies or software development methods.

A–2 © IEEE – Trial Version 1.00 – May 2001

e) The proposed breakdown of topics must, as much as
possible, be compatible with the various schools of
thought within software engineering.

f) The proposed breakdown of topics within Knowledge
Areas must be compatible with the breakdown of
software engineering generally found in industry and
in the software engineering literature and standards.

g) The proposed breakdown of topics is expected to be
as inclusive as possible. It is deemed better to suggest
too many topics and have them be abandoned later
than the reverse.

h) The Knowledge Area Specialist are expected to adopt
the position that even though the following “themes”
are common across all Knowledge Areas, they are also
an integral part of all Knowledge Areas and therefore
must be incorporated into the proposed breakdown of
topics of each Knowledge Area. These common
themes are quality (in general) and measurement.

 Please note that the issue of how to properly handle
these “cross-running” or “orthogonal topics” and
whether or not they should be handled in a different
manner has not been completely resolved yet.

i) The proposed breakdowns should be at most two or
three levels deep. Even though no upper or lower limit
is imposed on the number of topics within each
Knowledge Area, Knowledge Area Specialists are
expected to propose a reasonable and manageable
number of topics per Knowledge Area. Emphasis
should also be put on the selection of the topics
themselves rather than on their organization in an
appropriate hierarchy.

j) Proposed topic names must be significant enough to
be meaningful even when cited outside the Guide to
the Software Engineering Body of Knowledge.

k) The description of a Knowledge Area will include a
chart (in tree form) describing the knowledge
breakdown.

l) Knowledge Area Specialists are also expected to
propose a breakdown of topics based on the
categories of engineering design knowledge defined in
Chapter 7 of Vincenti’s book. This exercise should be
regarded by the Knowledge Area specialists as a tool
for viewing the proposed topics in an alternate manner
and for linking software engineering itself to
engineering in general. Please note that effort should
not be spent on this classification at the expense of
the three essential components of the Knowledge
Area Description. (Please note that a classification of
the topics as per the categories of engineering design
knowledge has been produced but will be published
on the web site at a latter date in a separate working

document. Please contact the editorial team for more
information).

2.2 Criteria and requirements for describing topics and
for describing the rationale underlying the proposed
breakdown(s) within the Knowledge Area

a) Topics need only to be sufficiently described so the
reader can select the appropriate reference material
according to his/her needs.

b) Knowledge Area Specialists are expected to provide a
text describing the rationale underlying the proposed
breakdown(s).

2.3 Criteria and requirements for rating topics according
to Bloom’s taxonomy

a) Knowledge Area Specialists are expected to provide
an Appendix that states for each topic at which level
of Bloom’s taxonomy a “graduate plus four years
experience” should “master” this topic. This is seen by
the Editorial Team as a tool for the Knowledge Area
Specialists to ensure that the proposed material meets
the criteria of being “generally accepted”.
Additionally, the Editorial Team views this as a means
of ensuring that the Guide to the Software Engineering
Body of Knowledge is properly suited for the
educators that will design curricula and/or teaching
material based on the Guide and licensing/certification
officials defining exam contents and criteria.

Please note that these appendices will all be combined
together and published as an Appendix to the Guide to the
Software Engineering Body of Knowledge.

2.4 Criteria and Requirements for selecting Reference
Material

a) Specific reference material must be identified for each
topic. Each reference material can of course cover
multiple topics.

b) Proposed Reference Material can be book chapters,
refereed journal papers, refereed conference papers or
refereed technical or industrial reports or any other
type of recognized artifact such as web documents.
They must be generally available and must not be
confidential in nature. Please be as precise as possible
by identifying what specific chapter or section is
relevant.

c) Proposed Reference Material must be in English.

d) A reasonable amount of reference material must be
selected for each Knowledge Area. The following
guidelines should be used in determining how much is
reasonable:

w If the reference material were written in a coherent
manner that followed the proposed breakdown of

© IEEE – Trial Version 1.00 – May 2001 A–3

topics and in a uniform style (for example in a new
book based on the proposed Knowledge Area
description), an average target for the number of pages
would be 500. However, this target may not be
attainable when selecting existing reference material
due to differences in style, and overlap and
redundancy between the selected reference material.

w The amount of reference material would be reasonable
if it consisted of the study material on this Knowledge
Area of a software engineering licensing exam that a
graduate would pass after completing four years of
work experience.

w The Guide to the Software Engineering Body of
Knowledge is intended by definition to be selective in
its choice of topics and associated reference material
The list of reference material for each Knowledge Area
should be viewed and will be presented as an
“informed and reasonable selection” rather than as a
definitive list.

w The classification of topics according to Bloom’s
taxonomy should be used to allot the appropriate
amount and level of depth of the reference material
selected for each topic.

w Additional reference material can be included in a
“Further Readings” list. These further readings still
must be related to the topics in the breakdown. They
must also discuss generally accepted knowledge.
However, the further readings material will not be made
available on the web nor should there be a matrix
between the reference material listed in Further
Readings and the individual topics.

e) If deemed feasible and cost-effective by the IEEE
Computer Society, selected reference material will be
published on the Guide to the Software Engineering
Body of Knowledge web site. To facilitate this task,
preference should be given to reference material for
which the copyrights already belong to the IEEE
Computer Society or the ACM. This should however
not be seen as a constraint or an obligation.

f) A matrix of reference material versus topics must be
provided.

2.5 Criteria and Requirements for identifying Knowledge
Areas of the Related Disciplines

a) Knowledge Area Specialists are expected to identify in
a separate section which Knowledge Areas of the
Related Disciplines that are sufficiently relevant to the
Software Engineering Knowledge Area that has been
assigned to them be expected knowledge by a
graduate plus four years of experience.

This information will be particularly useful to and will
engage much dialogue between the Guide to the Software

Engineering Body of Knowledge initiative and our sister
initiatives responsible for defining a common software
engineering curricula and standard performance norms for
software engineers.

The list of Knowledge Areas of Related Disciplines can be
found in the Proposed Baseline List of Related
Disciplines. If deemed necessary and if accompanied
by a justification, Knowledge Area Specialists can also
propose additional Related Disciplines not already
included or identified in the Proposed Baseline List of
Related Disciplines. (Please note that a classification
of the topics from the Related Disciplines has been
produced but will be published on the web site at a
latter date in a separate working document. Please
contact the editorial team for more information).

2.6 Common Table of Contents

a) Knowledge Area descriptions should use the
following table of contents:

w Table of contents

w Introduction

w Definition of the Knowledge Area

w Breakdown of topics of the Knowledge Area (for
clarity purposes, we believe this section should be
placed in front and not in an appendix at the end of the
document. Also, it should be accompanied by a figure
describing the breakdown)

w Breakdown rationale

w Matrix of topics vs. Reference material

w Recommended references for the Knowledge Area
being described (please do not mix them with
references used to write the Knowledge Area
description)

w List of Further Readings

w References used to write and justify the Knowledge
Area description.

2.7 What do we mean by “generally accepted
knowledge”?

The software engineering body of knowledge is an all-
inclusive term that describes the sum of knowledge within
the profession of software engineering. However, the Guide
to the Software Engineering Body of Knowledge seeks to
identify and describe that subset of the body of knowledge
that is generally accepted or, in other words, the core body
of knowledge. To better illustrate what “generally accepted
knowledge” is relative to other types of knowledge, Figure 1
proposes a draft three-category schema for classifying
knowledge.

A–4 © IEEE – Trial Version 1.00 – May 2001

The Project Management Institute in its Guide to the Project
Management Body of Knowledge1 defines “generally
accepted” knowledge for project management in the
following manner:

‘“Generally accepted” means that the knowledge and
practices described are applicable to most projects most of
the time, and that there is widespread consensus about their
value and usefulness. “Generally accepted” does not mean
that the knowledge and practices described are or should be
applied uniformly on all projects; the project management
team is always responsible for determining what is
appropriate for any given project.’

The Guide to the Project Management Body of Knowledge
is now an IEEE Standard.

At the Mont-Tremblant kick off meeting, the Industrial
Advisory Board better defined “generally accepted” as
knowledge to be included in the study material of a software
engineering licensing exam that a graduate would pass after
completing four years of work experience. These two
definitions should be seen as complementary.

Knowledge Area Specialists are also expected to be
somewhat forward looking in their interpretation by taking
into consideration not only what is “generally accepted”
today and but what they expect will be “generally accepted”
in a 3 to 5 years timeframe.

Generally Accepted
Established traditional practices

recommended by many organizations

Sp
ec

ia
liz

ed

Pr
ac

tic
es

 u
se

d
on

ly
 fo

r c
er

ta
in

 ty
pe

s
of

 s
of

tw
ar

e

Advanced and Research
Innovative practices tested and used

only by some organizations and
concepts still being developed and

tested in research organizations

Figure 1 Categories of knowledge

2.8 Length of Knowledge Area Description

Knowledge Area Descriptions are currently expected to be
roughly in the 10 pages range using the format of the

1 See [1] W. R. Duncan, “A Guide to the Project Management

Body of Knowledge,” Project Management Institute, Upper
Darby, PA 1996. Can be downloaded from www.pmi.org

International Conference on Software Engineering format as
defined below. This includes text, references, appendices
and tables etc. This, of course, does not include the
reference materials themselves. This limit should, however,
not be seen as a constraint or an obligation.

2.9 Role of Editorial Team

Alain Abran and James W. Moore are the Executive Editors
and are responsible for maintaining good relations with the
IEEE CS, the ACM, the Industrial Advisory Board and the
Panel of Experts as well as for the overall strategy,
approach, organization and funding of the project.

Pierre Bourque and Robert Dupuis are the Editors and are
responsible for the coordination, operation and logistics of
this project. More specifically, the Editors are responsible
for developing the project plan, the Knowledge Area
description specification and for coordinating Knowledge
Area Specialists and their contribution, for recruiting the
reviewers and the review captains as well as coordinating
the various review cycles.

The Editors are therefore responsible for the coherence of
the entire Guide and for identifying and establishing links
between the Knowledge Areas. The resolution of gaps and
overlaps between Knowledge Areas will be negotiated by
the Editors and the Knowledge Area Specialists themselves.

2.10 Summary

The following figure presents in a schematic form the
Knowledge Area Description Specifications

© IEEE – Trial Version 1.00 – May 2001 A–5

Knowledge Area
Jumpstart Document

(9)

Baseline List of
Knowledge Area

(2)

Categories of
Engineering Design

Knowledge by
Vincenti (11)

Bloom's Taxonomy
(1)

Baseline List of
Related Disciplines

(3)

Straw Man
Version of Guide
to the SWEBOK

(5)

Plan for
Developing the

Stone Man
Version (4)

Standards
Road Map

(6)

IEEE 610.12
Terminology
Standard (7)

12207 Software
Life Cycle
Processes

Standard (8)

Breakdown of Topics
(a-j)

Rationale of
Breakdown and

Succinct
Description of
Topics (l-m)

Classification of
Topics Based on

Vincenti's
Categories (k)

Rating of Topics
Based on
Bloom's

Taxonomy (n)

Relevant
Knowledge

Areas of Related
Disciplines (u)

Selected
Reference

Material (o-s)

Matrix of
Reference

Material Versus
Topics (t)

Context Documents Standards Documents

Input Documents

Stone Man Version
Deliverable

Reference to Criteria
and Requirements
letter or Document
number

()

Contents of Knowledge
Area Description

IMPORTANT RELATED DOCUMENTS (in alphabetical order of first
author)

1. Bloom et al., Bloom’s Taxonomy of the Cognitive
Domain

Please refer to chiron.valdosta.edu/whuitt/col/cogsys/
bloom.html for a short description of Bloom’s taxonomy.
The original source is Bloom, B.S. (Ed.) (1956) Taxonomy of
educational objectives: The classification of educational
goals: Handbook I, cognitive domain. New York ; Toronto:
Longmans, Green.

2. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.
Tripp, D. Frailey, A Baseline List of Knowledge Areas
for the Stone Man Version of the Guide to the
Software Engineering Body of Knowledge, Université
du Québec à Montréal, Montréal, February 1999.

Based on the Straw Man version, on the discussions held
and the expectations stated at the kick off meeting of the
Industrial Advisory Board, on other body of knowledge
proposals, and on criteria defined in this document, this
document proposes a baseline list of ten Knowledge Areas
for the Trial Version of the Guide to the Software
Engineering Body of Knowledge. This baseline may of
course evolve as work progresses and issues are identified
during the course of the project.

This document is available at www.swebok.org.

3. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.
Tripp. A Proposed Baseline List of Related Disciplines
for the Stone Man Version of the Guide to the
Software Engineering Body of Knowledge, Université
du Québec à Montréal, Montréal, February 1999.

Based on the Straw Man version, on the discussions held
and the expectations stated at the kick off meeting of the

A–6 © IEEE – Trial Version 1.00 – May 2001

Industrial Advisory Board and on subsequent work, this
document proposes a baseline list of Related Disciplines
and Knowledge Areas within these Related Disciplines.
This document has been submitted to and discussed with
the Industrial Advisory Board and a recognized list of
Knowledge Areas still has to be identified for certain
Related Disciplines. Knowledge Area Specialists will be
informed of the evolution of this document.

The current version is available at www.swebok.org

4. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.
Tripp, D. Frailey, Approved Plan, Stone Man Version
of the Guide to the Software Engineering Body of
Knowledge, Université du Québec à Montréal,
Montréal, February 1999.

This report describes the project objectives, deliverables
and underlying principles. The intended audience of the
Guide is identified. The responsibilities of the various
contributors are defined and an outline of the schedule is
traced. This documents defines notably the review process
that will be used to develop the Stone Man version. This
plan has been approved by the Industrial Advisory Board.

This document is available at www.swebok.org

5. P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L.
Tripp, K. Shyne, B. Pflug, M. Maya, and G. Tremblay,
Guide to the Software Engineering Body of Knowledge
- A Straw Man Version, Université du Québec à
Montréal, Montréal, Technical Report, September
1998.

This report is the basis for the entire project. It defines
general project strategy, rationale and underlying principles
and proposes an initial list of Knowledge Areas and Related
Disciplines.

This report is available at www.swebok.org.

6. J. W. Moore, Software Engineering Standards, A
User’s Road Map. Los Alamitos: IEEE Computer
Society Press, 1998.

This book describes the scope, roles, uses, and
development trends of the most widely used software
engineering standards. It concentrates on important
software engineering activities — quality and project
management, system engineering, dependability, and
safety. The analysis and regrouping of the standard
collections exposes you to key relationships between
standards.

Even though the Guide to the Software Engineering Body of
Knowledge is not a software engineering standards
development project per se, special care will be taken
throughout the project regarding the compatibility of the
Guide with the current IEEE and ISO Software Engineering
Standards Collection.

7. IEEE Standard Glossary of Software Engineering
Terminology, IEEE, Piscataway, NJ std 610.12-1990,
1990.

The hierarchy of references for terminology is Merriam
Webster’s Collegiate Dictionary (10th Edition), IEEE
Standard 610.12 and new proposed definitions if required.

8. Information Technology – Software Life Cycle
Processes, International Standard, Technical ISO/IEC
12207:1995(E), 1995.

This standard is considered the key standard regarding the
definition of life cycle process and has been adopted by the
two main standardization bodies in software engineering:
ISO/IEC JTC1 SC7 and the IEEE Computer Society Software
Engineering Standards Committee. It also has been
designated as the pivotal standard around which the
Software Engineering Standards Committee (SESC) is
currently harmonizing its entire collection of standards. This
standard was a key input to the Straw Man version.

Even though we do not intend that the Guide to the
Software Engineering Body of Knowledge be fully 12207-
compliant, this standard remains a key input to the Stone
Man version and special care will be taken throughout the
project regarding the compatibility of the Guide with the
12207 standard.

9. Knowledge Area Jumpstart Documents

A “jumpstart document” has already been provided to all
Knowledge Area Specialists. These “jumpstart documents”
propose a breakdown of topics for each Knowledge Area
based on the analysis of the four most widely sold generic
software engineering textbooks. As implied by their title,
they have been prepared as an enabler for the Knowledge
Area Specialist and the Knowledge Area Specialist are not
of course constrained to the proposed list of topics nor to
the proposed breakdown in these “jumpstart documents”.

10. Merriam Webster’s Collegiate Dictionary (10th
Edition).

See note for IEEE 610.12 Standard.

11. W. G. Vincenti, What Engineers Know and How They
Know It - Analytical Studies from Aeronautical
History. Baltimore and London: Johns Hopkins, 1990.

The categories of engineering design knowledge defined in
Chapter 7 (The Anatomy of Engineering Design
Knowledge) of this book were used as a framework for
organizing topics in the various Knowledge Area “jumpstart
documents “ and are imposed as decomposition framework
in the Knowledge Area Descriptions because:

w they are based on a detailed historical analysis of an
established branch of engineering: aeronautical
engineering. A breakdown of software engineering
topics based on these categories is therefore seen as
an important mechanism for linking software

© IEEE – Trial Version 1.00 – May 2001 A–7

engineering with engineering at large and the more
established engineering disciplines;

w they are viewed by Vincenti as applicable to all
branches of engineering;

w gaps in the software engineering body of knowledge
within certain categories as well as efforts to reduce
these gaps over time will be made apparent;

w due to generic nature of the categories, knowledge
within each knowledge area could evolve and progress
significantly while the framework itself would remain
stable;

3 AUTHORSHIP OF KNOWLEDGE AREA DESCRIPTION

The Editorial Team will submit a proposal to the project’s
Industrial Advisory Board to have Knowledge Area
Specialists recognized as authors of the Knowledge Area
description.

4 STYLE AND TECHNICAL GUIDELINES

Knowledge Area Descriptions should conform to the
International Conference on Software Engineering
Proceedings format (templates are available at
http://sunset.usc.edu/icse99/cfp /technical_papers.html).

Knowledge Area Descriptions are expected to follow the
IEEE Computer Society Style Guide. See
http://computer.org/author/style/cs-style.htm

Microsoft Word 97 is the preferred submission format.
Please contact the Editorial Team if this is not feasible for
you.

4.1 Other Detailed Guidelines:

When referencing the guide, we recommend that you use
the full title “Guide to the SWEBOK” instead of only
“SWEBOK.”

For the purpose of simplicity, we recommend that
Knowledge Area Specialists avoid footnotes. Instead, they
should try to include their content in the main text.

We recommend to use in the text explicit references to
standards, as opposed to simply inserting numbers
referencing items in the bibliography. We believe it would
allow to better expose the reader to the source and scope of
a standard.

The text accompanying figures and tables should be self-
explanatory or have enough related text. This would ensure
that the reader knows what the figures and tables mean.

Make sure you use current information about references
(versions, titles, etc.)

To make sure that some information contained in the Guide
to the SWEBOK does not become rapidly obsolete, please
avoid directly naming tools and products. Instead, try to

name their functions. The list of tools and products can
always be put in an appendix.

You are expected to spell out all acronyms used and to use
all appropriate copyrights, service marks, etc.

The Knowledge Area Descriptions should always be
written in third person.

5 EDITING

Knowledge Area Descriptions will be edited by IEEE
Computer Society staff editors. Editing includes copy
editing (grammar, punctuation, and capitalization), style
editing (conformance to the Computer Society magazines’
house style), and content editing (flow, meaning, clarity,
directness, and organization). The final editing will be a
collaborative process in which IEEE Computer Society staff
editors and the authors work together to achieve a concise,
well-worded, and useful a Knowledge Area Description.

6 RELEASE OF COPYRIGHT

All intellectual properties associated with the Guide to the
Software Engineering Body of Knowledge will remain with
the IEEE Computer Society. Knowledge Area Specialists
were asked to sign a copyright release form.

It is also understood that the Guide to the Software
Engineering Body of Knowledge will be put in the public
domain by the IEEE Computer Society, free of charge
through web technology, or other means.

For more information, See http://computer.org/
copyright.htm

© IEEE – Trial Version 1.00 – May 2001 B–1

APPENDIX B

A LIST OF RELATED DISCIPLINES FOR
THE STONE MAN VERSION OF THE GUIDE TO THE SWEBOK

In order to circumscribe software engineering, it is
necessary to identify the other disciplines with which SE
shares a common boundary. These disciplines are called
Related Disciplines. In this regard, the mandate of the
Guide to the SWEBOK project is to Identify other
disciplines that contain knowledge areas that are important
to a software engineer. The list of such Knowledge areas
would be useful to attain the fifth objective of the project:
Provide a foundation for curriculum development and
individual certification and licensing material.

Therefore, this appendix identifies:

w a list of Related Disciplines, based on the Strawman
Guide, on the discussions of the Industrial Advisory
Board at the Industrial Advisory Board kick-off
meeting in Mont-Tremblant (Canada) and on
subsequent work and discussions;

w a list of knowledge areas for these Related
Disciplines, based on as authoritative a source as
found.

These lists were to be as large as possible because we
considered it easier to eliminate topics than adding them
further on in the process.

The SWEBOK KA Specialists were asked to identify from
these lists the Knowledge Areas of the Related Disciplines
that are sufficiently relevant to the Software Engineering
KA that has been assigned to them to be expected
knowledge from a graduate with four years of experience.
If deemed necessary and if accompanied by a justification,
Knowledge Area Specialists could also propose additional
Related Disciplines not already. These choices are
presented in Appendix D. The level and extent of
knowledge that a software engineer should posses within
these knowledge areas is not specified at this point. This
will be done by other projects according to their needs.

LIST OF RELATED DISCIPLINES AND SOURCES OF KNOWLEDGE

AREAS.

Computer Science

w It was agreed in Mont-Tremblant that the reference for
this Related Discipline would be obtained through an
initiative called the IEEE Computer Society and ACM
Joint Task Force on “Year 2001 Model Curricula for
Computing: CC-2001”. To ensure proper coordination

with this initiative, Carl Chang, Joint Task Force Co-
Chair is a member of the Industrial Advisory Board
and was present in Mont-Tremblant. Appendix B.1
lists the preliminary Knowledge Areas of Computer
Science as determined by the CC-2001 group.

Mathematics

w It was agreed in Mont-Tremblant that the Computing
Curricula 2001 initiative would be the “conduit” to
mathematics. So far, we have not received such a list
of Knowledge Areas (Knowledge Units in the CC-
2001 vocabulary), for Mathematics but it is expected
that CC-2001 will provide it. In the mean time, the
project refers to the list defined by the Computing
Curriculum 19911 initiative and found in Appendix
B.2.

Project Management

w The reference for this Related Discipline is “A Guide
to the Project Management Body of Knowledge”2
published by the Project Management Institute. This
document is currently being adopted as an IEEE
software engineering standard. The list of Knowledge
Areas for project management can be found in
Appendix B.3.

Computer Engineering

A list of Knowledge Areas for Computer Engineering and
found in Appendix B.4 was compiled from the integration
of:

w The syllabus for the British licensing exam for the
field of Computer Systems Engineering3.

w The Principles and Practice of Engineering
Examination - Guide for Writers and Reviewers in
Electrical Engineering of the National Council of
Examiners for Engineering and Surveying (USA). An
appendix listed Computer Engineering Knowledge
Areas for which questions should be put to the
candidates.

w The Computer Engineering undergraduate program at
the Milwaukee School of Engineering4. This program

1 See http://computer.org/educate/cc1991/
2 See www.pmi.org to download this report.
3 See http://www.engc.org.uk

B–2 © IEEE – Trial Version 1.00 – May 2001

is considered to be a typical example of an American
accredited program by the director of the Computer
Engineering and Computer Science Department at
MSOE.

Systems Engineering

Appendix B.5 contains a proposed list of Knowledge Areas
for Systems Engineering. The list was compiled fro m:

w The EIA 632 and IEEE 1220 (Trial-Use) standards;

w the Andriole and Freeman paper5;

w the material available on the INCOSE (International
Council on Systems Engineering) website6;

w a curriculum for a graduate degree in Systems
Engineering at the University of Maryland7;

Three experts in the field were also consulted, John Harauz,
from Ontario Hydro, John Kellogg from Lockheed Martin,
and Claude Laporte consultant, previously with the Armed
Forces of Canada and Oerlikon Aerospace.

Management and Management Science

No definitive source has been identified so far for a list of
Management and Management Science Knowledge Areas
relevant to software engineering. A list was therefore
compiled from

w the Technology Management Handbook8 which
contains many relevant chapters;

w the Engineering Handbook9 which contains a section
on Engineering Economics and Management covering
many of the relevant topics;

w an article by Henri Barki and Suzanne “Rivard titled
A Keyword Classification Scheme for IS Research
Literature: An Update”10.

The proposed list of knowledge areas for Management and
Management Science can be found in Appendix B.6.

Cognitive Sciences and Human Factors

Appendix B.7 contains a list of proposed Knowledge Areas
for Cognitive Sciences and Human Factors. The was
compiled from the list of courses offered at the John
Hopkins University Department of Cognitive Sciences11
and from the ACM SIGCHI Curricula for Human-
Computer Interaction12.

4 See http://www.msoe.edu/eecs/ce/index.htm
5 Stephen J. Andriole and Peter A. Freeman, Software systems engineering:

the case for a new discipline, System Engineering Journal, Vol. 8, no 3,
May 1993, pp. 165-179.

6 See www.incose.org
7 See http://www.isr.umd.edu/ISR/education/msse/
8 See CRC Press
9 See Crc Press
10 See MIS Quaterly, June 1993, pp. 209-226
11 See http://www.cogsci.jhu.edu/
12 See TABLE 1. Content of HCI athttp://www.acm.org/sigchi/cdg/cdg2.html

The list was then refined by three experts in the field: two
from UQAM and W. W. McMillan, from Eastern Michigan
University. They were asked to indicate which of these
topics should be known by a software engineer. The topics
that were rejected by two of the three respondents were
removed from the original list.

APPENDIX B.1 – KNOWLEDGE AREAS OF COMPUTER SCIENCE.

0. [MP] Mathematics and Physical Sciences

1. [FO] Foundations

 Complexity analysis

 Complexity classes

 Computability and undecidability

 Discrete mathematics (logic, combinatorics, probability)

 Proof techniques

 Automata (regular expressions, context -free grammars,
FSMs/PDAs/TMs)

 Formal specifications

 Program semantics

2. [AL] Algorithms and Data Structures

 Basic data structures

 Abstract data types

 Sorting and searching

 parallel and distributed algorithms

3. [AR] Computer Architecture

 Digital logic

 Digital systems

 Machine level representation of data

 Number representations

 Assembly level machine organization

 Memory system organization and architecture

 Interfacing and communication

 Alternative architectures

 Digital signal processing

 Performance

4. [IS] Intelligence Systems (IS)

 Artificial intelligence

 Robotics

 Agents

 Pattern Recognition

 Soft computing (neural networks, genetic algorithms,
fuzzy logic)

5. [IM] Information Management

 Database models

© IEEE – Trial Version 1.00 – May 2001 B–3

 Search Engines

 Data mining/warehousing

 Digital libraries

 Transaction processing

 Data compression

6. [CI] Computing at the Interface

 Human-computer interaction (usability design, human
factors)

 Graphics

 Vision

 Visualization

 Multimedia

 PDAs and other new hardware

 User-level application generators

7. [OS] Operating Systems

 Tasks, processes and threads

 Process coordination and synchronization

 Scheduling and dispatching

 Physical and virtual memory organizations

 File systems

 Networking fundamentals (protocols, RPC, sockets)

 Security

 Protection

 Distributed systems

 Real-time computing

 Embedded systems

 Mobile computing infrastructure

8. [PF] Programming Fundamentals and Skills

 Introduction to programming languages

 Recursive algorithms/programming

 Programming paradigms

 Program-solving strategies

 Compilers/translation

 Code Generation

9. [SE] Software Engineering

Software Engineering will not be a related discipline to
Software Engineering

This focus group will be coordinated with the SWEBOK
project in order to avoid double definitions of the field.

10. [NC] Net-centric Computing

 Computer-supported cooperative work

 Collaboration Technology

 Distributed objects computing (DOC/CORBA/DCOM/
 JVM)

 E-Commerce

 Enterprise computing

 Network-level security

11. [CN] Computational Science

 Numerical analysis

 Scientific computing

 Parallel algorithms

 Supercomputing

 Modeling and simulation

12. [SP] Social, Ethical, Legal and Professional Issues

 Historical and social context of computing

 Philosophical ethics

 Intellectual property

 Copyrights, patents, and trade secrets

 Risks and liabilities

 Responsibilities of computing professionals

 Computer crime

APPENDIX B.2 – KNOWLEDGE AREAS OF MATHEMATICS

Discrete Mathematics : sets, functions, elementary
propositional and predicate logic, Boolean algebra,
elementary graph theory, matrices, proof techniques
(including induction and contradiction), combinatorics,
probability, and random numbers.

Calculus: differential and integral calculus, including
sequences and series and an introduction to differential
equations.

Probability: discrete and continuous, including
combinatorics and elementary statistics.

Linear Algebra: elementary, including matrices, vectors,
and linear transformations.

Mathematical Logic: propositional and functional calculi,
completeness, validity, proof, and decision

APPENDIX B.3 – KNOWLEDGE AREAS OF PROJECT

MANAGEMENT

The list of Knowledge Areas defined by the Project
Management Institute for project management is:

w Project Integration Management

w Project Scope Management

w Project Time Management

w Project Cost Management

w Project Quality Management

w Project Human Resource Management

B–4 © IEEE – Trial Version 1.00 – May 2001

w Project Communications Management

w Project Risk Management

w Project Procurement Management

APPENDIX B.4 – KNOWLEDGE AREAS OF COMPUTER

ENGINEERING.

Digital Data Manipulation

Processor Design

Digital Systems Design

Computer Organization

Storage Devices and Systems

Peripherals and Communication

High Performance Systems

System Design

Measurement and Instrumentation

Codes and Standards

Circuit Theory

Electronics

Controls

Combinational and Sequential Logic

Embedded Systems Software

Engineering Systems Analysis with Numerical Methods

Computer Modeling and Simulation

APPENDIX B.5 – KNOWLEDGE AREAS OF SYSTEMS

ENGINEERING

PROCESS

Need Analysis

Behavioral Analysis

Enterprise Analysis

Prototyping

Project Planning

Acquisition

Requirements Definition

System definition

Specification trees

System breakdown structure

Design

Effectiveness Analysis

Component specification

Integration

Maintenance & Operations

Configuration Management

Documentation

Systems Quality Analysis and Management

Systems V & V

System Evaluation

Systems Lifecycle Cost Estimation

Design of Human-Machine Systems

Fractals and self-similarities

ESSENTIAL FUNCTIONAL PROCESSES : (IEEE 1220)

Development

Manufacturing

Test

Distribution

Operations

Support

Training

Disposal

TECHNIQUES & TOOLS (IEEE 1220)

Metrics

Privacy

Process Improvement

Reliability

Safety

Security

Vocabulary

Effectiveness Assessment

APPENDIX B.6 – KNOWLEDGE AREAS OF MANAGEMENT AND

MANAGEMENT SCIENCE

BUSINESS STRATEGY

FINANCE

EXTERNAL ENVIRONMENT

Economic Environment

Legal Environment

Regulation processes

ORGANIZATIONAL ENVIRONMENT

Organizational Characteristics

Organizational Functions

Organizational Dynamics

INFORMATION SYSTEMS MANAGEMENT

Data Resource Management

© IEEE – Trial Version 1.00 – May 2001 B–5

Information Resource Management

Personnel Resource Management

IS Staffing

INNOVATION AND CHANGE

ACCOUNTING

TRAINING

MANAGEMENT SCIENCE

Models

Financial Models

Planning Models

Optimization

Optimization methods

Heuristics

Linear Programming

Goal Programming

Mathematical Programming

Statistics

Simulation

APPENDIX B.7 – KNOWLEDGE AREAS OF COGNITIVE SCIENCES

AND HUMAN FACTORS

Cognition

Cognitive AI I: Reasoning

Machine Learning and Grammar Induction

Formal Methods in Cognitive Science: Language

Formal Methods in Cognitive Science: Reasoning

Formal Methods in Cognitive Science:

Cognitive Architecture

Cognitive AI II: Learning

Foundations of Cognitive Science

Information Extraction from Speech and Text

Lexical Processing

Computational Language Acquisition

The Nature of HCI

(Meta-)Models of HCI

Use and Context of Computers

Human Social Organization and Work

Application Areas

Human-Machine Fit and Adaptation

Human Characteristics

Human Information Processing

Language, Communication, Interaction

Ergonomics

Computer System and Interface Architecture

Input and Output Devices

Dialogue Techniques

Dialogue Genre

Computer Graphics

Dialogue Architecture

Development Process

Design Approaches

Implementation Techniques

Evaluation Techniques

Example Systems and Case Studies

© IEEE – Trial Version 1.00 – May 2001 C–1

APPENDIX C

CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY

INTRODUCTION

Bloom’s taxonomy is the best known and most widely used
classification of cognitive educational goals. In order to
help all audiences in that field who wish to use the Guide as
a tool in designing course material, programs or
accreditation criteria, the project was mandated to provide a
first draft evaluation of the topics included in the
Knowledge Areas breakdowns according Bloom’s
Taxonomy. This should only be seen as a jump -start
document to be further developed by other steps in other,
related projects.

Knowledge Area Specialists were asked to provide an
Appendix that states for each topic at which level of
Bloom’s taxonomy a “graduate plus four years experience”
should “master” this topic. The resulting table could also be
used by the specialists themselves as a guide to choose the
amount and level of reference material appropriate for each
topic.

This appendix contains, for each Knowledge Area1, a table
identifying the topics and the associated Bloom’s taxonomy
level of understanding on each topic for a graduate with
four years experience. The levels of understanding from
lower to higher are: knowledge, comprehension,
application, analysis, synthesis, and evaluation. The version
used can be found at http://www.valdosta.peachnet.edu/
~whuitt/psy702/cogsys/bloom.html

1 Ratings for the Software Construction Area and the Software
Maintenance Knowledge Area have been omitted for this edition.

SOFTWARE REQUIREMENTS

TOPIC Bloom Level
Requirements engineering
process

Process models Knowledge
Process actors Knowledge
Process support Knowledge
Process quality and

improvement
Knowledge

Requirements elicitation
Requirements sources Comprehension
Elicitation techniques Application

Requirements analysis
Requirements classification Comprehension
Conceptual modeling Comprehension
Architectural design and
requirements allocation

Analysis

Requirements negotiation Analysis
Requirement specification

The requirements definition
document

Application

The software requirements
specification (SRS)

Application

Document structure Application
Document quality Analysis

Requirements validation
The conduct of requirements
reviews

Analysis

Prototyping Application
Model validation Analysis
Acceptance tests Application

Requirements management
Change management Analysis
Requirement attributes Comprehension
Requirements tracing Comprehension

C–2 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE DESIGN

Software Design Topic

K
no

w
le

dg
e

C
om

pr
eh

en
si

on

A
pp

lic
at

io
n

A
na

ly
si

s

Sy
nt

he
si

s

E
va

lu
at

io
n

I. SOFTWARE DESIGN
BASIC CONCEPTS

General design concepts X

The context of software
design

 X

The software design process X X

Enabling techniques for
software design

 X

II. Key issues in Software
Design

Concurrency X

Control and handling of
events

 X

Distribution X

Exception handling X

Interactive systems X

Persistence X

III. SOFTWARE S TRUCTURE

AND ARCHITECTURE

Architectural structures and
viewpoints

 X

Architectural styles (macro-
architecture)

 X X

Design patterns (micro-
architecture)

 X X

Families of programs and
frameworks

 X

IV. SOFTWARE DESIGN
QUALITY ANALYSIS AND

EVALUATION

Quality attributes X
Quality analysis and
evaluation tools

 X X

Measures X X

V. SOFTWARE DESIGN

NOTATIONS

Structural descriptions
(static view)

 X X

Behavioral descriptions
(dynamic view)

 X X

Software Design Topic

K
no

w
le

dg
e

C
om

pr
eh

en
si

on

A
pp

lic
at

io
n

A
na

ly
si

s

Sy
nt

he
si

s

E
va

lu
at

io
n

VI. SOFTWARE DESIGN

S TRATEGIES AND METHODS

General strategies X

Function-oriented design X

Object-oriented design X X

Data-structure centered
design

 X

Other methods X X

Note: As mentioned in the URL used as reference for
“Bloom’s et al.’s Taxonomy of the Cognitive Domain”,
Evaluation has been considered to be at the same level as
Synthesis, but using different cognitive processes.

SOFTWARE CONSTRUCTION

Rating has been omitted for this edition.

© IEEE – Trial Version 1.00 – May 2001 C–3

SOFTWARE TESTING

Topic Bloom’s level
A. Testing Basic Concepts and
definitions

Definitions of testing and related
terminology

Analysis

Faults vs. failures Analysis
Test selection criteria/Test adequacy
criteria (or stopping rules)

Application

Testing effectiveness/Objectives for
testing

Comprehension

Testing for defect identification Comprehension
The oracle problem Comprehension
Theoretical and practical limitations of
testing

Application

The problem of infeasible paths Comprehension
Testability Comprehension
Testing vs. Static Analysis Techniques Application
Testing vs. Correctness Proofs and
Formal Verification

Knowledge

Testing vs. Debugging Comprehension
Testing vs. Programming Application
Testing within SQA Application
Testing within CMM Knowledge
Testing within Cleanroom Knowledge
Testing and Certification Comprehension
B. Test Levels
Unit testing Application
Integration testing Application
System testing Application
Acceptance/qualification testing Application
Installation testing Application
Alpha and Beta testing Application
Conformance testing/Functional
testing/Correctness testing

Application

Reliability achievement and evaluation
by testing

Comprehension

Regression testing Application
Performance testing Comprehension
Stress testing Comprehension
Back-to-back testing Knowledge
Recovery testing Comprehension
Configuration testing Comprehension
Usability testing Comprehension
C. Test Techniques
Ad hoc Synthesis
Equivalence part itioning Application
Boundary-value analysis Application
Decision table Knowledge
Finite-state machine-based Knowledge
Testing from formal specifications Knowledge
Random testing Application
Reference models for code-based Application

Topic Bloom’s level
testing (flow graph, call graph)
Control flow-based criteria Application
Data flow-based criteria Comprehension
Error guessing Application
Mutation testing Knowledge
Operational profile Comprehension
SRET Knowledge
Object-oriented testing Application
Component-based testing Comprehension
GUI testing Knowledge
Testing of concurrent programs Knowledge
Protocol conformance testing Knowledge
Testing of distributed systems Knowledge
Testing of real-time systems Knowledge
Testing of scientific software Knowledge
Functional and structural Synthesis
Coverage and operational/Saturation
effect

Knowledge

D. Test related measures
Program measurements to aid in
planning and designing testing.

Synthesis

Types, classification and statistics of
faults

Application

Remaining number of defects/Fault
density

Application

Life test, reliability evaluation Comprehension
Reliability growth models Knowledge
Coverage/thoroughness measures Application
Fault seeding Knowledge
Mutation score Knowledge
Comparison and relative effectiveness
of different techniques

Comprehension

E. Managing the Test Process
Attitudes/Egoless programming Application
Test process Synthesis
Test documentation and workproducts Synthesis
Internal vs. independent test team Comprehension
Cost/effort estimation and other process
metrics

Application

Termination Application
Test reuse and test patterns Application
Planning Application
Test case generation Application
Test environment development Application
Execution Application
Test results evaluation Application
Problem reporting/Test log Application
Defect tracking Application

SOFTWARE MAINTENANCE

Rating has been omitted for this edition.

C–4 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE CONFIGURATION MANAGEMENT

SCM TOPIC Bloom Level
I. Management of the SCM Process Knowledge
A. Organizational Context for SCM Knowledge
B. Constraints and Guidance for SCM Knowledge
C. Planning for SCM Knowledge

1. SCM Organization and
Responsibilities

Knowledge

2. SCM Resources and Schedules Comprehension
3. Tool Selection and

Implementation
Knowledge

4. Vendor/Subcontractor Control Knowledge
5. Interface Control Comprehension

D. Software Configuration
Management Plan

Knowledge

E. Surveillance of SCM Comprehension
1. SCM Metrics and Measurement Comprehension
2. In-Process Audits of SCM Knowledge

II. Software Configuration
Identification

Comprehension

A. Identifying Items to be controlled Comprehension
1. Software Configuration Comprehension
2. Software Configuration Items Comprehension
3. Software configuration item

relationships
Comprehension

4. Software Versions Comprehension
5. Baselines Comprehension
6. Acquiring Software

Configuration Items
Knowledge

B. Software Library Comprehension
III. Software Configuration Control Application
A. Requesting, Evaluating, and

Approving Software Changes
Application

1. Software Configuration Control
Board

Application

2. Software Change Request
Process

Application

B. Implementing Software Changes Application
C. Deviations & Waivers Comprehension
IV. Software Configuration Status

Accounting
Comprehension

A. Software Configuration Status
Information

Comprehension

B. Software Configuration Status
Reporting

Comprehension

V. Software Configuration Auditing Knowledge
A. Software Functional Configuration

Audit
Knowledge

B. Software Physical Configuration
Audit

Knowledge

C. In-process Audits of a Software
Baseline

Knowledge

VI. Software Release Management &
Delivery

Comprehension

A. Software Building Comprehension
B. Software Release Management Comprehension

SOFTWARE ENGINEERING MANAGEMENT

Topic Level
A. Organizational Management

Policy management Comprehension
Personnel management Analysis
Communication management Analysis
Portfolio management Comprehension
Procurement management Knowledge

B. Process/project Management
Determination and negotiation of
requirements

Comprehension

Feasibility analysis Application
Review/revision of requirements Comprehension
Process planning Analysis
Project planning Application
Determine deliverables Comprehension
Effort, schedule and cost estimation Analysis
Resource allocation Application
Risk management Synthesis
Quality management Synthesis
Plan management Application
Implementation of plans Application
Implementation of measurement
process

Application

Monitor process Application
Control process Application
Reporting Application
Determining satisfaction of
requirements

Comprehension

Reviewing and evaluating
performance

Application

Determining closure Application
Closure activities Comprehension

C. Software Engineering Measurement
Organizational objectives Synthesis
Software process improvement goals Synthesis
Goal-driven measurement selection Application
Measurement validity Comprehension
Size measurement Analysis
Structure measurement Analysis
Resource measurement Analysis
Quality measurement Analysis
Survey techniques and form design Knowledge
Automated and manual data
collection

Knowledge

Model building, calibration and
evaluation

Application

Implementation, interpretation and
refinement of models

Analysis

© IEEE – Trial Version 1.00 – May 2001 C–5

SOFTWARE ENGINEERING PROCESS

Topic Level
Software Engineering Process
Concepts

Themes Comprehension
Terminology Knowledge
Process Infrastructure
The Software Engineering Process
Group

Comprehension

The Experience Factory Comprehension
Process Measurement
Methodology in Process
Measurement

Comprehension

Process Measurement Paradigms Comprehension
Analytic Paradigm Comprehension
Benchmarking Paradigm Comprehension

Process Definition
Types of Process Definitions Application
Life Cycle Framework Models Application
Software Life Cycle Process Models Application
Notations for Process Definitions Application
Process Definition Methods Application
Automation Knowledge
Qualitative Process Analysis
Process Definition Review Comprehension
Root Cause Analysis Comprehension
Process Implementation and
Change

Paradigms for Process
Implementation and Change

Comprehension

Guidelines for Process
Implementation and Change

Comprehension

Evaluating the Outcome of Process
Implementation and Change

Comprehension

SOFTWARE ENGINEERING TOOLS AND METHODS

Topic Bloom Level

Software Tools
Software Requirements Tools Application

Requirements Modeling Tools Application
Traceability Tools Comprehension

Software Design Tools Application
Software Construction Tools

Program Editors Application
Compilers and Code Generators Application
Interpreters Application
Debuggers Application

Software Testing Tools
Test Generators Comprehension
Test Execution Frameworks Application
Test Evaluation Tools Application
Test Management Tools Comprehension
Performance Analysis Tools Comprehension

Software Maintenance Tools
Comprehension Tools Application
Re-engineering Tools Knowledge

Software Engineering Process
Tools

Process Modeling Tools Knowledge
Process Management Tools Knowledge
Integrated CASE Environments Application
Process-centered Software
Engineering Environments

Comprehension

Software Quality Tools
Inspection Tools Comprehension
Static Analysis Tools Application

Software Configuration
Management Tools

Defect, Enhancement, Issue and
Problem Tracking Tools

Application

Version Management Tools Application
Release and Build Tools Application

Software Engineering
Management Tools

Project Planning and Tracking
Tools

Application

Risk Management Tools Comprehension
Measurement Tools Application

Infrastructure Support Tools
Interpersonal Communication
Tools

Application

Information Retrieval Tools Application
System Administration and
Support Tools

Comprehension

C–6 © IEEE – Trial Version 1.00 – May 2001

Topic Bloom Level

Miscellaneous Tools Issues
Tool Integration Techniques Knowledge
Meta Tools Comprehension
Tool Evaluation Application

Software Methods
Heuristic Methods Application

Structured Methods Application
Data-oriented Methods Application
Object-oriented Methods Application
Domain-specific Methods Comprehension

Formal Methods
Specification Languages Comprehension
Refinement Knowledge
Validation/Proving Properties Comprehension

Prototyping Methods
Styles Comprehension
Prototyping Targets Application
Evaluation Comprehension

Miscellaneous Method Issues
Method Evaluation Application

SOFTWARE QUALITY

All software engineers are responsible for the quality of the
products they build. We consider that the knowledge
requirements for topics in Software Quality vary depending
on the role of the software engineer. We use the roles of
programmer, SQA/VV specialist, and project manager. The
programmer will design and build the system, possibly be
involved in inspections and reviews, analyze his work
products statically, and possibly perform unit test. This
person may turn over the products to others who will
conduct integration and higher levels of testing, and may be
asked to submit data on development tasks, but will not
conduct analyses on faults or on measurements. The
SQA/VV specialist will plan and implement the processes
for software quality analysis, verification, and validation.
The project manager of the development project will use
the information from the software quality analysis
processes to make decisions. Of course, in a small project,
the software engineer may have to assume all of these roles,
in which case, the highest of the three is appropriate.

Bloom Level*, By Job Responsibility

Software Quality Topic
(Numbered as to Section in this KA) Programmer SQA/VV Spec. Project Manager

Software Quality Concepts
Measuring the Value of Quality Comprehension Comprehension Analysis
ISO 9126 Quality Description Comprehension Comprehension Comprehension
Dependability Comprehension Comprehension Comprehension
Special Types of Systems and Quality Needs Comprehension Comprehension Comprehension

Purpose and Planning of SQA and V&V
Common Planning Activities

The SQA Plan Application Synthesis Evaluation
The V&V Plan Application Synthesis Evaluation

Activities and Techniques for SQA and V&V
Static Techniques

Audits, Reviews, and Inspections Application Evaluation Analysis
Analytic Techniques Application Evaluation Analysis

Dynamic Techniques Application Evaluation Analysis
Measurement Applied to SQA and V&V

Fundamentals of Measurement Application Evaluation Analysis
Metrics Application Evaluation Analysis
Measurement Techniques Application Evaluation Analysis
Defect Characterization Application Evaluation Analysis
Additional uses of SQA and V&V data Application Evaluation Analysis

*The levels, in ascending order: Knowledge, Comprehension, Application, Analysis, Synthesis, Evaluation

© IEEE – Trial (Version 0.95) – May 2001 D–1

APPENDIX D

A PROPOSED BREAKDOWN FOR A
COMPONENT INTEGRATION KNOWLEDGE AREA

Submitted by
Michel Boivin, CGI, Canada

One of the topics whose inclusion in the Guide was hotly
debated is Component Integration. While it certainly is an
important part of software practice today, there were
disagreements about the existence of a generally accepted
body of knowledge on that topic. One of the reviewers
proposed the breakdown presented here. It was decided to
included it as an appendix to make sure that discussions
about the topic and about this view would start as soon as
possible. It is therefore a jumpstart breakdown, intended to
be discussed in the following phase of the project. That is
the procedure that was used for the other ten Knowledge
Areas. Future efforts concerning this topic will be
announced on the project web site.

1. Component Integration

A. Component definition

1. Interface specification

2. Protocol specification

3. Off-the-shelf components

B. Reference model

1. Patterns

2. Frameworks

3. Standard architectures

4. Semantic interoperability

C. Reuse

1. Type of reuse

2. Re-engineering

3. Reuse repositories

4. Cost/Benefit Analysis

2. Application Integration

A. Planning

1. Environments definition

2. Software integration strategies

3. Data integration strategies

B. Selection

1. Applications selection

2. Services selection

3. Components selection

4. Communication protocols selection

5. Integration standards selection

C. Implementation

1. Software assembly

2. Data conversion

3. Integration Testing

4. Deployment

