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DC to AC Conversion
(INVERTER)

• General concept

• Basic principles/concepts

• Single-phase inverter

– Square wave

– Notching

– PWM

• Harmonics

• Modulation

• Three-phase inverter
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DC to AC Converter 
(Inverter)

• DEFINITION: Converts DC to AC power 
by switching the DC input voltage (or 
current) in a pre-determined sequence so as 
to generate AC voltage (or current) output.

• TYPICAL APPLICATIONS:
– UPS, Industrial drives, Traction, HVDC

• General block diagram

IDC
Iac

+

−

VDC Vac

+

−
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Types of inverter

• Voltage Source Inverter (VSI)

• Current Source Inverter (CSI)

"DC LINK" Iac

+

−

VDC Load Voltage

+

−

L ILOAD

Load CurrentIDC
+

−

VDC

C
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Voltage source inverter (VSI) 
with variable DC link 

• DC link voltage is varied by a DC-to DC converter 
or controlled rectifier.

• Generate “square wave” output voltage.

• Output voltage amplitude is varied as DC link is 
varied.

• Frequency of output voltage is varied by changing 
the frequency of the square wave pulses.

DC LINK

+

-

Vs
Vo

+

-

C

+

-
Vin

CHOPPER
(Variable DC output)

INVERTER
(Switch are turned ON/OFF
with square-wave patterns)
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Variable DC link inverter (2)

• Advantages:

– simple waveform generation

– Reliable

• Disadvantages:

– Extra conversion stage

– Poor harmonics

T1 T2 t

Vdc1

Vdc2 Higher input voltage
Higher frequency

Lower input voltage
Lower frequency
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VSI with fixed DC link 

• DC voltage is held constant.

• Output voltage amplitude and frequency 
are varied simultaneously using PWM 
technique.

• Good harmonic control, but at the expense 
of complex waveform generation

INVERTER

+

−

Vin

(fixed)
Vo

+

−

C

Switch turned ON and OFF
with PWM pattern
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Current Source Inverter (CSI)

• Input (DC) current is “chopped”to obtain 
AC output current.

• Need large L.

• Less popular compared to VSI

+

-

Vin RL

IO
L IDC

Iac

-Iac

Io

t

CHOPPER CSI

Current waveform
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Power flow consideration

• Assume load is drawing lagging Power 
Factor.:

• (+) io and (+) vo: (+) power flow    (1)
• (-) io and (-) vo: (+) power flow    (3)
• (+) io and (-) vo: (-) power flow    (2)
• (-) io and (+) vo: (-) power flow    (4)
• Positive power flow indicates power 

transfer from input (Vdc.Idc) to load.

+

-

+

-

io

t

(4) (1) (2) (3)

Vo

vi,

dcV oV

dcI oI
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4-quadrant operation
• Negative power flow 

indicates that the 
power is fed back 
from load to source.

• Hence, inverter must 
have “4 quadrant” 
capability to cater 
for all possible load 
types.

• Practically, this can 
be achieved by 
placing an anti-
parallel diode across 
each switching 
device.

(1)
INVERTER

(4)
RECTIFIER

(2)
RECTIFIER

(3)
INVERTER

io

vo

LOAD

T1

T2

4-QUADRANT
OPERATION

ANTI-PARELELL
DIODES
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Operation of simple square-
wave inverter (1)

• To illustrate the concept of AC waveform 
generation

VDC

T1

T4

T3

T2

+   VO   -

D1

D2

D3

D4

SQUARE-WAVE
INVERTERS

S1 S3

S2S4

EQUAVALENT
CIRCUIT

IO
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Operation of simple square-
wave inverter (2)

VDC

S1

S4

S3

+   vO   −

VDC

S1

S4

S3

S2

+   vO   −

VDC

vO

t1 t2

t

S1,S2 ON; S3,S4 OFF for t1 < t < t2

t2 t3

vO

-VDC

t

S3,S4 ON ; S1,S2 OFF for t2 < t < t3

S2
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Waveforms and harmonics of 
square-wave inverter

FUNDAMENTAL

3RD HARMONIC

5RD HARMONIC

π
DCV4

Vdc

-Vdc

V1

3

1V

5

1V

INVERTER
OUTPUT
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Filtering (1)
• Output of the inverter is “chopped AC 

voltage with zero DC component”.In some 
applications such as UPS, “high purity” sine 
wave output is required.

• An LC section low-pass  filter is normally 
fitted at the inverter output to reduce the 
high frequency harmonics.

• In some applications such as AC motor 
drive, filtering is not required.

vO 1

+

−

LOAD

L

C
vO 2

(LOW PASS) FILTER

+

−

vO 1 vO 2
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Notes on low-pass filters
• In square wave inverters, maximum output voltage 

is achievable. However there in NO control in 
harmonics and output voltage magnitude.

• The harmonics are always at three, five, seven etc 
times the fundamental frequency.

• Hence the cut-off frequency of the low pass filter is 
somewhat fixed. The filter size is dictated by the 
VA ratings of the inverter.

• To reduce filter size, the PWM switching scheme
can be utilised.

• In this technique, the harmonics are “pushed” to 
higher frequencies. Thus the cut-off frequency of 
the filter is increased. Hence the filter components 
(I.e. L and C) sizes are reduced. 

• The trade off  for this flexibility is complexity in 
the switching waveforms.
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“Notching”of square wave

Vdc

Vdc−

Vdc

Vdc−

Notched Square Wave

Fundamental Component

• Notching results in controllable output 
voltage magnitude (compare Figures 
above).

• Limited degree of harmonics control is 
possible  
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Pulse-width modulation 
(PWM)

• A better square wave notching is shown 
below - this is known as PWM technique.

• Both amplitude and frequency can be 
controlled independently. Very flexible.

1

1 pwm waveform

desired 
sinusoid

SINUSOIDAL PULSE-WITDH MODULATED
APPROXIMATION TO SINE WAVE
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PWM- output voltage and 
frequency control 
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Output voltage harmonics
• Why need to consider harmonics?

– Waveform quality must match TNB supply.  
“Power Quality” issue.

– In some applications, harmonics cause 
degradation of  equipment. Equipment need to 
be “de-rated”.

• Total Harmonic Distortion (THD):
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Fourier Series

• Study of harmonics requires understanding 
of wave shapes. Fourier Series is a tool to 
analyse wave shapes.
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Harmonics of square-wave (1)
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Harmonics of square wave (2)
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Spectra of square wave 

1 3 5 7 9 11

Normalised
Fundamental

3rd (0.33)

5th (0.2)

7th (0.14)

9th (0.11)
11th (0.09)

1st

n

• Spectra (harmonics) characteristics:
– Harmonic decreases as n increases. It decreases 

with a factor of (1/n). 

– Even harmonics are absent

– Nearest harmonics is the 3rd. If fundamental is 
50Hz, then nearest harmonic is 150Hz.

– Due to the small separation between the 
fundamental an harmonics, output low-pass 
filter design can be quite difficult.
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Quasi-square wave (QSW)
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Harmonics control
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Half-bridge inverter (1)

Vo

RL

+−

VC1

VC2

+

-

+

-
S1

S2

Vdc

2

Vdc

2

Vdc
−

S1 ON
S2 OFF

S1 OFF
S2 ON

t
0G

• Also known as the “inverter leg”.

• Basic building block for full bridge, three 
phase and higher order inverters.

• G is the “centre point”.

• Both capacitors have the  same value. 
Thus the DC link is equally “spilt”into 
two.
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Half-bridge inverter (2)

• The top and bottom switch has to be 
“complementary”, i.e. If the top switch is 
closed (on), the bottom must be off, and 
vice-versa.

• In practical, a dead time as shown below is 
required to avoid “shoot-through” faults.

td td

"Dead time'   = td

S1
signal
(gate)

S2
signal
(gate)

S1

S2

+

−−

Vdc

RL

G

"Shoot through fault" .
Ishort is very large

Ishort
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Single-phase, full-bridge (1)

• Full bridge (single phase) is built from two 
half-bridge leg.

• The switching in the second leg is “delayed 
by 180 degrees” from the first leg. 

S1

S4

S3

S2

+

-

G

+

2
dcV

2
dcV

-

2
dcV

2
dcV

dcV

2
dcV

−

2
dcV

−

dcV−

π

π

π

π2

π2

π2

tω

tω

tω

RGV

GRV '

oV

GRo VVV
RG '−=

groumd" virtual"  is G
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R R'
-   oV+

dcV
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Three-phase inverter

• Each leg (Red, Yellow, Blue) is delayed by 
120 degrees.

• A three-phase inverter with star connected 
load is shown below

ZYZR
ZB

G  R Y B

iR iY
iB

ia ib

+Vdc

N

S1

S4 S6

S3 S5

S2

+

+

−−

−−

Vdc/2

Vdc/2
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Square-wave inverter 
waveforms

1
3

2,4

2
3,5
4

3
5

4,6

4
1,5
6

5
1

2,6

6
1,3
2

VAD

VB0

VC0

VAB

VAPH

(a) Three phase pole switching waveforms

(b) Line voltage waveform

(c) Phase voltage waveform (six-step)

600 1200

Interval
Positive device(s) on

Negative devise(s) on

2VDC/3

VDC/3

-VDC/3

-2VDC/3

VDC

-VDC

VDC/2

-VDC/2

t

t

t

t

t

Quasi-square wave operation voltage waveforms
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Three-phase inverter 
waveform relationship

• VRG, VYG, VBG are known as “pole 
switching waveform” or “inverter phase 
voltage”.

• VRY, VRB, VYB are known as “line to line 
voltage” or simply “line voltage”.

• For a three-phase star-connected load, the 
load phase voltage with respect to the “N” 
(star-point) potential is known as VRN ,VYN,
VBN. It is also popularly termed as “six-
step” waveform
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MODULATION: Pulse Width 
Modulation (PWM)

Modulating Waveform Carrier waveform

1M

1+

1−

0

2
dcV

2
dcV

−

0
0t 1t 2t 3t 4t 5t

• Triangulation method (Natural sampling)
– Amplitudes of the triangular wave (carrier) and 

sine wave (modulating) are compared to obtain 
PWM waveform. Simple analogue comparator 
can be used.

– Basically an analogue method. Its digital 
version, known as REGULAR sampling is 
widely used in industry.
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PWM types

• Natural (sinusoidal) sampling (as shown 
on previous slide)
– Problems with analogue circuitry, e.g. Drift, 

sensitivity etc.

• Regular sampling
– simplified version of natural sampling that 

results in simple digital implementation

• Optimised PWM
– PWM waveform are constructed based on 

certain performance criteria, e.g. THD.

• Harmonic elimination/minimisation PWM
– PWM waveforms are constructed to eliminate 

some undesirable harmonics from the output 
waveform spectra. 

– Highly mathematical in nature

• Space-vector modulation (SVM)
– A simple technique based on volt-second that is 

normally used with three-phase inverter motor-
drive
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Natural/Regular sampling
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Asymmetric and symmetric 
regular sampling

T

sample
point

tM mωsin11+

1−

4

T

4

3T

4

5T
4

π

2
dcV

2
dcV

−

0t 1t 2t 3t
t

asymmetric
 sampling

symmetric
sampling

t

Generating of PWM waveform regular sampling
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Bipolar and unipolar PWM 
switching scheme

• In many books, the term “bipolar” and 
“unipolar” PWM switching are often 
mentioned.

• The difference is in the way the sinusoidal 
(modulating) waveform is compared with 
the triangular.

• In general, unipolar switching scheme 
produces better harmonics. But it is more 
difficult to implement.

• In this class only bipolar PWM is 
considered.
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Bipolar PWM switching

k1δ
k2δ

kα

∆
4

∆
=δ

π π2

carrier
waveform

modulating
waveform

pulse

kth

π π2
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Pulse width relationships

k1δ
k2δ

kα

∆
4

∆
=δ

π π2

carrier
waveform

modulating
waveform

pulse

kth

π π2
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Characterisation of PWM 
pulses for bipolar switching

pulse PWMkth  The

∆

0δ 0δ 0δ 0δ

k1δ
k2δ

2
SV+

2
SV

−

kα
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Determination of switching 
angles for kth PWM pulse (1) 
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PWM Switching angles (2)
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Switching angles (3)
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PWM switching angles (4)

[ ]

[ ])sin(1    
and

)sin(1

width,-pulse for the solve  tongSubstituti

)sin(

:derived becan 
 edge  trailing themethod,similar  Using

)sin(

Thus,

1.  to0 from It varies depth.or index 

 modulation asknown  is   
2

ratio, voltageThe

2

1

1
1

2

1

okIok

okIok
o

ok
k

okIk

okIk

dc

m
I

M

M

M

M

)(V

V
M

δαδδ

δαδδ
δ

δδ
β

δαβ

δαβ

++=

−+=⇒

−
=

−=

−=

=



Power Electronics and 
Drives: Dr. Zainal Salam, 

FKE, UTM Skudai, JB

43

PWM Pulse width
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Example

• For the PWM shown below, calculate the switching 
angles for all the pulses.

V5.1
V2

π π2

1 2 3 4 5 6 7 8 9

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t13
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π
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carrier
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Harmonics of bipolar PWM
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Harmonics of PWM
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PWM Spectra
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PWM spectra observations

• The amplitude of the fundamental decreases or 
increases linearly in proportion to the depth of 
modulation (modulation index). The relation ship is 
given as:  V1= MIVin

• The harmonics appear in “clusters” with  main 
components at frequencies of :                                  
f = kp (fm); k=1,2,3....                                       
where fm is the frequency of the modulation (sine) 
waveform. This also equal to the multiple of the 
carrier frequencies. There also exist “side-bands” 
around the  main harmonic frequencies.

• The amplitude of the  harmonic changes with MI. Its 
incidence (location on spectra) is not.

• When p>10, or so, the harmonics can be normalised 
as shown in the Figure. For lower values of p, the 
side-bands clusters overlap, and the normalised 
results no longer apply.
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Three-phase harmonics: 
“Effect of odd triplens”

• For three-phase inverters, there is 
significant advantage if p is chosen to be:

– odd and multiple of three (triplens) (e.g. 
3,9,15,21, 27..)

– the waveform and harmonics and shown on the 
next two slides. Notice the difference?

• By observing the waveform, it can be seen 
that with odd p, the line voltage shape 
looks more “sinusoidal”.

• The even harmonics are all absent in the 
phase voltage (pole switching waveform). 
This is due to the p chosen to be odd.
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Spectra observations

• Note the absence of harmonics no. 21, 63 
in the inverter line voltage. This is due to p 
which is multiple of three.

• In overall, the spectra of the line voltage is 
more “clean”. This implies that the THD is 
less and the line voltage is more sinusoidal.

• It is important to recall that it is the line 
voltage that is of the most interest. 

• Also can be noted from the spectra that the 
phase voltage amplitude is 0.8 
(normalised). This is because the 
modulation index is 0.8. The line voltage 
amplitude is square root three of phase 
voltage due to the three-phase relationship.  
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Waveform: effect of “triplens”
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Harmonics: effect of 
“triplens”
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Comments on PWM scheme

• It is desirable to push p to as large as 
possible.

• The main impetus for that when p is high, 
then the harmonics will be at higher 
frequencies because frequencies of 
harmonics are related to: f = kp(fm), where
fm is the frequency of the modulating 
signal.

• Although the voltage THD improvement is 
not significant, but the current THD will 
improve greatly because the load normally 
has some current filtering effect.

• In any case, if a low pass filter is to be 
fitted at the inverter output to improve the 
voltage THD, higher harmonic frequencies 
is desirable because it makes smaller filter 
component. 


