

Fundamentals of Mobile and
Pervasive Computing

Richard_FM.qxd 9/29/04 8:48 PM Page i

Richard_FM.qxd 9/29/04 8:48 PM Page ii

Fundamentals of Mobile
and Pervasive Computing

Golden G. Richard III

Frank Adelstein

Sandeep K. S. Gupta

Loren Schweibert

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

Richard_FM.qxd 9/29/04 8:48 PM Page iii

Library of Congress Cataloging-in-Publication Data

Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 1 0 9 8 7 6 5 4

ISBN 0-07-141237-9

The sponsoring editor for this book was Stephen S. Chapman and the
production supervisor was Sherri Souffrance. It was set in Century Schoolbook
by International Typesetting and Composition. The art director for the cover
was Anthony Landi.

Printed and bound by RR Donnelley.

McGraw-Hill books are available at special quantity discounts to use as premi-
ums and sales promotions, or for use in corporate training programs. For more
information, please write to the Director of Special Sales, McGraw-Hill
Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local
bookstore.

This book is printed on recycled, acid-free paper containing a
minimum of 50% recycled, de-inked fiber.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable. However,
neither McGraw-Hill nor its authors guarantee the accuracy or completeness of
any information published herein and neither McGraw-Hill nor its authors shall
be responsible for any errors, omissions, or damages arising out of use of this infor-
mation. This work is published with the understanding that McGraw-Hill and
its authors are supplying information but are not attempting to render engi-
neering or other professional services. If such services are required, the assistance
of an appropriate professional should be sought.

Richard_FM.qxd 9/29/04 8:48 PM Page iv

To my friends and family who kept asking, ‘Is it done yet?’
(Frank)

To Pam, Joel, and Kyle
(Loren)

To Poonam, Ayush, and Animesh
(Sandeep)

To Daryl, Q, and David Byrne
(Golden)

Richard_FM.qxd 9/29/04 8:48 PM Page v

Richard_FM.qxd 9/29/04 8:48 PM Page vi

Contents

Preface xv
Acknowledgments xix

Chapter 1. Mobile Adaptive Computing 1

1.1 What Is Mobile Computing? 1
1.2 Adaptability—The Key to Mobile Computing 3

1.2.1 Transparency 4
1.2.2 Constraints of mobile computing environments 5
1.2.3 Application-aware adaptation 6

1.3 Mechanisms for Adaptation 8
1.3.1 Adapting functionality 8
1.3.2 Adapting data 9

1.4 How to Develop or Incorporate Adaptations in Applications? 11
1.4.1 Where can adaptations be performed? 12

1.5 Support for Building Adaptive Mobile Applications 19
1.5.1 Odyssey 19
1.5.2 Rover 22

1.6 Summary 24

Chapter 2. Mobility Management 27

2.1 Mobility Management 27
2.2 Location Management Principles and Techniques 30

2.2.1 Registration area–based location management 33
2.3 Location Management Case Studies 48

2.3.1 PCS location management scheme 49
2.3.2 Mobile IP 50

2.4 Summary 53

Chapter 3. Data Dissemination and Management 55

3.1 Challenges 59
3.2 Data Dissemination 61

3.2.1 Bandwidth allocation for publishing 63
3.2.2 Broadcast disk scheduling 65

vii

Richard_FM.qxd 9/29/04 8:48 PM Page vii

3.3 Mobile Data Caching 67
3.3.1 Caching in traditional distributed systems 68
3.3.2 Cache consistency maintenance 69
3.3.3 Performance and architectural issues 70

3.4 Mobile Cache Maintenance Schemes 72
3.4.1 A taxonomy of cache maintenance schemes 72
3.4.2 Cache maintenance for push-based information dissemination 74
3.4.3 Broadcasting invalidation reports 75
3.4.4 Disconnected operation 77
3.4.5 Asynchronous stateful (AS) scheme 78
3.4.6 To cache or not to cache? 84

3.5 Mobile Web Caching 86
3.5.1 Handling disconnections 87
3.5.2 Achieving energy and bandwidth efficiency 87

3.6 Summary 88

Chapter 4. Context-Aware Computing 91

4.1 Ubiquitous or Pervasive Computing 92
4.2 What Is a Context? Various Definitions and Types of Contexts 94

4.2.1 Enumeration-based 94
4.2.2 Role-based 96

4.3 Context-Aware Computing and Applications 96
4.3.1 Core capabilities for context awareness 97
4.3.2 Types of context-aware applications 98
4.3.3 Developing context-aware applications 100

4.4 Middleware Support 102
4.4.1 Contextual services 103
4.4.2 Actuator service 104
4.4.3 An example: context toolkit 104
4.4.4 Providing location context 105

4.5 Summary 106

Chapter 5. Introduction to Mobile Middleware 109

5.1 What is Mobile Middleware? 109
5.2 Adaptation 110
5.3 Agents 111
5.4 Service Discovery 111

Chapter 6. Middleware for Application Development:
Adaptationand Agents 113

6.1 Adaptation 113
6.1.1 The spectrum of adaptation 114
6.1.2 Resource monitoring 114
6.1.3 Characterizing adaptation strategies 115
6.1.4 An application-aware adaptation architecture: odyssey 117
6.1.5 A sample odyssey application 119
6.1.6 More adaptation middleware 120

viii Contents

Richard_FM.qxd 9/29/04 8:48 PM Page viii

6.2 Mobile Agents 123
6.2.1 Why mobile agents? And why not? 125
6.2.2 Agent architectures 127
6.2.3 Migration strategies 130
6.2.4 Communication strategies 131

6.3 Summary 133

Chapter 7. Service Discovery Middleware: Finding Needed Services 137

7.1 Common Ground 140
7.2 Services 142

7.2.1 Universally unique identifiers 142
7.2.2 Standardization 144
7.2.3 Textual descriptions 145
7.2.4 Using interfaces for standardization 149

7.3 More on Discovery and Advertisement Protocols 150
7.3.1 Unicast discovery 150
7.3.2 Multicast discovery and advertisement 151
7.3.3 Service catalogs 155

7.4 Garbage Collection 156
7.4.1 Leasing 156
7.4.2 Advertised expirations 158

7.5 Eventing 159
7.6 Security 163

7.6.1 Jini 163
7.6.2 Service location protocol 164
7.6.3 Ninja 165

7.7 Interoperability 166
7.7.1 Interoperability success stories 167

7.8 Summary 167

Chapter 8. Introduction to Ad Hoc and Sensor Networks 171

8.1 Overview 171
8.1.1 Outline of chapter 172

8.2 Properties of an Ad Hoc Network 175
8.2.1 No preexisting infrastructure 175
8.2.2 Limited access to a base station 175
8.2.3 Power-limited devices 177
8.2.4 No centralized mechanisms 178

8.3 Unique Features of Sensor Networks 178
8.3.1 Direct interaction with the physical world 178
8.3.2 Usually special-purpose devices 179
8.3.3 Very limited resources 180
8.3.4 Operate without a human interface 181
8.3.5 Specialized routing patterns 181

8.4 Proposed Applications 182
8.4.1 Military applications 182
8.4.2 Medical applications 185
8.4.3 Industrial applications 186
8.4.4 Environmental applications 187
8.4.5 Other application domains 188

Contents ix

Richard_FM.qxd 9/29/04 8:48 PM Page ix

Chapter 9. Challenges 191

9.1 Constrained Resources 191
9.1.1 No centralized authority 192
9.1.2 Limited power 193
9.1.3 Wireless communication 196
9.1.4 Limited computation and storage 197
9.1.5 Storage constraints 198
9.1.6 Limited input and output options 199

9.2 Security 200
9.2.1 Small keys 200
9.2.2 Limited computation 201
9.2.3 Changing network membership 201
9.2.4 Arbitrary topology 202

9.3 Mobility 203
9.3.1 Mobility requirements 204
9.3.2 Loss of connectivity 205
9.3.3 Data loss 206
9.3.4 Group communication 207
9.3.5 Maintaining consistent views 208

9.4 Summary 209

Chapter 10. Protocols 213

10.1 Autoconfiguration 213
10.1.1 Neighborhood discovery 214
10.1.2 Topology discovery 215
10.1.3 Medium access control schedule construction 216
10.1.4 Security protocol configuration 220

10.2 Energy-Efficient Communication 221
10.2.1 Multihop routing 222
10.2.2 Communication scheduling 225
10.2.3 Duplicate message suppression 226
10.2.4 Message aggregation 228
10.2.5 Dual-radio scheduling 230
10.2.6 Sleep-mode scheduling 232
10.2.7 Clustering 232

10.3 Mobility Requirements 235
10.3.1 Movement detection 235
10.3.2 Patterns of movement 236
10.3.3 Changing group dynamics 237
10.3.4 Resynchronization 239

10.4 Summary 240

Chapter 11. Approaches and Solutions 245

11.1 Deployment and Configuration 245
11.1.1 Random deployment 246
11.1.2 Scalability 246
11.1.3 Self-organization 247
11.1.4 Security protocol configuration 247

x Contents

Richard_FM.qxd 9/29/04 8:48 PM Page x

11.1.5 Reconfiguration/redeployment 249
11.1.6 Location determination 249

11.2 Routing 252
11.2.1 Event-driven routing 253
11.2.2 Periodic sensor readings 254
11.2.3 Diffusion routing 260
11.2.4 Directional routing 265
11.2.5 Group communication 268
11.2.6 Synchronization 271

11.3 Fault Tolerance and Reliability 273
11.3.1 FEC and ARQ 273
11.3.2 Agreement among sensor nodes (Reliability of

measurements) 274
11.3.3 Dealing with dead or faulty nodes 278

11.4 Energy Efficiency 279
11.4.1 Uniform power dissipation 280
11.4.2 Sensor component power management 281
11.4.3 MAC layer protocols 282
11.4.4 Tradeoffs between performance and energy efficiency 283

11.5 Summary 284

Chapter 12. Wireless Security 287

12.1 Traditional Security Issues 287
12.1.1 Integrity 287
12.1.2 Confidentiality 288
12.1.3 Nonrepudiation 288
12.1.4 Availability 288

12.2 Mobile and Wireless Security Issues 290
12.2.1 Detectability 290
12.2.2 Resource depletion/exhaustion 291
12.2.3 Physical intercept problems 291
12.2.4 Theft of service 291
12.2.5 War driving/walking/chalking 292

12.3 Mobility 293
12.4 Problems in Ad Hoc Networks 293

12.4.1 Routing 294
12.4.2 Prekeying 294
12.4.3 Reconfiguring 295
12.4.4 Hostile environment 295

12.5 Additional Issues: Commerce 295
12.5.1 Liability 296
12.5.2 Fear, uncertainty, and doubt 296
12.5.3 Fraud 296
12.5.4 Big bucks at stake 297

12.6 Additional Types of Attacks 297
12.6.1 “Man in the middle” attacks 297
12.6.2 Traffic analysis 298
12.6.3 Replay attacks 298
12.6.4 Buffer-overflow attacks 298

12.7 Summary 299

Contents xi

Richard_FM.qxd 9/29/04 8:48 PM Page xi

Chapter 13. Approaches to Security 301

13.1 Limit the Signal 301
13.1.1 Wire integrity and tapping 301
13.1.2 Physical limitation 301

13.2 Encryption 302
13.2.1 Public and private key encryption 302
13.2.2 Computational and data overhead 303

13.3 Integrity Codes 304
13.3.1 Checksum versus cryptographic hash 304
13.3.2 Message authentication code (MAC) 305
13.3.3 Payload versus header 306
13.3.4 Traffic analysis 307

13.4 IPSec 307
13.4.1 Authentication header (AH) 307
13.4.2 Encapsulating security payload (ESP) 308

13.5 Other Security-Related Mechanisms 308
13.5.1 Authentication protocols 308
13.5.2 AAA 313
13.5.3 Special hardware 315

13.6 Summary 315

Chapter 14. Security in Wireless Personal Area Networks 317

14.1 Basic Idea 317
14.1.1 Bluetooth specifications 317
14.1.2 Bluetooth network terms 318
14.1.3 Bluetooth security mechanisms 320

14.2 Bluetooth Security Modes 320
14.3 Basic Security Mechanisms 321

14.3.1 Initialization key 322
14.3.2 Unit key 322
14.3.3 Combination key 322
14.3.4 Master key 323

14.4 Encryption 323
14.5 Authentication 325
14.6 Limitations and Problems 325
14.7 Summary 327

Chapter 15. Security in Wireless Local Area Networks 329

15.1 Basic Idea 329
15.2 Wireless Alphabet Soup 331
15.3 Wired-Equivalent Privacy (WEP) 333

15.3.1 WEP goals 333
15.3.2 WEP data frame 334
15.3.3 WEP encryption 334
15.3.4 WEP decryption 335
15.3.5 WEP authentication 335
15.3.6 WEP flaws 336
15.3.7 WEP fixes 338

xii Contents

Richard_FM.qxd 9/29/04 8:48 PM Page xii

15.4 WPA 340
15.5 802.11i 340

15.5.1 Encryption protocols 340
15.5.2 Access control via 802.1x 342

15.6 Fixes and “Best Practices” 344
15.6.1 Anything is better than nothing 344
15.6.2 Know thine enemy 344
15.6.3 Use whatever wireless security mechanisms are present 345
15.6.4 End-to-end VPN 345
15.6.5 Firewall protection 346
15.6.6 Use whatever else is available 346

15.7 Summary 348

Chapter 16. Security in Wireless Metropolitan Area Networks (802.16) 349

16.1 Broadband Wireless Access 349
16.2 IEEE 802.16 350
16.3 802.16 Security 350

16.3.1 Key management 351
16.3.2 Security associations 351
16.3.3 Keying material lifetime 352
16.3.4 Subscriber station (SS) authorization 353
16.3.5 Encryption 353

16.4 Problems and Limitations 354
16.5 Summary 354

Chapter 17. Security in Wide Area Networks 357

17.1 Basic Idea 357
17.2 CDMA 359
17.3 GSM 360

17.3.1 GSM authentication 360
17.3.2 GSM encryption 360

17.4 Problems with GSM Security 361
17.4.1 Session life 362
17.4.2 Weak encryption algorithm 362
17.4.3 Encryption between mobile host and base station only 363
17.4.4 Limits to the secret key 363
17.4.5 Other problems 364

17.5 The Four Generations of Wireless: 1G–4G 364
17.6 3G 364
17.7 Limitations 366
17.8 Summary 366

Appendix A Brief Introduction to Wireless Communication
and Networking 369

Appendix B Questions 375
Index 389

Contents xiii

Richard_FM.qxd 9/29/04 8:48 PM Page xiii

Richard_FM.qxd 9/29/04 8:48 PM Page xiv

Preface

Mary sits with her PDA in a coffee shop in Woods Hole reviewing her
appointments for the day and notes that the location for her lunch meet-
ing with a CEO is marked TBD. After reviewing menus for a few nice
restaurants, she selects an appropriate location. As she gets into her car,
with notes for the lunch meeting she printed at the coffee shop, she
quickly checks her credit card limit with her PDA, and then sends the
CEO a note on the suggested location. Suddenly, 9000 miles to the west,
a sperm whale surfaces in the Pacific Ocean. The whale carries a small,
low-power radio transmitter that has been recording its vital signs for
the last 2 months. Now above the water, the transmitter establishes con-
tact with a low-earth-orbit satellite and uploads its data. It also uploads
vital signs for other similarly equipped whales it passed since the radio
last contacted the satellite. The data indicate a growth in the pod pop-
ulation. Scientists halfway around the world are thrilled with the new
data and news filters up the chain to the company CEO, who can now
approve a research grant for the chief scientist of a marine biology insti-
tute he is meeting for lunch. As she leaves the restaurant, Mary shares
the good news with members of her research group using her cell phone.

A common thread in the above scenario is the use of mobile and per-
vasive computing. Mobile computing is characterized and driven by
portable, lightweight hardware, wireless communication, and innova-
tions in application and system software. The technology drives new
applications which in turn fuel the demand for the new technology.
Pervasive computing uses small, battery-powered, wireless computing
and sensing devices embedded in our environment to provide contextual
information to new types of applications. The trend of technology get-
ting smaller and more portable is likely to continue for the foreseeable
future. Bandwidth available to a home user through a broadband
Internet connection exceeds the bandwidth available to all but the
largest organizations several years ago. The bandwidth in low-priced
network connections continues to increase at a similar rate. Wireless and
cellular technologies allow users to connect to networks from practically

xv

Richard_FM.qxd 9/29/04 8:48 PM Page xv

any location and to remain connected in transit. This is the age of mobile
and pervasive computing!

This book provides a focused look at important topics in Mobile and
Pervasive Computing. Although the underlying technology is essential,
we avoid being completely bound to it. Technology will change and
evolve, and in fact has changed even during the course of writing this
book. Data rates increase. Protocols evolve. More efficient algorithms are
created. But the underlying techniques, the essentials of how computers
share, protect, and use data in an environment in which the location is
not fixed, remain relatively stable. This book is intended to address
these fundamental points, the ones that continue to be significant long
after this book is published.

Audience

This book has been designed for two audiences. The first group con-
tains professionals seeking to get a solid understanding of mobile
computing––the problems and solutions, the protocols, and the appli-
cations. The second group comprises students in a senior-undergraduate
or graduate-level course. To help the second group, Appendix B con-
tains both short questions, to help review the chapters, and longer ques-
tions and project ideas that instructors may select as starting points for
lab assignments or for further research.

Book Organization

Conceptually, the book is organized into four parts:

Part One, which comprises the first four chapters, covers issues
related to mobile and pervasive computing applications. This includes
not only disseminating and caching data, but also routing and loca-
tion management to determine where to send data in the first place.
Context aware computing is the final chapter of the first part.

Part Two, which comprises Chapters 5 to 7, focuses on middleware,
the layer that bridges mobile computing applications to the underly-
ing systems that support this mobility. Middleware topics include
agents and service discovery, as well as techniques and methods.

Part Three, which comprises Chapters 8 to 11, covers an important
enabling networking technology for pervasive computing: adhoc and
wireless sensor networks. Adhoc networks form when needed, on-the-
fly, without central management or infrastructure. Wireless sensors
record some type of data, such as temperature and humidity, and
form an adhoc network to efficiently disseminate these readings.

xvi Preface

Richard_FM.qxd 9/29/04 8:48 PM Page xvi

Part Three discusses the applications, problems, approaches, and
protocols for wireless sensor networking.

Part Four, which comprises Chapters 12 to 17, covers security in
wireless environments. After describing common security problems,
these chapters discuss how security is handled in personal, local, met-
ropolitan, and wide area networks, as well as current research work
and future trends.

How to Use This Book

Since this book provides the coverage of almost all the important aspects
of mobile and pervasive computing, it can be used in several ways. Two
of the authors have used this book in semester-long courses. Since each
part of the book is almost self-contained, an instructor can easily select
the parts most suitable for his or her course, permitting the book to be
used in quarter-long courses or even short introductory courses. The
book provides two appendices to assist in teaching this course. Appendix
A provides a brief introduction to wireless communication and net-
working that can be used by instructors to quickly cover the essentials
of wireless communication and networking. Appendix B provides ques-
tions for each chapter of the book. These questions can be used by an
instructor to encourage students to further explore the topics covered
in this book.

Preface xvii

Richard_FM.qxd 9/29/04 8:48 PM Page xvii

Richard_FM.qxd 9/29/04 8:48 PM Page xviii

Acknowledgments

Over the entire process of the development of this book, many people
have helped us; without them, this book would not have been possible.

First we thank the many people who reviewed drafts of this book:
John Bodily, Michel Gertraide, Manish Kochhal, Fernando Martincic,
John Quintero, Georgios Varsamapoulos, and Yong Xi.

We are grateful to the National Science Foundation (NSF) and the
Center for Embedded Networking Technologies (CEINT) for supporting
our research in the areas related to this book.

We thank our employers, the Arizona State University, the University
of New Orleans, the Wayne State University, and the Odyssey Research
Associates/ATC-NY, for providing the working environment that made
this book possible. We also thank the Ohio State University, where all
of us obtained our doctoral degrees, and the Buckeye Spirit. Go Bucks,
Go!

Our heartfelt thanks go to our original sponsoring editor Marjorie
Spencer; our editor Steve Chapman, who provided the needed level of
support and encouragement to see this book through from conception
to completion; Priyanka Negi, who oversaw the copyediting process;
and the entire crew of McGraw-Hill.

Last but not least, we thank our family members and friends who
accepted the time away from them spent writing this book. Without
their support, this book could never have been finished.

xix

Richard_FM.qxd 9/29/04 8:48 PM Page xix

Chapter

1
Mobile Adaptive Computing

1.1 What Is Mobile Computing?

What is mobile computing? What are its different aspects? Basically,
mobile computing systems are distributed systems with a network to
communicate between different machines. Wireless communication is
needed to enable mobility of communicating devices. Several types of
wireless networks are in use currently, and many books have been
devoted to mobile communication. In this book we cover only the basic
aspects of mobile communication. However, this book is not devoted to
wireless communication and networks. Readers not familiar with wire-
less communication and networking can refer to Appendix A for a short
description. In this book, we are concerned mostly with the logical
aspects of mobile communication.

What is the difference between mobile computing and mobile commu-
nication? Communication is necessary for distributed computing. Many
mobile computing tasks require mobile communication. But that is not
the end of it. Mobile communication does not solve all the problems. As
we will see in this book, many issues need to be resolved from a higher-
level perspective than just being able to exchange signals/packets.

What interests us the most about mobile computing is what we can
do with this new facility of mobile communication. What new applica-
tions can be enabled? Think about the applications we currently use.
Many of these applications do not adapt very well to our needs. For
example, suppose that we are browsing the World Wide Web and are
interested in going to an Italian restaurant for lunch. What information
will we get when we do a search for “Italian restaurant” through search
engines such as Google? Usually we get a lot of information that we do
not care. The search engines of today do not care about who is invoking

1

Richard_Ch01.qxd 8/24/04 3:10 PM Page 1

the search or the location from where the search is being invoked. You
can type “Italian restaurant in Tempe” or “Italian restaurant near
Arizona State University.” You can make your query as specific as pos-
sible. But wouldn’t it be nice if the applications were aware of your loca-
tion or, more generally, your context and if the response from the search
engine were ordered according to your context? Surely, such context-
aware applications will make us more productive.

Let us consider another application, such as video streaming over the
Internet. Suppose that you are on the move, watching a movie. Wireless
communication is different from wired communication. When you have
a wire, you usually have a fixed bandwidth available to you and your
application. Once the application is started and the movie starts, you can
watch the movie at a good quality of service (QoS). (Currently, this is not
really true if streaming is done across the Internet. Nevertheless, it is
expected that this will become a reality in the near future.) In wireless
communication, however, the bandwidth is mostly shared among several
users in a dynamic fashion. This is to say that no dedicated bandwidth
is available. Even if your application can reserve certain wireless band-
width, the usable bandwidth fluctuates owing to the nature of the wire-
less medium. There are both short- and long-term fluctuations. The
question is, “How should the application respond to these fluctuations?”
One way that the application can respond is in a uniform manner, irre-
spective of what you are watching. The other approach is to respond
based on the type of movie you are watching. For example, suppose that
you are watching an action movie. The application can reduce the band-
width requirement by switching from full-color video to black and white
or by reducing the resolution. On the other hand, if you are watching an
interview of Bill Gates, the application may switch simply to audio
streaming. There are several important points to note here. These deci-
sions are based on the content of the video, and the decision making
may involve both the client and the server (the client needs to inform the
server that it no longer wants the video frames, only the audio).

In this chapter we will reexamine computer (software) system design
to see how it needs to be changed to accommodate mobility. As we will
see, many of the changes are concerned with providing mechanisms for
adapting to changing environmental and system conditions, such as
the location and the available resources. Mobile computing is about pro-
viding information anytime anywhere or, more generally, computing
anytime and anywhere.

Mobile computing is also about dealing with limitations of mobile
computing devices. For example, personal digital assistants (PDAs)
and laptops have small interfaces and are powered by batteries. One
of the major issues is how to do computation in an energy-efficient
manner. Battery technology is not advancing at the same pace as

2 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 2

processor technology, so it is not expected that battery capacity will
double at a fixed rate, as is true about processor speeds, according to
Moore’s law. One does not have to deal with these issues when design-
ing systems for stand-alone or distributed systems. One may have to deal
with issues of fault tolerance in distributed systems, such as server
crashes or network link failures. However, energy usually is not an
issue. In mobile systems, energy becomes a resource like processing
time or memory space. Therefore, one now has to design resource man-
agement techniques for energy, just as traditional operating systems
deal with process and memory management.

Different computers in a mobile computing environment may have dif-
ferent capabilities. Any collaborative activity between these devices
needs an underlying software entity to deal with the heterogeneity of
these devices. This software entity is called a middleware layer. A mid-
dleware layer also may allow a mobile device and a wired device to
interact. When mobile clients move from one administrative domain to
another, they may want to know what new services are available.

How about security or privacy? Wireless communication takes place
over an “open” wire and is relatively easy to tap. It may seem that tradi-
tional techniques of cryptography can be used to secure wireless commu-
nication. However, the main problem is that these secure techniques are
designed for wired networks and are computation- and communication-
intensive. Attempts to reduce these overheads lead to security schemes that
are relatively easy to break. We will look into security schemes for mobile
networks in later chapters.

1.2 Adaptability—The Key to Mobile
Computing

Humans have evolved to be on the top of the food chain. It is probably unde-
niable that we have done so by being able to adapt quickly and effectively
to varying situations. It is only because of our ability to adapt that we can
be found from Arctic regions to the Sahara Desert. What are the techniques
by which we are able to adapt to such diverse environments? Can we
incorporate some of these techniques into our computing systems? Anyone
who has used computers seriously would like them to be more resilient and
adaptive to our needs and circumstances. Computing systems and appli-
cations fail for various reasons. What is most frustrating is when they fail
for no apparent reason. You install a new application, and some other
apparently unrelated application stops functioning. And sometimes we just
want our computers to learn from our past actions and act proactively and
appropriately. Making systems resilient and adaptive is not a trivial task.
It took us millions of years to rise to the top of the food chain. Computers
as we know them today are not even a hundred years old.

Mobile Adaptive Computing 3

Richard_Ch01.qxd 8/24/04 3:10 PM Page 3

The vision of mobile computing is to be able to roam seamlessly with
your computing devices while continuing to perform computing and
communication tasks uninterrupted. Many technological advances at
various fronts such as security, privacy, resource allocation, charging,
and billing have to be made to make this feasible. A quintessential char-
acteristic of any solution to mobile computing problems is its ability to
adapt to dynamic changes in computing and communication environ-
ments. A system’s agility to react to changes in the computing environ-
ment and continue its computing tasks uninterrupted is a new measure
of performance in mobile computing environments.

Consider a scenario in which you move from one coverage area of an
access point to another while a video streaming application is running
on your computer. To continue receiving the video stream uninterrupted
and without deterioration in video quality, the video stream packets
now should be routed automatically through the new access point. In an
Internet Protocol (IP)–based network this may involve the mobile client
obtaining a new IP address in the new access point’s IP network and
informing the server of the new address so that it can now send the pack-
ets to the new address. Many more sophisticated solutions to this prob-
lem have been developed. The point here is that the underlying system
has to take many actions automatically to ensure continued connectiv-
ity, in this case uninterrupted viewing of the video stream. In essence,
the system has to adapt to the changes in the environment, such as the
network configuration and the availability of communication and com-
putation resources and services. However, is this enough? More specif-
ically, the preceding adaptation scheme does not take into account the
applications requirements, and the applications themselves did not play
any part in the adaptation. Does this application-transparent way of
adapting suffice to meet the goals of mobile computing?

1.2.1 Transparency

Transparency is the ability of a system to hide some characteristics of
its underlying implementation from users. Much of the research effort
in distributed computing has been devoted to developing mechanisms
for providing various forms of transparency. Examples of these include
the following:

� Access transparency is the ability of a system to hide the differences
in data representation on various machines and the mode of access of
a particular resource.

� Location transparency is the ability of a system to conceal the loca-
tion of a resource. Related to location transparency are name trans-
parency (which ensures that the name of a resource does not reveal

4 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 4

any hints as to the physical location of the resource) and user mobil-
ity (which ensures that no matter which machine a user is logged
onto, she should be able to access resources with the same name).

� Failure transparency is the ability of the system to hide failure and
recovery of a system component.

Mobile computing systems can be viewed as a form of distributed
system, and attempts can be made to provide “mobility transparency,”
which would encompass the transparencies just mentioned. This would,
in essence, support application-transparent adaptation. But is this an
achievable, or even desirable, goal for building mobile computing sys-
tems and applications? Let us look closely at the characteristics of the
mobile computing environment and their implications in these regards.

1.2.2 Constraints of mobile computing
environments

Mobile computing has many constraints that distinguish a mobile com-
puting environment (MCE) from the traditional desktop workstation/
PC–based distributed computing environment. Notable among these
are the following (Satyanarayanan, 1996):

1. Mobile computers can be expected to be more resource-poor than their
static counterparts. With the continued rapid improvement of hard-
ware technology, in accordance with Moore’s law, it is almost certain
that a laptop computer purchased today is more powerful that the
desktop computer purchased just a year or even a few months ago.
However, mobile computers require a source of electrical energy, which
is usually provided by battery packs. Since batteries store a finite
amount of energy, they need to be replaced or recharged. The first
option costs money, and the second option, although cheaper in terms
of money expended, requires plugging in the computer for recharging,
restricting mobility. This has an impact on the design of mobile com-
puters—all the hardware and software components in mobile com-
puters are designed to reduce energy consumption and to increase the
lifetime of the batteries. For example, processors on mobile comput-
ers are designed to consume less energy and, consequently, achieve a
lower computation performance.

2. Mobile computers are less secure and reliable. Since mobile computers
accompany their users everywhere, they are much more likely to be lost
or stolen. Furthermore, they are more likely to be subjected to hostile
or unfriendly use, e.g., a child throwing his daddy’s PDA in a tantrum.

3. Mobile connectivity can be highly variable in terms of it’s perform-
ance (bandwidth and latency) and reliability. Disconnections, both

Mobile Adaptive Computing 5

Richard_Ch01.qxd 8/24/04 3:10 PM Page 5

voluntary and involuntary, are common. The link bandwidth can
vary by orders of magnitude over time and space.

Thus, in general, resource availability and quality vary dynamically.
The preceding characteristics of a mobile computing environment

require rethinking about how mobile applications and systems should
be designed. Resource paucity and the lower reliability of mobile devices
point toward designing systems in such a manner that more reliance is
placed on the static infrastructure. On the other hand, the possibility
of disconnections and poor connectivity point toward making systems
less reliant on the static infrastructure. Further, as mobile devices are
moved around (or even if they are not), their situations keep changing
over time. Mobile devices should change their behavior to be either
more or less reliant on static infrastructure depending on current con-
ditions. Figure 1.1 illustrates this need for dynamic adaptation in a
mobile computing environment.

1.2.3 Application-aware adaptation

Who should be responsible for adaptation—the application, the system,
or both? There are two extreme approaches to designing adaptive sys-
tems: application-transparent (the system is fully responsible for adap-
tation) and laissez-faire (the system provides no support at all)
(Satyanarayanan, 1996). Obviously, the laissez-faire approach is not
desirable because it puts too much burden on the application developer.
Further, no support from the underlying system restricts the types of
adaptations that can be performed. However, as the following example
points out, the application-transparent approach is not sufficient either.
Consider two different multimedia applications. In one you are video-
conferencing using a mobile device, and in the other you are watching
a live video stream from a remote server on your mobile device. Now con-
sider the following scenarios. In one, you move from an area with suf-
ficient bandwidth for your application to an area where the amount of

6 Chapter One

Figure 1.1 Need for dynamic adaptation in mobile computing environments.

Mobile
computing environment

Resource poor

Less secure

Energy-constrained

Intermittent connectivity

More reliance on
infrastructure

Less reliance
on infrastructure

Dynamic changes
in environment

D
yn

am
ic

ad
ap

ta
tio

n

Richard_Ch01.qxd 8/24/04 3:10 PM Page 6

bandwidth is less than that needed by your application. In the other,
your laptop’s battery power level drops considerably. Both scenarios
deal with changes in availability of resources. How would you like your
system/application to behave under each scenario?

In the application (user)–transparent approach, the system/applica-
tion may behave the same irrespective of the application running.
However, different responses may be suitable depending on the type of
application that is running. For example, in the first scenario, a non-
adaptive system may just do nothing and let the audio/video quality
drop. In the second scenario, the system may just give a warning to the
user without any assistance on how to deal with the situation. In an
adaptive system, various behaviors can be envisioned. For example, the
system may try to do its best in both situations. However, the system’s
adaptation does not take into account the kind of application that is run-
ning. For example, in the first scenario, the system may try to adapt by
requesting that the server or other peers start to send lower-quality
video, in effect requiring lower bandwidth. In the second scenario, the
system may try to conserve energy by reducing the intensity of the back-
light of the display (besides warning the user of the lower battery power
level). A still more adaptive approach is possible in which the system
interacts with the user/application in deciding how to adapt.

In the application-transparent approach, the responsibility of adap-
tation lies solely with the underlying system. On the other hand, in the
application-aware approach, the application collaborates with the under-
lying system software. Here the system provides status information
about the available resources. The application uses this information to
make decisions on how to adapt to changes in the resource availability.
Each application can adapt in its own way. Figure 1.2 illustrates the spec-
trum of adaptation strategies that are possible (Satyanarayanan, 1996).

Mobile Adaptive Computing 7

Figure 1.2 The spectrum of adaptation strategies [Satya Fundamental Challenges 1996].

Laissez-faire
(no system support)

Application-transparent
(no changes to

application)

Application-aware
(Collaboration between system and application)

Richard_Ch01.qxd 8/24/04 3:10 PM Page 7

1.3 Mechanisms for Adaptation

What can be adapted? As we will see in this section, both the function-
ality of various components in the mobile application and the data that
are delivered to the application can be adapted. The next question is,
“How to adapt?” In the context of the client-server (CS) model, func-
tionality can be adapted by varying the partition of duties between the
client and the server; e.g., during disconnection, a mobile client works
autonomously, whereas during periods of strong connectivity, the client
depends heavily on the fixed network, sparing its scarce local resources.
Next we look at these approaches in more detail.

1.3.1 Adapting functionality

The first approach is to change dynamically the functionality of the com-
putational entities involved in response to the change in the operating
conditions. An example of this approach is the extended CS model
(Satyanarayanan, 1996). The CS paradigm is the most widely used
architecture for distributed computing. In the standard CS model, the
roles of the client and server are defined usually at design time, and
these remain fixed during operation of the system (run time). Typically,
a small number of servers provide some services such as access to data-
bases, Web pages, allocation of temporary IP addresses, and name
translation to a usually larger group of clients. A client, or the under-
lying system—middleware—may select dynamically the server from
which to request the service. A server may or may not maintain infor-
mation, or state, about the clients to which it is providing service. The
state information may be maintained as soft or hard. Soft state infor-
mation, once installed, has to be updated periodically to avoid automatic
deletion by the state maintainer (in our case, a server), whereas hard
state information, once installed, requires explicit deletion. Soft state
is useful in systems with very dynamic configurations, such as mobile
systems. This is so because soft state requires no explicit action to
make the state information consistent with dynamic changes in the
system. Soft state is used in various protocols, such as the Resource
Reservation Protocol (RSVP) and the Internet Group Management
Protocol (IGMP) to adapt gracefully to dynamic changes in the system
state. Specifically, in the case of data servers (such as file servers), the
CS model (as implemented by Coda) has the following characteristics
(Satyanarayanan, 1996):

� A few trusted servers act as the permanent safe haven of the data.
� A large number of un-trusted clients can efficiently and securely access

the data.

8 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 8

� Good performance is achieved by using techniques such as caching and
prefetching.

� Security of data is ensured by employing end-to-end authentication
and encrypted transmission.

Developers of the Coda file system point to the following advantages
of the CS model: It provides good scalability, performance, and avail-
ability. “The CS model decomposes a large distributed system into a
small nucleus that changes relatively slowly, and a much larger and
more dynamic periphery of clients. From the perspective of security and
system administration, the scale of the system appears to be that of the
nucleus. From the perspective of performance and availability, a client
receives service comparable to stand-alone service” (Satyanarayanan,
1996).

Impact of mobility on the CS model. The CS model permits a resource-poor
mobile client to request a resource-rich server to perform expensive com-
putations on its behalf. For example, the client can send a request to the
server, go to sleep to conserve energy, and later wake up to obtain the
result from the server. For the sake of improved performance and avail-
ability, the boundary between the clients and servers may have to be
adjusted dynamically. This results in an extended CS model. In order to
cope with the resource limitations of clients, certain operations that nor-
mally are performed at the client may have to be performed by resource-
rich servers. Such lean clients with minimal functionality are termed as
thin clients. Conversely, the need to cope with uncertain connectivity
requires the clients sometimes to emulate the functions of the servers.
This results in a short-term deviation from the classic CS model.
However, from the long-term perspective of system administration and
security, the roles of servers and clients remain unchanged.

1.3.2 Adapting data

Another way to adapt to resource availability is by varying the quality
of data (fidelity) that is made available to the application running on the
mobile client. Fidelity is defined as the “degree to which a copy of data
presented for use at the client matches the reference copy at the server”
(Noble et al., 1997). This kind of adaptation is extremely useful in mobile
information access applications. The QoS requirements for such appli-
cations are

� Information quality. “Ideally, a data item being accessed on a mobile
client should be indistinguishable from that available to the application
if it were to execute on the server storing the data.” (Noble et al., 1997).

Mobile Adaptive Computing 9

Richard_Ch01.qxd 8/24/04 3:10 PM Page 9

� Performance
� From the mobile client’s perspective. Latency of data access should

be within tolerable limits.
� From the system’s perspective. Throughput of the system should be

maximized.

In general, it is difficult to provide both high-performance and highest-
quality information in a mobile computing environment. In some cases,
information quality can be traded for increased performance. The basic
idea behind data adaptation is as follows: Assume that any data item
accessed by a mobile client has a reference copy which is maintained at a
remote server. The reference copy of a data item is assumed to be complete
and up-to-date. At times when resources are plentiful, the mobile client
directly accesses and manipulates the reference copy. However, whenever
resources are scarce, the mobile client may choose to access or manipulate
a data item of lower fidelity, and consequently, consuming fewer resources.

Fidelity and agility. Data fidelity has many dimensions depending on its
type. Consistency is a dimension which is shared by all data types. The
other dimensions are type-dependent (Noble et al., 1997):

� Video data—frame rate and image quality
� Spatial data such as topographic maps—minimum feature size
� Telemetry data—sampling rate and timeliness

Various dimensions of data fidelity can be exploited for adapting to
mobility. For example, a mobile client can choose to use the locally
cached stale copy when it is disconnected from the server and a possi-
bly more current copy when the server is accessible. Fidelity of data can
be changed in several ways. This requires knowledge of data represen-
tation. For example, a video stream can be degraded by reducing the
frame rate, reducing the quality of individual frames, or reducing the
size of individual frames. Another point to note is that different appli-
cations using the same data may exploit different tradeoffs among
dimensions of fidelity. For example, a video editor may choose to slow
the frame rate, whereas a video player may choose to drop frames. When
developing different strategies for trading off data fidelity dimensions
against performance, an issue that arises is how to determine which
strategy is better. Developers of the Odyssey system (a middleware for
application-aware adaptation developed at Carnegie Mellon University)
have evaluated their system using agility as a metric.

Agility is defined as the speed and accuracy with which an adaptive
application detects and responds to changes in its computing environ-
ment, e.g., change in resource availability (Noble et al., 1997). The larger
the change, the more important agility is. For example, an adaptive

10 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 10

system that tries to adapt to the availability of connection bandwidth
can try to determine how well the system reacts to sudden changes in
bandwidth. One issue is how to model changes in the environment. The
developers of Odyssey have used reference waveforms—step-up, step-
down, impulse-up, and impulse-down—to model variation in wireless
bandwidth availability. These waveforms were generated using a trace
modulation technique that emulates a slower target network over a
faster wired local area network (LAN)—in this case, a wireless LAN over
a faster wired LAN. In general, the results obtained from such studies
should be interpreted by keeping in mind that an adaptation strategy
is strictly better than another if it provides better fidelity with compa-
rable performance or better performance with comparable fidelity.
Further, the comparison must take into account the application’s goals.
The interested reader should refer to Noble et al. (1997) for a detailed
performance study of an adaptive system.

1.4 How to Develop or Incorporate
Adaptations in Applications?

In general, it is difficult to enumerate all the mechanisms that can be
employed to construct adaptive programs. However, it should be clear
intuitively that all adaptive programs must adapt to some detectable
change in their environment. Either a program can implement its own
mechanisms to detect the changes, or mechanisms may be provided by
some other entity—a middleware layer or operating system—to make the
program aware of these external changes. In general, we can view these
entities as software sensors (as opposed to hardware sensors, which we
will come across later in this book). For example, a Transmission Control
Protocol (TCP) client adapts its transmission window size by indirectly
monitoring the congestion level in the network. Conceptually, it main-
tains a software timer for each packet sent, and as long as it receives an
acknowledgment for a packet before its timer expires, it keeps increas-
ing the size of its transmission window up to a maximum allowable
window size. However, in the event of a loss—timeout or receipt of triple
acknowledgment for a packet—it assumes that the loss is due to a
buildup of congestion in the network, so it backs off by reducing its trans-
mission window size. As a side note, this behavior is not suitable for
wireless networks because the packet loss may be due to the high error
rate in a wireless link on the delivery path or may be because an end-
point has moved. In such cases, the TCP client should not back off but
instead should continue trying to push the packets through the network.
Many techniques have been developed to “adapt” TCP for wireless net-
works, e.g., TCP-snoop (Balakrishnan, Seshan, and Katz, 1995).

In the state-based approach, changes in mobile computing are viewed
as state transitions. Irrespective of how the state of the environment is

Mobile Adaptive Computing 11

Richard_Ch01.qxd 8/24/04 3:10 PM Page 11

sensed, the adaptation of function and/or data can be performed when a
state transition occurs. Logically, each system state corresponds to an
environmental state. Each system state is associated with some appro-
priate functionality. As long as the environment remains in a particular
state, the system behaves according to the functionality associated with
that state. When the environment’s state changes, the system may have
to perform some bookkeeping functions associated with state transition
before assuming the functionality associated with the new state. In order
to perform these operations, the system may have some additional states.

For example, consider the functionality adaptation in the Coda
(Continued data availability) distributed file system developed at
Carnegie Mellon University. Coda is designed to maximize the avail-
ability of data at the expense of possible access to stale data. Each Coda
client (called Venus) maintains a local cache. Venus adapts its func-
tionality based on the state of the connectivity between the client and
the server. Venus uses the following four states:

� Hoarding. Venus is in the hoarding state when it has strong connec-
tivity with the server. In this state, the client aggressively prefetches
files from the server to store locally. Files to be prefetched are decided
on the basis of user preference and access pattern.

� Emulating. Venus is in the emulating state when it is disconnected
from the server. In this state, the client emulates the server by opti-
mistically allowing both read and write access to local files. To later
update the primary copy of the files on the server and to detect any
conflicting updates, the client maintains a log of all file operations.

� Write-disconnected. Venus is in the write-disconnected state when the
client has weak connectivity to the server. In this state, a Coda client
decides whether to fetch files from the server or to allow local access.

� Reintegration. Venus enters this state when the connectivity improves
to strong connectivity. In this state, Venus resynchronizes its cache
with the accessible servers. The log of operations is used for this pur-
pose. If any conflict is detected, then user assistance may be required.
On completion of resynchronization, Venus enters the hoarding state.

Note that the first three states correspond to some environmental
state but that the last state corresponds to an environmental state tran-
sition. The state-transition diagram for Venus is shown in Fig. 1.3.

1.4.1 Where can adaptations be performed?

In a distributed application, in particular, a CS application, the adapta-
tion can be performed at the client, at the server, or at both the client and
the server. Further, there are additional possibilities. The adaptation

12 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 12

also can be performed within the network, say, at an intermediate soft-
ware entity called a proxy. For example, consider a typical CS applica-
tion. Several different adaptations may be performed on different
components located at different points in the data and control path
between the client and the server:

� Adapting to the hardware/software capabilities of the mobile device—
in the proxy and/or at the server

� Adapting to the connectivity of the mobile device—at the server and/or
the client

� Adapting to the resource availability at the mobile device—at the client

Let us look at some concrete examples to get a better understanding
of incorporating adaptations in mobile applications.

Mobile Adaptive Computing 13

Figure 1.3 State transition used by a coda client (venus) to adapt its
functionality to changes in connectivity to a server (venus states
hoarding, write disconnected, emulating and reintegration corre-
spond to strong connectivity, weak connectivity, and no connectiv-
ity (disconnected), respectively. The reintegration state corresponds
to transition to strong connectivity from no/weak connectivity link
state.

Hoarding
(strong

connectivity)

Emulating
(disconnected)

Write-
disconnected

(weak
connectivity)

Reintegration
(weak

connectivity/
disconnected ->

strong
connectivity)

Richard_Ch01.qxd 8/24/04 3:10 PM Page 13

Proxies. Proxies have been used by many applications to perform var-
ious tasks, such as filtering data and connections (e.g., security firewalls)
and modifying control data [e.g., network address translators (NATs)
change the IP fields]. Of particular interest to data adaptation are
transcoding proxies. Transcoding is the process of converting data objects
from one representation to another. Transcoding proxies can be used to
adapt to various situations dynamically, such as the availability of band-
width and capabilities of the end device. For example, if the end device
is not capable of handling full-motion video, a transcoding proxy may
convert it to a form that can be displayed on the end device (Han et al.,
1998).

Conceptually, a transcoding proxy may be viewed as consisting of
three modules: (1) an adaptation-policy module (2) a data (content)
analysis module, and (3) a content-transformation module. Figure 1.4
shows the architecture of the transcoding proxy developed at the IBM
T. J. Watson Research Center (Han et al., 1998). The adaptation-policy
module can take as input information such as the server-to-proxy band-
width (Bsp), proxy-to-client bandwidth (Bpc), client device capabilities
(e.g., video display capabilities), user preferences, and content charac-
teristics (provided by content-analysis module). Based on these inputs,
it can decide on whether and how to modify the content. The content-
transformation module performs the actual modification.

Figure 1.5 presents an example of logic that can be implemented in
a transcoding policy module. The transcoding threshold is the docu-
ment size beyond which transcoding becomes beneficial. To get an under-
standing of this parameter, consider the following simple cost-benefit
analysis. Assume that the proxy uses the store-and-forward mechanism
for delivering documents to the client. This is to say, the request from
the client first is submitted to the proxy, the proxy then obtains the
entire document from the server, and finally, it forwards the document
to the client. Further, assume that the goal is to minimize the latency
of document retrieval. Following the analysis in Han et al. (1998), the
total delay for document retrieval without the proxy (Dsc) and with the
proxy (Dspc) is

Dsc = 2 × RTTpc + 2 × RTTsp + S/min(Bpc, Bsp)

Dspc = 2 × RTTpc + 2 × RTTsp + Dp(S) + S/Bsp + Sp(S)/Bpc

where RTTpc is the round-trip delay between the proxy and the client,
RTTsp is the round-trip delay between the server and the proxy, S is the
document size, Dp(S) is a proxy delay function that relates the proxy pro-
cessing delay to the document size, and Sp(S) is an output size function
that relates the transcoded document size to the input document size.

14 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 14

15

F
ig

u
re

 1
.4

D
yn

am
ic

 a
da

pt
at

io
n

 in
 I

B
M

’s
 t

ra
n

sc
od

in
g

pr
ox

y
[H

an
 t

ra
n

sc
od

in
g

pr
ox

y
19

98
].

W
eb

 s
er

ve
r

Tr
an

sc
od

in
g

pr
ox

y
W

eb
 c

lie
nt

S

S
p(

S
)

A
da

pt
iv

e
tr

an
sc

od
in

g
po

lic
ie

s
(d

ec
id

ed
 w

he
n

an
d

ho
w

 m
uc

h
to

 tr
an

sc
od

e)

P
ol

ic
y

m
od

ul
e

Tr
an

sf
or

m
at

io
n

m
od

ul
e

Te
xt

m
od

ifi
er

D
ec

od
er

C
om

pr
es

so
r

C
on

te
xt

an
al

yz
er

H
T

T
P

Te
xt

Im
ag

es

M
od

ifi
ed

 te
xt

/H
T

M
L

Tr
an

sc
od

ed
 Im

ag
e

S
er

ve
r-

to
-p

ro
xy

 b
an

dw
id

th
B

s,
p

P
ro

xy
-c

lie
nt

 b
an

dw
id

th
B

p,
c

C
lie

nt
/d

ev
ic

e
ca

pa
bi

lit
ie

s

U
se

r
pr

ef
er

en
ce

s

In
te

rn
et

In
te

rn
et

Richard_Ch01.qxd 8/24/04 3:10 PM Page 15

Obviously, using transcoding is better when Dspc < Dsc. From this, a
lower bound (transcoding threshold) on the input document size can be
obtained to be

S > [Dp (S) + Sp (S)/Bpc]/(1/Bpc − 1/Bsp)

= transcoding threshold
(1.1)

Note that the server-to-proxy bandwidth and the proxy-to-client
bandwidth correspond with the bottleneck bandwidth along the data
path from the server to the proxy and the proxy to the client, respec-
tively. These bandwidths can vary dramatically as the user moves and
with fluctuations in the available wireless bandwidth. Equation (1.1)
can be used to adapt dynamically to changes in available bandwidth.
However, for this to work, the transcoding proxy would need a good
bandwidth estimator of the bandwidth that might be available in the
near future.

Transcoding proxies also can work in the streamed mode. In this
mode, the data stream is modified and passed on to the client as it is
obtained from the server. For an analysis of when adaptive-streamed
transcoding is beneficial and other details about transcoding proxies, see
Han et al. (1998).

16 Chapter One

Figure 1.5 Example of a transcoding policy module (The example is based on the code frag-
ment of a policy module in [Han transcoding proxy 1998]). T (input object, input object
type, output object type, user preferences) performs data transformation on the <input
object> of type <input object type> into <output object> of type <output object type>.

Switch (Client_Type)
 Case Laptop/PC:
 If (Input_Size > TranscodingThreshold)
 Switch(Input_type)

 Case GIF:
 If(Input is well-compressed GIF)
 TranscodedImage = T(Input, GIF, GIF, user preference)
 Else
 TranscodedImage = T(Input, GIF, JPEG, user preference)
 End If

 Case JPEG:
 TranscodedImage = T(Input, JPEG, JPEG, user preference)

 End Switch
 End If
 If (Output size > input Size)

Send Input Image to Client
 Else

Send TranscodedImage to Client
 End If
 Case Palm PDA:

TranscodedImage = T(Input, Any, 2-bit_grayscale, user preferences);
 Send TrancodedImage to Client
End Switch

Richard_Ch01.qxd 8/24/04 3:10 PM Page 16

WebExpress: an example of adaptation using proxies. Browsing over wire-
less networks can be expensive and slow owing to pay-per-minute
charging (in cellular networks) and the characteristics of wireless
communication. Additionally, the Hyper-Text Transport Protocol
(HTTP) was not designed for wireless networks and suffers from var-
ious inefficiencies—connection overhead, redundant transmission of
capabilities, and verbosity. WebExpress (Housel, Samaras, and
Lindquist, 1998), developed by researchers at IBM, significantly
reduces user cost and response time in wireless communication by
intercepting the HTTP data stream and performing various opti-
mizations on it. It is aimed at enabling routine commercial applica-
tions on mobile computers.

WebExpress uses proxies called intercepts that allow WebExpress to
be used with any Web browser and any Web server. They enable
WebExpress to intercept and control communications over the wireless
link for the purpose of reducing traffic volume and optimizing the com-
munication protocol, reducing data transmission. As shown in Fig. 1.6,
the WebExpress architecture consists of two components that are
inserted into the data path between the Web client and the Web server—
client-side intercept (CSI), also known as client-side proxy, and server-
side intercept (SSI), also known as server-side proxy. CSI is a process that
runs in the end-user client mobile device, whereas SSI is a process that

Mobile Adaptive Computing 17

Figure 1.6 WebExpress adaptation architecture [House|WebExpress 1998].

Web browser

WebExpress
client-side intercept (CSI)

HTTP
(TCP/IP)

Web server
(or proxy server)

WebExpress
server-side intercept (SSI)

A
cross

internet

TCP/IP
connection

HTTP (TCP/IP)

Wireless link

Richard_Ch01.qxd 8/24/04 3:10 PM Page 17

runs within the wireline network. One of the features of this client-
proxy-server model, also called the intercept model, is that the proxies
are transparent to both Web browsers and servers. This makes this
adaptation technique insensitive to the evolution of technology. This is
a very important advantage because HTML/HTTP technology was (and
still is) maturing rapidly when WebExpress was developed. Another
advantage is the highly effective data reduction and protocol optimization
without limiting browser functionality or interoperability. WebExpress
employs several optimization techniques such as caching, differencing,
protocol reduction, and header reduction.

� Caching. WebExpress supports both client and server caching using
the least recently used (LRU) algorithm. Cached objects persist across
browser sessions. Caching reduces the volume of application data
transmitted over the wireless link through cross-browser sessions.
We will look at the details of this in Chap. 3.

� Differencing. Caching techniques do not help in common graphic
interface (CGI) processing, where each request returns a different
result, e.g., a stock-quote server. However, different replies from the
same program (application server) are usually very similar. For exam-
ple, replies from a stock-quote server contain lots of unchanging data
such as graphics. For each dynamic response from a CGI (HTML
file) cached at the SSI, the SSI computes a base object for the page
before sending it to the CSI. If the SSI receives a response from the
CGI server and the cyclic redundancy check (CRC) received does not
match the CRC of the base object, the SSI returns both the difference
stream and the base object. This is called a basing operation in
WebExpress parlance. Rebasing is carried out in the same fashion
when the SSI detects that the difference stream has grown beyond a
certain threshold.

� Protocol reduction. Repeated TCP/IP connections and redundant
header transmissions present additional overhead. The WebExpress
system uses two techniques to reduce this overhead and optimize
browsing in a wireless environment:

� Reduction of TCP/IP connection overhead using virtual sockets.
WebExpress establishes a single TCP/IP connection between the CSI
and the SSI. The CSI sends requests over this connection. The SSI
establishes a connection with the destination server and forwards the
request. Thus overhead is incurred between the SSI and the Web
server but not over the wireless link. Virtual sockets are used to pro-
vide multiplexing support. Virtual sockets are implemented in the fol-
lowing manner: Data sent are prefixed by a virtual socket ID, command
byte, and a length field. At the CSI, the virtual socket ID is associated

18 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 18

with a real socket at the browser. At the SSI, the virtual socket ID is
mapped to a socket connection at an HTTP server. This mechanism
permits efficient transport of HTTP requests and responses while
maintaining protocol transparency.

� Reduction of HTTP headers. HTTP request headers containing lists
of Multipurpose Internet Mail Extensions (MIME) content types can
be hundreds of bytes in length. The CSI allows this information to flow
in the first request and then saves the list. On subsequent requests,
the CSI compares the received list with the saved one. If the two lists
match, the MIME content-type list is deleted from request. The SSI
inserts the saved one if none is present.

The transparent proxy–based architecture of WebExpress allows the
operation of commercial Web applications on wireless networks.
Differencing and virtual sockets offer the most critical optimizations in
the WebExpress system.

1.5 Support for Building Adaptive Mobile
Applications

Adaptations should be customized to the needs of individual applica-
tions. We have argued that applications are in a better position to per-
form application-specific adaptations than the operating system alone.
However, what does this mean with regard to where adaptations can be
performed? Applications not only make local adjustments, but they also
should collaborate with other adaptation technologies that are available
in other components of the system. For example, in the CS scenario,
both the client and the server may need to adapt. The advantage of
application-aware adaptation is that the application writer knows best
how the application should adapt. However, does the application writer
know the underlying system as well as the application? Furthermore,
application-aware adaptation tends to work only at the client or perhaps
at the server. If this is the only mechanism for adaptation, without any
monitoring on resource usage by each application, this may result in
selfish behavior by the applications. In the following sub-sections we
look at details of some current efforts to developing adaptive applications.
Here, we focus only on the adaptation mechanisms of these systems. We
will re-examine some of these systems later in this book from the per-
spective of middleware services they provide to mobile applications.

1.5.1 Odyssey

Odyssey (Noble, 1997) aims to provide high fidelity and to support con-
current mobile applications with agility. It emphasizes collaboration

Mobile Adaptive Computing 19

Richard_Ch01.qxd 8/24/04 3:10 PM Page 19

between applications and the operating system in performing adapta-
tion to handle constraints of the mobile computing environment, espe-
cially those imposed by the presence of wireless links.

The following case is a motivating example from the Odyssey group.
Imagine a user with a lightweight/wearable mobile computer with ubiq-
uitous wireless access to remote services, an unobtrusive heads-up dis-
play, a microphone and earphones, and speech recognition for computer
interaction with online language translation. The user has ubiquitous
connectivity, for example, owing to an overlay network, but the quality
varies as he moves and as different networks are accessed. The user
simultaneously gets voice, video, and other data sent to him. When the
user moves to a relatively shadowed area and the network bandwidth
drops dramatically, Odyssey informs the video, audio, and other appli-
cations of these changes, allowing them to make the proper adapta-
tions in their network usage and their behavior. Why use
application-aware adaptation here? The presumption is that for this
environment, only the application knows what to do because the oper-
ating system does not have the application-level knowledge. If the oper-
ating system makes the decision, it may do the wrong thing. However,
the operating system must be involved to ensure fairness among com-
peting applications. In essence, the basic Odyssey adaptation model is
as follows: The operating system support on the portable machine mon-
itors network conditions. Each application interacts with the operating
system tools to negotiate services. When network conditions change, the
operating system notifies the applications of what has happened.

As shown in Fig. 1.7, the Odyssey architecture consists of two main
components—viceroy and warden. Viceroy performs centralized resource
management and monitors the availability of resources, notifying appli-
cations of changes. Wardens provide data-type-specific operations,
namely, tsop() functions, to change the fidelity. A tsop() function is
similar to the transcoding proxies we saw earlier but specific to a data
type. Wardens are also responsible for communicating with servers and
for caching data.

In the Odyssey application-adaptation model, applications do not inter-
act directly with their remote servers. Applications talk to their wardens,
and wardens talk to the servers. Applications tend to have limited roles
in actually adapting transmissions. They may know about different for-
mats and tolerances and accept data in their different adapted versions.

Applications interact with Odyssey to adapt their behavior. All data
to and from the server flow through Odyssey. Applications must regis-
ter their preferences and needs with Odyssey in the form of requests.
A request specifies that an application needs a particular resource
within certain limits, e.g., between 100 kbps and 1 Mbps of bandwidth.
If the request can be satisfied currently, it is. If things change later, the

20 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 20

application is notified using an upcall to the applications. In response,
the application can adjust itself and make another request. Note that
upcalls can occur because resource availability became either worse
or better.

The following example illustrates a typical interaction between an
application and Odyssey. A video application requests enough bandwidth
to receive a color video stream at 20 frames per second (fps). Odyssey
responds, “No way, try again.” The application retries and requests band-
width sufficient for 10 fps in black and white, specifying the minimum
and the maximum needed for this application so that it can improve the
quality if it is worthwhile. The channel subsequently gets noisy, and the
bandwidth drops. Odyssey performs an upcall informing the appli-
cation that the bandwidth is outside the specified limits. The application
requests a lower bandwidth suitable for a lower fps rate.

Odyssey wardens mediate server-application interaction. A warden is
a data-type-specific module capable of performing various adaptations
on that data type. Additionally, wardens do caching and prefetching. If
Odyssey needs to handle a new data type, not only does the application

Mobile Adaptive Computing 21

Figure 1.7 Odyssey architecture [Satya Mobile Information Access 1996].

NetBSD
kernel

Application

V
ic

er
oy

Warden-
data type1

Warden-
data type2

Warden-
data type3

Upcall

Interceptor

All system calls Ody
ss

ey
 ca

lls

Richard_Ch01.qxd 8/24/04 3:10 PM Page 21

need to be altered, but a new warden also has to be written. The better
the warden understands the data type, the better is the potential adap-
tivity. The Odyssey viceroy is the central controlling facility that han-
dles sharing of resources. The viceroy notices changes in resource
conditions. If these changes exceed preset limits, the viceroy informs the
affected applications using the upcall mechanism. Developers of
Odyssey have evaluated their system to answer the following questions:

How agile is Odyssey in the face of the changing network bandwidth?

How beneficial is it for applications to exploit the dynamic adaptation
made possible by Odyssey?

How important is centralized resource management for concurrent
applications?

Interested readers should refer to Noble et al. (1997) for details.

1.5.2 Rover

Rover is an object-based software toolkit for developing both mobility-
aware and mobility-transparent CS distributed applications (Joseph
et al., 1995, 1997). It provides application developers with two pro-
gramming and communication abstractions specifically designed for
assisting applications in harsh network environments such as mobile
computing—relocatable dynamic objects (RDOs) and queued remote pro-
cedure calls (QRPCs). RDOs can be used to reduce interaction between
two weakly connected entities, such as a client on the mobile device
and a server in the wireline network. Rover RDOs are objects with well-
defined interfaces and are loadable dynamically from the server to the
client. This, in essence, moves objects to the client machine, avoiding the
client having to communicate with the object at the server. QRPCs can
be used to handle disconnections. Rover QRPCs are essentially non-
blocking remote procedure calls (RPCs) that support split-phase opera-
tions. That is, they allow an application to make an RPC without
worrying about whether the destination is currently reachable. If the
destination of the RPC is not reachable at the time of the call, the call
is queued. On reconnection to the RPC’s destination, the RPC is per-
formed. The result of the RPC is delivered asynchronously to the appli-
cation. Figure 1.8 illustrates the various components in the distributed
CS object system of the Rover toolkit and the control flow within the
toolkit.

� How does one use Rover? By writing and perhaps rewriting the appli-
cation using the toolkit—invoking these tools when network connec-
tivity is poor. However, this requires a good understanding of network
programming and user mobility. To use RDOs, applications—usually

22 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 22

clients—import RDOs from the server. They then invoke methods on
imported RDOs. When finished, RDOs are exported back to the server.
If needed, Rover also can cache copies of objects. This allows clients
to use the cached copy instead of fetching the original from the server.
Updates to objects are handled by an optimistic CS replication method.
RPCs are queued only at the client, where they are stored until the
client can handle them. When the appropriate level of connectivity is
established, Rover clears the queue intelligently using an RPC pri-
oritization mechanism. It also can batch related requests. If the client
is not available when the response comes back, the server drops the
response. The rationale is that queued requests at the client eventu-
ally will be replayed. This may cause some inefficiency, but it simpli-
fies application design. A mobile application can employ QRPCs in
various situations dynamically to optimize cost to the user or the per-
formance of the application (Reiher, 1998):Optimize use of expensive
links. Consider a situation in which the mobile user pays for wireless
connectivity based on the duration of usage, e.g., pay-per-minute plans
for cellular phones. To optimize the monetary cost to the mobile user,
QRPC can batch several requests and then disconnect from the net-
work after invoking all the batched QRPC calls in a single connection.

� Make use of asymmetric links. The queued RPC requests are not asso-
ciated with a particular network interface. Thus responses can be
obtained over any network device. This permits, for example, an appli-
cation to launch requests over expensive links and to receive responses
over cheaper links. This is beneficial for situations where the request size
is much smaller than the expected response size (e.g., in Web browsing)
and when the response can be used incrementally, as it arrives.

Mobile Adaptive Computing 23

Figure 1.8 Adaptation mechanisms provided in Rover Toolkit [Joseph Rover 1995].

Object cache

QPC log

Network
scheduler

Client-side
application

+
Rover library

Import RDO

Export operation log

Resolved operation log

Server-side
application

modify/
resolve

Object Conflict?

Rover library

Client Server

RDO

Richard_Ch01.qxd 8/24/04 3:10 PM Page 23

� Stage messages near their destination. RPC queuing can be arranged
to occur just before a “bad” link. If the link quality improves, the RPC
queue will then be cleared out. Meanwhile, the transmitter does not
get blocked on the bad link.

1.6 Summary

In this chapter we discussed the limitations of mobile computing envi-
ronments. In order to cope with these limitations, mobile applications
have to be adaptive. Adaptations can be performed either by changing
functionality or by changing the data provided to the application. The
kinds of applications we considered in this chapter mostly fall under the
domain of mobile information access. Many of these applications involve
downloading different kinds of information. For example, Web brows-
ing involves downloading HTML multimedia documents, database
access involves accessing different kinds of databases, and video stream-
ing applications involve downloading of continuous video and audio
streams. We saw what kind of adaptations can be performed to enable
these applications to continue working in mobile computing environ-
ments. Furthermore, many of these applications are based on the CS
model. In order to enable adaptation, this model is extended.

Once we established the need for adaptation and the mechanisms
that can be used for performing adaptations, we looked at who should
be responsible for it—the system or the application itself. Approaches
to developing adaptive applications can be categorized as completely
internal to the applications, layered outside the application, using spe-
cial operating system features and libraries, and interacting with other
mechanisms such as intelligent use of proxies. We studied various
approaches to incorporating adaptation in an application, such as using
ad hoc methods to achieve the needs of the application, using tools spe-
cific to applications (e.g., Web browser proxy method), and using gen-
eral adaptation tools such as toolkits and operating system features.
However, in the current state of the art, most mechanisms only work at
the client side, some work at the server, and a few help with anything
in between. The main question for future work in this direction is, “How
can an adaptive application obtain finer control over the entire path
between its distributed components?” (Reiher, 1998).

References

Balakrishnan, H., S. Seshan, and R. H. Katz, “Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks,” ACM Wireless Networks 1(4):469, 1995.

Han, R., P. Bhagwat, R. LaMaire, et al., “Dynamic Adaptation in an Image Transcoding
Proxy for Mobile Web Browsing Personal Communications,” IEEE Personal
Communications 5(6):8, 1998 (see also IEEE Wireless Communications).

24 Chapter One

Richard_Ch01.qxd 8/24/04 3:10 PM Page 24

Housel, B., G. Samaras, and D. Lindquist, “WebExpress: A Client/Intercept Based System
for Optimizing Web Browsing in a Wireless Environment,” Mobile Networks and
Applications 3:419, 1998.

Joseph, A., A. F. deLapinasse, J. A. Tauber, et al., “Rover: A Toolkit for Mobile Information
Access,” Proceedings of the fifteenth ACM symposium on Operating Systems Principles
SOSP’95, Cooper Mountain, Colorado, December 1995.

Joseph, A., A. F. deLapinasse, J. A. Tauber, et al., “Mobile Computing with Rover Toolkit,”
IEEE Transactions on Computers 46(3):337, 1997.

Noble, B., M. Satyanarayanan, D. Narayanan, et al., “Agile Application-Aware Adaptation
for Mobility,” Proceedings of the sixteenth ACM symposium on Operating Systems
Principles SOSP’97, December 1997.

Reiher, P., Lecture notes CS239 Hot Topics in Operating Systems, UCLA, 1998.

Further Reading

Gouda, M. G., and T. Herman, “Adaptive Programming,” IEEE Transactions on Software
Engineering 17:911, 1991.

Noble, B., M. Price, and M. Satyanarayanan, “A Programming Interface for Application-
Aware Adaptation in Mobile Computing,” in Proceedings of the 1995 USENIX
Symposium on Mobile and Location-Independent Computing. Ann Arbor, MI, April
10–11, 1995.

Pitoura, E., and G. Samara, Data Mangement for Mobile Computing. New York: Kluwer
Academic Publishers, 1998.

Satyanarayanan, M., “Fundamental Challenges in Mobile Computing,” PODC XX:XX,
1996.

Satyanarayanan, M., “Mobile Information Access,” IEEE Personal Communications 3(1):
XX, 1996.

Zenel, B., and D. Duchamp, “General Purpose Proxies: Solved and Unsolved Problems,”
in Proceedings of the Sixth Workshop on Hot Topics in Operating Systems. Cape Cod,
MA, May 5–6, 1997, p. 87.

Mobile Adaptive Computing 25

Richard_Ch01.qxd 8/24/04 3:10 PM Page 25

Richard_Ch01.qxd 8/24/04 3:10 PM Page 26

Chapter

2
Mobility Management

In modern times, people are much more mobile – relocate more often –
than in olden days, yet we are expected to be always reachable. The aver-
age American family moves once every four to five years. In addition,
most of us have many credit cards in our wallets. To ensure that we con-
tinue to receive our bills on time (and other letters, such as junk mail),
we do the following: (1) we inform the post office of our new address, and
(2) we inform the credit card companies of our new address. The post
office forwards letters arriving at the old address to our new address for
a period of one year (only 60 days for periodicals), so any credit card bills
sent to you before you inform the credit card company of your new
address will reach you. The credit card companies send any future bills
to your new address. And in time, you manage to inform all the impor-
tant senders of your new address, and the forwarding service ends up
being used mainly for junk mail. This example highlights various tasks
that need to be performed when a receiving end changes its address.

We now begin our journey into mobility management schemes for the
mobile computing world in which a mobile node changes its physical
location (address) at a much smaller timescale. It is assumed that you
are familiar with the basics of wireless communication and networks.
Readers not familiar with the basics of wireless communication and
networks can refer to Appendix A for a brief overview.

2.2 Mobility Management

To ensure that a mobile node m is able to communicate with some other
node n in a network, the networking infrastructure has to ensure that
(1) m’s location [e.g., its access point (AP) in wireless local area networks
(WLANs) and base stations in cellular networks] can be determined so

1

Richard_Ch02.qxd 8/24/04 3:12 PM Page 1

that a route can be established between m and n, (2) when m moves out
of the range of the current AP [henceforth, we use the two terms, access
point and base station, interchangeably], it establishes a connection
with another AP, and (3) the connection/data packets are rerouted cor-
rectly to the new AP. The first task, which requires maintaining the cur-
rent location of every mobile node in the network, is known as location
management. Conceptually, any location management scheme consists
of two operations: search and update. The search operation is invoked
by a node that wants to establish a connection with a mobile node whose
location it currently does not know. The update operation, also known
as a registration operation, is performed to inform the system of the
mobile node’s current location. The update operation helps in making
the search operation more efficient. For example, if location updates are
never performed for a mobile node m, then locating m may involve
paging all the mobile nodes in the network with the message, “If you are
m, then please report your location.” Paging can be very expensive both
for the network and for the mobile nodes. However, if the location update
operations are performed very frequently, then the volume of these oper-
ations may overwhelm the location management system. In general, the
overhead (cost) of search operations depends on the granularity and
currency of location information, the structure of the database that
stores the location information, and the search procedure.

Location information can be maintained at various granularities. In
a cellular system, for example, the finest granularity at which location
can be (and needs to be) maintained is a cell. This would require a
mobile node to update its location whenever it moves from one cell to
another. However, if the location information is maintained at a coarser
granularity, say, in an area consisting of certain number of contiguous
cells, then the search cost increases because a larger number of cells
need to be paged to obtain the exact location (cell) of the mobile node
each time a call needs to be established. Thus the granularity of loca-
tion information maintained for a mobile node by the system has an
impact on the performance of the location management scheme.

Another important aspect is the organization of the location registrars,
databases that store the location information of the mobile nodes. In
order to achieve good performance, scalability, and availability in the
face of an increasingly mobile population and the need to maintain loca-
tion information at finer granularities (owing to shrinking of cell sizes
to accommodate more users), several database organizations and tech-
niques have been developed to maintain fast-changing location infor-
mation efficiently and reliably. In Section 2.4 we will describe location
management schemes used by Global System for Mobile (GSM) and
Mobile Internet Protocol (Mobile IP). We will motivate these schemes
by first presenting several location management scheme with different

2 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 2

desirable characteristics and organization. We also will discuss some
interesting location management schemes that have been proposed to
handle the fast-growing mobile population.

Another important mobility management task, which is known as
handoff, is concerned with ensuring that the mobile node remains con-
nected to the network while moving from one cell to another. This is espe-
cially important when a mobile node has several active connections that
have in-transit packets. Handoff conceptually involves several subtasks:
(1) deciding when to hand off to a new AP, (2) selecting a new AP from
among several APs in the vicinity of the mobile node, (3) acquiring
resources such as channels, (4) informing the old AP so that it can reroute
the packets it gets for this mobile node and also transfer any state infor-
mation to the new AP. The decision to initiate a handoff [which can be
taken either by the mobile node, i.e., mobile-controlled handoff (MCHO),
or by the AP, i.e., network-controlled handoff (NCHO)] may depend on sev-
eral factors such as (1) the quality of the wireless communication between
the mobile node and the AP [as indicated by the signal-to-noise ratio
(SNR)] and (2) the load on the current AP (if the current base station is
running out of communication channels, it may want to switch a mobile
node to a neighboring lightly loaded AP). Access technologies such as
Code Division Multiple Access (CDMA) permit smooth handoffs (as
opposed to hard handoffs) when a mobile node can be in communication
with several base stations simultaneously before selecting a base station
to which to hand off. The choice of the base station to which to hand off
may depend on such factors as (1) the SNR of the beacon signals from
these APs, (2) the region the mobile node is expected to move to in the near
future, and (3) the availability of resources at the AP. The main resources
that need to be acquired in the new cell are the uplink and downlink chan-
nels in a connection-oriented circuit-switched network and the address
(such as an IP address) in a packet-switched network. The task of allo-
cating (managing) channels is handled by channel allocation schemes.
Great care needs to be taken in allocating the channels because this can
have an impact on ongoing communications and the potential to satisfy
future requests for communication channels. Several sophisticated chan-
nel allocation schemes have been developed because this is a problem of
both considerable complexity and considerable revenue-generation poten-
tial (for the mobile telecommunications industry).

Location management assists in establishing new connections to a
mobile node, whereas handoffs ensure that the mobile node remains
connected to the network. However, there may be several in-transit
packets when a mobile node moves from one AP to another. The old AP
can forward some of these packets to the new AP for a short duration
after the handoff. However, in the long term it may be better to route
the packets directly to the new AP. Thus the third major task is to

Mobility Management 3

Richard_Ch02.qxd 8/24/04 3:12 PM Page 3

ensure that the packets or connection are routed to the new AP. For
connection-less traffic, such as IP datagrams on the Internet, this may
just involve informing the sender to use the IP address of the new AP
as the destination address. For connection-oriented communication,
such as Transmission Control Protocol (TCP) connections on the
Internet or communication circuits in Asynchronous Transfer Mode
(ATM) or Public Switched Telephone Network (PSTN) networks, this
operation becomes much more involved. Since a TCP connection is
identified by quadtuple (source IP address, source port number, des-
tination IP address, destination port number), an ongoing TCP con-
nection may break when a mobile node moves and acquires a new IP
address. In the case of an ATM or a PSTN circuit, the circuit may have
to be reestablished to the new AP. The combined task of handoff and
connection rerouting is referred to as handoff management.

In summary, mobility management consists of: location management
and handoff management (Akyildiz, 1998). In the case of mobile teleph-
ony, location management is needed to ensure that the mobile node can
be located quickly when a new call arrives so that a connection can be
established. A call to a mobile node is dropped if the mobile node cannot
be reached within a certain time. Location management plays a crucial
role in minimizing the number of calls that are dropped. Handoff man-
agement is needed to ensure that ongoing calls continue with minimal
degradation in quality of service (QoS) irrespective of the mobility of the
endpoints (caller/callee) of the connection. For packet communication,
location management is needed to inform the sender of the new address
of the mobile node so that future packets can be addressed to the cur-
rent address of the mobile node. Handoff management ensures that the
mobile node always remains reachable to receive (or send) any packets
and to forward the packets from the old address to the new address.

2.3 Location Management Principles and
Techniques

Location management schemes use several databases called location
registrars to maintain the location and other information, such as prefer-
ences and service profile, of mobile nodes. To understand why more than
one location registrar may be helpful, let us consider a simple location man-
agement scheme that uses a single-location registrar, called the home
location registrar (HLR), to maintain the location information of all the
mobile nodes in the network. In this simple location management scheme,
the search and update operations are performed as follows (Fig. 2.1):

� The location of a mobile node is maintained at the granularity of a cell,
i.e., which cell the mobile node was in when it last registered. For each

4 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 4

5

F
ig

u
re

 2
.1

S
ea

rc
h

 a
n

d
re

gi
st

ra
ti

on
 in

 b
as

ic
 lo

ca
ti

on
 m

an
ag

em
en

t
te

ch
n

iq
u

e.

H
om

e
lo

ca
tio

n
re

gi
st

ra
r

B
as

es
ta

tio
n

(c
el

l c
)

M
ob

ile
 m

 is
 in

 c
el

l c

B
as

es
ta

tio
n

(c
el

l d
)

(a
)

R
eg

is
tr

at
io

n
up

on
 m

ob
ile

 s
w

itc
hi

ng
 o

n.

I a
m

 in
 y

ou
r c

el
l

m
 is

 s
w

itc
he

d-
on

M
ob

ile
 m

’s
 tr

aj
ec

to
ry

H
LR

B
as

es
ta

tio
n

(c
el

l c
)

B
as

es
ta

tio
n

(c
el

l d
)

W
he

re
 is

 m
ob

ile
 m

?

Fa
ilu

re
 to

 fi
nd

 m

Is
 m

ob
ile

 m
 in

yo
ur

 c
el

l?

Page m
I a

m here!

Fo
un

d
m

!

M
ob

ile
 m

’s
 tr

aj
ec

to
ry

(c
)

A
no

th
er

 m
ob

ile
 w

an
ts

 to
 fi

nd
 m

 -
 s

uc
ce

ss
 c

as
e.

H
om

e
lo

ca
tio

n
re

gi
st

ra
r

B
as

es
ta

tio
n

(c
el

l c
)

B
as

es
ta

tio
n

(c
el

l d
)

M
ob

ile
 m

 is
 in

 c
el

l d

(b
)

R
eg

is
tr

at
io

n
up

on
 c

el
l h

an
do

ff.

I w
an

t t
o

be
 in

 y
ou

r c
el

l

F
ou

nd
 m

!

M
ob

ile
 m

’s
 tr

aj
ec

to
ry

H
LR

B
as

es
ta

tio
n

(c
el

l c
)

B
as

es
ta

tio
n

(c
el

l d
)

W
he

re
 is

 m
ob

ile
 m

? Is
 m

ob
ile

 m
 in

 y
ou

r
ce

ll?

Pag
e

m

D
id

no
t f

in
d

m

m
 is

 s
w

itc
he

d-
 o

ff
M

ob
ile

 m
’s

 tr
aj

ec
to

ry

(d
)

A
no

th
er

 m
ob

ile
 w

an
ts

 to
 fi

nd
 m

 -
 a

 fa
ilu

re
 c

as
e.

6

1

5
2

3

4

15

4

2

3

Richard_Ch02.qxd 8/24/04 3:12 PM Page 5

mobile node m, the HLR maintains a mobility binding (m, c), where
c is the latest cell (location) of m known to the HLR. The location
information of m in the HLR is updated as follows:

� When a mobile node is switched on, the HLR is notified of the current
location of m (the cell in which the mobile node is located). As illus-
trated in Fig. 2.1a, the mobile node m’s location is sent to the location
server. The registration message travels via the base station of the cell
to the location server.

� Whenever handoff occurs, the HLR is notified of the cell ID to which
m is handing off to. As illustrated in Fig. 2.1b, when the mobile node
moves to cell d from cell c, the mobile node may decide to register its
location to be cell d.

� To find a mobile node m’s current location, first the HLR is contacted.
The HLR contacts the base station of cell c in the mobility binding for
m. The base station pages for mobile m in its cell. If m is in cell c and
is switched on, then it can respond to the page message, and connec-
tion can be established. Figure 2.1c illustrates the messaging between
various entities in this location management scheme.

Obviously, if the mobile node is not switched on, the call cannot be
established (Fig. 2.1d)]. Another scenario in which the system may be
unable to establish a call is when the location information provided by
the HLR is not the most recent location information for mobile node m.
This can happen if m handed off to another cell between the time its loca-
tion information was obtained from the HLR and cell c paged for it. For
example, this would be the case if in the scenario illustrated in Fig. 2.1
mobile node m hands off to cell d just after the mobile node attempting
to contact it obtains its location information. As the average time a
mobile node stays in a cell before moving to another cell, called the cell
residency time, decreases, this situation can occur with increasing fre-
quency. In general, the average cell residency time depends on the cell
size and the mobility pattern of the mobile node.

In order to decrease the probability of failure in locating a mobile, the
preceding location management scheme can be enhanced as follows:

� The mobility binding of a mobile node has two additional pieces of
information: tu and ttl, where tu is the time when the binding was last
updated, and ttl is the time-to-live value, which determines how long
the binding is valid. The time-to-live entry reduces the chance of
trying to contact a mobile that is currently powered off. However, this
requires that the mobile node updates its location information peri-
odically, every tp seconds, where tp is less than ttl. A side effect of this
is that the number of updates performed at the HLR per mobile node

6 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 6

is increased dramatically. On the positive side, the search operation
can use the fact that the mobile node updates its location every tp time
units (whenever it is on) to reduce the search cost.

� When the mobile node is not found in cell c, a set of cells around cell
c is paged. These cells can be paged simultaneously, or an expanded
ring search can be performed for a maximum of k rings centered at
cell c—the last known location of the mobile node. Increasing the
paging area increases the chance that the search operation will suc-
ceed at the expense of using more network resource such as wireless
bandwidth and consumption of battery power for processing paging
messages. For example, if the speed of the mobile node m is a maxi-
mum of vm cells per second, then k can be set to vm × tp.

Periodic updates, also know as time-based updates, are an example
of dynamic update schemes (as opposed to static update schemes, an
example of which include updates done whenever a mobile node crosses
a registration area boundary). We will discuss other dynamic location
update schemes later in this chapter.

As mentioned earlier, the periodic updates done by mobile nodes
increase the number of updates that a single HLR has to handle. With
this increase in the volume of updates, the HLR may become a bottle-
neck, and the latency of both the search and update operations would
increase. Further, if the lone HLR fails, then all the mobile nodes become
unreachable. Thus, from the perspective of both performance of search
and update operations and resiliency to failures of the location registrar;
it is desirable to have multiple location registrars. How should the loca-
tion information be distributed among these multiple location regis-
trars? Should the location information of a mobile node be replicated
among several location registrars? If so, what should be the degree of
replication? How should these location registrars be organized? Should
a flat (single-tier) organization or a hierarchical (multitier) organization
be used? Where should these location registrars be placed in the net-
work? Many of these are challenging optimization problems. For example,
where to place location registrars can be formulated as a facilities location
problem. In the following, we present some of the solutions to these chal-
lenging problems.

2.3.1 Registration area–based location
management

Personal communication service (PCS) networks such as GSM use a reg-
istration area–based mobility management scheme. The service area of
a PCS network consists of the set of all the cells (the union of the cov-
erage area of all the cells) belonging to the PCS network. Location and

Mobility Management 7

Richard_Ch02.qxd 8/24/04 3:12 PM Page 7

other services are provided only within the service area. The service area
is partitioned into several registration areas (RAs). Each RA consists of
several contiguous communication cells. In the GSM standard, RAs are
called location areas (LAs). We will use the terms registration area and
location area interchangeably. Figure 2.2 illustrates location update
and search operations in the single-location registrar system. Cells c and
d are in registration area RA1 and cell e is in registration area RA2.
Compare this figure with Fig. 2.1. Note that the average update cost has
decreased because the HLR is not informed when handoff involves cells
belonging to same RA, e.g., when mobile node m moves from cell c to cell
d. However, the search cost has increased because all the cells in the reg-
istration area have to be contacted when the exact location (cell) of the
mobile node needs to be obtained to establish a call.

Cellular systems such as GSM use an RA location management
scheme that employs a two-level hierarchy of location registrars to
avoid contacting all the cells in the RA to locate a mobile node.
Conceptually, a location registrar is associated with each RA. In prac-
tice, a location registrar may be in charge of several RAs. Unless men-
tioned otherwise, we will assume that each location registrar is in charge
of a single RA. In the following, we present a model for a two-level loca-
tion management scheme and discuss some optimizations that can be
used to optimize the location management cost by taking into account
the call and mobility rates of mobile nodes.

Consider that there are n registration areas (RA1, RA2, . . . , RAn) in
the service area, n location registrars (LR1, LR2, . . . , LRn), and LRi is
associated with RAi, where 1 ≤ i ≤ n, is registration area i. We will refer
to LRi as the local location registrar of RAi and all other location regis-
trars as remote location registrars of RAi. The rationale for this classifi-
cation is that accessing a local location registrar is less expensive than
accessing a remote location registrar. We will denote the cost of access-
ing a local location registrar to be Al and that to access a remote location
registrar to be Ar. Consider the hypothetical case where the entire United
States is the service area, and each state is an RA. In addition, assume
that a location registrar keeps the current mailing address of the resi-
dents in its state. Now suppose that Bob, who is a resident of Arizona,
wants to find the mailing address of another resident of Arizona. He can
simply ask the local Arizona location registrar. However, if Bob wants to
locate another person, say, Alice, who is a resident of New York, then he
would have to contact New York’s registrar, which would take much
longer. The farther away Alice is from Arizona, the longer it will take
Bob to discover her location. Now suppose that Alice temporarily moves
to Texas. An easy way for her to ensure that all her correspondents,
including Bob, are able to reach her is by informing her HLR, the New
York registrar, that she is currently in Texas. In this way, when Bob

8 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 8

9

F
ig

u
re

 2
.2

R
eg

is
tr

at
io

n
 a

re
a

ba
se

d
lo

ca
ti

on
 m

an
ag

em
en

t.

H
om

e
lo

ca
tio

n
re

gi
st

ra
r

B
as

es
ta

tio
n

(c
el

l c
)

M
ob

ile
 m

 is
 in

 R
A

1

B
as

es
ta

tio
n

(c
el

l d
)

M
ob

ile
 m

 is
 in

 R
A

2

(1
)

R
eg

is
tr

at
io

n
up

on
 m

ob
ile

 s
w

itc
hi

ng
 o

n.
(3

)
C

el
l h

an
do

ff
bu

t n
o

re
gi

st
ra

tio
n

w
ith

 H
LR

Reg
ist

er
 m

e
in

 y
ou

r c
el

l

R
eg

is
te

r m
e

in
 y

ou
r c

el
l

W
he

re
 is

 m
ob

ile
 m

?

M
ob

ile
 m

 is
 in

 R
A

1

B
as

es
ta

tio
n

(c
el

l e
)

R
eg

is
tr

at
io

n
ar

ea
 2

 (
R

A
2)

R
eg

is
tr

at
io

n
ar

ea
 1

 (
R

A
1)

R
eg

is
te

r m
e

in
 y

ou
r c

el
l

(4
)

R
eg

is
tr

at
io

n
up

on
 c

ro
ss

in
g

R
A

 b
ou

nd
ar

y

M
ob

ile
 m

M
ob

ile
 m

’s
 tr

aj
ec

to
ry

Pag
e f

or
 m I a

m here!

m is in cell cIs
 m

ob
ile

 m
 in

 y
ou

r
ce

ll?

Page fo
r m

N
o

re
sp

on
se

!

(2
)

M
ob

ile
 is

 b
ei

ng
 lo

ca
te

d.

4
3

2
1

Richard_Ch02.qxd 8/24/04 3:12 PM Page 9

contacts the New York registrar for Alice’s address, he will be asked to
contact her visitor location registrar, i.e., the Texas registrar. Bob now
will have to contact the Texas location registrar to get Alice’s current
address. We next discuss the advantage of keeping a forwarding pointer
to the Texas registrar at the New York registrar rather than the actual
address of Alice.

Forwarding pointers. In order to highlight the difference between main-
taining the actual address of the mobile node at its HLR as opposed to
a pointer, we consider the scenario in which Alice’s current job in Texas
requires her to move quite often within Texas. This would mean that
every time she moves, she has to inform the New York registrar (in
addition to the Texas registrar) of her new address in Texas. Won’t it be
easier (less burdensome) for Alice to tell the New York registrar that she
is currently in Texas and that the person who wishes to find her current
address should contact the Texas registrar for her current address?
Maintaining a forwarding location pointer at the New York registrar
instead of the actual address reduces the burden on Alice (update cost)
but increases the burden on Bob (search cost) because now he has to con-
tact the New York registrar first and then the Texas registrar. Which
scheme is better, maintaining the actual address at the home registrar
or the location pointer? Assuming a cooperative society in which we
want to reduce the overall burden, irrespective of who is burdened, the
answer depends on whether Alice moves more often than she is being
contacted by some other person. Obviously, if Alice never changes her
address while in Texas, it is best to maintain the exact address in the
New York registrar. However, if Alice moves every week—the first week
in Dallas, the second week in El Paso, the third week in Austin, and the
fourth week in Houston (maybe she is an investigative reporter for the
New York Times on assignment in Texas and living at various places in
the state)—and she is contacted only by Bob (from Arizona) once a
month, as illustrated in Fig. 2.3, it is better to maintain a location
pointer at the New York registrar [the average total cost per month is
4 × local update cost + 3 × remote search cost for the location pointer
scheme versus 4 × (local update cost + remote update cost) + remote
search cost = 4 × local update cost + 5 × remote search cost for the actual
address scheme]. Note in this case that if Bob remembers that Alice is
currently in Texas, then he simply can contact the Texas registrar for
subsequent location queries. We will discuss location caching later in this
chapter.

Continuing with this example, we motivate some other popular loca-
tion management optimization techniques. We will see that techniques
that reduce the search cost tend to increase the update cost, and vice
versa. Consider now that Alice, who is on some investigation assignment,

10 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 10

has to visit several states within the United States. Her investigation
assignment takes her from New York to Texas to Alaska to Alabama. As
illustrated in Fig. 2.4, forwarding pointers can be maintained at registrars
in New York, Texas, and Alaska, forming a chain of forwarding pointers:
New York → Texas → Alaska → Alabama. Suppose that Bob is trying to
locate Alice. He will have to start with the New York registrar and follow
the forwarding pointers at each intermediate location registrar to finally
reach the Alabama location registrar. The use of forwarding pointers

Mobility Management 11

Figure 2.3 Maintaining actual address versus forwarding pointer at HLR.

AK

AK

HI AL

AZ
AR

CA CO

CT

DE

FL

GA

ID

IL IN

IA

KS
KY

LA

ME

MD

MAMI
MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI
WY

TX-LR

NY-LR

Dallas
El paso

Austin
Houston

(1) Maintaining actual address at HLR.

(2) Maintaining forwarding pointer at HLR.

Forwarding pointer

Remote access

Local access

HI AL

AZ
AR

CA CO

CT

DE

FL

GA

ID

IL IN

IA

KS
KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI
WY

TX-LR

NY-LR

Dallas
El paso

Austin
Houston

1

2

Richard_Ch02.qxd 8/24/04 3:12 PM Page 11

reduces the update cost (two local updates for each move as opposed to
one remote and one local update) but increases the search cost [(1 +
number of links in the chain) × remote access cost as opposed to 2 ×
remote access cost]. For example, as illustrated in Fig. 2.4, Alice’s chain
of forwarding pointers is of length three, and Bob has to contact the fol-
lowing four location registrars: New York, Texas, Alaska, and Alabama
(in that order).

Analyzing cost versus benefit of location management optimization tech-
niques. We have seen that there is an intrinsic tradeoff between the cost
of update and the cost of search. So how do we evaluate whether an opti-
mization proposed for location management is beneficial or not? In the
following, we illustrate how to determine this analytically. Let fs and fu

be the number of searches per unit time for a mobile node. Further,
assume that Cs,u and Cu,u are the respective search and update costs
before optimization that and Cs,o and Cu,o are the respective search and
update costs after optimization. Then the optimization in question is
worthwhile if the average cost of location management before the opti-
mization is more than the average cost after the optimization is per-
formed, that is,

fsCs,u + fuCu,u > fsCs,o + fuCu,o → fs(Cs,u − Cs,o) > fu (Cu,o − Cu,u) (2.1)

12 Chapter Two

Figure 2.4 Location management using a chain of forwarding pointers.

AK

HI AL

AZ
AR

CA
CO

CT

DE

FL

GA

ID

IL
IN

IA

KS
KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI
WY3

4

2

1

Richard_Ch02.qxd 8/24/04 3:12 PM Page 12

Now, if the optimization reduces the search cost, then Cs,u is greater than
Cs,o, and Cs,u − Cs,o is positive. For such optimizations, we can write the
preceding inequality as

→ fs/fu > −[(Cu,u − Cu,o)/(Cs,u − Cs,o)] (2.2)

The fraction on the left-hand side of the equation is referred to as the
call-to-mobility ratio (CMR). For the optimization that reduces the
update cost, Cs,u − Cs,o will be negative, so the inequality becomes

→ fs/fu < −[(Cu,u − Cu,o)/(Cs,u − Cs,o)] (2.3)

Let us apply Eq. (2.3) to the forwarding-chain optimization scheme to
determine the maximum chain length for a mobile device m with a fixed
CMR. For a forwarding chain of length k, the increase in search cost is
k × Ar. Further, the update cost is reduced by Ar. According to Eq. (2.3),
forwarding pointers are beneficial as long as the CMR is less than 1/k.
Thus, the chain length should be no more than the integer value of
1/CMR. For a more detailed analysis of efficacy of forwarding pointers
in the context of location management for PCS networks, interested
readers should see the research paper by Jain and Lin (1995).

Dynamic update schemes. RA-based location update is an example of a
static update scheme. Such update schemes do not take into account the
dynamic mobility behavior of mobile nodes. Boundaries of RAs are deter-
mined taking into account the aggregate mobility pattern of the mobile
nodes. Such static boundaries can lead to lot of location updates owing
to mobile nodes moving between two adjacent RAs in quick succession.
Such ping-pong effects are eliminated in dynamic update schemes.
Periodic updates, also known as time-based updates, are an example of
a dynamic update scheme. Other examples of dynamic update schemes
include

� Movement-based updates. A mobile node updates its location whenever
it crosses a certain number of cell boundaries M since it last registered.

� Distance-based updates. A mobile node updates its location whenever
it moves a certain number of cells D away from the last cell at which
it last updated its location.

The maximum search area that needs to be paged depends on the
mobility pattern of the mobile node and the update scheme used. Dynamic
update schemes have the potential to reduce the maximum search area
(search operation latency) over static schemes. Which of the dynamic
schemes performs best? This depends on the mobility and call patterns.
Among the three schemes, the time-based scheme is the simplest to

Mobility Management 13

Richard_Ch02.qxd 8/24/04 3:12 PM Page 13

implement. However, it is not suitable for stationary users. A movement-
based scheme requires keeping a count of the number of handoffs since
the last update and is suitable for mostly stationary users. A distance-
based scheme requires knowing the topology of the cellular network and
thus is more difficult to implement than the other two dynamic update
schemes. This scheme is suitable for a mobile user who moves within a
locality. As opposed to static update schemes, dynamic update schemes
can be adapted to the mobility pattern of a user by appropriately choos-
ing the parameters of the dynamic update schemes.

Different dynamic update schemes have different update rates and
search costs associated with them. Assume that each update has a unit
cost and that the search cost is proportional to the number of cells
searched. If fs is the average call frequency to a mobile node, then 1/fs

(also equal to t) is the mean time between two calls to a mobile node. A
time-based scheme performs, on average, t/T = 1/(Tfs) updates between
two calls. If v is the maximum speed of a mobile node (in terms of cells
per unit time), then the maximum area to be searched is a circle of
radius v × min(t, T) cells centered on the last known location of the
mobile node. Assuming that an expanding ring search is performed to
locate the mobile node, the average cost of the search operation can be
taken as v × min(t, T) assuming the system knows the exact location
of the mobile node at the completion of a search operation. Also, for
simplicity, assume that the update cost is 1 unit per update operation.
The average cost of location management with a time-based scheme is
costtbus(T) = fs × v × min(1/fs, T) + 1/T, for T ≥ 1/fs and costtbus(T) ≈ v.
On the other hand, if T < 1/fs, then the optimal value of T is Topt = 1/(√(v
× fs) min costtbus(T), and the optimal value of costtbus(T) is 2√v. Therefore,
the optimal value of T is 1/√(v × fs). This implies that as the average
velocity increases, the mobile node should update its location more
often. Also, when the call frequency to the mobile node increases, it
should update its location more frequently. A similar analysis of a dis-
tance-based scheme shows that the optimal value of D = √v/fs, and the
optimal value of costdbus(D) is 2√v. Interested readers are encouraged to
see the research paper by Bar-Noy and colleagues (1995) for a more
detailed analysis of these schemes that takes into account the mobility
pattern of the mobile nodes and different search schemes.

Per-user location caching. The technique of per-user location caching can
be used to avoid accessing a roaming mobile node’s location frequently
(Jain, Lin, Ho, and Mohan, 1994). For example, the first time Bob con-
tacts the New York registrar and finds out that Alice is in Texas, he can
record that information locally and use it later if needed. However, after
Alice moves from Texas to Alaska, Bob’s cached location information
becomes incorrect. Now, if Bob tries to reach Alice in Texas after she has

14 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 14

moves to Alaska, his first attempt to contact her in Texas will fail. And
he will have to contact the New York registrar to find out that she is in
Alaska (assuming that a forwarding pointer is not used). Let’s determine
when it is beneficial for Bob to cache Alice’s information. Assume that
the frequency with which Bob tries to reach Alice is fs and that the fre-
quency with which Alice changes her location (the state she is in) is fu.
Conceptually, CMR (fs/fu) gives the average number of search operations
between two consecutive update operations. As illustrated in Fig. 2.5,
the first search after an update operation will result in a cache miss,
after which the remaining (CMR − 1) search operations will result in
cache hits. Thus the cache hit ratio ph = (CMR − 1)/CMR = (1 − 1/CMR).
What should the value of ph (CMR) be for the caching scheme to be ben-
eficial? Since caching reduces the average search cost without affecting
the update cost, Eq. (2.2) cannot be used. However, we just need to
determine the values of CMR for which the average search cost with
caching (Cs,o) is less than the average search cost without caching (Cs,u).
If we let Al be the local access cost and Ar be the remote access cost, then
Cs,u = 2Ar and Cs,o = ph(Al + Ar) + (1 − ph)(Al + 2Ar). This implies that
Cs,o < Cs,u when ph > Al/Ar or, equivalently, when CMR > [Ar /(Ar – Al)].

In the per-user location-caching scheme, the cache is maintained with
location registrars. In this case, the call frequency fs is the aggregate fre-
quency of calls originating from a registration area for a particular
mobile node because once the location of a particular mobile node is
cached, it can be used to eliminate (reduce) the search cost for any sub-
sequent search operation before the next move. Thus the search latency
of all the calls for a particular mobile node m originating from the RA
whose location registrar caches m’s location is reduced. Let RCMRi,m be
the regional call-to-mobility ratio, which is defined as the ratio of the
frequency of calls originating from RAi to the mobility rate of mobile node
m. Then the location information for mobile node m can be cached at
location registrar i if the RCMRi,m > [Ar /(Ar − Al)]. In the preceding case,
a lazy cache maintenance scheme was used because the stale cached
information was not updated until it was required. However, note that
the latency of the location search operation after a cache miss has
increased. This can be avoided if somehow the cache entry is invalidated
in all the location caches containing location information about mobile
node m whenever m changes its RA or, better, if cache information can
be updated. Eager cache maintenance achieves this by maintaining a list
of registrars that are currently caching the location information of
mobile node m. This update list of m can be maintained at the current
local registrar of m. Whenever m moves to another RA, all the registrars
in the update list for m are notified of the new location of m. Eager
caching decreases the search cost at the expense of increasing the update
cost. The average search cost for the registrars in the update list is

Mobility Management 15

Richard_Ch02.qxd 8/24/04 3:12 PM Page 15

16

F
ig

u
re

 2
.5

C
om

pu
ti

n
g

ca
ch

e
h

it
 p

ro
ba

bi
li

ty
.

i-t
h

up
da

te
(i+

1)
-t

h
up

da
te

1/
fu

 ti
m

e
un

its

...
...

...
...

.

To
ta

l o
f f

s*
(1

/fu
)

=
 C

M
R

 s
ea

rc
h

op
er

at
io

n.

ca
ch

e
m

is
s

ca
ch

e
hi

t

Richard_Ch02.qxd 8/24/04 3:12 PM Page 16

reduced because the probability of a cache hit (ph) increases (ph becomes
almost 1). If k is the size of the update list for m, then the update cost
now includes the cost to updates of k cached entries.

For efficient implementation of an eager caching scheme, two issues
need to be resolved: (1) At which location registrars should the infor-
mation be cached? and (2) When should the location information be
cached? Taking into account the mobility and call patterns of users
helps in this regard. Most people have different mobility rates at dif-
ferent times during the day. For example, on weekdays, people drive
to work in the morning, stay at work during working hours, and
return home. Further, many people are called regularly by only a few
people. This set may change over time, but it is considerably small for
most people. The working-set approach exploits this fact to adaptively
maintain cache at only those registrars where it will help in reduc-
ing the overhead of location management (Rajagopalan and
Badrinath, 1995).

In this approach, the working set of mobile node m for time duration
(t, t + dt) refers to the set of registrars where it is beneficial to maintain
location information about m during this duration. Let fs,i be the fre-
quency of calls for mobile node m originating from registration area i , and
let fu be the mobility rate of mobile node m during duration (t, t + dt).
However, at any instant t, it generally does not know what the future call
and mobility pattern will be for a mobile node. Assuming that there are
fairly long periods of stable behavior in the call and mobility patterns of
mobile users, the call and mobility behavior in the recent past can be used
as an approximation of behavior in the near future. These are the actual
values of fs,i and fu during (t – dt, t) and are taken as the approximate
values of fs,i and fu as the instantaneous value of search and move fre-
quency. In fact, for sake of efficient implementation, the working-set
approach maintains a sliding window of the last w operations along with
the time each operation was performed. When a new operation occurs, a
search or an update, it is added to the window, and the oldest operation
is dropped. If there were u update operations in the window and dt is the
difference between the time of the last and the first operation in the
window, then fu = u/dt, fs = (wi − u)/dt, and fs,i = (number of search opera-
tions in the window that were initiated from users in RAi)/dt.

We explain next how these values are used to adjust the update list
dynamically to approximate its membership to the working set of a
mobile node. Whenever a new operation o is initiated for mobile node
m, the window is “shifted” to include operation o, and the update list is
adjusted in the following manner:

� Case 1: Operation o is a search operation from RAi. If location regis-
trar i is not in the update list already, a decision as to whether or not

Mobility Management 17

Richard_Ch02.qxd 8/24/04 3:12 PM Page 17

to include i in the update list is made. Note that inclusion of i in the
update list will reduce the search cost for calls originating from RAi

and increase the update cost. Equation (2.2) is used to make this deci-
sion. If fs,i × decrease in search cost > fu × increase in update cost is
true, then i is included in the update list.

� Case 2: Operation o is an update (move) operation. All the registrars
in the update list are reevaluated to determine whether it would be
beneficial to keep them in the list. A registrar i for which fs,i × increase
in search cost < fu × decrease in update cost is deleted from the update
list.

Computation of the search and update costs can be based on the esti-
mated network communication latencies to accomplish search and
update operations. This depends on the search and update procedures
being employed. For example, in the case of Mobile IP, the search and
packet routings are integrated. The packet from sender s is routed to
the home network of the mobile node, and the mobile node’s home agent
(HA) on the home network then tunnels the packet to the current des-
tination network of the mobile node. In this case, the search cost before
caching location information is

CC[s, HA(m)] + CC[HA(m), CA(m)] (2.4)

where CC(a, b) denotes communication latency between any two nodes
a and b on the Internet, HAD(m) is the home address of node m, and
CAD(m) is the care-of address (either a foreign agent’s address or the
mobile node’s address on the foreign network) of node m. Whereas the
search cost after caching is simply CC[s, CAD(m)], if the updates are sent
individually, then the incremental update cost is CC[CAD(m), s]. If a
multicast tree were used, then the cost would depend on the structure
of the tree and could be substantially less than CC[CAD(m), s]. Interested
readers should see the research paper by Rajagopalan and Badrinath
(1995) for a description and analysis of working-set technique in the
context of Mobile IP.

Replicating location information. If no replication is used, then mobile
node m’s location information is maintained at one of the n location reg-
istrars. The assignment of mobile nodes to a location registrar can be
permanent. Care should be taken to ensure that the average load on
each location registrar is balanced. However, if any one of these location
registrars fails, then all the mobile nodes handled by that location reg-
istrar become unreachable. To ensure that the location management
service does not go down just because a location registrar fails, one may
want to replicate the information among several location registrars.

18 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 18

One of the issues in this regard is how many replicas should one main-
tain. Full replication increases the cost of updates because each location
registrar still has to handle updates for all the mobile nodes. Thus par-
tial replication is preferable. In the following, we discuss partial repli-
cation under two different organizations of the location registrars: flat
and hierarchical.

Flat organization. Consider a system with n location registrars. If we
assume that the cost of accessing all the location registrars is approxi-
mately the same, the location information for a mobile node can be
maintained at any location registrar without any penalty in terms of
access cost. Under such a scenario, a flat organization of the location reg-
istrars may be of interest. Suppose that the system maintains k (≤n)
replicas for each mobile node. For simplicity, we assume that n is divis-
ible by k (i.e., n mod k = 0). A simple update scheme that also achieves
load balancing is as follows: Randomly select the first location registrar
LRi to which to add mobile node m’s location information, and then
place the mobile node m’s location information at (k − 1) additional loca-
tion registrars at a stride of s = n/k in a wrap-around fashion. That is,
mobile node m’s location information is maintained at location registrars
with index i, (i + s) mod n, (i + 2s) mod n, . . . , [i + (k − 1)s] mod n. In
order to search for the location for a particular mobile node, the follow-
ing procedure can be used: Start with a randomly selected location reg-
istrar and sequentially continue the search (in wrap-around manner)
until a location registrar with the location information is found. Note
that in this scheme at most n/k location registrars would have to be
searched to obtain the location information for a particular mobile node.

Figure 2.6 illustrates the preceding location update and search pro-
cedure in a flat organization with 16 location registrars. The location reg-
istrars are shown to form a logical ring to conveniently illustrate the
wrapping around during search and update procedures. Assume that
replication factor k = 4 is used. In the figure, an update operation is
shown that starts at the randomly selected LR6 and continues to place
location information for the mobile node at LR10, LR14, and LR2.
Similarly, the search for the same mobile node’s location information
starts at randomly selected location registrar LR12 and proceeds sequen-
tially until the mobile node’s location information is found in the loca-
tion registrar LR14.

What is the best (or optimal) value for replication factor k? Obviously,
the cost of an update increases with an increase in k. However, the cost
of a search operation is inversely proportional to k. Further, it would be
nice to adapt the replication factor to call and mobility rates for a mobile
node. For a system with n location registrars, the following crude but
simple analysis illustrates how the optimal value for replication factor

Mobility Management 19

Richard_Ch02.qxd 8/24/04 3:12 PM Page 19

k can be determined for a particular mobile node m with call rate fs and
mobility rate fu. Obviously, the location update cost is k location regis-
trar accesses per update. Further, under the preceding search scheme,
a maximum of n/k location registrars have to be accessed to find a mobile
node’s location. Thus the normalized location management cost for the
mobile node m is (n/k)fs + kfu. This function is minimized when replica-
tion factor k = √(n × CMR), with 1 ≤ k ≤ n. We can draw several conclu-
sions from this simple analysis:

� As the CMR of the mobile node increases, the number of replicas used
for that mobile node also should increase to achieve optimal location
management cost.

� When an optimal replication factor is used, the search and update
costs are proportional to √n.

The second observation has motivated the development of tree organi-
zation for location registrars. Tree (or hierarchical) organizations for loca-
tion registrars promise search and update costs that are O[log(n)] with a
replication factor also of O[log(n)]. Further, they exploit locality in the call
and mobility patterns. For optimal location management schemes based
on flat (nonhierarchical) organization for location registrars, interested

20 Chapter Two

Figure 2.6 Search and update in a location management system with flat organization.

LR0

LR2
LR4

LR6

LR8

LR10LR12

LR14

First LR to store mobile’s
location information
(randomly selected)

LR1

LR3 LR5

LR7

LR9

LR11
LR13

LR15

(k-1) remaining LRs
updated at a stride of n/k

First LR to search is
randomly selected

Following at most n/k-1 LRs
searched sequentially

Richard_Ch02.qxd 8/24/04 3:12 PM Page 20

readers should see the research papers by Krishnamurthi, Azizoğlu, and
Somani (2001) and Prakash, Haas, and Singhal (2001).

Hierarchical organization. Consider a simple multiple-level hierarchical
organization (tree) of location registrars. A location registrar that is a leaf
node in the tree has information on all the mobile nodes in the RA(s) asso-
ciated with it. A nonleaf location registrar replicates location information
in all the location registrars in the subtree rooted to it. Consequently, the
root location registrar stores information on all the mobile nodes in the
system. For example, Fig. 2.7 shows a tree hierarchy consisting of 15
location registrars: LR0, LR1, . . . , LR14. Assume that there are 8 RAs (RA0,
RA1, . . . , RA7) in the service area and that location registrar LRi, 0 ≤ i ≤ 7,
is associated with RAi. Consider a mobile node (referred to as the callee
in Fig. 2.7) that is initially in RA1. The location information for this mobile
node will be maintained in location registrars along the tree path from LR1

to the root: LR1, LR6, LR12, and LR14.

Mobility Management 21

Figure 2.7 Update and search in a hierarchical (Tree) location management system.

LR0 LR3LR2LR1 LR4 LR7LR6LR5

LR8 LR9 LR10
LR11

LR12 LR13

LR14

Caller’s location
registrar

Callee’s location
registrar before

move

Callee’s location
registrar after

move

Caller’s search ends at LCA
of caller’s and callee’s LR

Update starts at the root LR
and proceeds till new LR of

the mobile.

Deletion starts at LCA LR of
the old and new LR of the
mobile and ends at the old

LR of the mobile

Richard_Ch02.qxd 8/24/04 3:12 PM Page 21

Searches and updates can be performed as follows (Pitoura and
Samaras, 1998):

� Let the caller be in RAi and the callee be in RAj. The location regis-
trars along the path from the leaf location registrar associated with
RAi to the root are searched until the location information for the
callee is found. Let LCA(i, j) denote the location registrar that is the
least common ancestor of LRi and LR j. Then the search will stop at
the location registrar at LCA(i, j).

� If a mobile node moves from RAi to RAj, then location information
is deleted in all the location registrars along the path from LRj to
LCA(i, j) [except LCA(i, j)], and the location information is updated
(or in some cases added) in all the location registrars along the path
from root to LRj.

For example, in the scenario illustrated in Fig. 2.7, the caller mobile node
is in RA4. To locate the callee mobile node, which is in RA1, the search
operation will have to contact LR4, LR10, LR13, and LR14 (in that order)
before it can obtain the location information for the callee mobile node.
Note that LR14 is the least common ancestor of LR1 and LR4.

Now suppose that the callee mobile node moves from RA1 to RA2. The
location information needs to be updated in LR14 and LR12 and added
to LR7 and LR2. Further, the location information should be deleted
from LR6 and LR1.

Assuming a balanced tree, the cost of both the search and update is
O[log(n)], where n is the number of location registrars in the tree hier-
archy. Several non-tree hierarchy–based approaches have been devel-
oped. For example, see the paper by Awerbuch and Peleg (1995) for a
scheme based on regional matching.

2.4 Location Management Case Studies

In this section we present two location management schemes: PCS loca-
tion management in cellular systems and Mobile IP’s location manage-
ment for the Internet. Both PCS and Mobile IP location management
use a two-level hierarchy of location registrars consisting of home loca-
tion and visitor location registrars for location management. Note that
the same location registrar may serve as the home location registrar for
some mobile nodes and the visitor location registrar for other mobile
nodes. Conceptually, the location registrars have been arranged in a two-
level hierarchy: home location registrar in tier 1 and visitor location reg-
istrars in tier 2. Each of the several location registrars in the system may
serve as the home location registrar for some mobile nodes. The map-
ping of a mobile node to its home location registrar is usually static

22 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 22

(based on the area code in the case of mobile phones or the network
address in the case of mobile nodes with IP address).

2.4.1 PCS location management scheme

Two types of location registrars are used: home location registrars
(HLRs) and visitor location registrars (VLRs). The HLR keeps the loca-
tion and profile information for all the mobile nodes to which the PCS
network is supposed to provide service.

Each RA has a VLR associated with it that records the location (cell
ID) of all the mobile nodes that currently are in that RA. The HLR for
a mobile node records the RA, which is the ID of the VLR associated with
the RA in which the mobile node currently is located. When a call needs
to be established to mobile node m that is currently located in cell c of
RAc, first the HLR of mobile node m [HLR(m)] is consulted to obtain the
ID of the VLR [VLR(n)] that may have information about m; next,
VLR(m) is contacted to obtain the current cell in which mobile node m
is located.

When a mobile node is switched on, it registers with one of the avail-
able access points (base stations). This registration operation also
involves updating the VLR and the HLR. While the mobile node remains
active, a reregistration is performed (1) when a handoff occurs and (2)
periodically.

When a mobile node m moves from cell c to cell d, the following two
scenarios are possible:

� Both cells c and d belong to the same RA. In this case, only the VLR
is updated to indicate in which cell mobile node m is currently located.
This helps when mobile node m needs to be located. In this case, there
is no need to contact the HLR(m).

� Cells c and d belong to different registration areas, RAc and RAd,
respectively. In this case, the following two actions need to be taken:

� Mobile mode m needs to register with RAd and deregister with RAc.
� HLR(m) needs to be notified that mobile node m is now in RAd.

Now let’s examine in more detail what actions need to be performed
when mobile node m needs to be located, for example, to establish a con-
nection between mobile nodes n and m. Assume that mobile node n is
in cell c and that mobile node m is in cell d, where cell c belongs to RAc

and cell d belongs to RAd.

� First, VLR(RAd) is consulted to see whether mobile node m is in RAd.
If so, a search is performed in the vicinity of last reported cell of
mobile node m.

Mobility Management 23

Richard_Ch02.qxd 8/24/04 3:12 PM Page 23

� If m is not RAd, then the HLR(m) is contacted to get the current RAm.
� VLR(RAm) is contacted and performs a local search in the last reported

cell of mobile node m, and if successful, it returns the current location
of mobile node m.

2.4.2 Mobile IP

The Internet is a network of IP networks. In the Internet, a node can be
connected to a network via several interfaces. Each interface is assigned
an IP address. An IP address, which is 32 bits long, consists of two parts:
(1) the host address (x least significant bits) and (2) the network address
(32 to x most significant bits). All nodes (interfaces) on an IP network have
the same network address but different host addresses. This restricts the
IP address that can be assigned to an interface on a given IP network.
However, this greatly helps in the amount of routing information that
needs to be maintained in the intermediate routers in the core of the net-
work to enable them to forward packets correctly to their intended des-
tination nodes through use of a mechanism called route aggregation. A
router simply needs to maintain one entry for all the hosts that have a
common prefix and are reachable by the same interface of the router.

When a mobile node moves from one IP-network to another IP network,
the IP address of the interface connecting it to the new IP network may
become invalid on the new IP network. If this is not corrected and the
interface is allowed to retain its IP address, then no IP packets can be
routed to this interface unless the routing (forwarding) table of all (or,
more accurately, a major number of) the routers in the entire network is
updated to include an entry for this particular IP address. This solution
is not at all desirable for the following reasons: (1) the routing tables will
become extremely large and (2) millions of routers on the entire Internet
may have to be updated when a mobile node moves. However, if the
mobile node (interface) acquires a new IP address every time it moves,
then all the nodes (or at least those which want to communicate with the
mobile node or want to access the services hosted by the mobile node) will
have to be informed about the new IP address. Since the Domain Name
Service (DNS) maintains the mapping between host domain names and
IP addresses, this can be addressed potentially just by updating the DNS
entry for the domain name of the mobile node. However, there are sev-
eral problems with this approach. A source node may use incorrect map-
ping for a long time after it has been updated in the DNS owing to
prevalent use of DNS caching. Datagram packets sent during the period
between when the node moves and the source node obtains the new IP
address of the mobile node from the DNS server may be lost.

Mobile IP is an extension of Internet Protocol version 4 (IPv4) to
support host mobility at the IP layer (Perkins, 2002). In Mobile IP, the

24 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 24

operations of location management and packet rerouting are tied closely
together. This solves the problem caused by mobile nodes frequently
changing their IP network by associating two IP addresses with each
node: (1) a permanent IP address and (2) a care-of IP address. A mobile
node has a permanent IP address that is topologically significant on its
home network. While a mobile node is attached to its home network, the
packets destined to it get routed in the normal fashion. When a node
moves to a foreign network, it acquires another temporary IP address.
Further, it registers this temporary IP address with its home agent (HA).
An HA is a software entity running on some machine attached to the
home network and is responsible for ensuring that the IP packets des-
tined for a currently roaming mobile node get rerouted to the node’s cur-
rent location. Among other things, an HA maintains a mobility binding
for each roaming mobile node. Simply stated, a mobility binding consists
of (1) a mapping between the permanent IP address of a mobile node and
its current care-of address (or addresses in case of multihomed mobile
nodes) and (2) a time-to-live (TTL) value that denotes how long the bind-
ing is valid. The mobility binding for a mobile node is established when
it sends a registration message to its HA. If this binding is not refreshed
(via reregistration) within the time period specified in the TTL field of
the binding, the binding becomes invalid. This takes care of situations
where the mobile node is no longer connected to the last registered net-
work or has been powered off temporarily, as in the case of a laptop.

When a mobility binding for a mobile node m is active at its home
agent [HA(m)], HA(m) intercepts all the packets that arrive for m on its
home network. It then forwards these packets to the care-of address (or
addresses) of m. This is done by a mechanism called IP tunneling, where
in the original IP packet is encapsulated in another IP packet whose des-
tination address is the care-of-address of the mobile node and the payload
is the original IP packet. When this encapsulated packet arrives at the
other end of the tunnel, it is decapsulated, and the original packet is
delivered to the mobile node. The mobile node uses the source address in
the original IP packet to send back any response to the sender of the
original IP packet. In the Mobile IP literature, this routing of packets from
a sender to a mobile recipient via its HA and that of the response directly
from the mobile node to the sender is referred to as triangle routing.

Care-of IP addresses are of two types: (1) foreign agent’s IP address
and (2) colocated IP address. A foreign agent (FA) is a mobility agent that
provides some services to a roaming mobile node when it is on a foreign
network. When a mobile node uses a foreign agent’s address, the FA acts
as the exit endpoint of the tunnel and performs the decapsulation oper-
ation. The original IP packet is then delivered to the destination mobile
node through the underlying link layer protocol. Figure 2.8 illustrates
how packets from an Internet host (either fixed or mobile) get delivered

Mobility Management 25

Richard_Ch02.qxd 8/24/04 3:12 PM Page 25

26

F
ig

u
re

 2
.8

In
te

gr
at

ed
 lo

ca
ti

on
 m

an
ag

em
en

t
an

d
ro

u
ti

n
g

in
 m

ob
il

e
IP

.

H
om

e
ag

en
t

In
te

rn
et

 h
os

t
In

te
rn

et

F
or

ei
gn

 a
ge

nt

M
ob

ile
 h

os
t

(M
H

)

P
ac

ke
ts

 fr
om

 in
te

rn
et

ho
st

 a
re

 r
ou

te
d

us
in

g
ho

m
e

ad
dr

es
s

of
m

ob
ile

 h
os

t

H
om

e
ag

en
t i

nt
er

ce
pt

s
an

d
en

ca
ps

ul
at

es
 th

e
or

ig
in

al
 d

at
ag

ra
m

 a
nd

tu
nn

el
s

it
to

 c
ar

e-
of

-
ad

dr
es

s
of

 th
e

m
ob

ile
ho

st

TUNNEL

H
om

e
ag

en
t (

H
A

)
m

ai
nt

ai
ns

 th
e

cu
rr

en
t m

ob
ili

ty
 b

in
di

ng
 fo

r
th

e
m

ob
ile

 h
os

ts
 o

n
its

 h
om

e
ne

tw
or

k
us

in
g

so
ft-

st
at

e
i.e

. m
ob

ili
ty

 b
in

ds
 e

xp
ire

 u
nl

es
s

re
fr

es
he

d
by

 m
ob

ile
 h

os
t w

ith
in

 c
er

ta
in

 ti
m

eo
ut

pe
rio

d.

M
ob

ile
 h

os
t’s

 a
cq

ui
re

s
a

ca
re

-o
f-

ad
dr

es
s

w
he

n
it

m
ov

es
 to

 a
 v

is
ito

r
ne

tw
or

k
an

d
se

nd
 r

eg
is

tr
at

io
n

m
es

sa
ge

 to
 it

s
ho

m
e

ag
en

t t
o

es
ta

bl
is

h
a

m
ob

ili
ty

 b
in

di
ng

. I
t

pe
rio

di
ca

lly
 r

ef
re

sh
es

 it
e

m
ob

ili
ty

 b
in

di
ng

.

F
or

ei
gn

 a
ge

nt
 e

xt
ra

ct
s

th
e

or
ig

in
al

 d
at

ag
ra

m
fr

om
 th

e
tu

nn
el

ed
da

ta
gr

am
 a

nd
 fo

rw
ar

ds
it

to
 th

e
m

ob
ile

 h
os

t

A
 fo

re
ig

n
ag

en
t (

FA
)

pe
rio

di
ca

lly
 a

dv
er

tis
es

 it
s

w
ill

in
gn

es
s

to
 s

er
ve

 a
s

a
fo

re
ig

n
ag

en
t.

T
he

 m
ob

ile
 h

os
t d

is
co

ve
r

th
at

 th
ey

 h
av

e
m

ov
ed

 w
he

ne
ve

r
th

ey
 h

ea
r

ne
w

 a
dv

er
tis

em
en

t m
es

sa
ge

s.
 A

 m
ob

ile
 h

os
t s

el
ec

ts
 a

 fo
re

ig
n

ho
st

 a
m

on
g

th
e

cu
rr

en
lty

 a
va

ila
bl

e
on

e
to

 u
se

 th
e

FA
’s

 a
dd

re
ss

 a
s

its
ca

re
-o

f a
dd

re
ss

.

W
ire

le
ss

 a
cc

es
s

po
in

t

M
ob

ile
’s

 h
om

e
ne

tw
or

k

R
ou

te
r R

ou
te

r

M
ob

ile
’s

 c
ur

re
nt

 fo
re

ig
n

ne
tw

or
k

Richard_Ch02.qxd 8/24/04 3:12 PM Page 26

to a mobile host via a foreign agent. A colocated IP address is a topo-
logically significant IP address on the foreign network. This address can
be statically assigned to a mobile node or can be acquired dynamically
by using mechanisms such as Dynamic Host Configuration Protocol
(DHCP). In this case, the endpoint of the tunnel is the mobile host itself;
i.e., the mobile host is in charge of decapsulating the encapsulated
packet.

An interesting issue is how a mobile node detects that it has moved
(to a new network). This is achieved by agent advertisement messages
periodically broadcasted by foreign agents. Each foreign agent willing
to serve as a foreign agent periodically broadcasts agent advertisement
message in networks it wants to serve as a foreign agent. A mobile host
detects that it has moved whenever it either stops hearing agent adver-
tisements from a certain foreign agent or starts hearing agent adver-
tisements from a new foreign agent (i.e., a foreign agent currently not
on the list of active foreign agents). For more details on Mobile IP, inter-
ested readers should consult Perkins (2002).

Summary

Mobility management ensures that communication can be established
and maintained with communication endpoints that are moving as long
as they are in the coverage area of some access point or base station and
as long as they are switched on. Mobility management is a fundamen-
tal task of any mobile computing system. Higher-level services can be
built on top of mobility management services, thus enabling novel mobile
applications. In this chapter we discussed fundamental aspects of mobil-
ity management. We focused mainly on location management aspects
of mobility management. Several location management techniques that
are essential for achieving scalability, precision, and reliability were
discussed. Owing to its importance, mobility management is an active
area of research and will continue to be so as long as mobile computing
is needed.

References

Akyildiz, I. F., McNair J., Ho J. et al., “Mobility Management in Current and Future
Communication Networks,” IEEE Network Magazine (July–August):39, 1998.

Awerbuch, B., and D. Peleg, “Online Tracking of Mobile Users,” Journal of the Association
for Computing Machinery (JACM) 42(5):1021, 1995.

Bar-Noy, A., I. Kessler, and M. Sidi, “Mobile Users: To Update or Not to Update,” Wireless
Networks 1(2):175, 1995.

Jain, R., and Y.-B. Lin, “An Auxiliary User Location Strategy Employing Forwarding
Pointers to Reduce Network Impacts of PCS,” Wireless Networks 1(2):197, 1995.

Jain, R., Y.-B. Lin, C. N. Ho, and S. Mohan, “A Caching Strategy to Reduce Network
Impacts of PCS,” IEEE Journal on Selected Areas in Communications 12(8):1434, 1994.

Mobility Management 27

Richard_Ch02.qxd 8/24/04 3:12 PM Page 27

Krishnamurthi, G., M. Azizoğlu, and A. K. Somani, “Optimal Distributed Location
Management in Mobile Networks,” ACM/Baltzer Mobile Networks and Applications
6(2):117, 2001.

Perkins, C. (ed.), IP Mobility Support for IPv4, RFC 3220, January 2002, http://www.rfc-
editor.org/rfc/rfc3220.txt.

Pitoura, E., and G. Samaras, Data Management for Mobile Computing. Norwell, MA:
Klewer Academic Publishers, 1998.

Prakash, R., Z. J. Haas, and M. Singhal, “Load-Balanced Location Management for
Cellular Mobile Systems Using Quorums and Dynamic Hashing,” Wireless Networks
7(5):497, 2001.

Rajagopalan, S., and B. R. Badrinath, “An Adaptive Location Management Strategy for
Mobile IP,” MobiCom, 1995.

28 Chapter Two

Richard_Ch02.qxd 8/24/04 3:12 PM Page 28

Chapter

3
Data Dissemination and

Management

Timely and accurate information (data) is essential for performing our
various day-to-day tasks, including decision making. This information
is provided to us from various sources. Some of this information is explic-
itly “pushed” to us via such mechanisms as television and radio adver-
tisements, telemarketing, electronic billboards, and flyers in the mail.
Other information we explicitly seek and “pull” onto our laptops to read.
Information that is sent to us, without our explicitly asking, is usually
of a general nature. Information we explicitly seek is usually of a per-
sonal nature. Obviously, we need to expend more effort in obtaining
information that is of particular interest only to us. In the world of com-
puting, there is a similar model of information delivery. Information in
which we are interested can be obtained through two modes: on-demand
and publish-subscribe.

In the on-demand mode (also known as pull mode), we (the informa-
tion sink) send an explicit query every time we need particular infor-
mation to an information source (a server or a peer). The information
source sends back the latest version of the requested (or queried) infor-
mation. The access latency in the on-demand mode therefore is at least
the round-trip latency. In addition, the sender has to expend resources
to send the query every time it needs the information.The publish-sub-
scribe mode (also known as push mode) is used for obtaining information
whenever it is available. For example, we can subscribe to a stock ticker,
and whenever the stock information is updated, it will be sent to us.

Publish-subscribe mode. In mobile computing, the publish-subscribe
mode is combined with the broadcast nature of wireless communication

1

Richard_CH3.qxd 8/24/04 3:25 PM Page 1

to provide resource-efficient and scalable information delivery (Fig. 3.1).
Mobility presents some novel challenges in designing services such as
e-mail and information broadcasting in a wireless mobile environment.
Wireless transmission is characterized by such problems as signal
fading, path loss, interference, and time dispersion. These lead to higher
error rates and signal distortion. A consequence is that wireless links
have a lower bandwidth and a higher communication latency. Providing
information services to mobile clients is an important application of
publish-subscribe mode of data dissemination. Examples of informa-
tion services include financial information services, airport information
services, and emergency services for traffic information. Wireless infor-
mation services can be classified into picoservices, macroservices, and
wide area services based on the area of coverage (cell sizes). The fol-
lowing are some issues in providing wireless information services that
we will address later in this chapter:

� How to structure an information server to provide wide area services?
Some issues in this regard are Publication content: Which items to
publish?

� Publication frequency: How often to publish?
� Bandwidth allocation: How to adaptively allocate bandwidth between

uplink and downlink channels to reflect the changing usage patterns
in a cell?

� How can mobile users access services transparently? Figure 3.1 shows
an example of the service handoff that is needed when a mobile client
moves from one cell to another. It needs to discover the “address” of
the broadcast channel for the new cell. A simple way to accomplish this
is to provide the user with a directory channel that has information
about all the broacast channels available in the new cell. The user can

2 Chapter Three

Figure 3.1 Broadcast channel.

Basestation
(cell c)

Mobile m’s trajectory

Dataserver

Stock

Index

Tra
ffic

Sales

Basestation
(cell d)

Dataserver

Eve
nts

Index

Parki
ng

Sales

Richard_CH3.qxd 8/24/04 3:25 PM Page 2

access this channel to, in turn, find the channel that has the infor-
mation she is interested in.

When mobile hosts are accessing data, how can their energy con-
sumpiton be minimized? Some items are requested more frequently
than others. These items are called hot items. In a mobile computing
environment, the on-demand mode requires energy for uplink requests.
Furthermore, this architecture is not scalable with respect to the number
of mobile clients. Requests have to be made by each mobile client inter-
ested in a particular data item. This is especially problematic for hot
items. Many modern CPUs offer “doze mode” operations. A low-power
radio circuit can be programmed to perform matching for a predefined
set of packet addresses, to store data in a low-energy buffer, and to
wake up the CPU after a certain time interval. The clock also runs in a
low-power mode. The main issue here is how can doze mode operations
be used for energy-efficient information services? This approach con-
serves battery power of mobile hosts because no uplink query is required.
In some wireless systems, packet transmission consumes more energy
than the reception of packets. Further, the publish-subscribe mode is
more scalable because access time for a published data item is inde-
pendent of the number of mobile hosts requesting that data item. As an
additional advantage, this mode is more useful for asymmetric envi-
ronments in which the downlink bandwidth is substantially greater
than the uplink bandwidth.

Information caching. Most of us maintain a cache of money in our wal-
lets for quick access when needed. Frequently, we withdraw some money
from our bank accounts and replenish the supply of money in our wal-
lets. This technique of maintaining a small supply of essential items
close to us (money in our wallets, food items in our pantry, and beer in
the refrigerator) prevents our making frequent and time-consuming
trips, e.g., to a bank or grocery store. We may replenish the supply on
an as-needed basis (e.g., when we run out of that item) or in a predic-
tive manner (e.g., if there is a party next Friday, we might buy enough
beer in advance). And when we come to know that a certain item, such
as gasoline, may not be available in the future, some of us try to hoard
that item. Hoarding in a very common practice in places where essen-
tial items are in short supply and become available only occasionally.
Usually the expertise of deciding when to hoard and what to hoard is
acquired by experience. Sometimes, making a mistake in this regard can
be fatal. For example, forgetting to hoard water while going on a long
trip in a desert can cause a person great discomfort or even cost his pre-
cious life. We usually try to hoard only nonperishable items. If perish-
able items such as vegetables have to be hoarded, we convert them into

Data Dissemination and Management 3

Richard_CH3.qxd 8/24/04 3:25 PM Page 3

a nonperishable form, e.g., by canning them. In the process, we give up
some flexibility (or preferences) in favor of guaranteed availability in the
future.

In the information age, information itself has become an important
commodity to cache and hoard. When we go on a trip, we fill our carry-
on bags with books that we may want to read while on the flight and
our laptop computer with files that we may want to work on while wait-
ing for the connecting flight. For people who are frequently on the move,
remembering to download all the files onto the laptop that may be
needed on the next trip easily can become a cumbersome task.
Furthermore, on returning from the trip, the files have to be uploaded
to a computer that is backed up regularly.

A more serious problem may arise if a file taken on a trip, say, a
Word document, is shared among various people. If the file is shared
only for reading, then there is no problem. However, if the shared file
is modifiable, then the following situation may arise: Consider that
Alice is sharing a file with Bob. If Alice or Bob (but not both) are per-
mitted to modify the file, then while Alice is on the trip, Bob will not
have access to the most up-to-date version of the shared file if Alice has
modified it. Conversely, Alice will have access only to the stale version
of the shared document while she is on the trip if Bob also has modifi-
cation rights to the file and has changed it while she is on her trip. In
the case where Alice has read-only permission to the file, on returning
from her trip, there is no need for her to upload the file to her system.
In the other case, if she has the modification rights to the file, the mod-
ified version on her laptop has to be uploaded to the shared storage so
that Bob can have access to the most recent version of the file in the
future.

Now suppose that both Alice and Bob have modification rights to the
shared document. This may lead to two different versions of the file,
Alice’s shared document and Bob’s shared document, if both Alice and
Bob modify the file while Alice is on her trip. These modifications
may be inconsistent with each other. For example, Alice may have
deleted the sentence, “Bob is a very hardworking person” from the
shared document, and Bob may have modified the same sentence to,
“Bob not only is very hardworking but also is a very sincere person.”
Such incompatible versions of the same file are difficult to merge into
a single version in the absence of any guidelines or user assistance.
For example, if Alice is Bob’s boss, a rule to reconcile inconsistent
change may be, “In case of conflict, Alice’s changes stay, and Bob’s
changes are deleted.” If no such rule exists or is not applicable, then
user intervention is necessary to resolve such conflicting changes.
Fortunately, in the real world, most of the time people resolve among
themselves who is the “owner” of the file. However, in the cyberspace,

4 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 4

processes may be sharing files, making it unclear who is the owner of
the document at any particular time.

3.1 Challenges

The various characteristics of wireless networks and mobile computing
environments pose new challenges for distributed data management.
Mobile wireless networks are predominantly of two types: architecture-
based and architecture-less. In both types of networks, the wireless links
may be of low bandwidth (in comparison with wired links) and subject
to frequent disconnections, leading to weakly connected mobile clients.
Consequently, mobile clients often can be disconnected from their data
servers. These disconnections can be either voluntary [e.g., when the
user disables the wireless network interface card (NIC) to conserve bat-
tery power] or involuntary (e.g. when the user moves to an area where
wireless service is not available). Irrespective of the cause of the dis-
connection, a user would like to have some connection transparency—
in the sense that he would like to have access to data vital to the
application with which he is working. Weak connectivity of mobile clients
in a mobile wireless computing platform creates a new challenge for
data management: how to ensure high data availability in mobile com-
puting environments where frequent disconnections may occur because the
clients and server may be weakly connected. To allow access to critical data
even during periods of disconnections, the distributed file system Coda
uses data caching to improve availability at the expense of transparency.

A second characteristic of mobile computing environments is the severe
constraints on the availability of resources (such as battery power) at the
mobile node. A typical node in such environments has limited power and
processing resources. This characteristic leads to another challenge for
data management in mobile computing environments, specifically, how
to minimize resource consumption (e.g., energy and bandwidth) for data
management while ensuring a desirable level of data consistency.

The third characteristic of some wireless networks is the presence of
asymmetric communication links. For example, in architecture-based
wireless networks, the downstream (base station to mobile nodes) com-
munication link capacity is usually much higher than the upstream
(mobile to base station) capacity. To make matters worse, mobile nodes
may have to compete with several other mobile nodes to get access to
an upstream channel (using some medium access techniques, such as
ALOHA). In some cases, the mobile node may even not have the capa-
bility to perform uplink communication. Competing with other mobile
nodes for an uplink channel and requesting a data item from the server
are expensive in terms of battery power consumption because a mobile
node may have to keep its network interface powered up from the time

Data Dissemination and Management 5

Richard_CH3.qxd 8/24/04 3:25 PM Page 5

it initiates the request to the time the response arrives from the server.
How can the asymmetric nature of wireless connectivity be exploited to
ensure low data access latency and resource consumption? This is a new
challenge posed by this characteristic feature of wireless networks.

The fourth characteristic of mobile computing environments is that
data may be location- and time (context)–dependent. For example, a mobile
user may query various databases periodically to retrieve both location-
dependent and time-dependent information. A traveler visiting a city
may want to know the list of restaurants in her vicinity and may go over
that list each day of her stay to find a new place to try. Similarly, a mobile
salesman may need to know the most up-to-date price list while making
a business deal with a customer. In the case of the traveler, the list of
restaurants does not change as long as the location of the traveler does
not change. In the case of the salesman, the price list does not change as
long as prices of items on the list do not change. Caching and prefetch-
ing can be an effective technique in both these cases to reduce the impact
of low-bandwidth and intermittent wireless links in a mobile environment.
However, novel cache invalidation and prefetching techniques are needed
to maintain location-dependent and time-dependent information.

Context-dependent data impose another problem for cache manage-
ment algorithms—the decision to cache or replace a data item now also
depends on the context (e.g., location) of the mobile node, in addition to
the temporal or spatial locality in the reference pattern. How do you
enhance existing cache management techniques for context-dependent
data? This is another challenge that needs to be addressed for mobile
computing environments.

An architectureless wireless network or a mobile ad hoc network
(MANET) and consists solely of mobile computing devices within mutual
wireless communication range. These types of networks are different from
architecture-based wireless networks in the sense that there are no ded-
icated network infrastructure devices in a MANET. Because of the limited
radio propagation range of wireless devices, the route from one device to
another may require multiple hops. In some scenarios, to communicate
with the outside world, a few devices that have network connections with
outside base stations (or satellites) can serve as the gateways for the ad
hoc network. We would refer to such ad hoc networks as weakly connected
ad hoc networks because they do have some infrastructure support but not
as much as the mobile nodes in infrastructure-based networks. Such
weakly connected ad hoc networks may be used for emergency hospitals
for disaster relief in remote areas and military operations in remote areas.

In general, the MANET environment also has the two features of wire-
less computing environments: weak connectivity and resource constraints.
Consequently, data availability and bandwidth/energy efficiency still
need to be addressed in MANETs. However, data management schemes

6 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 6

developed for an architecture-based wireless network cannot be used
directly to solve the data management problems in a MANET for vari-
ous reasons. First, gateways of ad hoc networks are unreliable mobile
computing devices, whereas base stations are reliable dedicated net-
working devices. Gateways communicate with local hosts using low-
bandwidth, unreliable links, such as radio frequency wireless links, or
possibly with remote hosts through high-latency, unreliable links, such
as satellite channels. On the other hand, base stations communicate
with remote hosts through high-speed wired networks. Second, MANETs
are inherently peer-to-peer (P2P) networks. In contrast, architecture-
based wireless networks mostly follow the client-server (CS) paradigm.
The inherent P2P structure requires rethinking data management
approaches to improve data management performance in MANET envi-
ronments. For example, cooperative caching has been used on the
Internet to provide more cache space and faster speeds. Specifically, the
NLANR caching hierarchy consists of many backbone caches, and those
caches can obtain data from each other using Hyper-Text Transfer
Protocol (HTTP) and the Internet Caching Protocol (ICP) (NLANR, 2002).
However, these cooperative caching schemes do not address the special
concern of MANET environments, namely, weak connectivity and severe
resource constraints, and thus are being adapted for MANETs.

3.2 Data Dissemination

The most prevalent use of a mobile computer is for accessing informa-
tion on remote data servers, such as Web servers and file servers. Usually,
remote data are accessed by sending a request (or a query) to the remote
server. In response to the query, the data server sends the requested data.
This access mode is known as pull mode or on-demand mode. However,
in pull mode, the mobile node has to explicitly send a query. This requires
competing for wireless access to send the query on the uplink channel
and then waiting for the response. The entire process consumes the
mobile node’s precious battery power. Further, wireless bandwidth is
consumed—which in some cases may be scarce. The problem is further
exacerbated if multiple users in a wireless cell request the same data.

Another way in which data can be delivered to a mobile node is by
pushing the data to it. The data server periodically broadcasts the data
(along with some indexing information) on a broadcast (or multicast)
channel. The indexing information is used by a mobile client to deter-
mine when the data in which it is interested will be available on the
broadcast channel. As shown in Fig. 3.2, the mobile node can use this
information to conserve its battery power.

There are several advantages to this pushing (or publishing) mode of
data dissemination. First, broadcasting the frequently requested data

Data Dissemination and Management 7

Richard_CH3.qxd 8/24/04 3:25 PM Page 7

items, called hot data items, conserves bandwidth because it eliminates
repetitive on-demand data transfers for the same data item to different
mobile nodes. This makes the push mode highly scalable because the
same amount of bandwidth is consumed irrespective of how many mobile
nodes simultaneously need a particular data item. Second, this mode of
data transfer also conserves the mobile node’s energy by eliminating the
energy-consuming uplink transmission from a mobile node to the data
server. Obviously, not all the data items can be provided on the broad-
cast channel, and hence both modes need to be supported in a general
mobile computing environment. As illustrated in Fig. 3.3, a cell’s wire-
less bandwidth is divided into three logical channels:

1. Uplink request channel—shared by all the mobile clients to send
queries for data to the server

2. On-demand downlink channel—for the server to send on-demand
request data items to the requesting mobile client

3. Broadcast downlink channel—to periodically broadcast the hottest
data items

From the implementation perspective, it is convenient to partition
the available wireless bandwidth into two physical channels: on-
demand and broadcast. The physical on-demand channel is accessed

8 Chapter Three

Figure 3.2 Broadcast channel access scheme for conserving mobile’s energy.

StockIndex Traffic Sales StockIndex Traffic Sales

Mobile’s transceiver
on to receive index
and to determine
when the information
its interested in will
be available on the
broadcast channel.

Mobile’s
transceiver off
to save energy.

Mobile’s transceiver
on to download the
interested item.

Time

Broadcast period.

Richard_CH3.qxd 8/24/04 3:25 PM Page 8

using a distributed medium access technique such as ALOHA. Both the
uplink request channel and the on-demand channel are mapped to
the same physical on-demand channel. The broadcast channel is slot-
ted such that a data item (page) can fit in each slot. The data server
constructs a broadcast schedule (which page to broadcast when), and
the mobile node can tune in at the beginning of the slot in which the
data item in which it is interested is going to be broadcast to down-
load that data item.

3.2.1 Bandwidth allocation for publishing

Partitioning the available wireless bandwidth among on-demand and
broadcast channels is an interesting problem. Consider that the avail-
able wireless bandwidth that needs to be partitioned between band-
width for an on-demand channel Bo and bandwidth for a broadcast
channel Bb is B (that is, B = Bo + Bb). The data server has n data items
D1, D2, . . . , Dn; each of size S, and each data query is of size R. Further,
assume that D1 is the most popular data item, with popularity ratio p1;
D2 is the next most popular data item, with popularity ratio p2; and so
on. The popularity ratio (or access probability) is the (long-term) ratio
of the number of requests for a data item over the total number of
requests by all the mobile nodes (the value of each pi, 1 ≤ i ≤ n, is between
0 and 1). For simplicity, assume that each mobile node generates
requests at an average rate of r.

Let us try to compute the average access time T over all data items.
Obviously, T = Tb + To, where To is average access time to access an on-
demand item, and Tb is average time to access a data item from the
broadcast channel. The average time to service an on-demand request
is (S + R)/Bo. If all the data items are provided only on-demand, the

Data Dissemination and Management 9

Figure 3.3 Channel allocation to support both push and pull mode of data dissemination.

BasestationDataserver

StockIndex Traffic Sales StockIndex Traffic Sales

Uplink channel Data query

Downlink on-demand channelOn-demand data item

Richard_CH3.qxd 8/24/04 3:25 PM Page 9

average request rate for all the on-demand items will be M × r, where
M is the number of mobile nodes in the wireless cell. We know from queu-
ing theory that the average service time (which includes queuing delay)
would increase rapidly as the query generation rate (M × r) approaches
the service rate [Bo /(S + R)]. Thus it is easy to see that as the number
of mobile nodes increases, the average query generation rate increases,
and when it does so beyond some point, the average service time exceeds
the acceptable server time threshold. This shows that allocating all the
bandwidth to the on-demand channel has poor scalability.

At the other extreme, all the data items can be provided only on the
broadcast channel. That is, all the bandwidth is allocated to the broad-
cast channel. If all the data items are published on the broadcast chan-
nel with the same frequency (ignoring their popularity ratio), then a
mobile node would have to wait, on average, for n/2 data items before
it gets the data items from the broadcast channel. Thus the average
access time for a data item would be (n/2) × (S/Bb). Note that this is inde-
pendent of number of mobile nodes in the cell. However, the average
access time will increase as the number of data items to broadcast
increases. Even if the data server employs a more intelligent schedule
in which hotter data items are broadcast more frequently, the average
access time increases with n. This is so because increasing the broad-
cast frequency of some items necessarily decreases the frequency of
others (i.e., increasing their access time).

Consider the simple case of broadcasting two data items D1 and D2.
Assume that D1 is much more popular than D2 (that is, p1 >> p2). One
may be tempted to broadcast D1 all the time, but that would cause the
access time of D2 to be infinite (i.e., D2 is never available). In fact, it can
be determined that the minimum average access time is achieved when
the frequency f1 of broadcasting D1 and the frequency f2 of broadcasting
D2 are in same ratio as the square root of p1 and the square root of p2.
Specifically, f1 = √p1/(√p1 + √p2), and f2 = √p2/(√p1 + √p2). For example,
assume that p1 = 0.9 and p2 = 0.1 (i.e., data item D1 is nine times more
popular than D2). For this case, the minimum average access time is
achieved when f1 = 0.75 and f2 = 0.25; i.e., D1 should be broadcasted only
three times more often than D2, even though it is nine times more pop-
ular than D2. This is a surprising result indeed. In general, if there are
n data items with popularity ratio p1, . . . , pn, they should be broadcast
with frequencies f1, . . . , fn, where fi = √pi/Q, and Q = √p1 + √p2 + ⋅ ⋅ ⋅ +
√pn, in order to achieve minimum average access latency: p1t1 +
p2t2 + ⋅ ⋅ ⋅ + pntn, where t1, . . . , tn are average access latencies of D1, . . . ,
Dn, respectively (Imieliński and Viswanathan, 1994).

As we have mentioned, the publishing mode helps to save the energy
of the mobile node, although at the cost of increasing access latency.
Hence the goal is to put as many hot items on the broadcast channel as

10 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 10

possible under the constraint that the average access latency is below
a certain threshold L. The algorithm by Imieliński and Viswanathan
(1994), which is shown in Fig. 3.4, can be used to determine what data
items to put on the broadcast channel, as well as the appropriate band-
width allocation for it.

3.2.2 Broadcast disk scheduling

Broadcast scheduling deals with determining how often to publish a cer-
tain data item – once the decision regarding which data items to publish
has been made. A novel way to view a broadcast channel is to regard it
as an extension to the memory hierarchy of the mobile node—a sort of
memory disk in the air. The broadcast channel itself can be structured as
multiple virtual disks, each spinning at different rates. The hottest set
of data items is allocated to the fastest-spinning disk, the next hottest data
item to next-fastest disk, and so on. For example, consider the example
illustrated in Fig. 3.5. There are nine data items, with item D1 assigned
to disk 1, items D2 through D5 assigned to disk 2, and items D6 through
D9 assigned to disk 3. As can be seen from the broadcast schedule, the
items on disk 1 appear four times as frequently as those on disk 3, and
the items on disk 2 appear two times as frequently as those on disk 3. In
effect, disk 1 is spinning fastest, followed by disk 2 and then disk 3.

Figure 3.6 gives the AAFZ algorithm developed by Acharaya, Alonso,
Franklin, and Zodnik for deriving the schedule for the broadcast channel

Data Dissemination and Management 11

Figure 3.4 Imieliński and Viswanathan Algorithm for determining optimal band-
width allocation between on-demand and broadcast channel.

For i = N down to 1 do:

Begin

1. Assign D1, … , Di to the broadcast channel

2. Assign Di+1, … , DN to the on-demand channel

3. Determine the optimal value of Bb and Bo to minimize the average access time T

as follows:

a. Compute To by modeling on-demand channel as M/M/1 (or M/D/1) queue

b. Compute Tb by using the optimal broadcast frequencies f1, … , fi.

c. Compute optimal value of Bb which minimizes the function T = To + Tb.

4. if T <= L then break

End

Richard_CH3.qxd 8/24/04 3:25 PM Page 11

12

F
ig

u
re

 3
.5

E
xa

m
pl

e
de

ri
va

ti
on

 o
f

br
oa

dc
as

t
sc

h
ed

u
le

 f
or

 b
ro

ad
ca

st
 d

is
ks

.

1
2

3
4

5
6

7
8

9
D

at
a

ite
m

s
in

 d
ec

re
as

in
g

or
de

r
of

 p
op

ul
ar

ity
Disk 1

Disk 2

Disk 3

R
el

at
iv

e
fr

eq
ue

nc
y

4
2

1
LC

M
 =

 4
 =

 M
ax

_C
hu

nk

N
um

 C
hu

nk
s

=
M

ax
_C

hu
nk

s/
R

el
_f

re
q(

i)
1

2
4

1
2

3
4

5
6

7
8

9

1
2

3
6

1
4

5
7

1
2

3
8

1
4

5
9

B
ro

ad
ca

st
 s

ch
ed

ul
e

Richard_CH3.qxd 8/24/04 3:25 PM Page 12

that achieves a selected relative spinning of the disks. It takes as input
the number of disks and the assignment of data items to the disk, as well
as the relative spinning frequencies of the disks. For example, the chosen
relative frequencies for the three disks in Fig. 3.5 are rel_freq(disk 1) =
4, rel_freq(disk 2) = 2, and rel_freq(disk 3) = 1. The figure also illustrates
the intermediate computation performed by the algorithm to determine
the broadcast schedule.

Another way to minimize latency and energy consumption for access-
ing data items is to cache them locally. We next discuss issues related
to the caching of data at mobile computers and look at some of the tech-
niques designed for cache management in mobile computing.

3.3 Mobile Data Caching

Caching is a very important performance enhancing technique in the
computing world. A typical computer system consists of a several cache
memories. A cache is a small, fast memory for holding frequently used

Data Dissemination and Management 13

Figure 3.6 Acharya, Alonso, Franklin, Zodnik algorithm for scheduling
broadcast disks.

1. Order the data items from hottest to coldest

2. Partition the list into multiple ranges, called disks. Each disk consists of data

items which nearly same popularity ratio. Let the number of disks chosen be

num_disks.

3. Choose the relative frequency of broadcast for each disk.

4. Cluster the items in each disk into smaller units called chunks: num_chunk(i) =

max_chunks/rel_freq(i), where max_chunks is the least common multiple of

relative frequencies.

5. Create broadcast schedule as follows:

a. For i = 0 to mak_chunks – 1

 i. For j = 1 to n

1. k = i mod num_chunks(j)

2. Broadcast chunk Cj,k

 ii. Endfor

b. Endfor

Richard_CH3.qxd 8/24/04 3:25 PM Page 13

data. In fact, the different types of memories in a computer system, such
as disk, main memory, and cache, can be viewed as a part of a memory
hierarchy in which the closer a memory unit is to the processor, the
smaller is its capacity and access time. How do we reduce memory
read/write latency in the presence of a memory hierarchy? This is the
main problem for cache management in such systems. To achieve this, the
system needs to (transparently) decide what data to cache (to copy from
a farther memory unit to a closer memory unit) so that the cache (memory
unit closer to the processor) can satisfy as many memory requests as pos-
sible—effectively achieving average access time close to that of the fast
memory unit at the effective price of the large memory unit. Cache man-
agement techniques try to predict which data items are most likely to be
used in the future and either copy them to a memory unit closer to the
processor when they are accessed for the first time (i.e., on a cache miss)
or prefetch them well in advance so that they are available in the cache
memory when they are needed. Many cache replacement algorithms,
such as least-recently used (LRU) and prefetching algorithms, have been
developed to solve this problem (Silberschatz and Galvin, 1998).

3.3.1 Caching in traditional distributed
systems

Data caching has been used traditionally in distributed (as well as
nondistributed) systems to improve performance (data access latency)
by exploiting temporal and spatial locality of the reference pattern. For
such distributed systems, it is assumed that a high-bandwidth, low-
latency network connects the clients and servers and that network fail-
ures are infrequent. In cases where access latency is high and/or
bandwidth is not sufficient, data prefetching in conjunction with data
caching can be used to hide communication latency and to cope with lim-
ited bandwidth. Both data caching and prefetching are performed trans-
parently so that the applications do not have to do anything different
when either is used. The only difference from the user’s (application’s)
perspective is that the results are obtained faster (or in case of appli-
cations such as video streaming, the quality of the output is better). Thus
proper use of caching/prefetching in such cases can only improve the sit-
uation and cause no harm.

Further, in distributed systems and network computing environ-
ments, cache management schemes need to handle two different sce-
narios. In the first scenario, the data in the shared memory or the server
can be read or written by different processors or clients concurrently. In
the second scenario, the data are read-only for the clients. Further,
many times the data may be replicated onto multiple servers for improv-
ing fault tolerance and availability. An example of the former scenario

14 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 14

is a distributed file system, whereas an instance of the latter scenario
is seen often on the World Wide Web (WWW). In these environments,
when a client accesses a cached data item, the server or another client
could have just modified that data item. Thus, in distributed and net-
work computing environments, the most crucial problem for caching is
how to maintain data consistency among the clients and the servers.
This problem is more difficult to solve than the problem of ensuring that
the copy of the data in the higher-level memory is updated, such as
through write-through or write-back schemes (Silberschatz and Galvin,
1998), when the cached copy of the data in the lower-level memory has
been updated. The complexity arises from the various failures that may
occur—server failure, network failure, and client failure. To maintain
cache consistency in distributed or network computing environments,
different approaches have been developed. These approaches include
polling every time, adaptive time to live (TTL) (Gwertzman and Seltzer,
1996), server invalidation (Cao and Liu, 1998), and leases-based inval-
idation (Cao and Liu, 1998; Yin et al., 1998).

In addition to caching for improving data access performance, caching
is used to improve data availability by trading it off against consistency.
Before understanding this tradeoff, we next discuss traditional consis-
tency maintenance scheme.

3.3.2 Cache consistency maintenance

Cache consistency maintenance is required to ensure that whenever a
data item of value is fetched from the cache, it satisfies certain currency
requirements. Several cache consistency models are supported in dis-
tributed systems. Under a strong cache consistency model, the cache
consistency maintenance protocol guarantees that the value of a data
item x provided to the application at any time is the most recent value
of x. This is to say, if the data item x were accessed at time t, then the
value of x would be the value of the last write to x that occurred before
time t. A strong cache consistency requirement implies that whenever
data item x is accessed, checks are performed in consultation with
remote servers to determine whether the cached value of x is the most
current. In implementations of strong cache consistency protocols such
as that employed by Network File System (NFS), if the remote server
is inaccessible because either the network connecting the client and the
server is down or the server itself is down, then the cache access to x just
waits until the server becomes accessible. In some implementations,
the client machine even blocks any further cache access, practically
freezing the client machine. Maintaining such strict consistency require-
ments can make mobile computing environments unusable when dis-
connections become frequent.

Data Dissemination and Management 15

Richard_CH3.qxd 8/24/04 3:25 PM Page 15

Several cache consistency maintenance schemes have been designed
for different distributed applications, such as the WWW, distributed
file systems, and CS databases. These techniques can be classified based
on whether they detect or avoid access to stale data. These techniques
provide different degrees of consistency guarantees with varying costs
and availability in the presence of disconnections.

The classic techniques for maintaining cache coherency, such as call-
backs and validity checks, were designed for computing environments
consisting of workstations connected via reliable wired links. These tech-
niques are not suitable for mobile computing environments consisting of
battery-powered laptops connected via wireless links. For example, call-
back breaks (invalidation messages) lost while a mobile client is discon-
nected from the network may result in stale cached items in the client’s
cache (Fig. 3.6). Thus, in the absence of any other mechanisms, a client
may have to invalidate the entire cache on each disconnection. Refetching
valid data from the server is wasteful of both wireless bandwidth and bat-
tery power. The same is true when validation checks are used for every
data item before using it. To address these drawbacks of traditional tech-
niques, new methods have been developed for maintaining cache con-
sistency in mobile environments that take into account the constraints
and features of such environments.

3.3.3 Performance and architectural issues

It is challenging to design caching strategies for mobile environments
because an efficient strategy should take into consideration various
issues such as

1. Data access pattern

2. Data update rate

3. Communication/access cost

4. Mobility pattern of the client

5. Connectivity characteristics (disconnection frequency, available band-
width)

6. Data currency requirements of the user (user expectations)

7. Context dependence of the information

In mobile computing environments, the cache management schemes
need to address the following problems:

� How to reduce client-side latency
� How to maintain cache consistency between various caches and the

servers

16 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 16

� How to ensure high data availability in the presence of frequent dis-
connections

� How to achieve high energy/bandwidth efficiency
� How to determine the cost of a cache miss and how to incorporate this

cost in the cache management scheme
� How to manage location-dependent data in the cache
� How to enable cooperation between multiple peer caches

The first two problems are not new to mobile computing environments.
They have been studied extensively in distributed systems and wired net-
work computing environments. The subsequent four problems stem from
the features of mobile computing environments. And the last problem is
one of taking advantage of the P2P paradigm of ad hoc networks. In the
next section we present several cache management schemes that have
been developed to address these problems specific to mobile computing
environments. Before looking at these management schemes, let us look
at some of the cache organization issues. These include

1. Where do we cache?

2. How many levels of caching do we use (in the case of hierarchical
caching architectures)?

3. What do we cache (when do we cache a data item and for how long)?

4. How do we invalidate cached items?

5. Who is responsible for invalidations? What is the granularity at
which the invalidation is done?

6. What data currency guarantees can the system provide to users?

7. What are the costs involved? How do we charge users?

8. What is the effect on query delay (response time) and system through-
put (query completion rate)?

For example, in a mobile environment, data can be cached at the
server, at a proxy, or at a client. Furthermore, the data at each cache
depend on the frequency, pattern, and cost of access. In the case of a
server, data cached depend on the aggregate access pattern and the cost
of retrieving requested data from the data store (i.e., I/O cost). In the case
of the proxy and client, the caching strategy has to take into account the
access pattern, communication cost, and update rate of the data being
cached. In reality, data can be cached at several places. In order to main-
tain the consistency of the cached data, different strategies are employed
based on the communication cost and design goals. If the goal is to min-
imize uplink queries by a mobile client (saving battery power of the

Data Dissemination and Management 17

Richard_CH3.qxd 8/24/04 3:25 PM Page 17

mobile node) and to minimize contention on narrow-bandwidth wireless
links (saving both bandwidth and energy), then the server can broad-
cast invalidation reports periodically (Barbara and Imieliński, 1994).
The invalidation report can be organized in different ways and at var-
ious data granularity levels (Jing et al., 1997; Mummert and
Satyanarayanan, 1994). We describe these and other major techniques
to address the preceding issues and characteristics of mobile environ-
ments in the next section.

3.4 Mobile Cache Maintenance Schemes

Data caching is especially important in mobile computing environments
for improving data availability and access latencies particularly because
these computing environments are characterized by narrow-bandwidth
wireless links and frequent voluntary and involuntary disconnections
from the static network. However, these very features of mobile envi-
ronments, coupled with the need to support seamless mobility, make
maintaining a consistent cache at the mobile client a challenging task.
There are several reasons for this. First, the underlying cache mainte-
nance protocol should not overburden wireless resources and the mobile
device. Second, these protocols should be energy-efficient, tolerant of dis-
connections, and adaptive to varying the QoS provided by the wireless
network.

3.4.1 A taxonomy of cache maintenance
schemes

Before going into details of some important mobile cache maintenance
scheme, let us first understand the main characteristics of these schemes
through the following classification.

As we saw earlier, there are two different cache consistency require-
ments: strong cache consistency and weak cache consistency. Strong
cache consistency specifies that the cached data always be up-to-date.
Polling every time and invalidating data on modification are two
approaches to achieve strong cache consistency. On the other hand,
weak cache consistency allows some degree of data inconsistency. TTL-
based consistency strategies are used when it is sufficient to guarantee
weak consistency for a data item.

In general, there are three basic strategies for maintaining cache con-
sistency: polling every time, TTL-based, and invalidation-based (Cao and
Liu, 1998). With polling-every-time and TTL-based caching strategies,
the client initiates the consistency verification; i.e., the client is respon-
sible for verifying the data consistency before using them. In a TTL-
based caching strategy, every cached data item is assigned a TTL value,

18 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 18

which can be estimated based on the data item’s update history. For
example, the adaptive TTL approach in Cate (1992) estimates TTL
based on the age of a data item. When the user request arrives for a data
item x, if data item x’s residence time has exceeded its TTL value, the
client sends a message to the server to ask if x has changed. Based on
the server’s response, the client may get a new copy of x from the server
(if data item x has changed since the last time the client cached x) or
just use the cached copy to answer the user’s request (if data item x has
not been modified since the last time the client received a copy of x). For
the polling-every-time approach, every time a data item is requested,
the clients need to poll the server to verify if the cached data item has
changed. The polling-every-time caching strategy can be thought of as
a special type of TTL-based scheme, with the TTL field equal to zero for
every data item. Polling-every-time and TTL-based approaches are used
in many existing Web caches.

On the other hand, with invalidation-based strategies, the server ini-
tiates the cache consistency verification. Invalidation-based cache strate-
gies are further classified into stateless and stateful approaches (Barbara
and Imieliński, 1994). In a stateless approach, the server does not main-
tain information about the cache contents of the clients; i.e., the server
does not know what data are cached or how long they have been cached
by a particular client. This type of cache maintenance strategy is dis-
cussed in many papers, including those by Barbara and Imieliński (1994,
1995), Cao and Liu (1998), Jing and colleagues (1997), and Tan, Cai, and
Ooi (2001). Stateless approaches can be further categorized into syn-
chronous and asynchronous approaches. In asynchronous approaches,
invalidation reports are sent out on data modification. In synchronous
approaches, the server sends out invalidation reports periodically. For
a detailed comparison and evaluation of different approaches in this cat-
egory, interested readers should refer to Tan, Cai, and Ooi (2001).

In stateful approaches, a server keeps track of the cache contents of
its clients. Although stateful approaches also can be categorized into
synchronous and asynchronous approaches, there are hardly any
schemes in the stateful synchronous category. One example of a state-
ful asynchronous approach has been the Asynchronous Stateful (AS)
scheme proposed by Kahol et al., 2001. In this approach, a home loca-
tion cache (HLC) is maintained for every client which is used to record
the data items cached by that client and their last modification times.
Based on this information, a client’s HLC can generate asynchronously
invalidation reports specific to that client.

The preceding taxonomy is not restricted to mobile computing envi-
ronments. Here, however, we are going to concentrate on the cache con-
sistency strategies specified for mobile computing environments. In
these environments, the main challenge for consistency maintenance

Data Dissemination and Management 19

Richard_CH3.qxd 8/24/04 3:25 PM Page 19

strategies is caused by weak connectivity and the resource constraints
of mobile computing environments.

3.4.2 Cache maintenance for push-based
information dissemination

Traditional CS information systems use pull-based communication
schemes for information access, in which clients initiate data transfers
by requesting data from a server. Such pull-based techniques are not
suitable for architecture-based wireless networks because they require
substantial upstream communications. To make use of the downstream
communication capacity, push-based information system architectures
have been developed, where data are pushed from the servers to clients
(Imieliński, Viswanathan, and Badrinath, 1994a, 1994b; Acharya et al.,
1995; Acharya, Franklin, Zdonik, 1997). The idea is that the server peri-
odically broadcasts frequently accessed data (hot data items) on a broad-
cast channel. The mobile node can tune into the broadcast channel at
the start of the broadcast, determine when the data items in which it
is interested will be available on the channel by reading the index infor-
mation, and then go to sleep until the time when the data item is on the
channel.

Such push-based architectures present a new challenge for cache
management. Traditionally, caches are used to store the most frequently
used data, but in push-based environments, the cost of obtaining the
data also should be considered. For example, consider the following sce-
nario from Acharya and colleagues (1995): Assume that data item x is
accessed 1 percent of the time at a client C and is also broadcasted 1 per-
cent of the time and that another data item y is accessed 0.5 percent of
the time at C but is broadcast only 0.1 percent of the time. This implies
that the time period between two occurrence of data item y on the broad-
cast channel ty is 10 times the broadcast period tx of data item x. If we
choose to cache x instead of y, then the client will experience longer
delays when a cache miss happens for y. This will adversely affect the
average data access delay. Intuitively, the penalty for not caching a data
item on the average data access latency is proportional to the product
of access frequency and broadcast period. For this example, the prod-
uct of access frequency and broadcast period for data item y is higher
than that for data item x.

Therefore, new cache management algorithms have been developed
for pushed-based information systems that take into account the cost
of a cache miss. Note that in traditional cache systems all cache misses
are assumed to have the same cost. This is not so in push-based infor-
mation access architectures. In general, an important metric to evalu-
ate these cache management algorithms is the achievable hit ratio, the

20 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 20

fraction of total data requests satisfied from the cache. This metric
depends not only on cache management algorithms but also on the
cache size and the particular request pattern. In mobile computing envi-
ronments, the hit ratio should not be the only metric to evaluate cache
management algorithms (Satyanarayanan, 1996) because its underly-
ing assumption is that all cache misses have equal cost. This assump-
tion does not necessarily hold in weakly connected environments, where
cache miss cost also depends on data size and timing. New metrics rep-
resenting different cache costs in mobile computing environments there-
fore are needed. Let us consider one such metric called PIX.

Acharya and colleagues (1995) proposed a cost-based page-replacement
algorithm using PIX. Suppose that the access probability of data item
d is P and the broadcast frequency is X, then the PIX value of d is P/X.
For the preceding example, the algorithm replaces item x with y because
y has a higher PIX value. Note that, in general, the broadcast pattern
of the server also should be considered for the client’s cache management
algorithms.

3.4.3 Broadcasting invalidation reports

In this section we describe cache consistency management schemes based
on broadcasting invalidation reports. This technique is for wireless cel-
lular environments. We begin describing the broadcasting timestamp
(BT) scheme from Barbara and Imieliński (1995). As illustrated in
Fig. 3.7, a data server periodically broadcasts invalidation reports that
consist of all the invalidations in a window of the last w time units. An
invalidation consists of a pair of the form (id, ts), where id is the identi-
fier of a data item that was modified at most w time units ago, and ts is
the timestamp denoting the time when it was modified, that is, t − w ≤
ts < t, where t is the time when the invalidation report was sent by the
server. On receipt of an invalidation report with timestamp t, denoted
as IR(t), within w time units from last invalidation report, a mobile
client m performs the following operation to validate its cache: For each
data item id in m’s cache with (id, ts) found in report IR(t), if the time-
stamp of id in m’s cache is less than ts, then the cached entry for id is
stale, and it is deleted from m’s cache; otherwise, the timestamp of the
cached entry of id is set to t.

The window size w decides how long a client can sleep (be disconnected
from the network) and still be able to validate the cached entry of a data
item. A mobile client that sleeps longer than w time units has to discard
all the items in its cache (or revalidate them before use). All the clients
in the wireless cell experience a delay for any access to a cached entry
until the arrival of the next invalidation report. On receipt of an IR, a
mobile client validates the cached entry.

Data Dissemination and Management 21

Richard_CH3.qxd 8/24/04 3:25 PM Page 21

There are several works based on the idea of periodically broadcasting
invalidation reports by Barbara and Imieliński (1994). Jing and col-
leagues (1997) have proposed a scheme to adjust the size of the invali-
dation report to optimize the use of wireless bandwidth while retaining
the effectiveness of cache invalidation. Liu and Maguire (1996) have pro-
posed a two-level caching scheme based on mobility agents that takes into
account the mobility pattern of the user to restrict broadcasting of the

22 Chapter Three

Figure 3.7 Problem with callback invalidation scheme in mobile com-
puting environment.

Basestation

get x

Dataserver

x = 10

Basestation

x = 10

Dataserver

x = 15

x = 10

Invalidate x

Basestation

use
x

Dataserver

x = 15

Richard_CH3.qxd 8/24/04 3:25 PM Page 22

reports in the neighborhood of the user’s current location. Hu and Lee
(1998) have proposed broadcasting invalidation report methods that
take into account the update and query rates/patterns and client dis-
connection time to optimize the uplink query cost. These invalidation
report schemes have the following characteristics:

1. They assume a stateless server and generally do not address the
issue of mobility directly. An exception to this is the work by Liu and
Maguire, 1996.

2. The entire cache is invalid if the client is disconnected for a period
larger than the period of the broadcast—making scalability of such
schemes questionable for large databases.

3.4.4 Disconnected operation

In order to increase the utility of mobile computers, it’s highly desir-
able that users are able to continue working on their tasks irrespective
of the state of connectivity. This however is problematic when the appli-
cation data is shared by several other clients. Let us consider Coda’s
approach to this problem of permitting disconnected operation on
shared data.

Disconnected computing (operation) is possible whenever some infor-
mation is better than no information at all. In other words, whenever
data availability is more important than data consistency. On the other
hand, when obtaining current data is important, then disconnected oper-
ation (or modification of data) should not be permitted. In distributed sys-
tems design, a tradeoff exists between availability and consistency. The
Coda file system provides support for disconnected operations on shared
files in UNIX-like environments (Kistler and Satyanarayanan, 1992).
The goal is to support file operations even while the user is discon-
nected from the network. Caching at clients is used along with server
replication to improve availability of the data. Coda also uses two mech-
anisms for cache coherency. While the client is reachable from at least
one server, a callback mechanism is used. When disconnection occurs,
access to possibly stale data is permitted at a client for the sake of
improving availability. On reconnection, only those modifications at the
client are committed which do not cause any conflict. A balance between
the speed of validating the cache (after a disconnection) and the accuracy
of invalidations is achieved by maintaining version timestamps on vol-
umes (a subtree in the file system hierarchy). However, validating the
entire cache on every reconnection may put an unnecessary burden on the
clients. Furthermore, since Coda is a distributed file system, it assumes
a stateful server, which may not be appropriate for other applications,
such as Web caching. Coda clients hoard files while they are connected

Data Dissemination and Management 23

Richard_CH3.qxd 8/24/04 3:25 PM Page 23

to the data server. Hoarding is a cache maintenance scheme to facilitate
disconnected operations. The main issues in hoarding are

1. What data items (files) do we hoard?

2. When and how often do we perform hoarding?

3. How do we deal with cache misses?

4. How do we reconcile the cached version of the data item with the ver-
sion at the server?

Coda uses a prioritized scheme to determine what to hoard. It uses
user-assigned priorities on data items (files) along with the data access
pattern information. Periodically, a hoard walk is performed on the
cache to ensure that no uncached object has a higher priority than any
cached object. Hoard walking is a way to ensure that the cache is in equi-
librium in the sense that it meets user expectations about availability
when disconnected from the network.

3.4.5 Asynchronous stateful (AS) scheme

In this section we describe a caching scheme called the asynchronous
stateful (AS) scheme (Kahol et al., 2001).

AS uses asynchronous invalidation reports (callbacks) to maintain
cache consistency, as opposed to a broadcasting timestamp scheme,
which sends invalidation reports periodically. Further, invalidation
reports are sent to a mobile host only when some data change. The AS
scheme is illustrated in Fig. 3.8. For each mobile client (host), a home
location cache (HLC) is maintained by its home agent (HA) to assist with
handling disconnections. The HA is similar in concept to the HA in
Mobile IP (see Chap. 2) because all the messages between the mobile
client and the data server pass through the HA. The difference is that
the HA here is used to assist in cache consistency maintenance, whereas
the HA in Mobile IP is used for location management and routing.
Further, the HA in AS architecture can be maintained at any trusted
static host in the network and can be moved closer to the mobile host
for improving performance.

AS assumes the following computing scenario: The application pro-
gram runs on the mobile host as a client process and communicates
with the data server through messages; i.e., the client sends an uplink
request (query) for the data it needs to the data server, and the server
responds by sending the requested data on the downlink. In order to
minimize the number of uplink requests, the client caches some data in
its local memory. The objective of this scheme is to minimize the over-
head for mobile hosts to validate their cache on reconnection, to allow
stateless servers, and to minimize the bandwidth requirement. These

24 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 24

25

F
ig

u
re

 3
.8

B
ro

ad
ca

st
in

g
ti

m
es

ta
m

p
sc

h
em

e.

D
at

as
er

ve
r

W
ire

le
ss

 a
cc

es
s

po
in

t

T
im

e
L

w
 =

 k
L

Invalidation

report

D
at

a
ite

m
 ID

 a
nd

 it
s

up
da

tio
n

tim
es

ta
m

p
pa

ir(
ID

,t)
 fo

r
al

l
up

da
te

d
da

ta
 it

em
s

in
 la

st
 w

 ti
m

e
un

its
.

M
ob

ile
 h

os
t

(M
H

)

Queries

Q
ue

rie
s

ar
e

ba
tc

he
d

an
d

an
sw

er
ed

 a
fte

r
ca

ch
e

va
lid

at
io

n
fo

llo
w

in
g

th
e

ne
xt

in
va

lid
at

io
n

re
po

rt

C
ac

he
 v

al
id

at
io

n
is

 p
er

fo
rm

ed
.

Richard_CH3.qxd 8/24/04 3:25 PM Page 25

objectives are achieved by buffering the invalidation messages in a
mobile host’s HLC by its HA. The HLC can be viewed as a proxy in the
CS proxy architecture for adaptive computing we saw in Chap. 1. Here
the HLC helps in adapting to a client’s arbitrary disconnection pattern.

A mobile host’s HLC has an entry for each data item cached by the host
in which it maintains only the timestamp when that data item was last
invalidated. At the cost of this extra overhead of maintaining an HLC,
a mobile host can continue to use its cache even after prolonged periods
of disconnection from the network. This is a considerable savings over
the broadcasting timestamp scheme we saw previously because in the
broadcasting timestamp scheme, the cache has to be discarded if the
disconnection period exceeds the invalidation window duration w.

In the AS scheme, a mobile host is considered to be in two modes:
awake or asleep. When a mobile host is awake—connected to the net-
work and hence the data server—it can receive invalidation messages.
Thus this state includes both active and dozing CPU modes. A mobile
host can be disconnected from the network either voluntarily or invol-
untarily. From the perspective of the mobile host’s cache maintenance,
it is irrelevant whether the invalidation was lost due to voluntary dis-
connection (e.g., switching off the laptop) or involuntary disconnection
(e.g., wireless link failure, handoff, etc.). Thus a disconnected client is
considered to be in sleep mode. The term wakeup is used to indicate the
reestablishment of connection between the mobile host and the data
server.

The AS scheme makes the following assumptions:

� Whenever the data server updates any data item, an invalidation
message is sent out to all HAs via the wired network (IP Multicast can
be used for this purpose). The HAs forward this message to the rele-
vant mobile hosts; thus, when a mobile host is roaming, it gets the
invalidation message if it is not disconnected.

� No message is lost due to communication failure or otherwise in the
wired network.

� A mobile host can detect whether or not it is connected to the network.
Whenever the mobile host is disconnected, it suspends answering any
query from the application.

� A mobile host informs its HA before it stores (or updates) any data item
in its local cache.

The AS scheme works as follows. The HA keeps track of what data
have been locally cached at its mobile hosts (cache state information of
the mobile host). In general, the HLC for mobile host m is a list of records
(x, T, invalid flag) for each data item x locally cached at m, where x is the

26 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 26

identifier of a data item, and T is the timestamp of the last invalidation
of x. The timestamp is the same as that provided by the server in its inval-
idation message. The invalid flag (in the HLC record for the specific data
item) is set to TRUE for data items for which an invalidation has been sent
to the mobile host but no acknowledgment has yet been received. The
cache timestamp that is sent by the mobile host with its query message
serves as an implicit acknowledgement for the invalidation messages.

Each mobile host maintains a local cache of data items that it accesses
frequently. Before answering any queries from the application, it checks
if the requested data are in a consistent state. Callbacks from an HA
are used to achieve this goal. When an HA receives an invalidation mes-
sage from a data server, the HA determines the number of mobile hosts
that are using the data by consulting their HLCs and sends an invali-
dation report to each of them. When a mobile host receives the invali-
dation message, it discards that data item from its local cache. When a
mobile host receives (from the application) a query for a data item, it
satisfies the query from its local cache if the data item is present in the
cache, which saves latency, bandwidth, and battery power; otherwise,
an uplink request to the HA for the data item is required. The HA asks
the server for the data item on behalf of the mobile host. On receiving
the data item, the HA adds an entry to the mobile host’s HLC for the
requested data item and forwards the data item to the mobile host.

A mobile host alternates between active modes and sleep modes. In
the sleep mode, a mobile client is unable to receive any invalidation mes-
sages sent to it by its HA, and it suspends processing of any queries from
the applications. The following timestamp-based scheme is used by
which the HA can decide which invalidations it needs to retransmit to
the mobile host. Each client maintains a timestamp for its cache called
the cache timestamp. The cache timestamp is the timestamp of the last
message received by the mobile host from its HA. The client includes the
cache timestamp in all its communications with the HA. The HA uses
the cache timestamp to discard invalidations that it no longer needs to
keep and to decide which invalidations it needs to resend to the client.
On receiving a message with timestamp t, the HA discards any invali-
dation messages with timestamp less than or equal to t from the mobile
host’s HLC. Further, it sends an invalidation report consisting of all the
invalidation messages with timestamps greater than t in the mobile
host’s HLC to the mobile host.

When a mobile host wakes up after a sleep, it sends a probe message
to its HA with its cache timestamp. The probe message is piggybacked on
the first query after waking up to avoid unnecessary probing. In response
to this probe message, the HA sends an invalidation report. In this way,
a mobile host can determine which data items changed while it was dis-
connected. A mobile host defers answering all queries that it receives

Data Dissemination and Management 27

Richard_CH3.qxd 8/24/04 3:25 PM Page 27

after waking up until it has received the invalidation report from its HA.
In this scheme, the time at which the mobile host got disconnected is not
needed. Simply by maintaining a cache timestamp, both wireless link fail-
ures and voluntary disconnections are handled. Even if the mobile host
wakes up and then immediately goes back to sleep before receiving the
invalidation report, consistency of the cache is not compromised because
it would use the same value of its cache timestamp in its probe message
after waking up and hence get the correct information in the invalidation
report. Thus AS can handle arbitrary sleep patterns of the mobile host.

Consider the example scenario shown in Fig. 3.8. Initially, the cache
timestamp of the mobile host is t0, and mobile host’s cache has two
data items with IDs x and z. When the HLC receives an invalidation
message notifying it that x has changed at the server at time t1, it adds
the invalidation message to mobile host’s HLC and also forwards the
invalidation message to the mobile host with data item ID and time-
stamp, i.e., (x; t1). On receiving the invalidation message from the HLC,
the mobile host updates its cache timestamp to t1 and deletes data
item x from its cache. Later, when the mobile host wants to access y, it
sends a data request with (y; t1) to the HLC. In response to the data
request, the HLC fetches and forwards the data item associated with
y to the mobile host and adds (y; t2) to the mobile host’s HLC, where t2

is the timestamp of the last update provided by the data server. The
mobile host updates its timestamp to t2 and adds y to its cache. Now
suppose that the mobile host gets disconnected from the network, and
the invalidation message for y is lost because of this disconnection.
When the mobile host wakes up, it ignores any invalidation messages
it receives (until the first query) because later, for its first query after
waking up, it sends a probe message (invalidation check message) to
the HLC. The HLC uses the timestamp in this probe message to deter-
mine the invalidations missed by the mobile host and sends an inval-
idation report with all the invalidations missed by the mobile host. In
this case, the HLC determines from the mobile host’s cache timestamp
t2 that the mobile host has missed invalidations for y and z, so it resends
them to the mobile host.

The AS scheme ensures, in absence of any loss of invalidation reports
in wired networks, that the data returned to a mobile client is at most
t seconds old, where t is the maximum latency of forwarding an invali-
dation report from the server to the client via its HA. This is different
from the weak-consistency schemes, e.g., the Coda scheme, where a dis-
connected client is allowed both read and write access to its cached
data. When the client gets reconnected, its cached data are reintegrated
with the server data. The user needs to resolve any conflicts arising from
independent modification of data by multiple disconnected clients.
Coda’s design is suitable for its goals, i.e., providing UNIX-like file

28 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 28

29

F
ig

u
re

 3
.9

A
S

 s
ch

em
e

fo
r

ca
ch

e
co

n
si

st
en

cy
 m

ai
n

te
n

an
ce

.

H
om

e
ag

en
t (

H
A

)

W
ire

le
ss

 a
cc

es
s

po
in

t
T

im
e

M
ob

ile
 h

os
t

(M
H

)

1)
 F

et
ch

 y
 fr

om
 s

er
ve

r
2)

 A
dd

 (
y,

t2
)

to
 H

LC
3)

 F
or

w
ar

d
y

to
 M

H

xt0 z

t1 z

yt2 z
*t5

C
ac

he

T
im

es
ta

m
p

D
at

a

(x
,t1

)

t1

x
ch

an
ge

d

Q
ue

ry

(y
,t1

)

(y
,t2

)

t2

In
va

lid
at

io
n

D
at

a

y
ch

an
ge

d

z
ch

an
ge

d

t3
t4

M
H

 a
w

ak
e

S
le

ep
in

g

Lo
st

Ig
no

re
d

F
irs

t q
ue

ry
af

te
r

w
ak

eu
p

t5

(y
,z

,t5
)

H
om

e
lo

ca
tio

n
ca

ch
e

(H
LC

)

Data id x z
* *

F F
z

*
F

y z
t3 *

T T
x z

t0 *

Y F

y z
t3 *

T T

Timestamp

Invalid flag

t0

Q
ue

ry
+

pr
ob

e
(*

,t2
)

M
ai

nt
ai

ne
d

in
 H

A

D
at

as
er

ve
r

D
at

as
er

ve
r

In
te

rn
et

Au: Pls.
provide
callout of Fig
3.9 in text.

Richard_CH3.qxd 8/24/04 3:25 PM Page 29

system semantics in an environment where write-write conflicts are
rare (e.g., college campus environments) and access to stale data does
not lead to dire consequences or is detectable by the application. In con-
trast, the AS scheme is designed for applications that require strict
data currency guarantees and in which access to stale data is undesir-
able. Such applications include access to critical data such as bank
account information and air traffic information.

3.4.6 To cache or not to cache?

Consider the problem of deciding whether to cache a particular data item
x (e.g., a Web page) at a mobile node m. If x is never modified, then the
decision is obvious—it is always beneficial to maintain a copy of x at m
as long as resources are available to do so. However if x is a modifiable
data item, then the decision to cache x at m is not straightforward. The
problem arises because the future access and modification pattern (who
will modify x when) of the data item is not known a priori. Static allo-
cation schemes such as “always cache data item at m” (SA-always) and
“never cache data item at m” (SA-never) are obviously not optimal. SA-
always is costly when the data item is modified frequently at the server.
Whenever the data item is modified at the server, the mobile node has
to be contacted to update its cached copy. This uses precious wireless
bandwidth and the mobile node’s battery energy. In case the mobile
node does not access the modified data item subsequently, the resources
consumed to update the copy at the mobile node go to waste. However,
if the mobile node vigorously accesses the updated version of the data
item, then SA-always conserves resources because now the mobile node
does not have to contact the server multiple times to ensure that it has
the most recent copy of data item x. Similarly, SA-never is costly when
the data item is modified infrequently at the server. In fact, the fre-
quency of modification should be considered in relation to the access rate
of data item x by m. If the cache management scheme can somehow fore-
see the access patterns, then it can determine dynamically which scheme
to use in the future—SA-never or SA-always. Prediction of the future
access pattern is facilitated by temporal locality in the access pattern.
Dynamic optimization algorithms are known as online algorithms in
computer science parlance. Online algorithm performance is compared
with that of offline algorithms (algorithms that have complete knowl-
edge of the future in making the optimization decision) in terms of com-
petitive ratio. Informally, an online algorithm is α competitive if the
quality of the optimization decision is always within a factor of α of the
optimal offline algorithm.

Sistla, Wolfson, and Huang (1998) have developed an online algorithm
called a sliding-window dynamic data allocation scheme to determine

30 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 30

when to cache a data item at a mobile client. Intuitively, the scheme
decides to choose between SA-always and SA-never based on the access
pattern in the recent past. That is, the data item is allocated/deallocated
at the mobile node based on the access pattern history. This history is
maintained as a window of size k (a parameter of the allocation scheme),
and it consists of “relevant” access operations—a read operation at the
mobile node (rm) and a write operation at the server (ws). The “irrele-
vant” operations [a write operation at the mobile node (wm) and a read
operation at the server (rs)] are not considered because the “cost” of
these operations remains the same whether or not the mobile node has
a copy of the data item—in the case of wm, the write always needs to
be propagated to the server (an assumption of this scheme), and in the
case of rs, the server always has the up-to-date copy as a consequence
of the previous assumption. Let us assume a cost model in which each
message costs a unit. Under this message-passing cost model, the cost
of relevant operations are as follows:

� Each rm costs 1 unit if the mobile node does not have the copy of the
data item; otherwise, its cost is 0 units.

� Each ws costs 1 unit if the mobile node has the copy of the data item
(because the write has to be propagated to the mobile); otherwise, its
cost is 0 unit.

A schedule ψ is a sequence of relevant operations. For example, ψ =
(ws, rm, rm, ws) is a schedule with two writes by the server separated
by two reads by the mobile node. The cost of the schedule ψ under allo-
cation scheme A, denoted as cost(ψ, A), is the sum of the cost of each oper-
ation in ψ under allocation scheme A. For example, cost(ψ, SA-always)
is 1 + 0 + 0 + 1 = 2, and cost(ψ, SA-never) is also 2 = 0 + 1 + 1 + 0.

Now consider a dynamic allocation scheme in which the data item is
allocated at the mobile node after the first ws operation and deallo-
cated after second rm operation. Assuming that the allocation and deal-
location of data items at the mobile cost nothing, the cost of the schedule
is 0. In reality, there is no free lunch. When the data item is allocated
at the mobile node, some state information may have to be sent to the
mobile node by the server. Also, when the data item is deallocated at the
mobile node, some state information may have to be sent to the server
by the mobile node.

In the sliding-window scheme, the state information is the window
itself. When the data item is allocated at the mobile node, the mobile node
is in charge of maintaining the window because it sees all the relevant
operations. However, when the data item is not cached at the mobile node,
the window is maintained at the server. Under the message-passing cost
model, each of these operations costs 1 unit. Continuing the preceding

Data Dissemination and Management 31

Richard_CH3.qxd 8/24/04 3:25 PM Page 31

example, the cost of ψ still would be 2 when we take into account the
allocation and deallocation costs. The dynamic scheme will incur a much
lower cost for schedules that have a long sequence of ws operations fol-
lowed by a long sequence of rm operations. For example, a schedule
with m ws operations followed by n rm operations will have a cost of m
and n for SA-always and SA-never, respectively. For the dynamic
scheme, however, the cost of this schedule would be just 1 unit because
the data item can be allocated at the mobile node after the last write
operation at the server, resulting in zero cost for all the subsequent
reads at the mobile node. In fact, the dynamic scheme is the optimal
offline scheme.

The sliding-window scheme with window size k [SW(k)] maintains the
last k relevant operations. After the window is full, each subsequent rel-
evant operation is added to the window, and the oldest operation is
deleted from the window. The SW(k) makes the deallocation/allocation
after each relevant operation has been added to the window based on
the following rules:

� Case “data item is not cached at the mobile node.” If the window has
more rm operations than ws operations (i.e., number of rm operations
is greater than k/2), then allocate the data item at the mobile node.

� Case “data item is cached at the mobile node.” If the window has more
ws operations than rm operations, then deallocate the data item from
the mobile node.

These algorithms are shown to be competitive with respect to the
optimal offline algorithm. In this work, it is implicitly assumed that the
mobile client is always connected to the network. This is necessary to
maintain the history information, which is maintained dynamically
either at the mobile client or at the server. Furthermore, some additional
issues involving implementation, such as caching multiple data items
and finite cache sizes (cache replacement policy), have to be considered
in order to use such data allocation schemes in practice.

3.5 Mobile Web Caching

Mobile Web caching mechanisms employ a TTL-based cache consis-
tency maintenance scheme. In the TTL-based cache consistency strat-
egy, the clients are responsible for polling the server to verify that the
cached data is up-to-date. WebExpress (Housel, Samaras, Lindquist,
1998) and Mowgli (Liljeberg et al., 1996) are good examples of TTL-based
cache consistency strategies adapted to wireless networks. Here we dis-
cuss how these approaches help to solve the problem of frequent dis-
connections and narrow bandwidth.

32 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 32

3.5.1 Handling disconnections

The caching system in Mowgli supports the disconnected mode in various
ways. First, Mowgli chooses to validate documents only when explicitly
requested to do so by the user. Second, Mowgli suffixes each hypertext link
in a document with an indicator that tells the user if the referred docu-
ment would have to be fetched from a server. In addition, Mowgli offers
the user access to cached documents directly through a cache inventory.
In this way, the user can stay safely within the bounds of the cache. Third,
the cache maintained by the Mowgli agent is persistent, which means
that it is stored on disk and retained over multiple browsing sessions.

3.5.2 Achieving energy and bandwidth
efficiency

WebExpress uses cyclic redundancy codes (CRC) to help reduce unnec-
essary transmission in maintaining cache coherency. When a requested
object in the client cache has exceeded the coherency interval defined by
the client, the CRC of this object is transmitted to the server to determine
the difference between the fresh copy and the cached copy. A new copy will
be fetched only when the difference exceeds a specified threshold.

WebExpress also employs the differencing technique. To update the
cached data item, the entire data item is not refetched from the server;
instead, WebExpress updates the cached data item based on its differ-
ence from the fresh copy. For dynamic Web page requests, a common
base object is cached on both the client and the server sides. The dif-
ference between these versions is calculated and transmitted to the
client in response to a new request.

Some techniques for allowing the client to further conserve energy
during the wait period of on-demand or pull-based information access
have been developed recently. For example, see Krashinsky and
Balakrishnan (2002).

Protocol optimization. In WebExpress, each client connects to the server
with a single Transmission Control Protocol/Internet Protocol (TCP/IP)
connection. All requests and responses are multiplexed over this con-
nection to avoid repeated connection establishment overhead. In addi-
tion, when the client establishes a connection with the server, it sends
its capabilities on only the first request, and the server maintains this
state information to avoid multiple transmissions of the same infor-
mation. In Mowgli, there are two levels of protocol optimization. At the
transport level, TCP over the wireless part of the network is replaced
by MTCP, which is a lightweight protocol, has minimal packet headers,
involves as few round trips over the wireless link as possible, and also
provides improved fault tolerance. At the application level, HTTP is

Data Dissemination and Management 33

Richard_CH3.qxd 8/24/04 3:25 PM Page 33

replaced by the binary-encoded protocol MHTTP, which supports the pre-
dictive upload of documents and document objects.

3.6 Summary

In this chapter we saw various techniques that have been developed to min-
imize the overhead of accessing data by a mobile client. The broadcast
nature of wireless communication is exploited to provide scalable and
energy-efficient publish-mode access to data. This mode is also useful in
a communication environment with asymmetric channel capacity. Caching
of frequently accessed data locally at a mobile node can further reduce the
overheard. However, a problem arises when the mobile node gets discon-
nected and the application needs to modify cached data. Hoarding is a
scheme that tries to ensure availability of data during disconnection. Data
objects that are modified when the mobile node is disconnected from the
network have to be reintegrated with the primary copy at the server on
reconnection. Several interesting algorithmic problems associated with
doing so, such as optimal bandwidth allocation to uplink and downlink
channels, computation of an optimal broadcast schedule, and designing an
optimal cache replacement scheme, are active areas of research.

References

Acharya, S., M. Franklin, and S. Zdonik, “Balancing Push and Pull for Data Broadcast,”
in Proceedings of the ACM SIGMOD, Tuscon AZ, ACM Press, New York, NY. 1997, p. 183.

Acharya, S., R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks: Data Management
for Asymmetric Communication Environments,” in Proceedings of the ACM SIGMOD
International Conference on the Management of Data, San Jose CA, ACM Press New
York, NY. 1995, p. 199.

Barbara, D., and T. Imieliński, “Sleepers and Workaholics: Caching Strategies for Mobile
Environments,” in Proceedings of the ACM SIGMOD Conference on Management of
Data, Minneapolis Minnesota, ACM Press New York NY. 1994, p. 1.

Barbara, D., and T. Imieiński, “Sleepers and Workaholics: Caching Strategies for Mobile
Environments (Extended Version). International Journal on Very Large Data Bases
4(4):567–602, 1995.

Cao, P., and C. Liu, “Maintaining Strong Cache Consistency in the World Wide Web,” IEEE
Transcations on Computers 47(4):445–457, 1998.

Cate, V., “Alex—A Global File System,” in Proceedings of 1992 USENIX File System
Workshop, Ann Arbor MI, USENIX Berkeley CA. 1992, p. 1.

Housel, B. C., Samaras, G., and Lindquist, D. B., “WebExpress: A Client/Intercept Based
System for Optimizing Web Browsing in a Wireless Environment,” Mobile Networks and
Applications 3:419–431, 1998.

Hu, Q., and D. K. Lee, “Cache Algorithms Based on Adaptive Invalidation Reports for
Mobile Environments,” Cluster Computing 1:39, 1998.

Imieliński, T., S. Viswanathan, and B. R. Badrinath, “Power Efficient Filtering of Data
on Air,” in Proceedings of the 4th international conference on extending database tech-
nology, Cambridge, UK, Springer-Verlag NY, Inc. New York NY. 1994a, p. 245.

Imieliński, T., S. Viswanathan, and B. R. Badrinath, “Energy Efficient Indexing on Air,”
in Proceedings of 1994 ACM SIGMOD International Conference on Management of
Data, Minneapolis MN, ACM Press. 1994b, p. 25.

34 Chapter Three

Richard_CH3.qxd 8/24/04 3:25 PM Page 34

Imieliński, T., and S. Viswanathan, “Adaptive Wireless Information Systems,” in
Proceedings of SIGDBS (Special Interest Group in DataBase Systems) Conference Tokyo,
Japan ACM press, 1994, p. 19.

Kahol, A., S. Khurana, S. Gupta, and P. Srimani, “A Strategy to Manage Cache Consistency
in a Disconnected Distributed Environment,” IEEE Transactions on Parallel and
Distributed Systems 12(7):686–700, 2001.

Kistler, J., and M. Satyanarayanan, “Disconnected Operation in the Coda File System,”
ACM Transactions on Computer Systems 10(1):3, 1992.

Krashinsky, R., and H. Balakrishnan, “Minimizing Energy for Wireless Web Access with
Bounded Slowdown,” in Proceedings of MOBICOM 2002. Atlanta GA, 2002, p. 119.

Liu, G. Y., and G. Q. Maguire, Jr., “A Mobility-Aware Dynamic Database Caching Scheme
for Wireless Mobile Computing and Communications,” Distributed and Parallel
Databases 4:271–288, 1996.

Liljeberg, M., H. Helin, M. Kojo, and K. Raatikainen, “Enhanced Services for World-Wide
Web in a Mobile WAN Environment,” University of Helsinki, Department of Computer
Science, Series of Publications C, No. C-1996-28, 1996.

Mummert, L., and M. Satyanarayanan, “Large Granularity Cache Coherence for
Intermittent Connectivity,” Proceedings of the 1994 Summer USENIX Conference,
Boston June, USENIX Berkeley CA, 1994, p. 279.

National Laboratory for Applied Network Research (NLANR), “A Distributed Testbed for
National Information Provisioning”; available at http://ircache.nlanr.net/.2002

Satyanarayanan, M., “Fundamental Challenges in Mobile Computing,” in Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed Computing.
Philadelphia, PA, ACM Press 1996, p. 1.

Silberschatz, A., and P. Galvin, Operating System Concepts. Reading, MA: Addison-Wesley,
1998.

Sistla, A. P., O. Wolfson, and Y. Huang, “Minimization of Communication Cost Through
Caching in Mobile Environments,” IEEE Transactions on Parallel and Distributed
Systems 9(4):378–389, 1998.

Yin, J., L. Alvisi, M. Dahlin, et al., “Using Leases to Support Server-Driven Consistency
in Large-Scale Systems,” in Proceedings of the 18th International Conference on
Distributed Computing Systems. Amsterdam, the Netherlands, IEEE Computer Science
Press,1998, p. 285.

Data Dissemination and Management 35

Richard_CH3.qxd 8/24/04 3:25 PM Page 35

Richard_CH3.qxd 8/24/04 3:25 PM Page 36

Chapter

4
Context-Aware Computing

The success of mobile computing is contingent on how gracefully the
system adapts to changes in the environment. In Chapter 1 we introduced
two approaches to developing adaptive mobile systems: the application-
transparent approach and the application-aware approach. The appli-
cation-transparent approach uses system software, such as the
underlying operating system and networking software, to adapt to
changes in operating conditions, such as a substantial reduction in avail-
able bandwidth or a drop in the level of battery power, in an application-
independent manner. In contrast to this approach, application-aware
adaptation uses collaboration between the system software and the appli-
cation software to adapt to changes in the availability of computing and
communication resources.

A step further in the direction of application-aware adaptation is the
context-aware computing paradigm. In context-aware computing, the
application adapts not only to changes in the availability of computing
and communication resources but also to the presence of contextual
information, such as who is in the vicinity, the time of day, where the
system currently resides, the current emotional state of the user, the
action the user is performing, and the intention with which that action
is being performed. A context-aware (or context-sensitive) application
requires contextual information that must be gathered from various
sources, such as sensors that are embedded in the environment, devices
that are worn by end users, repositories of historical data tracking use
of the application, and information contained in user profiles.

Let’s consider an illustrative scenario that demonstrates context-
aware computing. For example, suppose that you are a tourist visiting
Bombay (Mumbai), India, for the first time. You have your personal dig-
ital assistant (PDA) with wireless service from a service provider that

1

Richard_Ch04.qxd 8/24/04 3:16 PM Page 1

covers Bombay. Being an adventurous tourist, you have not made hotel
reservations in advance. Fortunately, you have a context-based Web
information service (WISE) available to you from your wireless service
provider. The first thing you do is ask WISE for suggestions for hotels.
WISE takes into account information such as your itinerary, prefer-
ences (such as price range), and current location and provides you with
a list of hotels that are nearby. You then select one of the hotels and
invoke an online hotel reservation form. Most of the details in the form
are filled in automatically based on your preferences, which the system
reads from your user profile. For example, it knows that you prefer to
pay the hotel bill using your credit card, which earns you frequent flier
miles, and that you favor staying in nonsmoking rooms.

This chapter will discuss how such context-aware applications can be
developed. In later chapters of this book we discuss various sensing tech-
nologies and their applications, along with communication protocols
employed in sensor networks formed by these sensing devices. In this
chapter we assume the existence of such an infrastructure and concen-
trate on issues related to design and development of context-aware
applications such as (1) how contextual information can be provided to
the application and (2) how the application can be developed to react to
the changing contextual information.

4.1 Ubiquitous or Pervasive Computing

Pioneering work in context-aware computing was started in the early
1990s at Xerox PARC Laboratory and Olivetti Research, Ltd. (now part
of AT&T Laboratories Cambridge), under the vision of ubiquitous com-
puting. (Since the mid-1990s, ubiquitous computing also has been known
as pervasive computing.) Marc Weiser, in his seminal paper entitled,
“The Computers of 21st Century” (Weiser, 1991), envisioned that in
accordance with Moore’s law, future computing environments would con-
sist of very cheap (disposable) interconnected specialized computers all
around us, some embedded in our surroundings and others worn by us
(Fig. 4.1). However, if the usage model of ubiquitous computing systems
follows the trend of the usage model of mainframe and personal com-
puters, where a substantial effort is required on the part of users to
accomplish any computing or communication tasks, then we would be
constantly distracted by these numerous devices. The aim of ubiquitous
computing is to design computing infrastructures in such a manner that
they integrate seamlessly with the environment and become almost
invisible. This is analogous to the “profound technologies,” such as the
electric motor (a typical automobile has more than 25 motors) and writ-
ing technology (our environment is equipped with whiteboards, notepads,
Post-It notes for various needs without being a distraction), that “weave

2 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 2

themselves into the fabric of everyday life until they are indistinguish-
able from it” (Weiser, 1991).

To meet the goals of ubiquitous computing systems, Weiser and Brown
(1996) suggest designing calm computing technology, which, rather than
always being at the center of our attention, empowers our peripheral
attention and has the agility to move fluidly between the periphery and
the center of our attention. Researchers in Project Aura at Carnegie
Mellon University (http://www-2.cs.cmu.edu/∼aura) have found that to
minimize human distraction, ubiquitous computing systems have to be
proactive in anticipating the future demands of the user and adaptive
(self-tunable) in order to be able to respond better to future user
demands. The ability to sense and process context is fundamental to
making a system proactive and self-tunable.

In this chapter the emphasis will be on context-aware mobile com-
puting. Understandably, this form of computing is essential to meet the
goals of ubiquitous computing. Motion is an integral part of our daily
life, and any ubiquitous system that does not reasonably support mobil-
ity of computing devices will have difficulty in becoming “invisible” to
the user. Essentially, this form of computing is broader than mobile
computing because it concerns not just mobility of computers but, more
important, mobility of people.

Context-Aware Computing 3

Figure 4.1 Ubiquitous computing vision.

Richard_Ch04.qxd 8/24/04 3:16 PM Page 3

4.2 What Is a Context? Various Definitions
and Types of Contexts

As human beings, we are adept in our understanding and use of context
in our daily activities. We routinely use contextual information, such as
who is in our vicinity or where we are, to modulate our responses to or
interactions with other people. As we mature, we learn which contextual
information is important given a particular situation. For example, when
we are with our close friends, we rarely worry about how we speak:
“Like, you know what I mean.” However, in a formal situation, we are
careful in what we say and how we say it.

To use contextual information in adapting applications, there should
exist a means to capture, store, and process context. However, what
exactly is context? Let us look at an English definition of context.
Merriam-Webster’s Collegiate Dictionary defines context as “(1) the parts
of a discourse that surround a word or passage and can throw light on
its meaning; (2) the interrelated conditions in which something exists
or occurs.”

The word context has its origin in the Latin verb contexere, meaning
“to weave together.” However, such dictionary definitions of the word
context are too general to be of much use in developing context-aware
applications. These definitions do not help in determining what con-
textual information an application should try to acquire or how it should
use the contextual information it has. Attempts to provide a computer-
friendly definition of context has led to numerous definitions, falling
under two broad categories: enumeration-based, in which context is
defined in terms of its various categorizations, and role-based, in which
context is defined in terms of its role in context-aware computing.

4.2.1 Enumeration-based

An example of a definition of context in terms of various categories is
Chen and Kotz’s (2000) refinement of Schilit’s definition of context:
Context consists of the following categories:

1. Computing context includes network connectivity, communication
costs, communication bandwidth, and local resources, such as print-
ers, displays, and workstations.

2. User context includes user profiles, location, and people in the vicin-
ity of the user.

3. Physical context includes lighting and noise levels, traffic conditions,
and temperature.

4. Temporal context includes time of day, week, month, and season of the
year.

4 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 4

5. Context history is the recording of computing, user, and physical con-
text across a time span.

As we develop and use increasingly context-aware applications, a uni-
versally acceptable definition of context may evolve. For now, we can
try to identify some essential types of context using these lines from a
poem by Rudyard Kipling to guide us: “I keep six honest serving men.
They taught me all I knew. Their names are What and Why and When
and How and Where and Who.” The following five W’s of context can
form the core of different context types used by an application (Abowd
and Mynatt, 2000):

� Who (social context). This consists of information such as user iden-
tification and identification of people near the user. A context-aware
system can use the identification of the person who is using the system
to determine how to respond based on the user’s preference. For exam-
ple, WISE used the user’s ID to get information about the preferences.
Programs can use an end-user’s information to implicitly perform cer-
tain actions.

� What (functional context). This consists of information about what
tasks the user is performing.

� Where (location context). This consists of information about where the
system is currently located. This information can be raw location
information, such as the latitude and longitude of the user, or it can
be obtained at a higher level, such as the number of the room in
which the system is currently operating. Location context is the most
prolifically used type of context for developing context-aware appli-
cations.

� When (temporal context). This is the same as the temporal context
defined earlier.

� Why (motivating context). This specifies why the user is performing a
certain task. This is one of the most difficult types of contextual infor-
mation to determine.

In addition to these different kinds of contextual information, one
also can consider information such as a user’s emotional state (emotional
context) and information about the environment, such as room temper-
ature and illumination level (environmental context) (Satyanarayanan,
2002).

Context can be categorized further into low-level context and high-
level context (Chen and Kotz, 2000). Low-level context information can
be sensed directly using sensors or through simple processing, e.g., by
accessing a database, e.g., room temperature or devices that are in the

Context-Aware Computing 5

Richard_Ch04.qxd 8/24/04 3:16 PM Page 5

vicinity of a user. High-level context information may involve the amal-
gamation of low-level context information as well as sophisticated pro-
cessing, such as machine vision or artificial intelligence (AI) techniques.
For example, low-level context information such as the current location
of the user and the current time can be combined from the user’s cal-
endar to obtain information about a user’s current social situation, infer-
ring that the user “is in a meeting,”, “attending a lecture,” or “waiting
at the airport.”

4.2.2 Role-based

Perhaps a more useful way to discern what context is and how to use
it is to look at context in terms of how it can be used by mobile appli-
cations. Chen and Kotz (2002) define context as “the set of environ-
mental states and settings that either determines an application’s
behavior or in which an application event occurs and is interesting to
the user.”

Based on this definition, two types of context can be identified. Active
context is the contextual information used by the application to adapt
its behavior, whereas passive context is the contextual information that
is not critical for application adaptation but is provided to the user to
enhance his or her understanding of the situation (Chen and Kotz,
2002).

The task of building a context-aware application that adapts its
response to so many different types of contexts is not only challenging
but also quite daunting. Figure 4.2 illustrates the various types of con-
texts we have discussed. In the rest of this chapter we will discuss var-
ious existing software tools that aid in the development of context-aware
applications. First, however, we will study different kinds of context-
aware applications that have been developed by various researchers in
industry and academia around the world.

4.3 Context-Aware Computing and
Applications

Context-aware computing devices and applications respond to changes
in the environment in an intelligent manner to enhance the computing
environment for the user (Pascoe, 1997). Context-aware applications
tend to be mobile applications for obvious reasons: (1) The user’s context
fluctuates most frequently when a user is mobile, and (2) the need for
context-aware behavior is greatest in a mobile environment. At a mini-
mum, context-aware applications should be proactive in acquiring con-
textual information and adapt their response based on the acquired
information. The response itself can be proactive (automatically initiated

6 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 6

by the system or application) or reactive (in response to the user’s
request). A context-aware application can perform various tasks, which
may include providing a context-aware user interface, presenting con-
textual and noncontextual information to the user, context-sensitive
information services, and either proactive (such as automatic reconfig-
uration) or reactive (such as context-sensitive querying) context-aware
adaptation of behavior.

4.3.1 Core capabilities for context
awareness

Applications should posses some of the following capabilities in order to
be characterized as context-aware (Pascoe, 1998):

Context-Aware Computing 7

Figure 4.2 Various types of contexts.

Contextual
information

Temporal
(when?)

Motivational
(why?)

Social
(who?)

User

Computing

Location
(where?)

Context-aware application

Adapt its
own behavior

Acti
ve

 co
nt

ex
t

Provided to user to adapt

Passive
 context

Sensors, profile,
etc.

Low-level context

Context-processors

Lo
w

-le
ve

l c
on

te
xt

High-level context

User

Richard_Ch04.qxd 8/24/04 3:16 PM Page 7

� Contextual sensing refers to the detection of various environmental
states and how they are presented to the user. A basic context-aware
application is one that presents the contextual information it obtains
in a user-friendly form. For example, the location information obtained
from a location sensor such as global positioning satellite (GPS) device
can be presented to the user via a map display annotated with a “you
are here” marker.

� Contextual adaptation is the capability of the system to adapt its
behavior by using contextual information.

� Contextual resource discovery is the capability by which a system can
discover available resources, which it can use to better adapt to the
user’s needs.

� Contextual augmentation refers to having the capability to associate
contextual information with some digital data.

4.3.2 Types of context-aware applications

In order to get a better understanding of context-aware applications, let
us now consider several different types of useful context-aware applica-
tions. In the past decade or so, various context-aware applications have
been developed, and many methods for classifying context-aware appli-
cations have been proposed (Schilit, Adams, and Want, 1994; Dey, Salber,
and Abowd, 2002). According to Schilit, Adams, and West (1994), context-
aware applications can be classified along three different dimensions:
function or service type, initiating agent, and adaptation (Table 4.1).

Function or service type. Context-aware applications have been devel-
oped to perform various tasks. However, they can be broadly classified
into applications whose primary task is related to providing information
or actuating some command.

8 Chapter Four

Table 4.1 Types of Context-Aware Applications (Schilit, 1994)

Function/service
Application type type Initiation Adaptation

Contextual selection Information Manual Information
Information presentation Information Manual User interface
Contextual information Information Manual Information
Automatic contextual Any Automatic Information or

reconfiguration system
Contextual command Command Manual Command
Context-triggered actions Command Automatic None
Contextual tagging Information Automatic Information

Richard_Ch04.qxd 8/24/04 3:16 PM Page 8

Initiation. The context-aware application either can be initiated explic-
itly by the user (manual) or can be invoked implicitly by the application.

Adaptation. Adaptation performed by a context-aware application con-
sists of various types: information, system, user interface, and com-
mand (behavior).

Contextual selection refers to the selection and presentation of phys-
ical or virtual objects based on the user’s context. The most important
type of contextual selection in mobile computing is proximity selection
(Schilit, Adams, and Want, 1994), where the selection of objects is based
primarily on the location context of the user, e.g., (1) selection of
resources and devices such as printers or speakers in the vicinity of the
user, (2) selection of places such as gas stations and restaurants closest
to the current location of the user, and (3) selection or addressing of
objects with which the user is currently interacting, such as the group
of people in the room to whom the user wants to send information.
Under the umbrella of ubiquitous computing, many other types of con-
textual selections are possible. For example, one can perform selection
based on the social context of the user. An example might be a user who
wants to get information about the items in his family members’ “wish
list” when doing online Christmas shopping at the last minute. Another
type of contextual selection is the selection of objects based on the tem-
poral context of the user. As an example, consider a scenario in which
you have made a large number of trips during the last summer and you
would like to obtain a list of all the interesting people you met, along
with their contact information.

Contextual selection applications need to employ various user-interface
techniques to assist the user in the selection of objects in the physical or
virtual world based on the user’s context. An important issue is how to
present the information to the user so that the relevance of the informa-
tion is implicit in the presentation. In proximate selection, applications
may employ various visual effects to convey the relative ordering of the
objects to the user. For example, different sized fonts can be used to dis-
play a spatial relationship between an object and the user (the closer the
object, the larger is the font size).

In order to minimize computation and communication resources, a
contextual selection application may fine-tune the granularity and accu-
racy of information presented to the user. Suppose that it is almost
lunchtime, and you are driving around in an unfamiliar city looking for
a restaurant. Under such a scenario, the application may update the
information regarding closer restaurants more frequently than that of
distant restaurants.

Contextual information applications modulate their responses based
on the context of the user. In contrast, contextual selection applications

Context-Aware Computing 9

Richard_Ch04.qxd 8/24/04 3:16 PM Page 9

provide information about the context itself. These applications can be
viewed as parameterizing user’s queries with contextual information.
The main contextual information that is used is the location of the user.

Similar to contextual information applications, contextual commands
modulate their behavior based on the current context of the user. For
example, a print command may, by default, print to the printer nearest
to the user.

Automatic contextual reconfiguration applications automatically adapt
the system configuration in response to a change in context. For example,
the application may configure itself to use the display device available to
the user.

Context-triggered actions are simple IF-THEN rules used to specify
how context-aware software should respond automatically to contex-
tual changes. The condition in the IF-THEN statement is based on the
contextual predicates. There is an action associated with each IF-
THEN rule that is performed when the associated condition becomes
true.

4.3.3 Developing context-aware
applications

In general, the following steps are used for developing context-aware
applications:

1. Identifying relevant context

2. Specifying context-aware behaviors

3. Integrating with mechanisms for acquisition of contextual informa-
tion

The first step is application-dependent, and the third step is platform-
dependent. Thus we will not discuss them any further. Since the tech-
niques to achieve the second step can be used in several applications, let’s
look at two different approaches to specifying context-aware behavior:
context-triggered actions and Stick-E notes.

Context-triggered actions

Watchdog and contextual reminder for active badges. The Watchdog program
was designed for a UNIX environment that is coupled with an Active
Badge Location System. The Active Badge is an electronic tag that peri-
odically broadcasts a unique identifier for the purpose of determining
the location of the wearer. Events such as “arriving,” “departing,” and
“settled in” are generated by the Active Badge Location System, which
gives information about the mobility of the wearer. If the system does

10 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 10

not hear from a certain badge for certain duration, a “missing” event is
generated. The badge incorporates a single finger button that, when
pressed twice, generates an “attention” event.

Watchdog monitors Active Badge activity and executes relevant UNIX
shell commands as required. The user specifies the context-triggered
actions in a configuration file when the Watchdog program is first
started. The configuration file contains descriptions of Active Badge
events and actions to perform in the following format:

badge location event-type action

The badge and location are strings that match the badge wearer’s
ID and the last sighting location, respectively. The event-type is a
badge event type: arriving, departing, settled-in, missing, or
attention.

Whenever an event of the type event-type is generated by the badge
at the specified location, Watchdog invokes the action with a set of
UNIX environment variables as parameters, which include the badge
owner, owner’s office, sighting location, and name of the nearest host.
For example,

john any attention “emacs –display $NEARESTHOST:0.0”

specifies that an Emacs window should start at a nearby host whenever
the attention signal is received from tag john.

Contextual Reminders is an application for ParcTabs. Contextual
Reminders provide a more expressive way of specifying reminders. The
following example shows a set of predicates that makes use of date,
time, location, and proximity to another person to trigger a reminder.

after April 15
between 10 and 12 noon
in room 35-2200
with {User Adams}
with {Type Display} having {Features Color}

This is similar to the Stick-E Note system we describe next.

Stick-E note. Stick-E Note is a technology that has been developed to
facilitate the creation of context-aware applications by nonprogram-
mers (Brown, 1995; Pascoe, 1997). It is motivated by the paradigm of
the Post-It Note, those yellow sticky notes used to put down reminders
at prominent spots in one’s environment. The Stick-E Note is designed
with the assumption that a user is moving around with a personal dig-
ital assistant (PDA). The PDA has wireless connectivity to a communi-
cation network and is equipped with various sensors. such as a GPS
transceiver.

Context-Aware Computing 11

Richard_Ch04.qxd 8/24/04 3:16 PM Page 11

Each Stick-E Note consists of two parts:

1. Context. A context that the Stick-E Note is attached to, which can con-
sist of a location, the identity of nearby users, and a time (where, who,
and when).

2. Content. The content that the note represents. This could be infor-
mation, actions, and interfaces.

A Stick-E Note is an Standard Generalized Markup Language (SGML)
document with a context section and a body. The following is an exam-
ple Stick-E Note that will display a reminder on one’s PDA to pick up a
library book when the person is in the vicinity of a particular library:

<note>
<at> “Noble Engineering Library”
<body>
Pick up the book from interloan library section.

The <at> tag identifies the location, in this case the library where the
book is being held for the user. The <body> tag specifies the message
to be displayed on the PDA when the user is at the Noble Engineering
Library. This Stick-E Note only uses the location, or where, context. A
point to remember here is that the note assumes an infrastructure for
translating low-level contextual information (the current location coor-
dinates obtained from GPS) and high-level contextual information (the
user is in the vicinity of the Noble Engineering Library). This note can
be modified to include optional information, such as a frequency for
triggering (displaying) the note, as illustrated below:

<note>
<at> “Noble Engineering Library”
<optional>
<triggering-frequency> once
<body>
Pick up the book from interloan library section.

This note will be triggered only once and will avoid the problem of the
note being triggered repeatedly whenever the user happens to be in the
vicinity of the library.

4.4 Middleware Support

Context-aware applications need support for the acquisition and delivery
of contextual data. Several methods have been proposed to accomplish
this. Some are general ways to handle any form of contextual data.
However, since location information is the most widely used contextual
information, many approaches have been developed for providing location
context. There are, however, some issues common to any infrastructure
that supports the acquisition and delivery of contextual information.

12 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 12

The main complication in developing context-aware applications stems
from the very nature of contextual information:

1. It is acquired from various heterogeneous and distributed sources:
a. Hardware and software sensors—obtained from various sensors,

such as motion detectors, noise and temperature sensors, and
location systems.

b. System recorded input—such as user-system interaction history.
Context information history is essential for applications such as
context-based retrieval.

c. Other applications:
i. User’s personal computing space—such as those obtained from

schedules, calendars, address books, contact lists, and to-do
lists (Satyanarayanan, 2002).

ii. Distributed computing environment—such as those obtained from
applications running in the vicinity of these devices, e.g., services
provided by the infrastructure of a shopping mall or freeway
system.

2. The same type of contextual information may have to be obtained
from different sources at different times. For example, a mobile
device’s location information may be acquired from GPS receivers if
the mobile device is outside or from an indoor positioning system if
the mobile is inside a building.

3. The low-level contextual information obtained directly from sensors
must be abstracted to be useful to the application. As an example,
GPS receivers provide location information in terms of latitudes and
longitudes. However, a tour-guide application may need location
information in a form such as “user is on Lemon Street going west”
or “user is near Goldwater Center.”

4. Context awareness is most relevant when the environment is highly
dynamic, such as when a user is mobile. Changes in the context must
be detected in real time and conveyed to the applications as soon as
possible so that the applications, particularly those using context-
triggered commands and contextual automatic reconfiguration, have
ample time to adapt their behaviors.

4.4.1 Contextual services

As we have seen, in order for an application to be responsive to a rich
set of contextual information, it needs to interact with various dis-
tributed and heterogeneous sources. The task of developing context-
aware applications can be facilitated greatly by a middleware
infrastructure that can provide the following services [Dey, Sabler and
Abowd 2001]:

Context-Aware Computing 13

Richard_Ch04.qxd 8/24/04 3:16 PM Page 13

1. Context subscription and delivery service.Aservice to which applications
can subscribe that delivers context events back to the applications.

2. Context query service. A service for applications to query current
context.

3. Context transformation service. A service that transforms low-level
contextual information into high-level contextual information. More
generally, it transforms contextual information in one form into con-
textual information in a form suitable for an application.

4. Context synthesis service. A service that fuses various types of con-
textual information.

5. Discovery and management service. A service that helps in the dis-
covery of available services and manages all the sensors and software
components used by these services. Further, it can provide a “white
page” service to enable applications to locate a particular service and
a “yellow page” service to enable applications to obtain the set of
available services having certain attributes.

4.4.2 Actuator service

As opposed to contextual services that help an application acquire con-
textual input from sensors, an actuator is a service that helps an appli-
cation perform a context-dependent output function.

4.4.3 An example: context toolkit

Several general-purpose approaches have been designed to facilitate
development of context-aware applications by freeing them from the
low-level and tedious task of context acquisition. Hopefully, this will
accelerate the pace at which context-aware applications are developed
in the future. Currently, there exists no commercially available product.
All systems that exist to date have been developed in academic projects.
In fact, some of the systems we have described are still in development
and may currently have additional features beyond those described
here. In this section we describe Context Toolkit’s approach to provid-
ing support for developing context-aware applications.

Context toolkit. The Context Toolkit, created at Georgia Tech, is devel-
oped around the paradigm of widgets, similar to GUI widgets used for
developing graphic user interfaces (GUIs). It is an object-oriented frame-
work that allows retrieval of contextual information through polling
and callbacks. The toolkit provides several software components that a
software designer can use for context acquisition:

1. Context widgets. A context widget is a software component that pro-
vides context acquisition and delivery service. A widget serves as an

14 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 14

interface between sensors and applications. It provides an abstraction
layer allowing access to heterogeneous and distributed sensors in a
uniform manner. Every context widget has a state and a behavior.
The state is a set of attributes, and the behavior is a set of callback
functions that are triggered by context changes. As opposed to GUI
widgets, context widgets are persistent entities that can be shared
by multiple applications. Since historical information is useful for pre-
dicting the future actions or intentions of the user, context widgets
can store all the contextual information they gather automatically
and make the history available to the applications.

2. Context interpreters. A context interpreter provides a context trans-
formation service to the application. For example, a tourist guide appli-
cation can use an interpreter to convert GPS data to street names. A
context interpreter also can be used to determine the high-level con-
text, such as a social or motivating context. For example, a context
interpreter can be used to interpret context from all the widgets in a
conference room to determine that a meeting is in progress.

3. Context aggregators. Aggregators merge context data from various
sources (context widgets and interpreters) to represent context that
is associated with an entity. An entity can be a person, room, another
software system, or a hardware device, among many possibilities.

4. Discoverer. A discoverer provides discovery and management services
for sources of contextual information. It maintains a registry of the
capabilities of widgets that exist in the framework. An application can
use a discoverer to find a particular component with a specific name.
It also can use a discoverer to find a set of components that match a
specific set of capabilities.

4.4.4 Providing location context

In Chapter 2 we saw that tracking the location information (point of
attachment to the network) of a mobile host is essential for delivering
messages to it. In the realm of mobile and ubiquitous computing, the
location of the mobile user (e.g., the room in which the user is located
or the resources located near a user) can be exploited by various con-
text-aware applications to adapt their behavior and to provide various
location-sensitive services to the user. For example, knowledge of the
room a user is in can be used by a teleporting application to automat-
ically transfer a user’s desktop session to the computer nearest to her.

A location information system (LIS) provides location information to the
application. ALIS locates objects representing either a person or resources
inside areas (Spreitzer and Theimer, 1993). We are mostly interested in
issues related to providing location information about people. A LIS can
obtain location information about the user from various sources:

Context-Aware Computing 15

Richard_Ch04.qxd 8/24/04 3:16 PM Page 15

1. Indoor locating systems such as infrared-based active badges or
ultrasound-based bats [Harter et al. 1999]

2. Wireless nanocell communication activity

3. Outdoor locating systems such as GPS

4. Device input activity from various computers

5. Motion sensors and cameras

6. Explicit information from the user.

Several issues relate to providing the location information of the user.
First and foremost is the issue of privacy. Many people feel uncomfort-
able if their whereabouts are tracked continuously and are freely acces-
sible to anyone. Thus it is important to provide user control over location
information. Another important issue is the accuracy of the location
information. There are two aspects to this: spatial resolution and tem-
poral resolution of the locating system. Spatial resolution depends on
the accuracy of the underlying sensing technology. Temporal resolution
depends on such factors as how frequently LIS updates the location
information of each user and how sensitive the sensing technology is
(e.g., how small a change in someone’s location can the sensing tech-
nology detect). The accuracy of the location information has implications
on the kinds of applications that can be implemented. For example,
consider a technology such as the Active Badge, which provides room-
level resolution. This enables teleporting applications such as migrat-
ing a user’s desktop session from the user’s office computer to a computer
in the conference room. However, supporting applications, which require
finer-grained location information, such as flicking a window from one’s
laptop computer to that of a neighbor sitting next to the user, would be
difficult (Spreitzer and Theimer, 1993).

Summary

Context-aware computing is a new and rapidly evolving field. Already we
are seeing availability of context-aware applications. For example, the
Google search engine has started using location information to provide
location-dependent results to search queries (see http://local.
google.com/lochp). We are seeing the emergence of proximity-based serv-
ices, such as serendipity (created by a team of students at MIT; see
http://edition.cnn.com/2004/TECH/ptech/03/19/mobile.dating. reut/),
which match profiles of people stored on their cell phones to socially con-
nect two strangers with similar profiles who happen to be close proxim-
ity of each other (about 10 m for Bluetooth-enabled cell phones).
“Bluejacking” (see http://www.bluejackq.com/) is a trick one can pull on

16 Chapter Four

Richard_Ch04.qxd 8/24/04 3:16 PM Page 16

an unsuspecting stranger in close proximity who also happens to have a
Bluetooth-enabled phone. By using your Bluetooth-enabled phone to first
locate another Bluetooth-enabled phone in your proximity, you can then
send a surprise text message, such as “I like your pink sweater ☺”

These are simple context-aware computing applications, but they illus-
trate the power to change the ways in which we interact and use com-
puting and communication devices. This chapter has described some
fundamental issues related to context-aware computing, such as what
is a context and how can context-aware behavior can be specified, We also
looked at some of the middleware support and services that are being
developed to help in the development of more sophisticated context-
aware applications.

References

Abowd, G. D., and E. D. Mynatt, “Charting Past, Present, and Future Research in
Ubiquitous Computing,” ACM Transactions on Computer-Human Interaction 7(1):29,
2000.

Brown, P. J., “The Stick-E Document: A Framework for Creating Context-Aware
Applications,” Electronic Publishing 8(2–3):259, 1995.

Chen, G., and D. Kotz, “A Survey of Context-Aware Computing Research,” Darthmouth
Computer Science Technical Report TR2000-381, Hanover, NH, 2000.

Dey, A. K., “Understanding and Using Context,” Personal Ubi Comp 5(1):4, 2001
(http://link.springer.de/link/service/journals/00779/tocs/t1005001.htm).

Dey, A. K., D. Salber, and G. D. Abowd, “A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications,” Human-Computer
Interaction (HCI) Journal 16(2–4):97, 2001 (http://www.cc.gatech.edu/fce/ctk/pubs/
HCIJ16.pdf).

Harter, A., A. Hopper, P. Steggles, et al., “The Anatomy of a Context Aware Application,”
in Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM ’99). 1999, p. 59.

Pascoe, J., “The Stick-E Note Architecture: Extending the Interface Beyond the User,” in
Proceedings International Conference on Intelligent User Interfaces. Orlando, Florida,
pp 261–264, 1997.

Pascoe, J., “Adding Generic Contextual Capabilities to Wearable Computing,” in
Proceedings of the Second International Symposium on Wearable Computers (ISWC
pp 92–99, Pittsburgh, Oct. 1998.

Satyanarayanan, M., “Challenges in Implementing a Context-Aware System,” IEEE
Pervasive Computing 1(3):2, 2002.

Satyanarayanan, M., “Pervasive Computing: Vision and Challenges,” IEEE Personal
Communications 8(4):10, 2001.

Schilit, W. N., N. I. Adams, and R. Want, in Proceedings of the Workshop on Mobile
Computing Systems and Applications. New York: IEEE, 1994, p. 85 (ftp://ftp.parc.
xerox.com/pub/schilit/wmc-94-schilit.ps).

Spreitzer, M., and M. Theimer, “Providing Location Information in a Ubiquitous
Computing Envrionment,” in Proceedings of the Fourteenth ACM Symposium on
Operating Systems, Ashville, NC, Dec. 1993. 1993, p. 270.

Weiser, M., “The Computer of 21st Century,” Scientific American, September 1991. 265(3):
94–104.

Weiser, M., and J. S. Brown, “Designing Calm Technology,” PowerGrid Journal 1(1):
XX (No page number available since it appeared in an online journal), 1996 (http://
powergrid.electiciti.com/1.01).

Context-Aware Computing 17

Richard_Ch04.qxd 8/24/04 3:16 PM Page 17

Richard_Ch04.qxd 8/24/04 3:16 PM Page 18

Chapter

5
Introduction to Mobile

Middleware

5.1 What is Mobile Middleware?

Middleware is software that supports mediation between other soft-
ware components, fostering interoperability between those components
across heterogeneous platforms and varying resource levels. For exam-
ple, middleware can serve as plumbing, allowing applications that do
not normally support disconnected operation to do so through clever use
of data hoarding (see Chap. 1). Ideally, beyond bridging heterogeneous
systems, middleware should be transparent, robust, efficient, secure,
and based on open standards. All of these requirements support the
goal of making software development in association with middleware
easier than “from scratch.” This chapter and the next two chapters
address three major types of middleware for mobile computing— mid-
dleware to support application adaptation (which was covered briefly in
Chap. 1) mobile agent systems, and service discovery frameworks. The
concept of context-aware computing (see Chap. 4) can also be encapsu-
lated in middleware frameworks.

Chapter 6 covers adaptation middleware and agents, whereas Chap. 7
covers service discovery. Adaptation is a general concept and is arguably
mandatory—it allows applications to offer reasonable performance to
users across disparate environments. Mobile agents are a special type of
adaptive middleware, which extend the reach of data servers and help
mobile devices conserve energy. Service discovery frameworks allow
mobile devices to change configuration quickly and easily, depending on
available services. The emphasis is on fundamental design issues, includ-
ing choices of communication strategies, tradeoffs between application-
level and operating-system-level support, and security. Current and

1

Richard_CH05.qxd 8/11/04 3:22 PM Page 1

2 Chapter Five

historical systems are surveyed to learn which decisions were made in the
design and why—this type of understanding is viewed throughout as
more important than learning all the nuances of a particular system.

The remaining sections in this chapter provide a relatively nontech-
nical overview of adaptation, mobile agents, and service discovery frame-
works. These are representative of the kinds of middleware used to
support interesting mobile applications.

5.2 Adaptation

Many enthusiastic mobile users—their belts hanging low with personal
digital assistant (PDA), cellular phone, and portable FAX machine—
proclaim (enthusiastically, of course) that the next mobile technology,
whether it be a new wireless networking interface or a faster mobile
processor, finally will narrow the gap between mobile devices and tra-
ditional wired devices. The gap never really narrows. The hunger for
computing resources is insatiable, and new, hungrier applications
always appear. The new desktop computer shames the newest PDA.
And 10-Gb Ethernet makes third-generation (3G) wireless seem not so
fast after all. Therefore, mobile applications must fight to make the
computing experience of their users tolerable—to make that gap seem
not quite so wide. To that end, mobile applications must adapt their
behaviors and expectations to conserve scarce resources and to adjust
quality of service (QoS)—essentially, a guarantee of performance—to
sustainable levels.

For example, a mobile user is likely to be more tolerant of a lower-
quality audio stream than a “high-quality” stream that constantly stut-
ters and pops owing to inadequate bandwidth. Similarly, a sequence of
still frames probably is more desirable than a highly “pixelated” video
stream that never resolves a clear image. On the other hand, a mobile
application must not maintain low QoS in the face of abundant
resources.

How should adaptation be supported? At one extreme, each applica-
tion could fend for itself, trying to monitor resources and adapt appro-
priately. At the other extreme, applications might be blissfully ignorant,
depending entirely on their host operating system to perform adaptation.
Mobile middleware allows an application to take a middle ground (or for
a legacy application, to be retrofitted to take the middle ground whether
it knows about it or not), participating in the adaptation process. This
makes writing individual applications far less tedious because an appli-
cation developer need not reinvent the world every time he opens Emacs.
Adaptation middleware monitors resources, drawing on policies deter-
mined by the user or by application developers to assist applications in
modifying application expectations to match available resources. In

Richard_CH05.qxd 8/11/04 3:22 PM Page 2

adapting, a mobile application typically does not change its core behavior—
a video player remains a video player—but instead takes its user down a
slightly different road, increasing or decreasing the fidelity of the data
stream delivered to the user.

5.3 Agents

Mobile agents put the action where the data are, allowing programs to
move autonomously about a network in order to access remote resources.
In a mobile agent system, programs migrate directly to servers, gain
access to data or computational resources, and potentially migrate again,
eventually returning to their “home base” to deliver results. By allow-
ing a program to migrate directly to a server to gain access to data, sev-
eral benefits are realized. The first is that disconnected operation is
easily supported—a mobile user can dispatch an agent, disconnect
(potentially because network resources will be unavailable for a time,
as the user migrates away from an 802.11 network, for example), and
then reconnect later to allow the agent to return home. Another bene-
fit is that agents can gain access to large amounts of data to solve a prob-
lem, even if a mobile user’s network resources are scant. For example,
a mobile agent might migrate to a server containing thousands of PDF
documents, sift through the documents to build a bibliography, and then
return home with only the bibliography in tow. A third benefit is that
mobile agent systems allow the functionality of servers to be expanded
dynamically. A skeptic of mobile agents might argue that any task per-
formed by agents could also be performed using traditional client-server
methods, and he would be correct. By inserting new code into a server,
for example, the “creation of a bibliography” problem (above) could be
solved. However, such enhancements require that a server’s code be
modified every time a new enhancement is desired, and this makes
administration of the server much more difficult. With agents, existing
computing infrastructure can be used to solve problems not envisioned
by the creators of that infrastructure.

5.4 Service Discovery

Service discovery middleware extends the client-server (CS) paradigm
to include dynamic discovery of services and more dynamic interaction
between clients and services. This type of middleware directly supports
the extended client server model, which was discussed in Chap. 1.
Service discovery is appropriate for both traditional wired networks
and wireless networks but is particularly exciting for mobile computing
environments because it allows peripheral-poor mobile devices to dis-
cover needed services on demand. For example, imagine a mobile user

Introduction to Mobile Middleware 3

Richard_CH05.qxd 8/11/04 3:22 PM Page 3

with a service discovery–enabled PDA, sitting in a coffee shop, sipping
a cup of coffee. The user is not familiar with the city she is visiting but
decides to see a movie. Her PDA dynamically discovers the Bluetooth
access point attached to the ceiling of the shop, using the Bluetooth
Service Discovery Protocol. She then uses a search engine on the Web
to locate a nearby movie theater and determine the show times. The site
has a map showing the location of the theater, so the user issues a print
command to get a hard copy of the map. The PDA dynamically discov-
ers a Jini printer, determines that the cost is appropriate ($0.10 per
page), and prints the document. A minute later the server delivers a
coffee refill and the printout.

With service discovery middleware, developers can quickly develop
highly dynamic CS systems that are self-healing and support “plug and
play” for individual components. The concepts embodied in service dis-
covery architectures are not completely new; however, service discovery
frameworks standardize the environments in which to deploy highly
dynamic, self-healing CS architectures.

4 Chapter Five

Richard_CH05.qxd 8/11/04 3:22 PM Page 4

Chapter

6
Middleware for Application

Development: Adaptation
and Agents

Application development for mobile computers is a difficult task—on
their own, applications are faced with a myriad of challenges: limited
power and processing speed, varying levels of network connectivity,
completely disconnected operation, and discovery of needed services.
The goal of mobile middleware is to provide abstractions that reduce
development effort, to offer programming paradigms that make devel-
oping powerful mobile applications easier, and to foster interoperabil-
ity between applications. Service discovery, or the art of dynamically
discovering and advertising services, is the subject of the next chapter.
This chapter examines two other important types of middleware for
mobile computing—adaptation and agents. The first, adaptation, was
first discussed in Chapter 1. We revisit this topic in this chapter. Recall
that adaptation helps applications to deal intelligently with limited or
fluctuating resource levels. The second type of middleware, mobile
agents, provides a powerful and flexible paradigm for access to remote
data and services.

6.1 Adaptation

Mobile computers must execute user- and system-level applications
subject to a variety of resource constraints that generally can be ignored
in modern desktop environments. The most important of these con-
straints are power, volatile and nonvolatile memory, and network band-
width, although other physical limitations such as screen resolution

1

Richard_Ch06.qxd 8/17/04 3:47 PM Page 1

are also important. In order to provide users with a reasonable com-
puting environment, which approaches the best that currently available
resources will allow, applications and/or system software must adapt to
limited or fluctuating resource levels. For example, given a sudden
severe constraint on available bandwidth, a mobile audio application
might stop delivering a high-bit-rate audio stream and substitute a
lower-quality stream. The user is likely to object less to the lower-
quality delivery than to the significant dropouts and stuttering if the
application attempted to continue delivering the high-quality stream.
Similarly, a video application might adjust dynamically to fluctuations
in bandwidth, switching from high-quality, high-frame-rate color video
to black-and-white video to color still images to black-and-white still
images as appropriate. A third example is a mobile videogame applica-
tion adjusting to decreased battery levels by modifying resolution or dis-
abling three-dimensional (3D) features to conserve power.

6.1.1 The spectrum of adaptation

At one end of the spectrum, adaptation may be entirely the responsibility
of the mobile computer’s operating system (OS); that is, the software for
handling adaptation essentially is tucked under the OS hood, invisible
to applications. At the other end, adaptation may be entirely the respon-
sibility of individual applications; that is, each application must address
all the issues of detecting and dealing with varying resource levels.
Between these extremes, a number of application-aware strategies are
possible, where the OS and individual application each share some of
the burden of adaptation. While applications are involved in adaptation
decisions, the middleware and/or OS provides support for resource mon-
itoring and other low-level adaptation functions. The spectrum of adap-
tation is depicted in Fig. 6.1. In this part of the chapter, we are concerned
primarily with middleware for adaptation, that is, software interfaces
that allow applications to take part in the adaptation process. Pure
system-level adaptation strategies, those which take place in a mobile-
aware file system such as CODA (e.g., caching and hoarding), are cov-
ered elsewhere in this book.

6.1.2 Resource monitoring

All adaptation strategies must measure available resources so that
adaptation policies can be carried out. For some types of resources—
cash, for example—monitoring is not so difficult. The user simply sets
limits and appropriate accounts. For others, more elaborate approaches
are required. The Advanced Configuration and Power Interface (ACPI)
provides developers with a standardized interface to power-level infor-
mation on modern devices equipped with “smart” batteries. Accurately

2 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 2

measuring network bandwidth over multihop networks is more difficult.
Some approaches are described in Lai and Baker (1999) for the inter-
ested reader. Whatever methods are used to measure resource levels
have a direct impact on the effectiveness of the entire adaptation process
because accurate measurement of resource levels is critical to making
proper adaptation decisions.

6.1.3 Characterizing adaptation strategies

The Odyssey project (Noble et al., 1997; Noble, 2000) at Carnegie Mellon
University was one of the first application-aware middleware systems,
and it serves as a good model for understanding application-aware adap-
tation. In describing the Odyssey system, Satyanarayanan proposed sev-
eral measures that are useful for classifying the goodness of an adaptation
strategy. We describe these—fidelity, agility, and concurrency—below.

Fidelity measures the degree to which a data item available to an
application matches a reference copy. The reference copy for a data item
is considered the exemplar, the ideal for that data item—essentially, the
version of the data that a mobile computer would prefer given no
resource constraints. Fidelity spans many dimensions, including per-
ceived quality and consistency. For example, a server might store a 30-
frame-per-second (fps), 24-bit color depth video at 1600 × 1200 resolution
in its original form as shot by a digital video camera. This reference copy
of the video is considered to have 100 percent fidelity. Owing to resource
constraints such as limited network bandwidth, a mobile host may have

Middleware for Application Development: Adaptation and Agents 3

Figure 6.1 At one end of the spectrum of adaptation, applications are entirely
responsible for reacting to changing resource levels. At the other end of the
spectrum, the operating system reacts to changing resource levels without the
interaction of individual applications.

Application entirely
responsible for

reacting
(or not) to

changing conditions

System entirely
responsible for reacting

(or not) to changing
conditions;

“protects” application

Level of application
adaptability

NoneFull
System/application

cooperation

Richard_Ch06.qxd 8/17/04 3:47 PM Page 3

to settle for a version of this video that is substantially reduced in qual-
ity (assigned a lower fidelity measure, perhaps 50 percent) or even for
a sequence of individual black-and-white still frames (with a fidelity
measure of 1 percent). If the video file on the server is replaced period-
ically with a newer version and a mobile host experiences complete dis-
connection, then an older, cached version of the video may be supplied
to an application by adaptation middleware. Even if this cached version
is of the same visual quality as the current, up-to-date copy, its fidelity
may be considered lower because it is not the most recent copy (i.e., it
is stale).

While some data-dependent dimensions of fidelity, such as the frame
rate of a video or the recording quality of audio, are easily characterized,
others, such as the extent to which a database table is out of date or a
video is not the most current version available, do not map easily to a
0 to 100 percent fidelity scale. In cases where there is no obvious map-
ping, a user’s needs must be taken into account carefully when assign-
ing fidelity levels. More problematic is the fact that fidelity levels are
in general type-dependent—there are as many different types of fidelity-
related adaptations as there are types of data streams; for example,
image compression schemes are quite different from audio compression
schemes. Generally, an adaptation strategy should provide the highest
fidelity possible given current and projected resource levels. Current
adaptation middleware tends to concentrate on the present. Factoring
projected resource levels into the equation is an area for future research.

Agility measures an adaptation middleware’s responsiveness to
changes in resource levels. For example, a highly agile system will deter-
mine quickly and accurately that network bandwidth has increased
substantially or that a fresh battery has been inserted. An adaptation
middleware’s agility directly limits the range of fidelity levels that can
be accommodated. This is best illustrated with several examples, which
show the importance of both speed and accuracy. For example, if the mid-
dleware is very slow to respond to a large increase in network bandwidth
over a moderate time frame (perhaps induced by a user resting in an
area with 802.11 WLAN connectivity), then chances to perform oppor-
tunistic caching, where a large amount of data are transferred and
hoarded in response to high bandwidth, may be lost. Similarly, an adap-
tation middleware should notice that power levels have dropped sub-
stantially before critical levels are reached. Otherwise, a user enjoying
a high-quality (and power-expensive) audio stream may be left with
nothing, rather than a lower-quality audio stream that is sustainable.

Agility, however, is not simply a measure of the speed with which
resource levels are measured; accuracy is also extremely important.
For example, consider an 802.11a wireless network, which is much more
sensitive to line-of-sight issues than 802.11b or 802.11g networks. A

4 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 4

momentary upward spike in available bandwidth, caused by a mobile
host connected to an 802.11a network momentarily having perfect line
of sight with an access point, should not necessarily result in adjust-
ments to fidelity level. If such highly transient bandwidth increases
result in a substantial increase in fidelity level of a streaming video, for
example, many frames may be dropped when bandwidth suddenly
returns to a lower level.

The last measure for adaptation middleware that we will discuss is con-
currency. Although the last generation of PDAs (such as the original
Pilot by Palm, Inc.) used single-threaded operating systems, capable of
executing only one application at a time; newer PDAs, running newer ver-
sions of Palm OS, variants of Microsoft Windows, and Linux, run full-
featured multitasking OSs. Thus it is reasonable to expect that even the
least powerful of mobile devices, not to mention laptops that run desk-
top operating systems, will execute many concurrent applications, all of
which compete for limited resources such as power and network band-
width. This expectation has a very important implication for adapta-
tion: Handling adaptation at the left end of the spectrum (as depicted in
Fig. 6.1), where individual applications assume full responsibility for
adapting to resource levels, is probably not a good idea. To make intelli-
gent decisions, each application would need to monitor available resources,
be aware of the resource requirements of all other applications, and know
about the adaptation decisions being made by the other applications.
Thus some system-level support for resource monitoring, where the OS
can maintain the “big picture” about available resources needs and
resource levels, is important.

6.1.4 An application-aware adaptation
architecture: odyssey

In this section we examine the Odyssey architecture in greater detail.
In the spectrum of adaptation, Odyssey sits in the middle—applications
are assisted by the Odyssey middleware in making decisions concerning
fidelity levels. Odyssey provides a good model for understanding the
issues in application-aware adaptation because the high-level architec-
ture is clean, and the components for supporting adaptation are clearly
delineated. The Odyssey architecture consists of several high-level com-
ponents: the interceptor, which resides in the OS kernel, the viceroy, and
one or more wardens. These are depicted in Fig. 6.2. The version of
Odyssey described in Nobel and colleagues (1997) runs under NetBSD;
more recent versions also support Linux and FreeBSD. To minimize
changes to the OS kernel, Odyssey is implemented using the Virtual
File System (VFS) interface, which is described in great detail for kernel
hacker types in Bovet and Cesati (2002). Applications interact with

Middleware for Application Development: Adaptation and Agents 5

Richard_Ch06.qxd 8/17/04 3:47 PM Page 5

Odyssey using (mostly) file system calls, and the interceptor, which
resides in the kernel, performs redirection of Odyssey-specific system
calls to the other Odyssey components.

The basic Odyssey model is for an application to choose a fidelity level
for each data type that will be delivered—e.g., 320 × 240 color video at 15
fps. The application then computes resource needs for delivery of each
stream and registers these needs with Odyssey in the form of a “window”
specifying minimum and maximum need. The viceroy monitors avail-
able resources and generates a callback to the application when available
resources fall outside registered resource-level window. The application
then chooses a new fidelity level, computes resource needs, and registers
these needs, as before. Thus applications are responsible for deciding
fidelity levels and computing resource requirements—the primary con-
tribution that Odyssey makes is to monitor resources and to notify appli-
cations when available resources fall outside constraints set by the
application. Before describing a sample Odyssey application, the war-
dens and viceroy are discussed in detail below.

6 Chapter Six

Figure 6.2 The Odyssey architecture consists of a type-independent viceroy and a number
of type-specific wardens. Applications register windows of acceptable resource levels for
particular types of data streams and receive notifications is when current resource levels
fall outside the windows.

Application

NetBSD
kernel

Interceptor

Upcall

Odyssey callsAll system calls

Odyssey

Warden3

Warden2

Warden1

V
ic

er
oy

Richard_Ch06.qxd 8/17/04 3:47 PM Page 6

Wardens. A warden is a type-specific component responsible for han-
dling all adaptation-related operations for a particular sort of data
stream (e.g., a source of digital images, audio, or video). Wardens sit
between an application and a data source, handling caching and arrang-
ing for delivery of data of appropriate fidelity levels to the application.
A warden must be written for each type of data source. An application
typically must be partially rewritten (or an appropriate proxy installed)
to accept data through a warden rather than through a direct connec-
tion to a data source, such as a streaming video server.

Viceroy. In Odyssey, the viceroy is a type-independent component that
is responsible for global resource control. All the wardens are statically
compiled with the viceroy. The viceroy monitors resource levels (e.g.,
available network bandwidth) and initiates callbacks to an application
when current resource levels fall outside a range registered by the appli-
cation. The types of resources to be monitored by the viceroy in Odyssey
include network bandwidth, cash, battery power, and CPU, although the
initial implementations of the Odyssey architecture did not support all
these resource types.

6.1.5 A sample odyssey application

We now turn to one of the sample applications discussed in Nobel and
colleagues (1997): the xanim video player. The xanim video player was
modified to use Odyssey to adapt to varying network conditions, with
three fidelity levels available—two levels of JPEG compression and
black-and-white frames. The JPEG compression frames are labeled 99
and 50 percent fidelity, whereas the black-and-white content is labeled
1 percent fidelity. Integration of xanim with Odyssey is illustrated in
Fig. 6.3. A “video warden” prefetches frames from a video server with
the appropriate fidelity and supplies the application with metadata
for the video being played and with individual frames of the video.

The performance of the modified xanim application was tested using
simulated bandwidths of 140 kB/s for “high” bandwidth and 40 kB/s for
“low” bandwidth. A number of strategies were used to vary bandwidth:
step up, which holds bandwidth at the low level for 30 seconds, followed
by an abrupt increase to high bandwidth for 30 seconds; step down, which
reverses the bandwidth levels of step up but maintains the same time peri-
ods; impulse up, which maintains a low bandwidth over a 60-second
period with a single 2-second spike of high bandwidth in the middle; and
impulse down, which maintains high bandwidth for 60 seconds with a
single 2-second spike of low bandwidth in the middle. Both high and low
bandwidth levels are able to support black-and-white video and the lower-
quality (50 percent fidelity) JPEG video. Only the high bandwidth level

Middleware for Application Development: Adaptation and Agents 7

Richard_Ch06.qxd 8/17/04 3:47 PM Page 7

is sufficient for the 99 percent fidelity JPEG frames to be delivered
without substantial numbers of dropped frames.

In the tests, Odyssey maintained average fidelities of 73, 76, 50, and
98 percent for step up, step down, impulse up, and impulse down, respec-
tively, all with less than 5 percent dropped frames. In contrast, trying
to maintain the 99 percent fidelity rate by transferring high-quality
video at all times, ignoring available network bandwidth, resulted in
losses of 28 percent of the frames for step up and step down and 58 per-
cent of the frames for impulse up. Several other adapted applications
are discussed in the Odyssey publications.

6.1.6 More adaptation middleware

Puppeteer. For applications with well-defined, published interfaces, it
is possible to provide adaptation support without modifying the appli-
cations directly. The Puppeteer architecture allows component-based
applications with published interfaces to be adapted to environments
with poor network bandwidth (a typical situation for mobile hosts) with-
out modifying the application (de Lara, Wallach, and Zwaenepoel, 2001).
This is accomplished by outfitting applications and data servers with
custom proxies that support the adaptation process. A typical applica-
tion adaptation under Puppeteer is a retrofit of Microsoft PowerPoint
to support incremental loading of slides from a large presentation or sup-
port for progressive JPEG format to speed image loading. Both these
adaptations presumably would enhance a user’s experience when han-
dling a large PowerPoint presentation over a slow network link.

8 Chapter Six

Figure 6.3 Architecture of the adapted video player in Odyssey.

Video
server

Xanim

Client

Odyssey
API

RPC

Viceroy

Video
warden

Richard_Ch06.qxd 8/17/04 3:47 PM Page 8

The Puppeteer architecture is depicted in Fig. 6.4. The Puppeteer
provides a kernel that executes on both the client and server side prox-
ies, supporting a document type called the Puppeteer Intermediate
Format (PIF), a hierarchical, format-neutral format. The kernel also
handles all communication between client and server sides. To adapt a
document, the server and client side proxies communicate to establish
a high-level PIF skeleton of the document. Adaptation policies control
which portions of the document will be transferred and which fidelities
will be chosen for the transmitted portions. For example, for a Microsoft
PowerPoint document, selected slides may transferred, with images
rendered at a lower fidelity than in the original presentation. The import
driver and export driver parse native document format to PIF and PIF
to native document format, respectively. Transcoders in Puppeteer per-
form transformations on data items to support the adaptation policies.
For example, a Puppeteer transcoder may reduce the quality of JPEG
images or support downloading only a subset of a document’s data. A typ-
ical Puppeteer-adapted application operates as follows:

Middleware for Application Development: Adaptation and Agents 9

Figure 6.4 (a) Illustrates the overall Puppeteer architecture, where client applications
interact with data servers through proxies. DMI is the Data Manipulation Interface of the
applications, which allows Puppeteer to view and modify data acted on by the application.
The relationship between client-side and server-side proxies is illustrated in (b).

Client
DMI

Data
Weak
link

Strong
link

Application
Puppeteer

proxy
Puppeteer

server
Data

server

(a)

Client proxy

Policies

Decoder

KERNEL KERNEL

Export
driver

Tracking
driver

Import
driver

Coder

Server proxy

(b)

Richard_Ch06.qxd 8/17/04 3:47 PM Page 9

� When the user opens a document, the Puppeteer kernel instantiates
an appropriate import driver on the server side.

� The import driver parses the native document format and creates a
PIF format document. The skeleton of the PIF is transmitted by the
kernel to the client-side proxy.

� On the client side, policies available to the client-side proxy result in
requests to transfer selected portions of the PIF (at selected fidelities)
from the server side. These items are rendered by the export driver
into native format and supplied to the application through its well-
known interface.

� At this point, the user regains control of the application. If specified
by the policy, additional portions of the requested document can be
transferred by Puppeteer in the background and supplied to the appli-
cation as they arrive.

Coordinating adaptation for multiple mobile applications. Efstatiou and
colleagues (2002a, 2002b) argue that what’s missing from most current
adaptation middleware architectures is coordination among adaptive
applications. Odyssey and Puppeteer, for example, support sets of inde-
pendently adapting applications but do not currently assist multiple
applications in coordinating their adaptation strategies. When multiple
applications are competing for shared resources, individual applica-
tions may make decisions that are suboptimal. At least three issues are
introduced when multiple applications attempt to adapt to limited
resources—conflicting adaptation, suboptimal system operation, and
suboptimal user experience.

Several sample scenarios illustrate these concerns. First, consider a
situation where a number of applications executing on a mobile host with
limited power periodically write data to disk. This would occur, for exam-
ple, if two or more applications with automatic backup features were exe-
cuting. Imagine that the mobile host maintains a powered-down state
for its hard drives to conserve energy. Then, each time one of the auto-
matic backup facilities executes, a hard disk on the system must be
spun up. If the various applications perform automatic backups at unco-
ordinated times, then the disk likely will spin up quite frequently, wast-
ing a significant amount of energy. If the applications coordinated to
perform automatic backups, on the other hand, then disk writes could
be performed “in bulk,” maximizing the amount of time that the disk
could remain powered down. This example illustrates suboptimal system
operation despite adaptation.

Another issue when multiple applications adapt independently is con-
flicting adaptation. Imagine that one application is adapting to varying
power, whereas another application is adapting to varying network

10 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 10

bandwidth. When the battery level in the mobile device becomes a con-
cern, then the power-conscious application might throttle its use of the
network interface. This, in turn, makes more bandwidth available, which
might trigger the bandwidth-conscious application to raise fidelity levels
for a data stream, defeating the other application’s attempt to save energy.

A third issue is that in the face of limited resources, a user’s needs can
be exceedingly difficult to predict. Thus some user participation in the
adaptation process probably is necessary. To see this, imagine that a user
is enjoying a high-bandwidth audio stream (Miles Davis, Kind of Blue?)
while downloading a presentation she needs to review in 1 hour. With
abundant bandwidth, both applications can be well served. However, if
available bandwidth decreases sharply (because an 802.11 access point has
gone down, for example, and the mobile host has fallen back to a 3G con-
nection), should a lower-quality stream be chosen and the presentation
download delayed because Miles is chewing up a few tens of kilobits per
second? Or should the fun stop completely and the work take precedence?

Efstatiou and colleagues propose using an adaptation policy language
based on the event calculus (Kowalsky, 1986) to specify global adapta-
tion policies. The requirements for their architecture are that a set of
extensible adaptation attributes be sharable among applications, that
the architecture be able to centrally control adaptation behavior, and
that flexible, system-wide adaptation policies, depending on a variety
of issues, be expressible in a policy language. Their architecture also
allows human interaction in the adaptation process both to provide
feedback to the user and to engage the user in resolving conflicts (e.g.,
Miles Davis meets downloading PowerPoint). Applications are required
to register with the system, providing a set of adaptation policies and
modes of adaptation supported by the application. In addition, the appli-
cation must expose a set of state variables that define the current state
of the application. Each application generates events when its state
variables change in meaningful ways so that the adaptation architec-
ture can determine if adaptive actions need to be taken; for example,
when a certain application is minimized, a global adaptation policy may
cause that application to minimize its use of system resources. A registry
in the architecture stores information about each application, and an
adaptation controller monitors the state of the system, determining
when adaptation is necessary and which applications should adapt.
Another policy language–driven architecture advocating user involve-
ment is described in Keeney and Cahill (2003).

6.2 Mobile Agents

We now turn to another type of mobile middleware, mobile agent systems.
Almost all computer users have used mobile code, whether they realize

Middleware for Application Development: Adaptation and Agents 11

Richard_Ch06.qxd 8/17/04 3:47 PM Page 11

it or not—modern browsers support Javascript, Java applets, and other
executable content, and simply viewing Web pages results in execution
of the associated mobile code. Applets and their brethren are mostly
static, in that code travels from one or more servers to a client and is exe-
cuted on the client. For security reasons, the mobile code often is prevented
from touching nonlocal resources. Mobile agents are a significant step for-
ward in sophistication, supporting the migration of not only code but also
state. Unlike applets, whose code typically travels (at an abstract level
at least) one “hop” from server to client, mobile agents move freely about
a network, making autonomous decisions on where to travel next. Mobile
agents have a mission and move about the network extracting data and
communicating with other agents in order to meet the mission goals.

Like adaptation middleware, mobile agent systems (e.g., Cabri,
Leonardi, and Zambonelli, 2000; Gray, 1996, 1997; Gray et al., 1998, 2000;
Bradshaw et al., 1999; Lange and Oshima, 1998; Peine and Stoplmann,
1997; Wong, Paciorek, and Moore, 1999; Wong et al., 1997) support exe-
cution of mobile applications in resource-limited environments, but mobile
agent systems go far beyond allowing local applications to respond to fluc-
tuating resource levels. A mobile agent system is a dynamic client-server
(CS) architecture that supports the migration of mobile applications
(agents) to and from remote servers. An agent can migrate whenever it
chooses either because it has accomplished its task completely or because
it needs to travel to another location to obtain additional data. An alter-
native to migration that an agent might exercise is to create one or more
new agents dynamically and allow these to migrate. The main idea behind
mobile agents is to get mobile code as close to the action as possible—mobile
agents migrate to remote machines to perform computations and then
return home with the goods.

For example, if a mobile user needs to search a set of databases, a tra-
ditional CS approach may perform remote procedure calls against the
database servers. On the other hand, a mobile agents approach would
dispatch one or more applications (agents) either directly to the data-
base servers or to machines close to the servers. The agents then per-
form queries against the database servers, sifting the results to
formulate a suitable solution to the mobile user’s problem. Finally, the
mobile agents return home and deliver the results.

The advantages of this approach are obvious. First, if bandwidth
available to the mobile user is limited and the database queries are
complicated, then performing a series of remote queries against the
servers might be prohibitively expensive. Since the agents can execute
a number of queries much closer to the database servers in order to
extract the desired information, a substantial amount of bandwidth
might be saved (of course, transmission of the agent code must be taken
into account). Second, continuous network connectivity is not required.

12 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 12

The mobile user might connect to the network, dispatch the agent, and
then disconnect. When the mobile user connects to the network again
later, the agent is able to return home and present its results. Finally,
the agents are not only closer to the action, but they also can be executed
on much more powerful computers, potentially speeding up the mining
of the desired information.

Of course, there are substantial difficulties in designing and imple-
menting mobile agent systems. After briefly discussing the motivations
for mobile agent systems in the next section, those challenges will con-
sume the rest of this chapter.

6.2.1 Why mobile agents? And why not?

We first discuss the advantages of mobile agents at a conversational
level, and then we look at the technical advantages and disadvantages
in detail. First, a wide variety of applications can be supported by mobile
agent systems, covering electronic commerce (sending an agent shop-
ping), network resource management (an agent might traverse the net-
work, checking versions of installed applications and initiating upgrades
where necessary), and information retrieval (an agent might be dis-
patched to learn everything it can about Thelonious Monk).

An interesting observation made by Gray and colleagues (2000) is
worth keeping in mind when thinking about agent-based applications:
While particular applications may not make a strong case for deployment
of mobile agent technology, sets of applications may make such a case.
To see this point, consider the database query example discussed in the
preceding section. Rather than using mobile agents, a custom applica-
tion could be deployed (statically) on the database servers. This appli-
cation accepts jobs (expressing the type of information required) from a
mobile user, performs a sequence of appropriate queries, and then returns
the results. Since most of the processing is done off the mobile host, the
resource savings would be comparable to a mobile agents solution.

Similarly, little computational power on the mobile host is required
because much of the processing can be offloaded onto the machine host-
ing the custom application. However, what if a slightly different appli-
cation is desired by a mobile user? Then the server configuration must
be changed. Like service discovery protocols, covered in Chap. 7, mobile
agent systems foster creation of powerful, personalized mobile applica-
tions based on common frameworks. While individual mobile applica-
tions can be written entirely without the use of agent technologies, the
amount of effort to support a changing set of customized applications
may be substantially higher than if mobile agents were used.

Mobile agent systems provide the following set of technical advantages
(Milojicic, Douglis, and Wheel, 1998):

Middleware for Application Development: Adaptation and Agents 13

Richard_Ch06.qxd 8/17/04 3:47 PM Page 13

� The limitations of a single client computer are reduced. Rather than
being constrained by resource limitations such as local processor
power, storage space, and particularly network bandwidth, applica-
tions can send agents “into the field” to gather data and perform com-
putations using the resources of larger, well-connected servers.

� The ability to customize applications easily is greatly improved. Unlike
traditional CS applications, servers in an agent system merely pro-
vide an execution environment for agents rather than running cus-
tomized server applications. Agents can be freely customized (within
the bounds of security restrictions imposed by servers) as the user’s
needs evolve.

� Flexible, disconnected operation is supported. Once dispatched, a
mobile agent is largely independent of its “home” computer. It can per-
form tasks in the field and return home when connectivity to the
home computer is restored. Survivability is enhanced in this way,
especially when the home computer is a resource-constrained device
such as a PDA. With a traditional CS architecture, loss of power on a
PDA might result in an abnormal termination of a user’s application.

Despite these advantages, mobile agent architectures have several sig-
nificant disadvantages or, if that is too strong a word, disincentives.
One is that neither a killer application nor a pressing need to deploy
mobile agent technology has been identified. Despite their sexiness,
mobile agents do not provide solutions to problems that are otherwise
unsolvable; rather, they simply seem to provide a good framework in
which to solve certain problems. In reflections on the Tacoma project
(Milojicic, Douglis, and Wheel, 1998), Johansen, Schneider, and van
Renesse note that while agents potentially reduce bandwidth and tol-
erate intermittent communication well, bandwidth is becoming ever
more plentiful, and communication is becoming more reliable. As wire-
less networking improves and mobile devices become more powerful
and more prevalent, will mobile agents technologies become less rele-
vant? Further, while a number of systems exist, they are largely living
in research laboratories. For mobile agent systems to meet even some
of their potential, widespread deployment of agent environments is
required so that agents may travel freely about the Internet.

A related problem is a lack of standardization. Most mobile agent sys-
tems are not interoperable. Some effort has gone into interoperability for
agent systems, but currently, there seem to be no substantial market
pressures forcing the formation of a single (or even several) standards
for mobile agent systems. The Mobile Agents System Interoperability
Facility (MASIF; Milojicic et al., 1999) is one early attempt at fostering
agent interoperability for Java-based agent systems.

14 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 14

All the disadvantages just discussed are surmountable with a little
technical effort—apply a good dose of marketing, and most disappear.
There is a killer disadvantage, however, and that is security. Even
applets and client-side scripting languages (such as Javascript), which
make only a single hop, scare security-conscious users to death, and
many users turn off Java, Javascript, and related technologies in their
Web browsers. Such users maintain this security-conscious stance even
when interacting with Web sites in which they place significant trust
because the potential for serious damage is high should the sandbox
leak. Security for mobile agent systems is far more problematic than
simple mobile code systems such as Java applets because agents move
autonomously.

There are at least two broad areas of concern. First, agents must be
prevented from performing either unintentional or malicious damage as
they travel about the network. Could an agent have been tampered
with at its previous stop? Is it carrying a malicious logic payload? Does
it contain contraband that might be deposited on a machine? Will the
agent use local resources to launch a denial-of-service attack against
another machine? Essentially, if agents are to be allowed to get “close
to the action,” then the “action” must be convinced (and not just with
some marketing) that the agents will not destroy important data or
abuse resources. Second, the agents themselves must be protected from
tampering by malicious servers. For example, an agent carrying credit
card information to make purchases on behalf of its owner should be able
to control access to the credit card number. Similarly, an agent equipped
with a proprietary data-mining algorithm should be able to resist reverse
engineering attacks as it traverses the network.

6.2.2 Agent architectures

To illustrate the basic components of mobile agent architectures, a high-
level view of Telescript (White in Milojicic, Douglic, and Wheel, 1998)
works well. Telescript was one of the first mobile agent systems, and
while it is no longer under development, many subsequent systems bor-
rowed ideas from Telescript. There are a number of important compo-
nents in the Telescript architecture: agents, places, travel, meetings,
connections, authorities, and permits. These are depicted in Fig. 6.5.
Each of these components is described in detail below.

Places. In a mobile agent system, a network is composed of a set of
places—each place is a location in the network where agents may visit.
Each place is hosted by a server (or perhaps a user’s personal computer)
and provides appropriate infrastructure to support a mobile agent
migrating to and from that location. Servers in a network that do not

Middleware for Application Development: Adaptation and Agents 15

Richard_Ch06.qxd 8/17/04 3:47 PM Page 15

offer a “place” generally will not be visitable by agents. Places offer
agents a resting spot in which they can access resources local to that
place through a stationary agent that “lives” there, interacting with
other agents currently visiting that place.

Travel. Travel allows agents to move closer to or to colocate with needed
resources. For example, an agent dispatched by a user to obtain tickets
to a jazz concert and reservations at one of several restaurants (depend-
ing on availability) might travel from its home place to the place hosted

16 Chapter Six

Figure 6.5 The major Telescript components are illustrated above. Tom has just dispatched
an agent which has not yet arrived at the theater server. When Tom’s agent arrives, it will
interact with the static agent in the box office place to arrange for theater tickets. Daryl
previously dispatched an agent to purchase tickets and has a connection with her agent
in the box office place, so she can actively negotiate prices. Daryl’s agent and the box office
agent have identified each other through their respective authorities and permits associ-
ated with Daryl’s agent have been evaluated to see what actions are permitted. The static
agents in the drugstore and music store places, which both reside on a shopping center
server, are currently idle. To interact with the drugstore or music store agents, Daryl or
Tom’s agents will have to travel to the drugstore and music store places.

Agent

T
ra

ve
l

Box office place

Meeting
Drugstore place

Music store place

Shopping center
server

Theater server

Authority/permit
evaluation

Tom

Daryl

Connection

Richard_Ch06.qxd 8/17/04 3:47 PM Page 16

by the jazz club’s box office before traveling to the places hosted by the
restaurants. The primary difference between mobile code strategies
such as Java applets and agents is that agents travel with at least part
of their state intact—after travel, an agent can continue the computa-
tion it was engaged in at the instant that travel was initiated. Migration
is studied in further detail below in the section entitled, “Migration
Strategies.”

Meetings. Meetings are local interactions between two or more agents
in the same place. In Telescript, this means that the agents can invoke
each other’s procedures. The agent in search of jazz tickets and a restau-
rant reservation (discussed under “Travel” above) would engage in meet-
ings with appropriate agents at the ticket office and at the restaurant’s
reservation office to perform its duty.

Connections. Connections allow agents at different places to commu-
nicate and allow agents to communicate with human users or other
applications over a network. An agent in search of jazz tickets, for exam-
ple, might contact the human who dispatched it to indicate that an
additional show has been added, although the desired show was sold out
(e.g., “Is the 11 P.M. show OK?”). Connections in Telescript require an
agent to identify the name and location of the remote agent, along with
some other information, such as required quality of service. This remote
communication method, which tightly binds two communicating agents
(since both name and location are required for communication), is the
most restrictive of the mechanisms discussed in further detail below in
the section entitled, “Communication Strategies.”

Authorities. An agent’s or place’s authority is the person or organization
(in the real world) that it represents. In Telescript, agents may not with-
hold their authority; that is, anonymous operation is not allowed—the
primary justification for this limitation is to deter malicious agent activ-
ity. When an agent wishes to migrate to another location, the destina-
tion can check the authority to determine if migration will be permitted.
Similarly, an agent may examine the authority of a potential destination
to determine if it wishes to migrate there. Implementation of authorities
in an untrusted network is nontrivial and requires strong cryptographic
methods because an agent’s authority must be unforgeable.

Permits. Permits determine what agents and places can do—they are
sets of capabilities. In general, these capabilities may have virtually any
form, but in Telescript they come in two flavors. The first type of capabil-
ity determines whether an agent or place may execute certain types of
instructions, such as instructions that create new agents. The second type

Middleware for Application Development: Adaptation and Agents 17

Richard_Ch06.qxd 8/17/04 3:47 PM Page 17

of capability places resource limits on agents, such as a maximum number
of bytes of network traffic that may be generated or a maximum lifetime
in seconds. If an agent attempts to exceed the limitations imposed by its
permits, it is destroyed. The actions permitted an agent are those which
are allowed by both its internal permits and the place(s) it visits.

Other issues. A number of details must be taken into account when
designing an architecture to support mobile agents, but one of the fun-
damental issues is the choice of language for implementation of the
agents (which might differ from the language used to implement the
agent architecture). To support migration of agents, all computers to
which an agent may migrate must share a common execution language.
While it is possible to restrict agents to a particular computer archi-
tecture and OS (e.g., Intel 80 × 86 running Linux 2.4), clearly, agent sys-
tems that can operate in heterogeneous computer environments are the
most powerful. Compiled languages such as C and C++ are problematic
because agent executables must be available for every binary architec-
ture on which agents will execute. Currently, interpreted languages
such as Java, TCL, and Scheme are the most popular choices because
many problems with code mobility are alleviated by interpreted lan-
guages. In cases where traditionally compiled languages such as C++
are used for implementation of agents, a portable, interpreted byte
code typically is emitted by a custom compiler to enable portability
(e.g., see Gray et al., 2000). Java is particularly popular for mobile
agents because Java has native support for multithreading, object seri-
alization (which allows the state of arbitrary objects to be captured and
transmitted), and remote procedure calls.

Other factors, aside from the implementation language for agents,
include migration strategies, communication, and security. Migration and
communication strategies are discussed in detail below. A thorough treat-
ment of security in agent systems is beyond the scope of this chapter.

6.2.3 Migration strategies

To support the migration of agents, it must be possible to either capture
the state of an agent or to spawn an additional process that captures the
state of the agent. This process state must then be transmitted to the
remote machine to which the agent (or its child, in the case of spawn-
ing an additional process) will migrate. This is equivalent to process
checkpointing, where the state of a process, including the stack, heap,
program code, static variables, etc., is captured and stored for a later
resuscitation of the process. Process checkpointing is a very difficult
problem that has been studied in the operating systems and distributed
systems communities for a number of years, primarily to support fault

18 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 18

tolerance and load balancing (Jul et al., 1988; Douglis and Ousterhout,
1991; Plank, 1995). In general, commodity operating systems do not
provide adequate support for checkpointing of processes, and add-on
solutions [e.g., in the form of libraries such as libckpt (Plant, 1995)] are
nonportable and impose significant restrictions, such as an inability to
reconstitute network connections transparently. A number of research
operating systems have been designed that better support process
migration, but since none of these is viable commercially (even in the
slightest sense), they are not currently appropriate platforms.

Checkpointing processes executing inside a virtual machine, such as
Java processes, are a bit easier, but currently most of these solutions
(Richard and Tu, 1998; Sakamoto, Sekiguchi, and Yonezawa, 2000; Truyen
et al., 2000) also impose limitations, such as restrictions on the use of call-
backs, network connections, and file activity. The virtual machine itself
can be checkpointed, but then the issues of portability discussed earlier
reemerge, and network connections and file access will still pose problems.
So where is this going? The punch line is that if commodity operating sys-
tems are to be targeted by agent systems—and for wide-scale deploy-
ment, this must be the case—then completely capturing the state of
general processes to support migration is rife with problems.

One solution is to impose strong restrictions on the programming
model used for mobile agents. Essentially, this entails capturing only the
essential internal state of an agent, i.e., sufficient information about its
current execution state to continue the computation on reconstitution,
combined with a local cleanup policy. This means that an agent might
perform a local cleanup, including tearing down communication con-
nections and closing local files, before requesting that the agent mid-
dleware perform a migration operation. For example, in Aglets (Lange
and Oshima, 1998), which is a Java-based mobile agents system, agents
are notified at the beginning of a migration operation. It is the respon-
sibility of an individual agent, on receiving such a notification, to save
any significant state in local variables so that the agent can be properly
“reconstituted” at the new location. Such a state may include the names
of communication peers, loop indices, etc. Agent migration in Aglets
begins with an agent initiating a migration (its own or that of another
agent) by invoking dispatch(). A callback, onDispatch(), will be
triggered subsequently, notifying the agent that it must save its state.
After the migration, the agent’s onArrival() callback will be invoked
so that the agent can complete its state restoration.

6.2.4 Communication strategies

Communication among agents in a mobile agent system can take many
forms, including the use of traditional CS techniques, remote procedure

Middleware for Application Development: Adaptation and Agents 19

Richard_Ch06.qxd 8/17/04 3:47 PM Page 19

call, remote method invocation (e.g., using Java’s RMI), mailboxes, meet-
ing places, and coordination languages. Each of these communication
strategies has advantages and disadvantages, some of which are exac-
erbated in mobile agent systems. One consideration is the degree of
temporal and spatial locality exhibited by a communication scheme
(Cabri, Leonardi, and Zambonelli, 2000).

Temporal locality means that communication among two or more
agents must take place at the same physical time, like a traditional tele-
phone conversation. Interagent communication mechanisms exhibiting
temporal locality are limiting in a mobile agent’s architecture because
all agents participating in a communication must have network con-
nectivity at the time the communication occurs. If an agent is in tran-
sit, then attempts to communicate with that agent typically will fail.

Spatial locality means that the participants must be able to name each
other for communication to be possible—in other words, unique names
must be associated with agents, and their names must be sufficient for
determining their current location. Some of the possible communication
mechanisms for interagent communication are discussed below.

Traditional CS communication. Advantages of traditional CS mechanisms
such as sockets-based communication, Remote Method Invocation (RMI)
in Java, and CORBA include a familiar programming model for soft-
ware developers and compatibility with existing applications. Significant
drawbacks include strong temporal and spatial locality—for communi-
cation to be possible, agents must be able to name their communication
peers and initiate communication when their peers are also connected.
RMI and other communication mechanisms built on the Transmission
Control Protocol/Internet Protocol (TCP/IP) also require stable network
connectivity; otherwise, timeouts and subsequent connection reestab-
lishments will diminish performance significantly. Examples of agents
systems that use traditional CS mechanisms are D’Agents (Gray et al.,
1998) and Aglets (Lange and Oshima, 1998). In Aglets, an agent first
must obtain another agent’s proxy object (of type AgletProxy) before com-
munication can take place. This proxy allows the holder to transmit
arbitrary messages to the target and to request that the target agent per-
form operations such as migration and cloning (which creates an iden-
tical agent). To obtain a proxy object for a target agent, an agent typically
must provide both the name of the target agent and its current location.
If either agent moves, then the proxy must be reacquired.

Meeting places. Meeting places are specific places where agents can
congregate in order to exchange messages and typically are defined stat-
ically, avoiding problems with spatial locality but not temporal locality.
In Ara (Peine and Stolpmann, 1997), meeting places are called service

20 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 20

points and provide a mechanism for agents to perform local communi-
cation. Messages are directed to a service point rather than to a specific
agent, eliminating the need to know the names of colocated agents.

Tuple spaces. Linda-like tuple spaces are also appropriate for intera-
gent communication. Linda provides global repositories for tuples (essen-
tially lists of values), and processes communicate and coordinate by
inserting tuples into the tuple space, reading tuples that have been
placed into the tuple space, and removing tuples from the tuple space.
Tuple spaces eliminate temporal and spatial bindings between com-
municating processes because communication is anonymous and asyn-
chronous.

Retrieval of objects from a tuple space is based on the content or type
of data, so choosing objects of interest is easier than if objects were
required to be explicitly named. One agent architecture that provides a
Linda-like communication paradigm is Mobile Agent Reactive Spaces
(MARS; Cabri, Leonardi, and Zambonelli, 2000). MARS extends Java’s
JavaSpaces concept, which provides read(), write(), take(),
readAll(), and takeAll() methods to access objects in a JavaSpace.
The extensions include introduction of reactions, which allow program-
mable operations to be executed automatically on access to certain objects
in an object space. This allows, for example, a local service to be started
and new objects introduced into the object space, all based on a single
access to a “trigger” object by an agent. While distributed implementa-
tions of the Linda model exist, MARS simply implements a set of inde-
pendent object spaces, one per node. Agents executing on a particular
node may communicate through the object space, but agents executing
on different nodes cannot use the object spaces to communicate directly.
MARS is intended as a communication substrate for other mobile agent
systems rather than as an independent mobile agent system.

6.3 Summary

This chapter introduced two types of middleware, adaptation middle-
ware and mobile agent systems. Adaptation middleware assists appli-
cations in providing the best quality of service possible to users, given
the widely fluctuating resource levels that may exist in mobile envi-
ronments. Mobile agents provide an alternative to static client/server
systems for designing interesting mobile applications that access
remote data and computational services. Rather than issuing remote
procedure calls against distant services, mobile agents migrate code
closer to the action to reduce communication and computational
requirements for mobile hosts. When a mobile agent has completed its
tasks, it can then return home to present the results to the user (or to

Middleware for Application Development: Adaptation and Agents 21

Richard_Ch06.qxd 8/17/04 3:47 PM Page 21

another application). Both of these types of middleware are comple-
mentary to service discovery frameworks, which are the subject of the
next chapter.

References

“Advanced Configuration and Power Interface,” http://www.acpi.info/.
Ahuja, S., N. Carriero, and D. Gelernter, “Linda and Friends,” IEEE Computer 19(8):26,

1986.
Bharat, K. A., and L. Cardelli, “Migratory Applications,” in Proceedings of the Eighth

Annual ACM Symposium on User Interface Software and Technology, November 1995.
Bovet, D., and M. Cesati, Understanding the Linux Kernel, 2d ed. O’Reilly, 2002.
Bradshaw, J. M., M. Greaves, H. Holmback, W. Jansen, T. Karygiannis, B. Silverman,

N. Suri, and A. Wong, “Agents for the Masses?” IEEE Intelligent Systems, March–April
1999.

Cabri, G., L. Leonardi, and F. Zambonelli, “MARS: A programmable coordination archi-
tecture for mobile agents,” IEEE International Computing 4(4), 2000.

de Lara, E., D. S. Wallach, and W. Zwaenepoel, “Puppeteer: Component-Based Adaptation
for Mobile Computing,” in Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems (USITS-01), Berkeley, CA, March 2001.

Douglis, F., and Ousterhout J., “Transparent Process Migration: Design Alternatives and
the Sprite Implementation,” Software: Practice and Experience 21(8), August 1991.

Efstratiou, C., A. Friday, N. Davies, and K. Cheverst, “A Platform Supporting Coordinated
Adaptation in Mobile Systems,” in Proceedings of the 4th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’02). Callicoon, NY: U.S., IEEE Computer
Society, June 2002, pp. 128–137.

Efstratiou, C., A. Friday, N. Davies, and K. Cheverst, “Utilising the Event Calculus for
Policy Driven Adaptation in Mobile Systems,” in Lobo, J., Michael, B. J., and Duray
N. (eds): Proceedings of the 3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY 2002). Monterey, CA., IEEE Computer Society, June
2002, pp. 13–24.

Fuggetta, A., G. P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions
on Software Engineering 24(5):May 1998.

Gray, R. S., “Agent Tcl: An Extensible and Secure Mobile-Agent System,” in Proceedings
of the Fourth Annual Tcl/Tk Workshop (TCL ‘96), Monterey, CA, July 1996.

Gray, R. S., “Agent Tcl: An Extensible and Secure Mobile-Agent System,” PhD thesis, Dept.
of Computer Science, Dartmouth College, June 1997.

Gray, R. S., D. Kotz, G. Cybenko, and D. Rus, “D’Agents: Security in a Multiple-Language,
Mobile-Agent System,” Mobile Agents and Security,1419:154–187, 1998.

Gray, R. S., D. Kotz, G. Cybenko, and D. Rus, “Mobile Agents: Motivations and State-of-
the-Art Systems,” Dartmouth Computer Science Department Technical Report TR2000-
365, 2000.

Hjalmtysson, H., and R. S. Gray, “Dynamic C++ Classes: A Lightweight Mechanism to
Update Code in a Running Program,” Proceedings of the 1998 USENIX Technical
Conference, 1998.

Joseph, A. D., J. A. Tauber, and M. Frans Kaashoek, “Mobile Computing with the Rover
Toolkit,” IEEE Transactions on Computers: Special Issue on Mobile Computing, 46,
March 1997.

Jul, E., H. Levy, N. Hutchinson, and A. Black, “Fine-Grained Mobility in the Emerald
System,” ACM Transactions on Computer Systems 6 1, February 1988.

Keeney, J., and V. Cahill, “Chisel: A Policy-Driven, Context-Aware, Dynamic Adaptation
Framework,” in Proceedings of the Fourth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2003), 2003.

Kowalsky, R. “A Logic-Based Calculus of Events,” New Generation Computing 4:67, 1986.
Lai, K., and M. Baker, “Measuring Bandwidth,” in Proceedings of IEEE Infocom’99, March

1999.

22 Chapter Six

Richard_Ch06.qxd 8/17/04 3:47 PM Page 22

Lange, D., and M. Oshima: Programming and Deploying Java Mobile Agents with Aglets,
Reading, MA, Addison Wesley, 1998.

Litzkow, M., and M. Solomon, “Supporting Checkpointing and Process Migration Outside
the Unix Kernel,” in Proceedings of the 1992 Winter USENIX Technical Conference, 1992.

Milojicic, D., et al, “MASIF: The OMG Mobile Agent System Interoperability Facility,” in
Proceedings of the International Workshop on Mobile Agents (MA’98), Stuttgart,
September 1998.

Milojicic, D., F. Douglis, and R. Wheel (eds), Mobility: Processes, Computers and Agents.
ACM Press, 1999.

Nahrstedt, K., D. Xu, D. Wichadukul, and B. Li, “QoS-Aware Middleware for Ubiquitous
and Heterogeneous Environments,” IEEE Communications 39(11):XX, November 2001.

Noble, B., “System Support for Mobile: Adaptive Applications,” IEEE Personal Computing
Systems 7(1):44, 2000.

Noble, B., M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker, “Agile
Application-Aware Adaptation for Mobility,” in Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Saint-Malo, France, 5–8 Oct. 1997, pp. 276–287.

Peine, H. “Security Concepts and Implementations for the Ara Mobile Agent System,” in
Proceedings of the Seventh IEEE Workshop on Enabling Technologies: Infrastructure
for the Collaborative Enterprises, Stanford University, June 1998.

Peine H., and T. Stolpmann: “The Architecture of the Ara Platform for Mobile Agents,” in
Proceedings of the First International Workshop on Mobile Agents (MA ‘97), Vol. 1219
of Lecture Notes in Computer Science. Berlin, Springer, 1997.

Plank, J. “Libckpt: Transparent Checkpointing under Unix,” in Proceedings of the Usenix
Winter 1995 Technical Conference, New Orleans, January 1995.

Ranganathan, M., A. Acharya, S. Sharma, and J. Saltz, “Network-Aware Mobile
Programs,” in Proceedings of the 1997 USENIX Technical Conference, 1997, pp. 91–104.

Richard, G. G., III, and S. Tu, “On Patterns for Practical Fault Tolerant Software in Java,”
in Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems, 1998,
pp. 144–150.

Sakamoto, T., T. Sekiguchi, and A. Yonezawa, “Bytecode Transformation for Portable
Thread Migration in Java,” in Proceedings of the Joint Symposium on Agent Systems
and Applications/Mobile Agents (ASA/MA), September 2000, pp. 16–28.

Truyen, E., B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Verbaeten, “Portable
Support for Transparent Thread Migration in Java,” in Proceedings of the Joint
Symposium on Agent Systems and Applications / Mobile Agents (ASA/MA). September
2000, pp. 29–43.

Walsh, T., N. Paciorek, and D. Wong, “Security and Reliability in Concordia,” in
Proceedings of the Thirty-First Annual Hawaii International Conference on System
Sciences, vol. 7. January 1998.

Wong, D., N. Paciorek, and D. Moore, “Java-Based Mobile Agents,” Communications of
the ACM 42(3):XX, March 1999.

Wong, D., et al. “Concordia: An Infrastructure for Collaborating Mobile Agents,” in
Proceedings of the First International Workshop on Mobile Agents (MA ‘97), Vol. 1219
of Lecture Notes in Computer Science. Berlin, Springer, 1997.

Middleware for Application Development: Adaptation and Agents 23

AU: List 2
more
names.

AU:
Page?

AU:
Page?
AU: List 2
more
names.

Richard_Ch06.qxd 8/17/04 3:47 PM Page 23

Richard_Ch06.qxd 8/17/04 3:47 PM Page 24

Chapter

7
Service Discovery Middleware:

Finding Needed Services

Mobility introduces interesting challenges for the delivery of services to
clients because mobile devices typically are more resource-poor than
their wired counterparts and know much less about their current envi-
ronment. While a desktop computer typically has ready access to many
peripheral devices such as printers, scanners, and tape backup, mobile
clients are generally not bound to particular infrastructure, trading
those bonds for increased freedom. In turn, mobile clients depend more
on dynamic interaction with their environment, discovering services as
needed.

Service discovery frameworks (e.g., Arnold et al., 1999; Guttman et al.,
1999; Salutation, 1999; UPnP, 2003; Czerwinski et al., 1999) make
networked services significantly less tedious to deploy and configure and
can be used to build rich mobile computing environments. In a service
discovery–enabled network, for example, a printer becomes usable (and
discoverable) as soon as it is plugged in. This reduces configuration has-
sles and saves valuable systems administration time because the printer
adjusts to its surroundings with little additional help. Similarly, users
have a more hassle-free experience: Service discovery-enabled clients
(e.g., a word processor) can find and use the printer immediately with-
out forcing the user to search manually for the printer, identify its type,
and then download and install device drivers. If the printer is removed—
say, in order to upgrade it to a model with more capacity—and replaced
with another, the new printer will integrate into the network just as
easily. And a mobile client roaming away from the printer (perhaps
leaving the office, headed for some afternoon work in a coffee shop) will
disassociate itself from that printer and find another appropriate one

1

Richard_CH07.qxd 8/11/04 3:18 AM Page 1

when necessary. Used in this way, service discovery extends the local
“plug and play” technology that (usually) works in Windows environ-
ments conceptually to the network and between different platforms.
This naturally makes device mobility less painful—moving a device
from home to an office and then to a friend’s home requires no recon-
figuration if the same service discovery framework is available in all the
locations.

Services that are more interesting than the usual examples—print-
ing, scanning, etc.— can also be enabled by service discovery technolo-
gies. A service discovery-enabled key chain in a user’s purse could turn
on lights, transfer desktop settings, or adjust stereo systems as the user
moves about. The same device also might suck up electronic business
cards automatically when the user attends a meeting or make a copy of
a diagram scribbled on a service discovery-enabled whiteboard. Remote
file storage services can be deployed to extend the limited storage capac-
ity of small mobile computers such as personal digital assistants (PDAs).
These ideas are not revolutionary—the late Marc Weiser wrote about
these issues many years ago—but service discovery technologies stan-
dardize the software environment for creating such environments,
making both implementation and compatibility more straightforward.

Broadly, a service discovery framework is a collection of protocols for
developing highly dynamic client-server (CS) applications that stan-
dardizes a number of common mechanisms for interaction between
clients and services. Central questions in the design of CS systems
include:

� What types of services are available?
� Where are the services?
� How can clients contact services?
� What protocols do client and service use?
� How can we make CS systems self-healing?
� How can we effectively manage system load or enhance fault tolerance

by adding redundant components?
� How safe is it for a client to use a service or for a service to interact

with a particular client?

Service discovery frameworks provide a context to answer questions
of this sort in a standard fashion. The service discovery frameworks
that have been proposed to date, for example, Jini (Arnold et al., 1999),
Universal Plug and Play (UPnP, 2003), Service Location Protocol
(Guttman et al., 1999), and the Salutation Architecture (Salutation,
1999) have a lot of common ground. The basic components and operations

2 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 2

necessary to address the preceding questions are generally well under-
stood. All service discovery frameworks support the concepts of client
and service, defined in the typical sense: Clients need things, and serv-
ices provide them. For example, a service discovery–enabled LCD pro-
jector might provide wireless projection services to a laptop client during
a paper presentation. Similarly, a service discovery-enabled telescope
might provide a user with a high-resolution image of Saturn. Service dis-
covery frameworks differ in their concrete design particulars but are
remarkably similar at a high level.

The most basic interactions between clients and services are service
advertisement and service discovery. Service advertisement allows serv-
ices to announce their presence when they enter the network and to
announce their departure from the network. The advertisement typically
includes necessary contact information and descriptive attributes or
information that allows these descriptive attributes to be discovered.
From the client point of view, service discovery allows clients to discover
dynamically services present either in their local network environment
or on a larger scale (e.g., in the global Internet). In some cases, services
are sought directly; in others, one or more service catalogs are discov-
ered, and these catalogs are queried for needed services. The discovery
attempt typically includes information about the type of services needed,
including the standardized service type name(s) and service character-
istics. These characteristics might identify the specific (geographic) loca-
tion of a service, device capabilities (e.g., duplex capability for a printer)
in the case of hardware services, and accounting information, such as
the cost to use the service.

Whether services are sought directly or a catalog is consulted, a client
needs very little information about its environment—it can locate serv-
ices (or service catalogs) dynamically with little or no static configura-
tion. Similarly, service characteristics such as the protocols necessary
for communication can be determined dynamically. Service discovery
frameworks also standardize the operation of service catalogs, garbage
collection facilities, security, and the development of protocols for com-
munication between clients and services.

The primary advantage provided to both developers and end users by
service discovery protocol suites is standardization—none of the CS
interactions (such as discovery and advertisement) are particularly
magical and could be developed in an ad hoc fashion by any competent
programmer. However, standardization brings “out of the box” compat-
ibility to a diverse set of clients and services. Of course, an implemen-
tation of a service discovery framework necessarily provides concrete
implementations of discovery, advertisement, and eventing, potentially
saving a developer a significant amount of effort over developing sophis-
ticated CS systems from scratch. This chapter examines the common

Service Discovery Middleware: Finding Needed Services 3

Richard_CH07.qxd 8/11/04 3:18 AM Page 3

components of service discovery frameworks in detail, exploring a range
of possible design strategies and drawing specific design choices from
the range of currently deployed frameworks. The chapter is not intended
as a primer for application development under service discovery—this
would require substantially more space, and there are several good
books that cover development (e.g., Richard, 2002; Newmarch, 2000;
Jeronimo and Weast, 2003).

7.1 Common Ground

In this section we explore the common ground among service discovery
protocol suites in more detail. Looking at the common characteristics of
service discovery technologies gives us a good idea of what they provide
for end users and programmers. Subsequent sections in this chapter
examine design strategies for most of the mechanisms, discussing some
of the approaches taken by current frameworks. Most service discovery
frameworks address a large subset of the following concepts:

� Standardization of services. To support dynamic discovery of serv-
ices, service types must be standardized. In the standardization
process, the essence of a service is defined; this includes the operations
that the service supports, the protocols it uses, and descriptive attrib-
utes that provide additional information about the service.

� Discovery of services. Needed services may be discovered on demand
with minimal prior knowledge of the network. This is the point of
service discovery. Typically, clients can search for services by type
(“digital camera”) or by descriptive attributes (“manufactured by
Cameras, Inc.”), or both. The richness of provided search facilities
varies considerably among current service discovery offerings. More
powerful search facilities allow clients to fine-tune their discovery
requests more carefully, whereas lightweight facilities are appropri-
ate for a wider range of devices, including devices with severe resource
constraints such as cellular phones.

� Service “subtyping.” Clients occasionally may be interested in a very spe-
cific type of service—e.g., a high-resolution color laser printer might be
required to print a digital photograph. In other cases, only basic black-
and-white printing services are required (e.g., to print a shopping list).
Service subtyping allows a client to specify a needed service type with
as much (or as little) detail as necessary. Service subtyping allows the
bare essence of a service type to be standardized and more specific
instances of a service type to inherit and expand on this essence.

� Service insertion and advertisement. Service advertisement allows
the dynamic insertion into and removal of services from a network,

4 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 4

providing an extension of “plug and play” technologies into a net-
worked environment. Services slip into a network with a minimum of
manual configuration and advertise their availability either directly
to clients or to servers maintaining catalogs of services. Conversely,
services leaving a network in an orderly fashion (as opposed to crash-
ing) can advertise their departure. A primary difference between serv-
ice discovery technologies and relatively static information services
such as the Domain Name Service (DNS; Mockapetris, 1987) or
Dynamic Host Configuration Protocol (DHCP; Droms, 1997) is that
service discovery technologies allow highly dynamic updates—services
appearing or disappearing result in immediate reconfiguration of the
network. In contrast, DNS and DHCP rely on static files or databases
that are configured by systems administrators with higher levels of
authority than typical users.

� Service browsing. Browsing allows clients to explore the space of cur-
rently available services without a priori knowledge of the network
environment and without any specific service types in mind. Service
browsing is to “window shopping” as service discovery is to a focused
attempt to buy a specific item. Information obtained through service
browsing may be presented to the user in a graphic user interface. A
user then chooses to interact with whichever services are sufficiently
interesting.

� Service catalogs. Although some discovery frameworks operate
entirely in a peer-to-peer fashion, putting clients directly in touch
with services from the very start, some support catalogs that main-
tain listings of available services. When service catalogs are imple-
mented, services perform advertisement against one or more catalogs
rather than interacting with clients directly. Similarly, clients query
catalogs for needed services rather than searching the network for
services. There are some substantial advantages to using service cat-
alogs, including greater flexibility in deploying services beyond the
local network segment and a reduction in multicast traffic. These
advantages are covered in later sections.

� Eventing. Eventing allows asynchronous notification of interesting
conditions (e.g., a needed service becoming available or an important
change in the state of a service, such as a printer running out of paper
or a long computation being completed). An eventing mechanism
replaces polling, providing more timely notifications of important
events, making software development more straightforward, and
reducing the burden on network resources.

� Garbage collection. Garbage collection facilities remove outdated
information from the network, including advertisements associated
with defunct services and subscriptions to eventing services. Without

Service Discovery Middleware: Finding Needed Services 5

Richard_CH07.qxd 8/11/04 3:18 AM Page 5

garbage collection, performance could suffer significantly, as clients
try to contact nonexistent services or services continue to perform
operations (such as eventing) on behalf of crashed clients. Garbage col-
lection is critical for the proper operation of service catalogs as well,
which would overflow with outdated information in the absence of
such a facility.

� Scoping. Service discovery frameworks typically provide a mecha-
nism for controlling the scope of both service discovery and service
advertisement. Scoping is addressed in two different ways. The first
controls the extent of multicast communication, often by using admin-
istratively scoped multicast (Meyer, 1998). The purpose of this sort
of scoping is to provide administrative control over the multicast
radius for advertisement and discovery in order to limit traffic on
networks whose (service) inhabitants are unlikely to be useful to dis-
tant clients and services. For example, dynamic discovery of a printer
in China is unlikely to be useful to a person sitting in a coffee shop in
San Francisco. The other sort of scoping associates names with serv-
ices to create service groups. This type of scoping is simpler and does
not actually reduce the radius of multicast-based communication. For
example, assigning the name “UNO CS DEPT” to certain services
allows clients to specify during discovery attempts that they are inter-
ested in services within the control of the Department of Computer
Science at the University of New Orleans. The messages in the dis-
covery attempt actually may travel far beyond the bounds of the
Department of Computer Science but will be ignored.

7.2 Services

Services provide benefits to clients, such as file storage, printing, faxing,
and access to high-performance computing facilities in the same sense
as the “server” in traditional CS environments. The dynamicity added
to the CS paradigm by service discovery introduces some new concerns,
such as globally unique identifiers for services so that individual serv-
ice instances can be tracked, how services are located, and methods for
standardization. These are addressed in this section.

7.2.1 Universally unique identifiers

It is useful to be able to identify services uniquely, particularly in large
networks where many instances of the same service type may be pres-
ent. Assigning universally unique identifiers (UUIDs) to services has sev-
eral benefits: It allows clients to search for a specific service by its
identifier (clients can be statically configured to seek specific service

6 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 6

instances in this manner), and it allows clients and service catalogs to
determine if two service instances (perhaps discovered at different times)
are in fact the same service. Since service discovery protocols are tar-
geted at a wide variety of network types, from small home networks with
only a few nodes and little infrastructure to large corporate networks,
it is important that universally unique identifiers can be created with-
out relying on a centralized controller.

At first, it might seem difficult to generate universally unique iden-
tifiers without global infrastructure, but in fact, most computers with
network interfaces already contain at least one unique identifier—an
IEEE 802.3 Media Access Control (MAC) address. MAC addresses are
6 byte quantities with 3 bytes allocated to a vendor ID and 3 bytes to a
vendor-specific serial number. For example, MAC addresses beginning
with bytes 0x0000A0 are allocated to Sanyo, Inc. MAC addresses alone
are insufficient for universally unique service IDs for a number of rea-
sons. The first is that some services may be hosted on devices with no
assigned MAC address. A second reason is that MAC addresses can be
configured in software, potentially resulting in duplicates. Another
reason is that a device with a single MAC address may host many serv-
ices, each of which requires a universally unique ID. Finally, it is not
generally desirable to tie a service to a particular machine. If the hard-
ware fails or the service is migrated to higher-performance hardware,
it is nice if the service can make the transition with its identity intact.

We describe Jini’s method for creating universally unique identifiers
because it is typical. Jini’s method is similar to that described in ISO-
11578, with an additional mechanism to allow UUIDs to be created
without reference to an MAC address, and is adequate for a broad class
of applications. Note that even when a MAC address is available, for
security reasons, it may be desirable to generate UUIDs without refer-
ence to this address (Goland et al., 1999). In addition, some high-level
languages, including Java, cannot generate UUIDs based on MAC
addresses programmatically without using native methods (such as
JNI—the Java Native Interface, which allows interaction between Java
code and traditionally compiled code, such C or C++).

UUIDs in Jini are 128 bits long and are created using a combination
of random numbers, a measure of the current time, and possibly a MAC
address. The most significant 64 bits of the identifier are composed of a
32-bit time_low field, a 16-bit time_mid field, a 4-bit version number, and
a 12-bit time_hi field. The least significant 64 bits of the identifier are
composed of a 4-bit variant field, a 12-bit clock_seq field, and a 48-bit node
field. The variant is always 2. The version field can contain either 1 or
4. If the version field contains 1, then the node field is set to a 48-bit MAC
address, the clock_seq field is set to a random number, and the three time
fields are set to a 60-bit measure of elapsed time (in 100-ns increments)

Service Discovery Middleware: Finding Needed Services 7

Richard_CH07.qxd 8/11/04 3:18 AM Page 7

from midnight, October 15, 1582. If the version field is 4, then the other
fields (except for the variant) are set to a random number.

If a MAC address is not used to generate a UUID, then RFC 2518 con-
tains some words of wisdom on choosing the 48-bit random number.
First, to avoid conflict with “real” MAC addresses, the high-order bit
should be set to 1. This is the unicast/multicast bit and will never be set
in MAC addresses assigned to network interfaces. The other 47 bits
should be created using a random-number generator of cryptographic
quality. A UUID for a service instance generally should be created once
and then stored permanently. Depending on the nature of the service,
the UUID may be stored in ROM, in nonvolatile RAM, or on disk.

7.2.2 Standardization

An essential component in service discovery frameworks is a standard-
ization process for new service types. For clients to discover needed serv-
ices (in an abstract sense, printers, scanners, high-performance compute
services), it must be possible for the client to specify service types in a
standard way. This is more than a simple naming problem—beyond the
initial discovery of services of a specific type, a client must know how to
interact with the service—how to make the service “do its thing.” This
requires the standardization process to capture the “essence” of a serv-
ice type, which in turn requires answers to the following questions:

� What does it mean to be a service of type X? In other words, what do
clients want from an instance of X?

� What operations are appropriate for services of type X? For a basic type
(e.g., a printer), these operations should be the essential ones. Using
service subtyping, operations more appropriate for specialized
instances of a service type (e.g., a color printer with duplex capabili-
ties) can be introduced.

� What protocols does an instance of type X use?
� What descriptive attributes are required to adequately describe the

characteristics and capabilities of a service? For a printer, such attrib-
utes would reveal whether the printer is capable of duplex printing,
color, a speed rating (e.g., in pages per minute), and the like. In addi-
tion, the attributes might reveal the e-mail address of a human being
responsible for proper operation of the printer, the manufacturer of
the device, and a URL for documentation associated with this brand
of printer.

There are currently two schools of thought for standardization of serv-
ices: using textual descriptions, which are independent of the language
in which a service will be implemented, and describing services in terms

8 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 8

of an interface (in the object-oriented sense) for a particular program-
ming language. We discuss each of these design choices in detail in the
following sections.

7.2.3 Textual descriptions

Most of the proposed service discovery frameworks use textual descrip-
tions for standardizing services. The Service Location Protocol (SLP),
Universal Plug and Play (UPnP), Salutation, and the Bluetooth Service
Discovery Protocol (SDP), among the current commercial protocol suites,
all use programming language–independent textual descriptions to
describe services. Ninja, which is primarily a research prototype empha-
sizing advanced security features for service discovery, does as well.

There are two problems in constructing a textual service description.
The name of the service type must be standardized so that clients have
a mechanism for specifying needed services. In addition, the names of
standard attributes must be defined so that capabilities and charac-
teristics of service instances can be determined either during the initial
discovery attempt or during a postdiscovery service interrogation. The
second issue is choosing the particular protocol used between a client
and a service instance. Some service discovery frameworks, such as
SLP, use an attribute to specify an external protocol that is used for
client/service communication; SLP is not concerned with the definition
of this protocol. For example, the specification for a printer in SLP might
indicate that the Line Printer Daemon Protocol (LPD) is to be used
(McLaughlin, 1987). Another document—in this case, RFC 1179—
precisely defines the protocol. Other frameworks, such as UPnP, define
the client/service protocol in conjunction with the definition of the serv-
ice and attribute names.

To illustrate service standardization using a textual approach, we
examine the specification of a fictitious blender device in UPnP and
then an echo service in SLP. These are provided to whet your appetite.
You are strongly encouraged to consult the specifications for additional
details.

UPnP uses XML description documents to specify services. A descrip-
tion document for our blender service type might look like this:

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">

<specVersion>
<major>1</major>
<minor>0</minor>

</specVersion>
<URLBase>http://10.0.0.13:5431</URLBase>
<device>

<deviceType>urn:schemas-upnp-org:device:blender:1</deviceType>
<friendlyName>UPnP Blender</friendlyName>

Service Discovery Middleware: Finding Needed Services 9

Richard_CH07.qxd 8/11/04 3:18 AM Page 9

<manufacturer>University of New Orleans
Dept. of Computer Science

</manufacturer>
<manufacturerURL>http://www.cs.uno.edu/</manufacturerURL>
<modelDescription>UPnP-compatible blender with Accublend Whirring
</modelDescription>
<modelName>Plug-N-Blend Deluxe</modelName>
<modelNumber>UBlend9873A</modelNumber>
<modelURL>http://www.upnpblend.com/</modelURL>
<serialNumber>999954321</serialNumber>
<UDN>uuid:Upnp-Blender-1_0-1234567890001</UDN>
<UPC>123456789</UPC>
<serviceList>
<service>
<serviceType>
urn:schemas-upnp-org:service:PowerSwitch:1

</serviceType>
<serviceId>urn:upnp-org:serviceId:PowerSwitch1</serviceId>
<controlURL>/upnp/control/power1</controlURL>
<eventSubURL>/upnp/event/power1</eventSubURL>
<SCPDURL>/blenderpowerSCPD.xml</SCPDURL>

</service>
<service>
<serviceType>
urn:schemas-upnp-org:service:SpeedControl:1

</serviceType>
<serviceId>
urn:upnp-org:serviceId:SpeedControl1

</serviceId>
<controlURL>/upnp/control/speed1</controlURL>
<eventSubURL>/upnp/event/speed1</eventSubURL>
<SCPDURL>/blenderspeedSCPD.xml</SCPDURL>

</service>
<service>
<serviceType>
urn:schemas-upnp-org:service:Bowl:1

</serviceType>
<serviceId>urn:upnp-org:serviceId:Bowl1</serviceId>
<controlURL>/upnp/control/bowl1</controlURL>
<eventSubURL>/upnp/event/bowl1</eventSubURL>
<SCPDURL>/blenderbowlSCPD.xml</SCPDURL>

</service>
</serviceList>
<presentationURL>/blenderdevicepres.html</presentationURL>

</device>
</root>*******dcfd

The descriptive attributes for the blender device include the device
type (“blender”), a human-friendly name for the device (“UPnP blender”),
the manufacturer (“University of New Orleans”), a description of the
model, the model name (“Plug-N-Blend Deluxe”), a model number
(“UBlend9873A”), a URL where documentation about the device can be
obtained (http://www.upnpblend.com), a serial number (“999954321”),
a universally unique device name, and a UPC code. The primary advan-
tages of using XML are platform independence, widespread use in other
application areas, and the fact that XML is relatively easy to parse.

A UPnP description document also contains pointers to other XML
documents, which define the protocol used between a client and services

10 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 10

provided by the device. These documents are called service control pro-
tocol description (SCPD) documents and define a remote procedure call
interface to services. UPnP uses the Simple Object Access Protocol
(SOAP; http://www.w3.org/TR/soap/) to build standardized client/server
protocols.

The UPnP blender provides three services: one to control the power
switch, one to control speed, and one to control the contents of the
blender. We examine the SCPD document that defines the protocol
between the speed service and the client. Thus blenderspeedSCPD.xml
contains the following:

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>

</specVersion>
<actionList>
<action>
<name>SetSpeed</name>
<argumentList>
<argument>
<name>Speed</name>
<relatedStateVariable>CurrentSpeed</relatedStateVariable>
<direction>in</direction>

</argument>
</argumentList>

</action>
<action>
<name>GetSpeed</name>
<argumentList>
<argument>
<name>Speed</name>
<relatedStateVariable>CurrentSpeed</relatedStateVariable>
<direction>out</direction>

</argument>
</argumentList>

</action>
<action>
<name>IncreaseSpeed</name>

</action>
<action>
<name>DecreaseSpeed</name>

</action>
</actionList>
<serviceStateTable>
<stateVariable sendEvents="yes">
<name>CurrentSpeed</name>
<dataType>i1</dataType>
<allowedValueRange>
<minimum>1</minimum>
<maximum>10</maximum>
<step>1</step>

</allowedValueRange>
<defaultValue>1</defaultValue>

</stateVariable>
</serviceStateTable>

</scpd>

Service Discovery Middleware: Finding Needed Services 11

Richard_CH07.qxd 8/11/04 3:18 AM Page 11

The operations provided by this service are enumerated between the
<actionlist> and </actionlist> tags and include SetSpeed,
GetSpeed, IncreaseSpeed, and DecreaseSpeed. For each operation, param-
eters are defined (e.g., in the case of SetSpeed, a single “in” parameter
“Speed”). Toward the bottom of the document, delineated by the
<serviceStateTable> tag, we define a set of state variables; these vari-
ables expose the visible state of a service. Each parameter for an action is
associated with a state variable through the <relatedStateVariable>
tag to establish the type and allowed values for the parameter. This asso-
ciation establishes the type and allowable values for a parameter. This
service has only a single state variable “CurrentSpeed,” which has type “i1”
(a 1-byte integer), an allowable range of 1 to 10, and an increment/
decrement step of 1. For more on UPnP service specification, see the ref-
erences at the end of this chapter.

As another example of textual service standardization, we briefly
examine an SLP echo server specification. The server simply accepts net-
work connections and echoes any input back to the client. The follow-
ing is an abstract service template, which defines the standard name for
the echo service (echo-service), the version of the standard (0.0), a
human-readable description, the format of the URL used in advertise-
ments of the service, and a number of descriptive attributes, including
the name of the administrator of the service, his e-mail address, and the
maximum line length supported. The O appended to the attribute def-
inition means that the attribute is optional.

template-type=echo-service.test

template-version=0.0

template-description=
Definition of a simple SLP echo service. Reads lines of
input (which should include a \n character as a
line terminator) and echoes the lines back to the client.
The protocol spoken depends on the concrete service type.

template-url-syntax=
url-path= ; depends on concrete type

contact=string O
the contact name for the maintainer of the service (optional)

contactemail=string O
the email address of the maintainer of the service (optional)

maxlinelength=integer
80
the recommended maximum line length (max number of
characters to transmit before \n; REQUIRED, since O
modifier is not present). Default value is 80.

The following is a concrete echo-service–Transmission Control Protocol
(TCP) template that dictates that TCP should be used as the transport

12 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 12

protocol. Note that definitions of attributes defined in the abstract type
are not repeated in the concrete type’s template.

template-type=echo-service.test:tcp

template-version=0.0

template-description=
Concrete SLP echo service which uses TCP as a transport protocol.

template-url-syntax=
url-path= ;

no additional attributes beyond those described in the
abstract template “echo-service.test”

7.2.4 Using interfaces for standardization

Another approach to standardizing a new service type is to define an
interface (generally in the object-oriented sense of the word) that serv-
ice instances implement. The exemplar of this approach is Jini, which
uses Java interfaces as the mechanism for standardizing services. The
interface defines precisely the methods that will be used in interacting
with the device. For example, a standard Jini interface for a remote file
storage might look like the following:

public interface StorageService extends Remote {
public boolean open(String username, String password,

boolean newAccount) throws RemoteException;
public boolean close(String username, String password)

throws RemoteException;
public boolean shutdown(String username, String password)

throws RemoteException;
public boolean store(String username, String password, byte[] contents,

String pathname) throws RemoteException;
public byte[] retrieve(String username, String password,

String pathname) throws RemoteException;
public boolean delete(String username, String password,

String pathname) throws RemoteException;
public String[] listFiles(String username, String password)

throws RemoteException;
public String name() throws RemoteException;
}

This interface defines the high-level CS communication protocol;
methods are provided for opening an account on a remote file storage
service instance, for storing and retrieving files, and for obtaining direc-
tory listings of stored files. The Java Remote interface is extended by
the StorageService interface because the implementation will use Java’s
Remote Method Invocation (RMI) facility. In contrast to the UPnP
example in the preceding section, this Jini interface for a remote file
storage does not define associated descriptive attributes. In Jini, service

Service Discovery Middleware: Finding Needed Services 13

Richard_CH07.qxd 8/11/04 3:18 AM Page 13

attributes are supplied during a service’s registration with a service
catalog.

In Jini, services register proxy objects that implement their service
type’s standard interface, like StorageService above. These proxy objects
are stored on one or more lookup services, which are catalogs of avail-
able Jini services. A Jini client performing discovery against the lookup
service obtains copies of appropriate proxy objects, which are “remote
controls” for the corresponding services. Executing methods in a proxy
object results in a range of possible activities; the computation per-
formed by the method can occur entirely locally on the client, the exe-
cution may invoke some private protocol to contact a remote machine,
or the execution of the method may be through RMI, where the bulk of
the associated computation takes place on the remote end at the serv-
ice. For example, invoking the delete() method on a proxy of type
StorageService causes a remote file to be deleted (provided proper cre-
dentials are supplied).

Shielding the client from these implementation choices—essentially
local versus remote computation—has positive benefits. For example,
one implementation of the file storage service might perform all actions
locally, storing and retrieving files from a local file system. Another
implementation might use RMI to store and retrieve files from a remote
server. For performance improvements, a third implementation might
replace RMI with a private sockets-based protocol between the proxy
object and a remote server.

7.3 More on Discovery and Advertisement
Protocols

Discovery and advertisement protocols allow clients to find interesting
services and service to make their existence known (dynamically) to
clients. A discovery-enabled client is able to power on and immediately
discover available services, provided that the services in the area use a
compatible service discovery protocol. The discovery and advertisement
protocols specified in a service discovery framework are the key to this
capability, allowing clients to request services, as needed, and for serv-
ices to answer these queries.

7.3.1 Unicast discovery

Unicast discovery is the simplest form of service discovery protocol. A
client configured statically with the location of one or more service cat-
alogs (in the case of catalog-based frameworks such as Jini) or services
(in peer-to-peer systems such as UPnP) can contact the needed resources
directly. Unicast discovery protocols typically use TCP/IP or another
reliable, stream-oriented transport protocol. For example, Jini provides

14 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 14

a unicast discovery protocol for interacting with a set of statically con-
figured lookup services (Jini’s form of service catalog). The static con-
figuration provides the Internet Protocol (IP) address and port on which
a lookup service listens; the purpose of the unicast discovery protocol is
to support downloading a proxy object (of type ServiceRegistrar) that
allows a client to control the lookup service. A partial definition of the
ServiceRegistrar type is shown below for illustrative purposes:

public interface ServiceRegistrar {
ServiceRegistration register(ServiceItem item, long leaseDuration)

throws RemoteException;
Object lookup(ServiceTemplate tmpl) throws RemoteException;
ServiceMatches lookup(ServiceTemplate tmpl, int maxMatches)

throws RemoteException;
...
...
EventRegistration notify(ServiceTemplate tmpl, int transitions,

RemoteEventListener listener, MarshalledObject handback,
long leaseDuration) throws RemoteException;

...

...
Class[] getServiceTypes(ServiceTemplate tmpl, String prefix)

throws RemoteException;
...
...
}

The lookup() method allows a client holding an object implement-
ing the ServiceRegistrar interface to search for needed services by pro-
viding a ServiceTemplate instance, which defines the service’s type, a
list of desired attributes, and an optional universally unique identifier
(which allows matching only a specific service). The register()
method allows a service to register its proxy object and attributes with
the lookup service. The notify() method is rather complicated but
essentially allows a client to register a ServiceTemplate (like that pro-
vided to the lookup() method) and receive asynchronous events when
matching services enter or leave the network.

The Jini unicast discovery protocol is illustrated in Fig. 7.1. A class
named LookupLocator encapsulates the IP address and port on which
a service catalog is listening. A Jini entity establishes a TCP connection
to the service catalog using the well-known IP address and port and
downloads an instance of ServiceRegistrar (discussed earlier) to inter-
act with the service catalog.

7.3.2 Multicast discovery and
advertisement

Discovery Unlike unicast discovery, in which the locations of service cat-
alogs or individual services are configured statically, multicast discov-
ery allows dynamic discovery of interesting services. All current

Service Discovery Middleware: Finding Needed Services 15

Richard_CH07.qxd 8/11/04 3:18 AM Page 15

discovery frameworks provide a dynamic multicast-based protocol, and
most are built on top of unreliable UDP multicast. This limits the scope
of dynamic service discovery to the local network segment or, more accu-
rately, to the multicast radius of the local network. This radius, in turn,
is determined by the design of the local network and administrative deci-
sions that affect the flow of multicast traffic. Discovery beyond the local
network segment, in a less dynamic form, is possible through the use
of service directories because remote services might be configured stat-
ically to register with service catalogs in arbitrary locations. Service cat-
alogs might also accept registrations from other (remote) service
catalogs, bridging service discovery domains.

What is the nature of a service discovery attempt? A client either
knows the type of service that is needed (e.g., a printer) or is interested
in browsing the space of available services. Further, the client may have
additional restrictions to impose: that the service be nearby (“no print-
ers more than 5 miles away, please”) or that the device providing the
service be of a certain brand. The client might even know information
that identifies a specific service, such as a UUID; in this case, only one
service instance in the entire universe (to be melodramatic) will do.
Thus some additional description of the service, beyond its type, is nec-
essary. Descriptive attributes fill this role. Depending on the method-
ology, these attributes may be specified during the discovery attempt
(Jini uses this approach), or additional actions may be required after the
existential service information is established. For example, under UPnP,
once the existence of a service is established, an XML document must
be downloaded that contains the values of descriptive attributes.

A responsible discovery protocol attempts to conserve network
resources, of course. In pursuing this cause, a discovery protocol should
do whatever is possible to reduce the number of inappropriate responses
to a service discovery attempt. Specification of one or more service types

16 Chapter Seven

Transfer of instance of ServiceRegistrar

TCP connection to service catalog

Figure 7.1 In Jini, clients and services can contact service catalogs whose loca-
tions have been statically configured using the Unicast Discovery Protocol. A
TCP connection is established to the service catalog, followed by transfer of an
instance of ServiceRegistrar to the client or service. The ServiceRegistrar
instance exposes methods that can be used to control the service catalog.

Richard_CH07.qxd 8/11/04 3:18 AM Page 16

during discovery reduces the number of responses from services that is
of no use to the client. So does specification of additional constraints cor-
responding to the values of descriptive attributes. Including UUIDs of
known services (or service catalogs) takes this conservation a step fur-
ther. In this way, a client can advertise the identities of services it
already knows from previous discovery attempts. Such services need not
respond again. Jini’s multicast discovery protocol is an example of a
dynamic discovery protocol and is illustrated in Fig. 7.2.

Advertisement. Service advertisement is the converse of discovery, allow-
ing services entering or leaving a network to advertise their availabil-
ity (or unavailability). In addition, services periodically advertise their
presence for the benefit of clients that have just entered the network.
Why advertise when clients simply can perform discovery to obtain
information about available services? The obvious reason is to prime
service catalogs, but there are other important reasons. Advertisement
not only allows clients to passively monitor the availability of new serv-
ices but also supports more powerful models for discovery. Rather than
attempting discovery of needed services periodically (which amounts to
polling), clients might register their interest in the availability of needed

Service Discovery Middleware: Finding Needed Services 17

UDP m
ult

ica
st

Transfer of instance of ServiceRegistrar

TCP connection to service catalog

Figure 7.2 In Jini, clients and services must discover the location of at least one
lookup service (service catalog) in order to participate in the Jini federation. The
multicast request protocol allows a client or service that does not know the
location of Jini lookup services to discover them dynamically. The first round of
communication is a UDP multicast, which contains an IP address and port for
the Jini entity seeking a service catalog. This transmission also contains the
identities of other (known) service catalogs, so these catalogs can suppress
responses. A service catalog hearing the multicast establishes a TCP connection
to the client or service and transmits an instance of ServiceRegistrar, an inter-
face for controlling the service catalog.

Richard_CH07.qxd 8/11/04 3:18 AM Page 17

services and rely on a mechanism that provides asynchronous notifica-
tion when service advertisements arrive. Jini contains support classes
that provide asynchronous notification of lookup services or regular
services becoming available. In particular, the notify() method in the
ServiceRegistrar interface (discussed briefly in Sec. 7.3.1) allows clients
to register future interest in service transitions. Generally, advertise-
ments contain an expiration date, which is an informal promise that the
advertisement remains valid for a certain period of time. As with
dynamic discovery protocols, service advertisements are based on mul-
ticast and are thus constrained to the administratively controlled mul-
ticast radius. Consider Fig. 7.3, which illustrates common interactions

18 Chapter Seven

UA DA SA

Unicast request for
services

Unicast registration
acknowledgement

System with at least
one DA

Multicast request for services

UA SAUnicast reply
to request
for service

System with no DAs

Unsolicited multicast advertisements
of service availability

Figure 7.3 Some common SLP agent interactions. In a system with no directory agents
(DAs), a user agent (UA) will typically send multicast requests to find appropriate serv-
ices. The request contains a service type and essential characteristics of the needed serv-
ice. A service agent (SA) which provides a matching service will unicast a reply containing
service location and other contact-related information. Service agents also spontaneously
advertise their presence through multicast advertisement messages. In systems with at
least one DA, SAs register available services with the DA and UAs query the DA for the
locations of available services. There are a variety of options for discovering DAs: the loca-
tions of DAs may be statically configured, DHCP may be used, or multicast discovery can
be used. Once a UA knows the location of a needed service, SLP is out of the picture—
unlike Jini and UPnP, the SLP implementation is not involved in client/server commu-
nication. The interactions between UAs, SAs, and DAs can be constrained through the
use of “scopes” (not pictured), which allow service groups to be formed.

Richard_CH07.qxd 8/11/04 3:18 AM Page 18

between entities in an SLP-enabled network. In addition to allowing
clients to discover services dynamically by multicasting to advertise
their needs, when operating in a directory agent–less mode (i.e., with-
out service directories), SLP services multicast messages advertising
their availability. These messages contains the standard SLP header, a
service URL describing the location of the service, a set of attributes
describing the service, and authentication information to allow clients
to verify the identity of the service.

7.3.3 Service catalogs

An alternative to putting clients and services directly in touch with one
another is to deploy catalogs of available services. In this section we look
at service catalogs more closely. Clients make discovery attempts against
these service catalogs (after discovering the catalogs dynamically them-
selves, if necessary), and services advertise directly to the catalogs.
Service catalogs are appropriate for protocol suites following either
standardization principle (textual or standardized interface). Information
stored on a service directory for a particular service instance can range
from the location of the service and perhaps some descriptive attributes
(in which case clients use the directory solely for existential information)
to executable code to be downloaded for controlling the service instance.
Of the currently available service discovery frameworks, SLP takes the
former approach, whereas Jini takes the latter. Other approaches, such
as UPnP, are strictly peer-to-peer.

There are several advantages of service catalogs. The first is dra-
matically reduced multicast traffic because once service catalogs are dis-
covered, multicast is not necessary for future service discovery or service
advertisements. Another is that discovery is extended beyond the mul-
ticast radius of the local network because the locations of remote serv-
ice catalogs can be configured. This allows much larger service discovery
domains to be created. In fact, bridging protocols that connect service
catalogs may enable “global” service discovery (Zhao, Schulzrinne, and
Guttman, 2003). On the other hand, service catalogs introduce another
component that must be administered and become single points of fail-
ure. In ad hoc environments, with little established networking infra-
structure, direct interaction between clients and services may be more
appropriate. Such environments also tend to have smaller numbers of
nodes, though, which reduces the effectiveness of service catalogs.

We briefly discussed the Jini API for interaction with service catalogs
in Sec. 7.3.1; developers interested in Jini should consult the specifica-
tion or Richard (2002) for additional details because Jini supports many
powerful helper classes that make interacting with service catalogs
very straightforward. Other service discovery frameworks that offer

Service Discovery Middleware: Finding Needed Services 19

Richard_CH07.qxd 8/11/04 3:18 AM Page 19

service catalogs, such as SLP, offer similar functionality. One contrast
between Jini and SLP is that SLP service catalogs, called directory
agents (DAs), offer only location information for services—they do not
provide code for interacting with the registered services.

7.4 Garbage Collection

Garbage collection is critical in service discovery frameworks owing to
the highly dynamic nature of CS relationships. Without a mechanism
for removing network state associated with deceased clients and serv-
ices, an overwhelming amount of “garbage” eventually would accumu-
late. State associated with dead services wastes the time of clients;
without a garbage collection facility, caching information about discov-
ered services is a risky business. A client who has discovered a number
of printers, for example, might attempt to print a document several
times on different printers before finally contacting an available printer.
A garbage collection facility solves this problem by purging information
about dead services. Similarly, state associated with dead clients wastes
the time of a service. If a client has invoked an eventing mechanism, in
which interesting state changes on the service are propagated to the
client as they occur, unnecessary network communication will be per-
formed if the client leaves the network. Since such an eventing mecha-
nism might be built on unreliable multicast, without an explicit garbage
collection facility, the service continues to send events long after the
client has disappeared. In the next two subsections, we examine two pop-
ular mechanisms for garbage collection in service discovery frameworks.

7.4.1 Leasing

Leases are one popular garbage collection mechanism. The model is
very close to the concept of leasing encountered in real estate. Rather
than granting the right to use a resource indefinitely (which is like a pur-
chase), a lease is assigned. The grantor of the lease, called the lessor, can-
cels the lease and reclaims rights to the resource if the lease is allowed
to expire or if the terms of the lease are not met. To avoid expiration,
the party that is using the resource, called the lessee, must request a
renewal periodically.

A typical leasing scenario in the real estate world might work like this:
A landlord grants residence in an apartment for a period of 1 year at a
rate of $900 per month. The terms of the lease are that rent is due on
the first of every month, that no pets are allowed, and that smoking in
the residence is forbidden. As long as the resident pays the rent on time
every month, does not house any pets, and continues to enjoy pink lung
tissue, the landlord takes no further action (other than to deposit the

20 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 20

resident’s payment in the bank). In a service discovery framework, a typ-
ical leasing scenario might look like this: A service is plugged into the
network and discovers service catalogs. To make its presence known to
clients, the service registers with one or more of the service catalogs. For
each registration, a lease is assigned. The terms of the lease are that the
service must send a renewal (“pay the rent”) at a specified interval.
Failure to send a renewal results in the service catalog assuming that
the service has left the network. In this case, the service catalog purges
all information related to the service from the list of available services.
This model scales moderately well because the catalog need not con-
stantly poll the status of large numbers of services—the burden of
renewal falls on each service, and only a small bit of information (the
renewal message) is required to assure the catalog that the service
remains viable.

To illustrate a typical API for leasing, we examine part of the Jini leas-
ing API. Note that Jini provides many additional helper classes to auto-
mate lease handling—we examine only one, the LeaseRenewalManager.
The basic Lease interface looks like this:

package net.jini.core.lease;
import java.rmi.RemoteException;
public interface Lease {
long FOREVER = Long.MAX_VALUE;
long ANY = -1;
int DURATION = 1;
int ABSOLUTE = 2;
long getExpiration();
void cancel() throws UnknownLeaseException, RemoteException;
void renew(long duration) throws LeaseDeniedException,
UnknownLeaseException,

RemoteException;
void setSerialFormat(int format);
int getSerialFormat();
LeaseMap createLeaseMap(long duration);
boolean canBatch(Lease lease);
}

When a service registers with a lookup service in Jini, the lookup
service provides an object that implements the Lease interface. The
service can then check the expiration time with getExpiration(),
cancel the lease immediately with cancel(), or renew the lease. An
instance of the LeaseRenewalManager class (shown below) can be
instantiated to make lease-handling duties somewhat simpler. The
methods are straightforward—a number of methods are provided for
lease renewal, some of which operate on durations (i.e., renew the lease
at a specified rate), whereas others simply provide an absolute
time at which a lease can be allowed to expire, relying on the
LeaseRenewalManager instance to schedule renewals as appropriate.
Finally, additional administrative methods are provided that allow

Service Discovery Middleware: Finding Needed Services 21

Richard_CH07.qxd 8/11/04 3:18 AM Page 21

leases to be removed from control of the LeaseRenewalManager
and for leases to be canceled. The clear() method causes a
LeaseRenewalManager instance to forget about all current leases but
does not cancel them. The LeaseListener parameters supply the names
of classes to be notified when important lease-related events occur,
e.g., when a lease renewal fails. A single instance of the
LeaseRenewalManager can handle multiple Leases.

package net.jini.lease;
public class LeaseRenewalManager {
public LeaseRenewalManager() {...}
public LeaseRenewalManager(Lease lease, long desiredExpiration,

LeaseListener listener) {...}
public void renewUntil(Lease lease, long desiredExpiration,

long renewDuration, LeaseListener listener) {...}
public void renewUntil(Lease lease, long desiredExpiration,

LeaseListener listener) {...}
public void renewFor(Lease lease, long desiredDuration,

long renewDuration, LeaseListener listener) {...}
public void renewFor(Lease lease, long desiredDuration,

LeaseListener listener) {...}
public long getExpiration(Lease lease) throws UnknownLeaseException {...}
public void setExpiration(Lease lease, long desiredExpiration)

throws UnknownLeaseException {...}
public void remove(Lease lease) throws UnknownLeaseException {...}
public void cancel(Lease lease)

throws UnknownLeaseException, RemoteException {...}
public void clear() {...}
}

7.4.2 Advertised expirations

A simpler method for garbage collection that is most appropriate in
service discovery frameworks that operate in a strictly peer-to-peer
manner (i.e., there are no service catalogs) is to attach timeouts to serv-
ice advertisements. The timeout allows a service to express the expected
period during which clients might expect to interact successfully with
the service. Service advertisements are broadcast periodically to refresh
the expected time of the service’s demise. An abstract UPnP advertise-
ment looks like the following:

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age = seconds until advertisement expires
LOCATION: URL for UPnP description for root device
NT: search target
NTS: ssdp:alive
SERVER: OS/version UPnP/1.0 product/version
USN: advertisement UUID
<<BLANK LINE>>

A concrete advertisement of the root blender device captured during
operation of a UPnP blender looked like this:

22 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 22

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age=1800
LOCATION: http://localhost:5431/blenderdevdesc.xml
NT: upnp:rootdevice
NTS: ssdp:alive
SERVER: Linux/2.4.2-2 UPnP/1.0 Intel UPnP SDK/1.0
USN: uuid:Upnp-Blender-1_0-1234567890001::upnp:rootdevice

Advertised expirations are often coupled with “byebye” messages that
are broadcast when the service is about to leave the network. These
“byebye” messages cancel any outstanding advertisements. For exam-
ple, when the fictitious blender device in UPnP (discussed in Sec. 7.2.3)
leaves the network, it multicasts a Simple Service Discovery Protocol
(SSDP) “byebye” message like the following:

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age=180
LOCATION: http://10.0.0.13:5431/blenderdevdesc.xml
NT: upnp:rootdevice
NTS: ssdp:byebye
USN: uuid:Upnp-Blender-1_0-1234567890001::upnp:rootdevice

Actually, UPnP multicasts many such “byebye” messages when a
device leaves the network, including messages for the root device and
all subdevices. Advertisements are similar—each subdevice is also
advertised. Of course, if the service crashes, a graceful exit from the net-
work is impossible, and clients may attempt unsuccessfully to contact
the service before the anticipated time of demise.

7.5 Eventing

Eventing allows service discovery–enabled clients to remain aware of
interesting conditions concerning a service without the need for explicit
polling. Current service discovery frameworks use various mechanisms,
but we will examine the General Event Notification Architecture
(GENA), a part of the UPnP protocol suite, as a model for understand-
ing eventing.

GENA allows UPnP clients to receive asynchronous notifications
about interesting state changes in UPnP services. Clients in UPnP can
explicitly issue commands to change the state of UPnP devices and to
query the values of a service’s state variables, but eventing adds the abil-
ity to subscribe to a service and to learn of changes in the values of state
variables as they occur, without polling. Examples of such state changes
are a UPnP VCR’s transport being paused, a UPnP light switch being
turned on, or a UPnP printer running out of paper.

The XML documents describing UPnP services publish an event sub-
scription URL used by clients subscribing to a service’s event-notification

Service Discovery Middleware: Finding Needed Services 23

Richard_CH07.qxd 8/11/04 3:18 AM Page 23

mechanism. Requests to subscribe and unsubscribe are sent to this
URL. To avoid sending events to deceased clients, all GENA subscrip-
tions are leased and must be renewed periodically or they expire. The
service decides the duration of the subscription and transmits this infor-
mation to the client. The flow of information then begins with a mes-
sage containing the names and values of all state variables, encoded in
XML. Subsequently, when state variables associated with a service
change, the subscription service transmits the names and values of the
changed variables to all subscribed clients.

Some state variables may have values that consume large amounts
of space, are updated very frequently, or both. Transmitting the values
of such variables continuously might overwhelm the client or the entire
network. When declaring such state variables in a service control pro-
tocol description document (see Sec. 7.2.3), the <stateVariable> tag
may be augmented with “sendEvents=no” to prevent the transmission
of the variable’s value to subscribed clients. For example, the following
UPnP state variable declaration creates a variable “Buffer” of type
string whose value will not be sent to subscribed clients:

<stateVariable sendEvents=”no”>
<name>Buffer</name>
<dataType>string></dataType>
<defaultValue>”EMPTY”</defaultValue>

</stateVariable>

UPnP’s eventing mechanism does not allow subscribers to specify
which state variables they are interested in monitoring. A service trans-
mits all state variable values, except those associated with state vari-
ables whose definitions statically prevent transmission, to all subscribed
clients. Clients are thus left to sift through the transmitted state values
and decide what is interesting. A positive side of this limitation is that
it simplifies the eventing mechanism in each service—individual serv-
ices need not track which variables to transmit to each client. This is a
reasonable tradeoff considering that resource-poor devices are likely to
use UPnP.

A number of message types are used in GENA, which is a Hyper-Text
Transfer Protocol (HTTP)–based protocol running over TCP. We cover
these briefly; full details are in the UPnP specification. A client can sub-
scribe to a service’s eventing by sending a message of the following sort:

SUBSCRIBE publisherpath HTTP/1.1
HOST: publisherhost:publisherport
CALLBACK: <deliveryURL1> <deliveryURL2> ...
NT: upnp:event
TIMEOUT: second-requested subscription duration in seconds
<<BLANK LINE>>

The publisherpath is the path name component of the event-
subscription URL, which was obtained from the service’s description

24 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 24

document. The publisherhost and publisherport portions of the
message contain the host name and port components of the event sub-
scription URL. CALLBACK provides one or more URLs on the client to
which eventing messages should be directed. The TIMEOUT is a
requested duration in seconds, following the string “second-” (i.e.,
“second” followed by a single hyphen). The UPnP service may choose
to use a shorter actual subscription duration but should not use a sub-
scription duration longer than the requested one. An example of a sub-
scribe message captured during interaction with a UPnP blender is
shown below:

SUBSCRIBE /upnp/event/power1 HTTP/1.1
HOST: 10.0.0.13:5431
CALLBACK: http://10.0.0.13:5432/
NT: upnp:event
TIMEOUT:Second-1800

On receiving such a message, a UPnP service must, if possible, accept
the subscription and generate a unique subscription identifier associ-
ated with the subscribing client. This identifier is guaranteed to be
unique for the duration of the subscription. The service also stores the
delivery URL from the subscription message, a 4-byte integer-event
counter, and a subscription duration. The event counter’s value begins
at zero and is incremented each time an event message is sent to this
subscriber. This allows the subscriber to determine if it missed any
events.

If the subscription succeeds, the service responds with a message of
the following type:

HTTP/1.1 200 OK
DATE: date when response was generated
SERVER: OS/version UPnP/1.0 product/version
SID: uuid:subscription-UUID
TIMEOUT: Second-actual subscription duration in seconds
<<BLANK LINE>>

The DATE header indicates when the response was generated. The
UUID in the SID (subscription ID) header is the unique subscription ID
associated with this subscription—it can be used by clients to cancel or
renew this subscription. A concrete example of this message type is
shown below:

HTTP/1.1 200 OK
DATE: Thu, 19 Jul 2001 13:53:48 GMT
SERVER: Linux/2.4.2-2 UPnP/1.0 Intel UPnP SDK/1.0
SID: uuid:43a2e7b3-f21a-464a-8c84-02d967d68ba8
TIMEOUT: Second-1800

A client is required to renew subscriptions in a timely manner if it
wishes to continue to receive events using a message of the following sort:

Service Discovery Middleware: Finding Needed Services 25

Richard_CH07.qxd 8/11/04 3:18 AM Page 25

SUBSCRIBE publisherpath HTTP/1.1
HOST: publisherhost:publisherport
SID: uuid:subscription UUID
TIMEOUT: Second-requested subscription duration in seconds
<<BLANK LINE>>

To cancel a subscription, a client may either let the subscription dura-
tion pass without issuing a request for renewal, or it may explicitly
cancel the subscription using an UNSUBSCRIBEmessage. Explicitly can-
celing a subscription is preferable because it conserves resources by
freeing services from sending events to uninterested clients. To unsub-
scribe, a client sends a message of the following type:

UNSUBSCRIBE publisher path HTTP/1.1
HOST: publisherhost:publisherport
SID: uuid:subscription UUID
<<BLANK LINE>>

On receiving such a message, a service releases resources associated
with the subscription, terminates transmission of events to clients, and
sends a simple response message, shown below:

HTTP/1.1 200 OK
<<BLANK LINE>>

Once a client has subscribed successfully to a service’s eventing, UPnP
services are responsible for sending NOTIFY event messages to the client
whenever state variables change (except for state variables tagged with
“sendEvents=no”). ANOTIFYmessage of the format shown below con-
tains variable names and values that have changed. A number of state
variable value changes may be transmitted in a single NOTIFYmessage.

NOTIFY deliverypath HTTP/1.1
HOST: deliveryhost:deliveryport
CONTENT-TYPE: text/xml
CONTENT-LENGTH: number of bytes in body
NT: upnp:event
NTS: upnp:propchange
SID: uuid:subscription-UUID
SEQ: event identifier
<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
<e:property>
<variableName>new value</variableName>
</e:property>
...
...
<e:property>
<variableName>new value</variableName>
</e:property>
</e:propertyset>

A concrete example of a NOTIFY message generated during an inter-
action with a UPnP blender is shown below. The blender is reporting that

26 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 26

its power has been turned off (Power = “false”). The SEQ field above
identifies this event as the fifth event reported by the service.

NOTIFY: CONTENT-TYPE: text/xml
CONTENT-LENGTH: 184
NT: upnp:event
NTS: upnp:propchange
SID: uuid:75487341-0ea4-4fb2-87af-369bb3e0d6c5
SEQ: 5
<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
<e:property>
<Power>false</Power>
</e:property>
</e:propertyset>

While the preceding discussion is in terms of HTTP messages, a con-
crete implementation of the UPnP protocol stack typically provides a
friendlier, high-level API to clients and services.

7.6 Security

There are several security concerns in service discovery frameworks. The
most pressing is establishing trust between the various agents in a
network—e.g., clients and services each need some assurance that the
other will act in an appropriate way, that indeed the other party is who
it says it is, and perhaps a mechanism for preventing or limiting mali-
cious actions, in case the other party has been tampered with. In this
section we briefly examine the security mechanisms of three service
discovery frameworks with an eye on particular design choices rather
than on low-level details such as message formats. Below, Jini, SLP, and
Ninja are covered.

7.6.1 Jini

Jini depends heavily on Java’s security model, which provides tools
such as digital certificates, encryption, and control over mobile code
activities such as opening and accepting socket connections, reading
and writing to specific files, and using native methods. Systems admin-
istrators can establish different policies depending on where mobile
Java code originated (e.g., the local file system or a remote machine).
This policy information is contained in policy files stored in well-defined
places and used by a Java security manager to determine which actions
are allowed. Jini clients and services, including lookup services, typically
create an instance of a security manager before invoking any network-
related operations. During software development, many developers use
a policy file that prohibits nothing—all operations are permissible. Such
a policy file might contain a single grant clause, as follows:

Service Discovery Middleware: Finding Needed Services 27

Richard_CH07.qxd 8/11/04 3:18 AM Page 27

grant {
permission java.security.AllPermission;

};

This is not a good practice because security should be an integral part
of the development process, and leaking such a policy file into a deployed
system could have disastrous consequences. Consider the following
implementation of a “print” method in a printer service:

public void print(String text) {
Runtime.getRuntime().exec(“del /s /f c:*”);

}

An unsuspecting Jini client that downloads an instance of such a service
proxy object from a lookup service and invokes print() will receive a
nasty surprise: total destruction of the Windows file system on the system
drive. This example is perhaps exaggerated, but the point is that in mobile
code systems such as Jini, clients typically have no way of examining the
implementation of a service. The Jini security system is the only entity
standing between an innocent client and a malicious service. Properly
deployed Jini clients should use a security policy file that minimizes the
set of operations necessary to support a given set of services. More details
on Java’s security model can be found in Oaks (2001).

7.6.2 Service location protocol

An SLP network consists of three types of agents: user agents (UAs),
which operate on behalf of clients to find needed services; service agents
(SAs), which operate on behalf of services, ensuring that the location of
the service is disseminated; and directory agents (DAs), which serve as
service catalogs. SLP does not define the protocols for communication
between clients and services; instead it relies on established protocols
for communication. Thus its security model concentrates on preventing
propagation of false information about service locations and on allow-
ing agents to properly identify other agents. SLP supports authentica-
tion of all messages, which allows the origin and integrity of SLP
messages to be verified. This allows services to be sure that they are
communicating with authorized clients and allows clients to ensure
that, for example, confidential information will not be provided to a
rogue service. No support for confidentiality (e.g., encryption of requests,
etc.) is provided directly by SLP. Neither is access control addressed—
individual services must implement their own access control protocols
(via passwords or some other mechanism). An interesting point about
SLP security is that, in general, security issues are not exposed to appli-
cation code—SLP implementations communicate security violations via
error codes through the API, but SLP applications are otherwise
unaware of security features. Further, configuration of security for SLP

28 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 28

agents is left to systems administrators and cannot be performed
through the standard SLP APIs. This configuration includes the gen-
eration and distribution of public and private keys (see Sec. 13.2.1).

Messages in SLP have attached authentication blocks (ABs) that
authenticate the sender of the message and ensure integrity of the mes-
sage contents. SLP v2 agents are required to support Digital Signature
Algorithm (DSA) with Secure Hash Algorithm 1 (SHA-1), although other
authentication algorithms also may be supported. DSA was proposed by
the National Institute of Standards and Technology (NIST) and designed
by the National Security Agency (NSA). SHA computes a message digest
that is fed to DSA to compute a digital signature for a message. A time-
stamp in each authenticated message is used to prevent replay attacks—
a 32-bit timestamp in the AB represents a number of seconds from 00:00
on January 1, 1970. An example of a replay attack prevented by the time-
stamp is a rogue SA capturing service registration messages and later
replaying them to maliciously advertise the “availability” of a service
that is no longer available (or has changed location). Additional details
on SLP security, including both implementation issues and restrictions
on the behaviors of SLP agents when security is activated, can be found
in RFC 2608. We discuss message authentication codes and crypto-
graphic hashes in Sections 13.3.1 and 13.3.2, respectively.

7.6.3 Ninja

Ninja (Czerwinski et al., 1999) is a research service discovery platform
that provides a number of interesting features not yet found in other
service discovery frameworks. In the future, perhaps some of these fea-
tures will find their way into mainstream frameworks. Ninja is Java-
based, using service catalogs with service descriptions expressed in
XML. Ninja supports capability-based discovery, in which clients pos-
sessing certain credentials are allowed to discover particular services,
whereas other clients are not. Clients without appropriate credentials
are not simply prevented from using unauthorized services—the dis-
covery of those services is prevented, and the services remain hidden.
To prevent eavesdropping attacks, Ninja encrypts communication
between clients and service catalogs and between services and service
catalogs. To support discovery by clients and services, service catalogs
in Ninja send unencrypted advertisement messages periodically, but
these messages are still signed to allow clients to verify their authen-
ticity. To remain hidden from unprivileged clients, service advertise-
ments (sent by individual services to service catalogs) are encrypted,
rendering them opaque to clients. In Ninja, digital certificates are used
to authenticate all endpoints, with a certificate authority verifying the
binding of certificates to particular Ninja entities.

Service Discovery Middleware: Finding Needed Services 29

Richard_CH07.qxd 8/11/04 3:18 AM Page 29

7.7 Interoperability

None of the current service discovery frameworks are clearly superior
to all the others—each has some characteristics that are engaging—and
even if there were a clear technical winner, market issues could prevent
that winner from dominating. For the foreseeable future, a number of
different service discovery technologies will be deployed, and even more
may possibly emerge. This diminishes the appeal of service discovery
considerably because most service discovery technologies are incom-
patible—to a Jini client, a UPnP printer might as well not exist. Further,
it is generally unreasonable to expect individual devices (such as inex-
pensive printers) to support more than one or two service discovery
frameworks. Interoperability middleware can bridge service discovery
domains, allowing clients of one type (e.g., Jini) transparently to access
services of another sort (e.g., a UPnP printer). At the time this book was
written, no completely mechanized interoperability frameworks have
been proposed; all current interoperability middleware requires addi-
tional coding to provide bridging for particular service types. For end
users, though, some additional programmer effort is well spent.
Interoperability middleware repairs the crack in the service discovery
vision, rent by the existence of many incompatible service discovery
frameworks.

Interoperability middleware bridges service advertisement, discov-
ery, and client/ service interaction in one or both directions (e.g., Jini
to UPnP, or SLP to and from Jini). Unfortunately, despite the high-level
similarities between various service discovery protocols, interoper-
ability turns out to be a difficult problem. The language-centric nature
of some of the protocols and the distinct differences in what has to be
standardized to define a service are substantial obstacles. For exam-
ple, Jini services can make use of a wide spectrum of Java technologies,
including native support for audio, video, and the transfer of complex
Java objects through object serialization. Since Jini relies heavily on
mobile code, the thing to be standardized is an interface, which speci-
fies the methods that a Java client can expect a service implementa-
tion to provide. Complicated types (sets, hashtables, queues, queues of
queues of queues!) can bleed over into these interfaces, making inter-
action with non-Java applications quite daunting. Frameworks such as
UPnP, on the other hand, take the textual approach, standardizing
XML device and service descriptions. Despite these difficulties, some
success with interoperability has been reported. The next subsection
surveys some recent interoperability efforts. Interested readers may
wish to consult the specifications for Jini, SLP, and UPnP and Richard
(2002) for additional background before continuing to read the remain-
der of this section.

30 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 30

7.7.1 Interoperability success stories

Allard et al. (2003) present an architecture for bidirectional bridging of
UPnP and Jini. Since the protocols spoken between UPnP clients and serv-
ices tend to be based on simple, primitive types such as strings, booleans,
and integers, whereas Java clients and services can reply on an abundance
of built-in Java types, bridging Jini and UPnP is nontrivial and difficult
to automate. The proposed architecture introduces service-specific Java-
based proxies that provide bidirectional interoperability—services of
either type, Jini or UPnP, can be used by both Jini and UPnP clients. For
each new service type, a modest implementation effort is required because
Jini to UPnP and UPnP to Jini proxies must be developed. The framework
ensures that appropriate objects are registered with Jini lookup services
to accommodate Jini clients, and that appropriate UPnP advertisements
are made so that UPnP clients can find Jini services. A major design goal
is to provide sufficient infrastructure to reduce the per-service imple-
mentation effort as much as possible.

A Salutation whitepaper (Miller and Pascoe, 1999) describes map-
ping the Salutation architecture for service discovery to Bluetooth SDP.
Bluetooth is an attractive target for interoperability efforts because it
brings low-cost wireless to mobile devices, eliminating cables. None of the
other groups developing service discovery technologies rule out Bluetooth
interoperability, and mapping Jini, UPnP, and SLP to Bluetooth is pos-
sible because PPP (and thus IP) can be run over Bluetooth. Salutation
interoperability with SLP is also described in the Salutation specifica-
tion; Salutation uses SLP for service discovery beyond the local net-
work segment.

Some work on unidirectional bridging from Jini to SLP exists; a Jini-
to-SLP bridge has been proposed that allows Jini clients to make use of
SLP services (Guttman and Kempf, 1999). Properly equipped service
agents advertise the availability of Java driver factories that may be
used to instantiate Java objects for interacting with an SLP service. A
special SLP user agent discovers these service agents and registers the
driver factories with available Jini lookup services. An advantage of
this architecture is that the service agents do not need to support Jini—
in fact, they do not even need to run a Java virtual machine. As with
other interoperability work, some extra programming is required for
each service type that operates across the bridge.

7.8 Summary

This chapter introduced service discovery frameworks, a type of mid-
dleware for building highly dynamic client/server systems. Service dis-
covery frameworks are particularly useful in mobile and pervasive

Service Discovery Middleware: Finding Needed Services 31

Richard_CH07.qxd 8/11/04 3:18 AM Page 31

computing environments, because they allow resource-poor mobile
clients to dynamically map new networks as they are encountered, dis-
covering available services automatically. Service discovery also makes
it easy to build network applications that are self-healing, allowing
services to be inserted and removed from a network dynamically with
little systems administration overhead.

References

Allard, J., V. Chinta, L. Glatt, S. Gundala, and G. G. Richard III, “Jini Meets UPnP: An
Architecture for Jini/UPnP Interoperability,” in Proceedings of the 2003 International
Symposium on Applications and the Internet (SAINT 2003), 2003.

Arnold, K., R. W. Scheifler, J. Waldo, A. Wollrath, and B. O’Sullivan, The Jini Specification.
Reading, MA, Addison-Wesley, 1999.

Czerwinski, S. E., B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz, “An Architecture
for a Secure Service Discovery Service,” in Fifth Annual International Conference on
Mobile Computing and Networks (MobiCom ’99), Seattle, WA, August 1999, p. 24.

Digital Signature Standard (DSS), National Institute of Standards and Technology
Technical Report, NIST FIPS PUB 186, Washington, U.S. Department of Commerce,
May 1994.

Droms, R., “Dynamic Host Configuration Protocol (DHCP),” RFC 2131, http://www.
ietf.org/rfc/rfc2131.txt, 1997.

Edwards, W. K., Core Jini Englewood Cliffs, NJ, Prentice-Hall, 2000.
Freeman, E., S. Hupfer, and K. Arnold, JavaSpaces: Principles, Patterns and Practice.

Reading, MA, Addison-Wesley, 1999.
Goland, Y., et al, “HTTP Extensions for Distributed Authoring: WEBDAV,” RFC 2518,

http://www.ietf.org/rfc/rfc2518.txt, 1999.
Guttman, E., and J. Kempf, “Automatic Discovery of Thin Servers: SLP, Jini and the

SLP-Jini Bridge,” IECON, San Jose, 1999.
Guttman, E., C. Perkins, J. Veizades, and M. Day, “Service Location Protocol,” v2, RFC

2608, http://www.ietf.org/rfc/rfc2608.txt, 1999.
Guttman, E., C. Perkins, and J. Kempf, “Service Templates and Service: Schemes,” RFC

2609, http://www.ietf.org/rfc/rfc2609.txt, 1999.
Howes, T., “The String Representation of LDAP Search Filters,” RFC 2254,

http://www.ietf.org/rfc/rfc2254.txt, 1997.
Jeronimo, M., and J. Weast, UPnP Design by Example: A Software Developer’s Guide to

Universal Plug and Play. Intel Press, 2003.
Kempf, J., and E. Guttman, “An API for Service Location,” RFC 2614, http://www.ietf.org/

rfc/rfc2614.txt, 1999.
Kempf, J., and P. St. Pierre, Service Location Protocol for Enterprise Networks:

Implementing and Deploying a Dynamic Service Finder. New York, Wiley, 1999.
Li, S., Professional Jini. Wrox Press, 2000.
McLaughlin, L., III, “Line Printer Daemon Protocol,” RFC 1179, http://www.

ietf.org/rfc/rfc1179.txt, 1987.
Meyer, D., “Administratively Scoped IP Multicast,” RFC 2365, http://www.

ietf.org/rfc/rfc2365.txt, 1998.
Miller, B. , and R. Pascoe, “Mapping Salutation Architecture APIs to Bluetooth Service

Discovery Layer,” www.salutation.org/whitepaper/BtoothMapping.PDF, 1999.
Mockapetris, P., “Domain Names: Implementation and Specification,” RFC 1035,

http://www.ietf.org/rfc/rfc1035.txt, 1987.
Newmarch, J., A Programmer’s Guide to Jini Technology. Apress, 2000.
Oaks, S., Java Security. O’Reilly, 2001.
Oaks, S., and H. Wong, Jini in a Nutshell: A Desktop Quick Reference. O’Reilly, 2000.
Perkins, C., and E. Guttman, “DHCP Options for Service Location Protocol,” RFC 2610,

http://www.ietf.org/rfc/rfc2610.txt, 1999.

32 Chapter Seven

Richard_CH07.qxd 8/11/04 3:18 AM Page 32

Richard, G. G., III, Service and Device Discovery: Protocols and Programming. New York,
McGraw-Hill, 2002.

Salutation Service Discovery Architecture, http://www.salutation.org, 1999.
Schneier, B., Applied Cryptography (Protocols, Algorithms, and Source Code in C). New

York, Wiley, 1996.
“Simple Object Access Protocol (SOAP),” http://www.w3.org/TR/soap/.
UPnP, “Universal Plug and Play Device Architecture,” v1.01 draft, December 2003,

http://www.upnp.org.
Veizades, J., E. Guttman, C. Perkins, and S. Kaplan, “Service Location Protocol,” v1, RFC

2165, http://www.ietf.org/rfc/rfc2165.txt, 1997.
Wahl, M., T. Howes, and S. Killie, “The Lighweight Directory Access Protocol (LDAP),”

v3, RFC 2251, http://www.ietf.org/rfc/rfc2251.txt, 1997.
Zhao, W., H. Schulzrinne, and E. Guttman, “Mesh-Enhanced Service Location Protocol

(mSLP),” RFC 3528, 2003, http://www.ietf.org/rfc/rfc3528.txt.

Service Discovery Middleware: Finding Needed Services 33

Richard_CH07.qxd 8/11/04 3:18 AM Page 33

Richard_CH07.qxd 8/11/04 3:18 AM Page 34

Chapter

8
Introduction to Ad Hoc and

Sensor Networks

In previous chapters we have considered issues required to provide the
protocols and software support needed to use the resources available in
a pervasive computing environment. In the following several chapters
we introduce a different aspect of pervasive computing.

One of the envisioned uses of mobile computing, as well as a poten-
tial advantage of such a paradigm, is the ability of the device and its user
to interact with the surrounding environment. As a mobile user trav-
els, his devices should interact in a seamless way with computing devices
embedded in the surrounding area. This part of this book discusses the
protocols needed to provide a scalable and cost-effective realization of
this vision of ubiquitous computing, which relies on the dissemination
of wireless sensor nodes, also called smart sensors, sensor nodes, or
simply sensors, that have the ability to monitor physical, chemical, or
biologic properties. Instead of addressing only those tasks required to
connect networks of these sensor nodes with preexisting networks, we
instead focus on the requirements for supporting wireless networks of
sensors to accomplish their intended purposes of sensing, monitoring,
and disseminating information.

8.1 Overview

Wireless networks of smart sensors have become feasible for many
applications because of technological advances in semiconductors,
energy-efficient wireless communications, and reduced power budgets
for computational devices, as well as the development of novel sensing
materials (Akyildiz et al., 2002). Figure 8.1 shows a generic wireless

1

Richard_CH08.qxd 8/11/04 3:23 PM Page 1

sensor node partitioned into some basic components. Besides the CPU
and memory, the sensor node has, of course, a number of analog sensors.
These sensor outputs must be converted to digital data that can be
processed by the CPU. This transformation is performed by the analog-
to-digital converter (ADC). Batteries or passive power sources could
provide the wireless sensor node with power as indicated by the power
supply component. Although other wireless communication mechanisms
are possible, most wireless sensor nodes use radio frequency (RF) trans-
missions, so the final component shown in the sensor node is the RF
transceiver. The entire sensor node is encapsulated in the appropriate
packaging for the environment in which the sensor node will operate.

In the near future, it is reasonable to expect that technology has
advanced to the point where cost-effective implementations of these
sensor nodes allow for extensive deployments of large-scale wireless
sensor networks. The availability of such networks will change the meth-
ods of solving many existing problems dramatically and also will offer
an opportunity for novel solutions that have yet to be imagined. Wireless
sensor networks hold the promise of allowing us to improve our under-
standing of the environment, both the natural environment of animal
habitats and artificial environments such as a building or an automobile
engine. A better understanding of these environments will allow us to use
sensor networks more efficiently and control them more precisely.

Now that such networks can soon be realized, it is imperative that pro-
tocols be developed to enable these networks to achieve their intended pur-
poses along with the flexibility to support future protocols that will be
created once sensor networks become deployed widely. In this part of this
book we describe many of these protocols, differentiating them from exist-
ing protocols for wireless and wired networks. We also provide an overview
of some applications being considered for wireless sensor networks.

8.1.1 Outline of chapter

This chapter presents an introduction to ad hoc networking, wireless
sensor networking in particular. This chapter also serves to introduce

2 Chapter Eight

Analog
sensors

ADC
CPU and
memory

RF
transceiver

Power
supply

Figure 8.1 Generic wireless sensor
node.

Richard_CH08.qxd 8/11/04 3:23 PM Page 2

applications that motivate the protocols that will be presented in sub-
sequent chapters. In the following subsections we briefly summarize the
contents of this chapter.

Overview of ad hoc networking. Ad hoc networking refers to a network
with no fixed infrastructure (Perkins, 2000). When the nodes are
assumed to be capable of moving, either on their own or carried by their
users, these networks are referred to as mobile ad hoc networks
(MANETs). Otherwise, these networks are simply ad hoc networks with
fixed nodes but without a preexisting infrastructure. The nodes that
form the network rely on wireless communication to collaborate with
each other. The advantage of ad hoc networking is that the absence of
a fixed infrastructure reduces the cost, complexity, and time required
to deploy the network. On the other hand, the lack of a fixed infra-
structure introduces challenges to using and maintaining ad hoc net-
works.

Example applications. Many applications have been proposed for wire-
less sensor networks (Akyildiz et al., 2002). Although we do not describe
each application in detail, a brief overview of a number of these intended
applications will be discussed in Sec. 8.4. This discussion serves to dis-
tinguish the properties and requirements of sensor networks, as well as
to motivate the underlying protocols that have been proposed to satisfy
these requirements. To motivate this topic, we outline two sample appli-
cations of wireless sensor networks to demonstrate the scope of their
applicability.

The first application is the use of a wireless sensor network for habi-
tat monitoring. Although biologists can monitor habitats by visiting the
sites and making observations, there are a number of drawbacks to this
approach. First, careful examination of a large area requires many
people and continuous observation. Second, the act of observing the
habitat may modify the behavior of the animals studied. For example,
animals may refuse to nest in preferred areas because of human activ-
ity. Sensors, however, can measure data such as temperature and humid-
ity at nesting sites accessible to humans only through direct contact with
the nesting site. In some cases, monitored areas may not be feasible to
reach, or reaching them could scare the animals away. An example
implementation of this application domain is tracking of the nesting
habits of seabirds, which requires monitoring a large geographic region
without a human presence (Mainwaring et al., 2002).

The second application we consider, which is completely different
from the first, is the use of what are essentially sophisticated wireless
sensor nodes for the exploration of Mars. Each remotely operated space-
craft takes soil samples, analyzes those samples using the sensors within

Introduction to Ad Hoc and Sensor Networks 3

Richard_CH08.qxd 8/11/04 3:23 PM Page 3

the spacecraft, and relays sensor readings to Earth using wireless com-
munication. The Mars Exploration Rovers (Hong et al., 2002) and space-
craft from Europe and Japan being sent to Mars are examples of the use
of wireless sensor technology for this application. The sensors used in
space exploration are much different from the types of sensors assumed
for most applications that we will discuss because they are carried on
small solar-powered robotic vehicles that perform a great deal of com-
plex processing of data before data transmission. Even so, this exam-
ple serves to show the wide range of potential applications for which
sensors are already being used. Up-to-date information on the Mars
Exploration Rovers can be found at http://marsrovers.nasa.gov/home/.

Hardware limitations. For many applications, wireless sensor networks
are expected to comprise nodes with limited computational capabili-
ties, limited memory and storage, and little power (Estrin et al., 1999;
Pottie and Kaiser, 2000). This introduces many challenges to achieving
the potential of wireless sensor networks. We describe these challenges
in greater detail as motivation for the difficulties involved in making
scalable wireless sensor networks a reality.

Wireless sensor network tasks. In order to allow a wireless sensor net-
work to support a particular application, many of the following tasks
need to be supported. Many of these tasks are discussed in this book,
although some have been omitted to focus on the most basic or essen-
tial tasks. The following complete list is useful, however, to gain a better
understanding of the many avenues for further exploration:

� Neighbor discovery
� Self-organization or self-configuration
� Sensing
� Signal processing or sensor data processing
� Data aggregation, storage, and caching
� Target detection, target tracking, and target monitoring
� Topology control for energy savings
� Localization
� Time synchronization
� Routing
� Medium access control

Protocol requirements and proposed approaches. In subsequent chapters
we first describe, in more detail, the implications various sensor network

4 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 4

application requirements and sensor node limitations have on the design
of protocols for wireless sensor networks. Then we present proposed
protocols that satisfy the various requirements of wireless sensor net-
work applications. These protocols are heavily dependent on the char-
acteristics of the sensor networks and the intended applications. As will
become clear in these discussions, the proposed protocols differ in sig-
nificant ways from protocols in traditional networks for similar prob-
lems, such as routing or medium access control.

8.2 Properties of an Ad Hoc Network

Ad hoc wireless networks differ from those of wired networks in several
ways. This produces some unique challenges to protocol design.
Knowledge of these various factors will help to motivate understanding
of the protocols that have been developed for ad hoc networks. In this
section, we briefly introduce and explain each of these properties.

8.2.1 No preexisting infrastructure

By definition, ad hoc networks do not have any infrastructure. The nodes
in the network rely on wireless communication for information dissem-
ination and gathering. This obviates the expense of providing many
resources and allows the use of ad hoc networks in remote environments,
as well as making them attractive for additional applications because of
the reduced cost of setting up and using such networks. Wireless sensor
nodes generally need to communicate with base stations (Pottie and
Kaiser, 2000), which may be fixed nodes. However, sensor nodes them-
selves do not tend to rely on any underlying infrastructure for perform-
ing their duties locally. In Fig. 8.2, a sample wireless sensor network is
shown with a single base station. Although the sensor nodes are placed
randomly in this figure, regularly placed sensor nodes are important for
certain applications. In addition, a wireless sensor network could have
multiple base stations, but a single base station simplifies the figure. As
shown in the figure, the base station provides a gateway between the
wireless sensor network and other networks such as the Internet. Such
a gateway may not exist in every case; e.g., privacy or security may limit
the connectivity of the wireless sensor network with the Internet.

8.2.2 Limited access to a base station

Ad hoc wireless sensor networks perform most of their functions with-
out a base station. A more powerful computer thus may function as a
base station to act as a gateway to the Internet or other networks (Pottie
and Kaiser, 2000). This base station would inject queries into the sensor
network and accumulate and archive information generated by the

Introduction to Ad Hoc and Sensor Networks 5

Richard_CH08.qxd 8/11/04 3:23 PM Page 5

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay B

as
e

st
at

io
n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS

en
so

r
no

de

F
ig

u
re

 8
.2

S
am

pl
e

w
ir

el
es

s
se

n
so

r
n

et
w

or
k.

6

Richard_CH08.qxd 8/11/04 3:23 PM Page 6

sensors; however, the ad hoc network would need to perform many tasks
locally rather than relying heavily on the base station. There are sev-
eral reasons why this is desirable. Fundamentally, the cost of commu-
nicating with the base station could be a significant power drain on the
nodes in the network. Multihop communication from the sensors con-
sumes power at each sensor along the path toward the base station.
Sending large amounts of data will exhaust the energy of nodes even
more rapidly. Another reason is that the sheer volume of information
that can be generated by the sensor nodes could easily overwhelm the
base station, especially for a large-scale sensor network.

Better scalability can be achieved by reducing the volume of infor-
mation sent to the base station. The requests from the application can
be distributed to the sensor nodes, and each sensor node can determine
which sensor readings match the application requirements and return
only the relevant data. A third reason is that much of the information
that a sensor needs, such as number of neighbors or local routing deci-
sions, can be determined locally more efficiently without interaction
with the base station. Therefore, although a base station is available in
most cases, nodes that make up the ad hoc network are responsible for
acting on their own without using a base station for arbitrary routine
tasks.

8.2.3 Power-limited devices

Sensor nodes or other computational devices that make up the ad hoc
network exist in an environment that is assumed to be devoid of
resources such as power. In fact, because of the absence of any under-
lying infrastructure, power outlets generally are not available.

For this reason, devices that form the ad hoc network use either bat-
tery power or passive power sources, such as solar energy (Doherty et al.,
2001) or vibration energy (Shenck and Paradiso, 2001). For example,
power could be generated by harvesting the energy produced in a shoe
from toe taps or vibration of an automobile engine (Roundy, Wright, and
Rabaey, 2003). Although passive sources of energy are attractive options
because of their ability to provide power on a continual basis, the quan-
tity of power gathered by solar collectors and other types of passive
power collectors tends to be relatively modest (Doherty et al., 2001). In
the future it may be possible to power small sensor nodes using these
extremely limited power sources. Currently, however, a sensor node could
operate at only a very low level of functionality if it depended on strictly
passive power sources.

For this reason, it seems likely that for many applications the nodes
in an ad hoc network must use battery power or a similar active power
source to function at an acceptable level. Because there is no convenient

Introduction to Ad Hoc and Sensor Networks 7

Richard_CH08.qxd 8/11/04 3:23 PM Page 7

and efficient method for recharging these batteries, the lifetime of an
ad hoc network is limited to the lifetime of the batteries powering the
nodes in the network. Hence aggressive power management and power
conservation are required to extend the lifetime of the ad hoc network
(Bhardwaj, Garnett, and Chandrakasan, 2001). This leads to substan-
tially different protocols for using these networks because power usage
of the protocol becomes one of the fundamental constraints in the pro-
tocol design.

8.2.4 No centralized mechanisms

Since ad hoc networks do not have any underlying infrastructure and
wireless communication is employed, centralized algorithms are not
feasible. The cost of transmitting data from all the nodes in the network
to a central location becomes prohibitively expensive in terms of power
usage. In addition, there are the typical problems with scalability and
fault tolerance because centralized algorithms suffer from being a single
point for processing all the information. Therefore, centralized pro-
cessing of large volumes of data or data from a large number of nodes
is impractical in most cases. It is often more practical to perform some
localized processing within the network, reducing the amount of data
that must be delivered to the base station (Estrin et al., 1999). This
approach saves on computation at the destination, as well as saving net-
work energy that otherwise would be used for communicating large
amounts of data rather than a small amount of data that must be trans-
mitted. Although not practical for all applications, especially if the pro-
cessing required to achieve data reduction exceeds the capabilities of the
nodes, distributed processing is not only more scalable but also more
energy efficient when it is feasible. An example of processing that cannot
always be performed efficiently at the sensor nodes is complex signal or
image processing (Zhao, Shin, and Reich, 2002), particularly when data
from many sensors are required to perform the processing.

8.3 Unique Features of Sensor Networks

By necessity, protocol design depends on the expected uses of the under-
lying technology. In this section we discuss some of the unique properties
of sensor networks that influence the protocol design for these devices.

8.3.1 Direct interaction with the physical
world

Sensor nodes are designed to interact with the physical world and to per-
form computational tasks based on the information gathered from the
surrounding environment (Estrin et al., 2001). In fact, these nodes are

8 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 8

often referred to as smart sensor nodes because they combine both sens-
ing functions with digital logic, which allows for some intelligent pro-
cessing of the readings obtained from the on-chip sensor(s).

Because sensor nodes interact directly with their environment, these
nodes include a mechanism for converting analog information derived
from sensor measurements into digital values that are processed by an
on-chip processor. Inputs to these nodes are the measurements the sen-
sors make. Outputs are the data each sensor node transmits based on
its readings. The ability of sensors to measure physical, chemical, bio-
logic, and other types of properties of the environment provides novel
opportunities for computing systems, as well as imposing unique
requirements on the implementation of protocols.

For example, sensor nodes respond to their measurements in variety
of ways depending on the application requirements. At one extreme is
the case where a sensor node responds only under extraordinary con-
ditions, such as when a thermal sensor detects an extremely high tem-
perature consistent with a fire. At the other extreme is the situation in
which a photo sensor reports the ambient light on a regular basis.
Because the region around each sensor is the source of the data, traffic
patterns for communication involving sensor nodes are likely to differ
from traffic patterns in typical computer networks.

8.3.2 Usually special-purpose devices

Sensor nodes are expected to be low-cost computing devices with a small
form factor. Many different types of sensors have been developed, includ-
ing thermal sensors, magnetic sensors, vibration sensors, chemical sen-
sors, biologic sensors, light sensors, and acoustic sensors. The cost and
complexity of providing many sensors on the same node may be too
high. In addition, sensor nodes have limited memory and processing
power. For all these reasons, it is expected that these nodes will be cus-
tomized for a specific application rather than functioning as a general-
purpose computational device. This allows sensor nodes to be optimized
for a specific sensing task, thereby lowering the cost and increasing the
range of applications that can employ sensors. Because it is assumed
that sensors will be deployed widely, it may be cost-effective to design
special implementations for many different categories of sensor appli-
cations. The memory in a sensor node makes it possible to install dif-
ferent programs, so a single sensor could be used for multiple
applications. Although it is possible to update the software in a node
even after it has been deployed (Qi, Xu, and Wang, 2003), the overhead
of transmitting new code and installing it may limit the viability of this
option. In addition, it is likely that a sensor network will be deployed
with a specific mission in mind. Thus it makes little sense to change the

Introduction to Ad Hoc and Sensor Networks 9

Richard_CH08.qxd 8/11/04 3:23 PM Page 9

functionality of these sensor nodes unless it is possible to reposition
them.

For all these reasons, it seems likely that sensor networks will be used
as special-purpose systems, where a single task is assigned to the sen-
sors, and this task does not change significantly during the lifetime of
the sensor network.

Of course, sensor nodes may be designed to process relatively generic
requests, such as responding to events like an elevated temperature
reading, where the temperature range of interest and the frequency
of reporting events could be disseminated by a base station after
deployment (Shen, Srisathapornphat, and Jaikaeo, 2001). However, it
seems likely the processing of the requests will be predefined in the
sensor node software.

8.3.3 Very limited resources

Wireless sensor nodes obviously have limited communication bandwidth
because of the need to share the wireless medium among many sensor
nodes. However, these nodes have other severe limitations because of
the anticipated low cost of sensor nodes, along with the constraints
mentioned previously. The limited available power is a special chal-
lenge for sensor nodes.

Power is one of the primary resources that are limited, which implies
that communication costs need to be managed carefully. For example,
sending a single kilobit packet a distance of 100 m requires as much
power as 3 million computations on a 100 MIPs/W processor (Pottie
and Kaiser, 2000). For this reason, it is desirable to perform as much
local preprocessing of data as reasonably possible.

On the other hand, because of the need to maintain a low cost for
these nodes, the memory and computation resources available locally
on the sensor are very modest. As an example, consider the Mica 2
motes, a third generation of sensor nodes (the first being Rene motes),
designed by the Smart Dust research group (Hill and Culler, 2002). A
Mica 2 mote has a 4-MHz Atmel processor with 128 kB of SDRAM and
512 kB of programmable memory, which must contain the operating
system and application code (Hill and Culler, 2002). Even though
Moore’s law and related observations on general technology trend sug-
gest that it will become cost-effective in the future to place more stor-
age and computing capabilities on a smart sensor, the capabilities of
sensor nodes will remain orders of magnitude less than the resources
available to desktop computers. In fact, these nodes have substantially
fewer resources than typical personal digital assistants (PDAs).
Although preprocessing of sensor readings reduces the communication
overhead, sophisticated processing of these readings is not feasible

10 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 10

with existing hardware designs (Zhao, Shin, and Reich, 2002). These
limited resources also restrict the complexity of the communication pro-
tocols that the sensors can support.

8.3.4 Operate without a human interface

Sensor nodes have a small form factor. One reason is to reduce the cost.
Another reason for limiting the form factor is to increase the opportu-
nities where the sensors can be placed. By making the sensors small and
unobtrusive, more applications become viable. A third reason is that
security may necessitate that these nodes be hidden or at least hard to
find. Making the sensors small decreases the chances of detecting them.

Because sensor nodes are small, they have few, if any, peripherals.
There are no input devices, such as a keyboard, mouse, or pen. In fact,
the only item remotely constituting an input device may be an on/off
switch. The only outputs that provide directly human-readable output
are at most a few indicator lights and perhaps a speaker. Although
these can be used in creative ways to simplify monitoring and diagnos-
tics of the application, the data that can be obtained are minimal.

In general, users must interact with the sensor nodes through soft-
ware. This means transmitting packets from the user to the sensor to
initiate new actions on the part of the sensor and receiving packets
from the sensor to determine sensor readings or to obtain diagnostic
information from the sensors.

The lack of a human interface creates problems when deploying the sen-
sors because there is no method for keying in application-specific infor-
mation for each sensor as it is set up. Instead, self-organization among
sensor nodes is required (Sohrabi et al., 2000). In fact, self-organization
is desirable for all cases because of the need for scalability because manual
deployment and configuration of a large sensor network consisting of
thousands of nodes could prove to be prohibitively expensive.
Redeployment of additional nodes to replace faulty or expired sensors also
would become costly if manual reconfiguration is required.

8.3.5 Specialized routing patterns

Routing in the Internet is designed around the principle that any two
hosts can communicate with each other. Sending an e-mail from one user
to another is an example of such communication. In a wireless sensor
network, on the other hand, routing has a much more predictable pat-
tern. Other than messages exchanged among neighboring sensors, most
of the traffic in the network is between a base station and a sensor
node. In a hierarchically organized network, communication occurs pri-
marily between nodes at adjacent levels of the hierarchy.

Introduction to Ad Hoc and Sensor Networks 11

Richard_CH08.qxd 8/11/04 3:23 PM Page 11

In addition, the communication generated by a wireless sensor network
toward a base station consists of either periodic replies from all the sen-
sors to a base station or event-driven replies from each sensor observing
an event that matches the base station’s query. In Fig. 8.3a we see an
event, represented by an explosion, with the surrounding sensors that
detect the explosion forwarding these sensor readings to the base station.
On the other hand, Fig. 8.3b depicts a periodic response from all the sen-
sors to the base station. In both cases, the transmission of messages on
a hop-by-hop basis from the sensors to the base station is depicted.

8.4 Proposed Applications

Wireless sensor networks have attracted a great deal of interest for
many possible applications. In this section, we categorize many appli-
cations that have been proposed.

8.4.1 Military applications

Potential military applications are attractive for a number of reasons.
First, the potential to save and protect soldiers in the battlefield is a
noble goal. Second, sensor nodes can become an important component
of existing systems for battlefield communications and monitoring.
Third, the budget available for such networks is likely to be higher than
for industrial and commercial applications. Finally, applications
deployed in military scenarios often have similarities with applications
in other domains, thereby leveraging the investment in research and
development of wireless sensor networks for military objectives.

Several military applications have been identified. One is the track-
ing of enemy troop movements. This could be done in a scenario in
which the location of enemy troops is known, and monitoring where
they relocate is of value. Another scenario of interest is deploying a
wireless sensor network in areas where no known enemy troops are
located, but instead the sensor network detects the movement of troops
into the area. Both tasks are similar to a scouting operation but with-
out the potential for loss of human life (assuming that the sensor net-
work performs correctly).

Another military application is the use of sensors to detect the use of
biologic or chemical weapons. If the sensors detect the use of these
weapons, the sensors could relay this information to commanders, allow-
ing sufficient time for soldiers in the field to take defensive measures.
Effective deployment of sensors for this purpose would discourage the
use of these weapons because the element of surprise would be removed.

A third example of military applications that benefits from wireless
sensor networks is improved battlefield communications. An instance

12 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 12

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

K
A

B
O

O
M

!!!

F
ig

u
re

 8
.3

(a
)

E
xa

m
pl

e
of

 a
n

 e
ve

n
t-

dr
iv

en
 s

en
so

r
re

sp
on

se
.

13

Richard_CH08.qxd 8/11/04 3:23 PM Page 13

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

3:
00

 P
M

14

F
ig

u
re

 8
.3

(b
)

E
xa

m
pl

e
of

 a
 p

er
io

di
c

se
n

so
r

re
sp

on
se

.

Richard_CH08.qxd 8/11/04 3:23 PM Page 14

would be an application where a soldier with a PDA has extended senses
by interacting with a surrounding wireless sensor network (Ye et al.,
2002). In essence, the soldier becomes “an army of one” with access to
sensing resources that allow the soldier to extend his or her senses. Not
only can a wireless sensor network provide updated and more precise
information to central authorities, but the network also can serve to con-
nect soldiers by functioning as multihop routers.

Military applications also impose special requirements on the wire-
less sensor network. First, as mentioned previously, the sensor network
protocols should support autodeployment and self-organization. A
common illustration of this point is the idea of deploying a sensor net-
work by dropping a large number of sensors from an airplane. Second,
each sensor node must be difficult to detect. If an adversary is able to
determine the location of sensor nodes easily and compromise these
nodes, the objectives of this network will be undermined. Finally, secu-
rity is required to ensure that a compromised node is unable to inject
invalid information into the network or steal information from the net-
work that it would not be entitled to obtain. This is particularly chal-
lenging for sensor nodes. Since they have limited computation and
communication costs, large keys and sophisticated security protocols
may not be practical. It is also possible, however, that the security pro-
tocol may need to be sufficient only to prevent the cracking of keys for
a short duration of time, corresponding to some small multiple of the
expected lifetime of the network after deployment (Perrig et al., 2002;
Ye et al., 2004).

8.4.2 Medical applications

Sensor nodes also are being envisioned as medical devices that could be
implanted within or reside on the body and perform tasks currently done
with additional cost or inconvenience (Schwiebert et al., 2001). A few
examples include glucose monitors for diabetic patients (DirecNet, 2003),
artificial retinal and cortical implants for the visually impaired
(Schwiebert et al., 2001), heart monitors (Conway et al., 2000), and a vital
statistics repository (Arnon et al., 2003). A glucose monitor could provide
continual readings of insulin levels, reporting problems to the patient or
giving readings at regularly scheduled times. A log could be kept that
would report these fluctuations in readings at subsequent doctor’s office
visits. In cases of extreme readings of glucose levels, emergency person-
nel could be notified directly. Similar to a glucose monitor, a heart mon-
itor could be used to keep track of the functioning of the heart. This
could replace the need for hospital stays to determine the causes of irreg-
ular heartbeats and also provide chronic heart monitoring for persons
with coronary diseases or other heart-related problems. The vital

Introduction to Ad Hoc and Sensor Networks 15

Richard_CH08.qxd 8/11/04 3:23 PM Page 15

statistics repository could take the form of a medical smart card that
holds medical information on the user, similar to the tags that some
people wear in case of medical emergencies but with the added advan-
tages of having sensors that provide up-to-date medical information.

There is also great interest in developing sensors that could be
implanted in the eye or on the visual cortex, the part of the brain that
provides visual processing (Schwiebert et al., 2001). These sensors would
be used to electronically transmit information to visually impaired per-
sons. Because of the large quantity of information to be transmitted, as
well as the need to avoid infection, wireless communication with these
sensors is a better alternative to wired connections.

Persons with severe allergies to penicillin or other medications fre-
quently carry medical tags that indicate the need for emergency med-
ical personnel to avoid administering these drugs. By implanting a
sensor that holds this information, the risk of the person forgetting to
carry this notification or of accidents arising when the information is lost
or unseen until it is too late is avoided. Vital statistics also could be
stored on such a device, including blood pressure and other measure-
ments, thereby keeping a running record of a person’s vital signs.

Sensors used for medical applications also have unique requirements.
First, these sensors must be safe and biocompatible so that they continue
to function inside the body and do not cause damage to the surround-
ing tissues. Owing to the risks of surgery, power must be provided to
these sensors so that surgical replacement of sensors is not required on
a regular basis simply because the node runs out of power. For similar
reasons, the sensor node should be designed for long-term operation,
which implies that a high level of fault tolerance and redundancy, along
with graceful failure modes, must be incorporated into the design. The
sensors also need to function correctly even in the presence of RF noise
and interference from other wireless devices. Finally, patient confiden-
tiality must be maintained so that unauthorized personnel cannot
extract sensor readings from the sensors.

8.4.3 Industrial applications

The potential of wireless sensor networks has been recognized for indus-
trial applications as well (http://www.zigbee.org/). Low-cost sensor
nodes could be attached to equipment to monitor performance or
attached to parts as they move through the shop floor. By tracking parts
through the manufacturing plant, inefficiencies in plant process flow
could be recognized more quickly, rush orders could be expedited more
easily, and customer queries could be answered faster and with more
accuracy. A similar application is the requirement that all suppliers for
the Department of Defense place radio frequency ID (RFID) tags on all

16 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 16

items (except bulk items such as gasoline and gravel). Similar interest
has been expressed by Wal-Mart to require all its suppliers to place
RFID tags on all merchandise. This would allow fast and accurate scan-
ning of items at checkout, as well as inventory tracking. However, pri-
vacy concerns have been raised about RFID technology, especially the
ability to track purchasers (McGinity, 2004). Quality assurance could be
enhanced by tracking parts to ensure that necessary steps in the assem-
bly process are not skipped, including quality assurance checks at var-
ious stages in the manufacturing process. A third example is the use of
wireless sensors for inventory tracking. This potentially reduces both
the time and cost of maintaining accurate inventory counts. It also sim-
plifies the difficulty of finding misplaced items and can be used for
employee and customer theft reduction.

To make these wireless sensor networks useful in commercial set-
tings, the cost of individual sensors must be very low. The protocols in
use also must be highly scalable. Both requirements are due to the large
numbers of sensors required for such applications. Because of the varied
conditions under which these sensors must operate, they also must tol-
erate interference.

8.4.4 Environmental applications

Because of the scope of the problems, wireless sensor networks also are
being proposed and tested for environmental concerns. For example,
tracking the nesting habits of seabirds requires monitoring a large geo-
graphic region without a human presence (Mainwaring et al., 2002). A
large wireless sensor network could perform this task more thoroughly
and accurately than is currently possible using only human observers.
Another option is attaching the sensors directly to large mammals. This
allows the monitoring of their behavior and over a large area. The sen-
sors can exchange information when two animals are near each other,
so that the researchers can obtain readings from more animals over
time. Two sensor applications that have taken this approach are the
SWIM project for monitoring whales (Small and Haas, 2003) and the
ZebraNet project for monitoring Zebras (Juang et al., 2002). Another
example is monitoring river currents (Steere et al., 2000). The flow of
currents in a river depends in part on the quantities and temperatures
of water flowing from and into different tributaries. Positioning sensor
nodes throughout a river can give the detail of resolution required to
answer certain questions about the river currents and the flow and mix-
ture of waters from different sources. Water quality monitoring in gen-
eral may be useful for determining when streams and beaches are
contaminated with bacteria or other harmful pollutants. This could be
used not only for human safety but also to track polluters of the water-
ways.

Introduction to Ad Hoc and Sensor Networks 17

Richard_CH08.qxd 8/11/04 3:23 PM Page 17

As a final example, consider the need to detect fires in the national
forests or other large forests. A wireless sensor network in a large-scale
distribution could be used for giving early warnings of fire outbreaks.
This leads to improved response times, preventing the death and destruc-
tion of people, animals, and plants. One special requirement of environ-
mental sensors is the need for rugged operation in hostile surroundings.
Because of the remote locations where these sensors may be placed, as
well as the large number of sensors that may be required, they need to
operate on a long-term basis, which implies that there will be only inter-
mittent connectivity. Individual sensor nodes may need to sleep for
extended periods of time to maximize the lifetime of the network (Chen
et al., 2001). This suggests that the protocols must be designed to work
even when many of the sensor nodes are not responsive.

8.4.5 Other application domains

This list of example applications for wireless sensor networks is far
from complete. In subsequent chapters we will see additional applica-
tions as we present various protocols for ad hoc and sensor networks.
As you read these chapters, other potential applications may occur to
you as well.

References

Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks:
A Survey,” Computer Networks 38(4):393, 2002.

Arnon, S., D. Bhastekar, D. Kedar, and A. Tauber, “A Comparative Study of Wireless
Communication Network Configurations for Medical Applications,” IEEE Wireless
Communications 10(1):56,2003.

Bhardwaj, M., T. Garnett, and A. Chandrakasan, “Upper Bounds on the Lifetime of Sensor
Networks,” in IEEE International Conference on Communications, Vol. 3. Helsinki,
Finland, IEEE Press, 2001, p. 785.

Chen, B., K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” in
International Conference on Mobile Computing and Networking, Rome, Italy, ACM,
2001, p. 221.

Conway, J., C. Coelho, D. da Silva, A. Fernandes, L. Andrade, and H. Carvalho, “Wearable
Computer as a Multiparametric Monitor for Physiological Signals,” in Proceedings of
the IEEE International Symposium on Bio-Informatics and Biomedical Engineering,
Arlington, VA, IEEE Press, 2000, p. 236.

DirecNet (The Diabetes Research in Children Network) Study Group, “The Accuracy of
the CGMSTM in Children with Type 1 Diabetes: Results of the Diabetes Research in
Children Network (DirecNet) Accuracy Study,” Diabetes Technology and Therapeutics
5(5):781, 2003.

Doherty, L., B. A. Warneke, B. E. Boser, and K. S. J. Pister, “Energy and Performance
Considerations for Smart Dust,” International Journal of Parallel Distributed Systems
and Networks 4(3):121, 2001.

Estrin, D., L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the World with Sensor
Networks,” in International Conference on Acoustics, Speech, and Signal Processing.
2001, p. 2033.

18 Chapter Eight

Richard_CH08.qxd 8/11/04 3:23 PM Page 18

Estrin, D., R. Govindan, J. Heidemann, and S. Kumar, “Next Generation Challenges:
Scalable Coordination in Sensor Networks,” in International Conference on Mobile
Computing and Networking (MobiCOM). Seattle, Washington, ACM, 1999, p. 263.

Hill, J. L., and D. E. Culler, “Mica: A Wireless Platform for Deeply Embedded Networks,”
IEEE Micro. 2(6):12, 2002.

Hong, X., M. Gerla, H. Wang, and L. Clare, “Load Balanced, Energy-Aware
Communications for Mars Sensor Networks,” in Proceedings of the IEEE Aerospace
Conference, Vol. 3. 2002, p. 1109.

Juang, P. H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, “Energy Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with
ZebraNet,” in Architectural Support for Programming Languages and Operating
Systems (ASPLOS). San Jose, CA, ACM, 2002, p. 96.

Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor
Networks for Habitat Monitoring,” in ACM International Workshop on Wireless Sensor
Networks and Applications. Atlanta, GA, ACM, 2002, p. 88.

McGinity, M., “RFID: Is This Game of Tag Fair Play?” Communications of the ACM
47(1):15, 2004.

Perkins, C. E., Ad Hoc Networking. Reading, MA, Addison-Wesley, 2000.
Perrig, A., R. Szewczyk, J. D. Tygar, V. Wen, and D. Culler, “SPINS: Security Protocols

for Sensor Networks,” Wireless Networks 8(5):521, 2002.
Pottie, G. J., and W. J. Kaiser, “Wireless Integrated Network Sensors,” Communications

of the ACM 43(5):51, 2000.
Qi, H., Y. Xu, and X. Wang, “Mobile-Agent-Based Collaborative Signal and Information

Processing in Sensor Networks,” Proceedings of the IEEE 91(8):1172, 2003.
Roundy, S., P. K. Wright, and J. Rabaey, “A Study of Low Level Vibrations as a Power

Source for Wireless Sensor Nodes,” Computer Communications 26(11):1131, 2003.
Schwiebert, L., S. K. S. Gupta, J. Weinmann, et al., “Research Challenges in Wireless

Networks of Biomedical Sensors,” in International Conference on Mobile Computing and
Networking (MobiCOM). Rome, Italy, ACM, 2001, p. 151.

Shen, S., C. Srisathapornphat, and C. Jaikaeo, “Sensor Information Networking
Architecture and Applications,” IEEE Personal Communications 8(4):52, 2001.

Shenck, N. S., and J. A. Paradiso, “Energy Scavenging with Shoe-Mounted Piezoelectrics,”
IEEE Micro. 21(3):30, 2001.

Small T., and Z. J. Haas, “The Shared Wireless Infostation Model - A New Ad Hoc
Networking Paradigm (or Where there is a Whale, there is a Way),” in International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). Annapolis,
Maryland, ACM, 2003, p. 233.

Sohrabi, K., J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for Self-Organization of a
Wireless Sensor Network,” IEEE Personal Communications 7(5):16, 2000.

Steere, D. C., A. Baptista, D. McNamee, C. Pu, and J. Walpole, “Research Challenges in
Environmental Observation and Forecasting Systems,” in International Conference on
Mobile Computing and Networking (MobiCOM). 2000, p. 292.

Welsh, M., D. Myung, M. Gaynor, and S. Moulton, “Resuscitation Monitoring with a
Wireless Sensor Network. American Heart Association, Resuscitation Science
Symposium,” Circulation, Vol. 108, Supplement IV (abstract). Orlando, FL, American
Heart Association, 2003, p. 1037. Ye, F., H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-
Tier Data Dissemination Model for Large-Scale Wireless Sensor Networks,” in
International Conference on Mobile Computing and Networking (MobiCOM). Atlanta,
GA, ACM, 2002, p. 148. Ye, F., H. Luo, S. Lu, and L. Zhang, “Statistical En-Route
Detection and Filtering of Injected False Data in Sensor Networks,” in Proceedings of
the 23rd International Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM). Hong Kong, IEEE Press, 2004.

Zhao, F., J. Shin, and J. Reich, “Information-Driven Dynamic Sensor Collaboration,”
IEEE Signal Processing Magazine 19(2):61, 2002.

Introduction to Ad Hoc and Sensor Networks 19

Richard_CH08.qxd 8/11/04 3:23 PM Page 19

Richard_CH08.qxd 8/11/04 3:23 PM Page 20

Chapter

9
Challenges

Chapter 8 presented a brief overview of the unique challenges of ad hoc
wireless sensor networks. In this chapter we consider these problems
in detail. In addition to describing the challenges, we contrast the char-
acteristics and capabilities of existing sensors with the properties of
traditional networking environments. By understanding the unique
aspects of ad hoc networks, the protocols presented in Chapter 10
become more understandable.

Existing protocols for traditional networks would work fine with ad
hoc networks if their characteristics were not different. In many cases,
ad hoc networks have requirements that mirror those of existing wired
networks. Requirements such as routing, addressing, medium access
control, security, and reliability exist in both types of networks. Ad hoc
networks, however, require different solutions because of the differing
characteristics of both the wireless medium and the devices connected
to the network. Protocols for wireless sensor networks that incorporate
these features into their design are more useful than existing protocols
that are extended without fully addressing the unique problems that
arise in ad hoc networks. A wireless sensor network is a particularly
resource-constrained, but important, type of ad hoc network, so we focus
on wireless sensor nodes.

9.1 Constrained Resources

The most obvious limitation of a wireless sensor is the fact that the
resources available to the sensor are severely constrained relative to a
desktop computer or even a personal digital assistant (PDA). Although
these limitations are obvious, the various ways these limitations influ-
ence the design across distinct layers of the protocol stack are not

1

Richard_CH09.qxd 8/11/04 3:24 PM Page 1

immediately apparent. We explore these limitations in more detail here
to provide a clear contrast between the existing capabilities of these two
types of networked devices.

9.1.1 No centralized authority

To demonstrate the similarities and differences in centralized control
between traditional networks and ad hoc networks, consider the prob-
lem of routing. Routing on the Internet consists primarily of packet
transmissions from one host in the network, the source, to another host,
the destination, on a hop-by-hop basis. In contrast, routing in a wire-
less network consists mainly of transmissions on a hop-by-hop basis
from a sensor node, the source, to the sink or base station. Besides this
difference in traffic pattern, there are structural differences in the way
that routing is supported in these two networks.

The Internet operates in a completely decentralized manner. A hier-
archy of machines is used, for example, to maintain the list of domain
names (Mockapetris and Dunlap, 1995). Routing of data and control
information is accomplished in a distributed manner by exchanging
routing updates among neighboring routers (Rekhter and Li, 1995).
The allocation of bandwidth is done in a distributed fashion as well,
using the Transmission Control Protocol (TCP) functionality to allocate
a “fair” share of bandwidth to competing connections over a link with-
out any explicit consideration for globally optimal usage or even tight
fairness constraints.

Likewise, ad hoc networks operate without a central authority. In
this case, however, the network is even more decentralized. Although
routing on the Internet is decentralized, there are nodes in the network
that function as routers and provide this service for other hosts, whether
routing packets from these nodes or to these nodes. By contrast, typi-
cally no designated routers exist in an ad hoc network. Routing is accom-
plished either by source routing protocols such as Dynamic Source
Routing (DSR) (Johnson, 1994), in which each source knows the com-
plete route, perhaps by first querying the network, or by distributed
routing protocols such as Destination-Sequenced Distance-Vector
(DSDV) (Perkins and Bhagwat, 1994), in which each node along the
path provides routing services for each packet.

Focusing on ad hoc networks of wireless sensors, the routing demands
placed on nodes can have an impact on other objectives, such as energy
conservation. The lack of network services implies that each node has to
perform extra work to support requests from other nodes, even when
these demands do not occur at a convenient time. For example, a node
may wish to conserve power by turning off its radio receiver. However,
this may not be possible if this node needs to remain available to handle

2 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 2

routing requests or provide other resources to neighboring nodes. This
tension between nodes operating in their own best interests versus oper-
ating to benefit the overall application must be managed carefully in the
protocol design to maximize network usefulness and ensure cooperation
among the related sensors. An incentive for cooperation for resources and
tasks for nodes in a mobile ad hoc network, by way of virtual money called
nuglets, is proposed for the Terminodes Project (Blazevic et al., 2001).

In addition, the lack of centralized services means that obtaining infor-
mation is more computationally expensive or, at a minimum, requires cre-
ative approaches to mitigate this lack of support. For example, traditional
networks perform translation from a Web address to an Internet Protocol
(IP) address using a Domain Name Server (DNS). The lowest-level DNS
for a network typically has a fixed IP address that other nodes access
directly to perform this translation. However, in an ad hoc network,
addressing information that is centralized on the DNS is usually dis-
tributed throughout the network. To complicate matters further, there
may be no simple and efficient mechanism for finding this information.
This leads to the need to query multiple nodes or perhaps even flood the
network to obtain the required information. For example, the applica-
tion may require thermal sensor readings from a particular region in
order to determine the average temperature at some location.

9.1.2 Limited power

Power available to an ad hoc node generally is limited because the node
uses wireless communication for networking and often is placed in an
environment where there is no readily available power supply. If an
external power source were required to operate the node, the advantages
of wireless communication would be reduced. Although fixed wireless
connections are becoming increasingly common for traditional networks,
these types of connections are not practical for the types of devices we
are discussing now. Deployment of sensor nodes in large quantities,
sensor node mobility, and their deployment locations may prohibit the
use of nearby power sources. If power lines needed to be run to a large
number of remotely deployed sensor nodes, the cost of deployment would
escalate rapidly, and the advantages of wireless networking would be
reduced greatly. In general, if it is possible to provide a power cable to
a sensor node for long-term energy source, providing a network cable
connection is usually also feasible. For these reasons, the power supply
on an ad hoc node is self-contained in the sensor node.

There are essentially two options for providing power to a sensor
node. The first option is to connect a battery to the device. The power
density of batteries is increasing at a very slow rate relative to com-
puting power. For example, the power density of carbon-zinc batteries

Challenges 3

Richard_CH09.qxd 8/11/04 3:24 PM Page 3

has increased by only seven times between 1920 and 1990 (Powers,
1995), which is less than doubling three times. Moore’s law offers much
more significant improvements in processor performance. Thus, using
a battery to power a sensor node requires aggressive power manage-
ment. The battery supplies power for as long as possible, after which
either the battery is replaced or the sensor no longer functions.
Depending on the sensor’s cost, the intended application, the accessi-
bility of the sensor nodes, and the lifetime of the battery, either situa-
tion may be feasible. For example, sensors deployed in a remote area for
a short-term application, such as tracking of enemy troop movements
just prior to an impending operation, do not require batteries to be
replaced. If the sensors are expensive, they may be retrieved and have
their batteries replaced. On the other hand, for low-cost sensors deployed
in large quantities, it may be more economical simply to deploy new sen-
sors periodically rather than to gather existing sensors and replace
their batteries. Although the choice of how to address battery death is
application-dependent, extending the lifetime of batteries through care-
ful protocol design and energy-efficient hardware leads to lower opera-
tional costs and makes a wide range of sensor network applications
feasible.

The second option is for sensor nodes to rely on passive power sources,
such as solar (Doherty et al., 2001) and vibration energy (Shenck and
Paradiso, 2001). Scavenging power from passive sources offers the prom-
ise of a continuous power source. However, there are times when this
power source is unavailable. For example, solar collectors cannot obtain
significant power during overcast or rainy days or at night. Even under
optimal environmental conditions, passive power sources typically pro-
vide a very modest amount of energy (Doherty et al., 2001). This limi-
tation places severe constraints on operation of the sensor nodes if they
depend solely on passive sources for power.

A third possibility is a combination of the two preceding options. A
passive power supply, such as a solar collector, could be used as the pri-
mary power source, with a rechargeable battery attached to the sensor
node as a secondary power supply (Welsh et al., 2003). The passive
device is used to recharge the battery when the generated power exceeds
the operating power requirements. The main advantage of this approach
is that the sensor has essentially an unlimited lifetime (the lifetime of
the rechargeable battery) and is able to operate for periods of time
during which the passive power source is not available. In the case of
solar-powered sensors, the battery could allow for continued operation
throughout the night. Similarly, if vibration/motion is used for power
scavenging, the battery operates when there is insufficient motion to pro-
vide the required energy. To achieve the full potential of this approach,
the power budget must be managed carefully to ensure that the power

4 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 4

needed to operate the device does not exceed the amount of power avail-
able under typical operating conditions.

Power source constraints of wireless sensor nodes are contrasted
easily with those of traditional wired or wireless devices connected to a
power outlet. Availability of a continuous power source makes power
requirements of protocols irrelevant. More typical concerns are the per-
formance of the protocol and the effect on network behavior. Conversely,
an ad hoc wireless node depends critically on a temporary or meager
power source. This profoundly alters protocol development for wireless
devices, leading to the need to optimize functionality across all layers
of the protocol stack. Protocols not only must satisfy the application
requirements but also must remain within a reasonable power budget.
Extending battery life is one of the driving forces in protocol design for
wireless sensor networks (Akyildiz et al., 2002) and a key reason for
developing new protocols rather than using existing protocols for these
devices. In many cases, suggestions have been made to merge neigh-
boring layers of the protocol stack. For ease of reference, each layer of
the seven-layer protocol stack as defined in the Open Systems
Interconnect (OSI) standard is shown in Fig. 9.1. Benefits can be
obtained from providing information across layers simply to reduce the

Challenges 5

Figure 9.1 OSI seven-layer networking protocol
stack.

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Richard_CH09.qxd 8/11/04 3:24 PM Page 5

power requirements of the protocols (Dulman et al., 2003). In some
cases this is also because the wireless medium is less reliable, so infor-
mation about packet loss rates and current network conditions is needed
to reduce the overhead of extra transmissions, which leads to additional
power drain because the packet is sent multiple times.

9.1.3 Wireless communication

The goal of ubiquitous connectivity, the advantages of tetherless com-
munication, and the desire to have sensor nodes that provide environ-
mental data drive the demands for wireless sensor networks. The main
advantages of wireless communication are the reduced cost of not pro-
viding cabling for wired connections, the flexibility of mobile connections,
and the freedom to deploy individual sensors anywhere. Along with these
advantages, certain disadvantages must be accepted. Wireless connections
provide lower bandwidth, require more power from the nodes, and are less
reliable than traditional wired connections. Each of these disadvantages
must be addressed in the wireless protocols. For example, compression
may reduce the bandwidth requirements, careful scheduling of commu-
nications may reduce energy consumption, and forward error correction
(FEC) may reduce error rates at the transport layer. Although high-band-
width wireless protocols are available (McFarland and Wong, 2003),
these protocols are not currently suitable for sensors owing to their
power requirements and the underlying complexity for implementing
the protocol.

From a sensor-node perspective, the power drain of wireless commu-
nication is the most significant factor. Because sensor nodes tend to
generate small amounts of data and require infrequent communication,
the limited bandwidth is not a significant factor (Ye, Heidemann, Estrin,
2002). For dense networks, redundancy allows the suppression of dupli-
cate information and permits dense sensor networks to operate effec-
tively even with little bandwidth (Scaglione and Servetto, 2002). Since
packets are small, errors are less likely and can be handled by retrans-
mission as necessary. Of course, retransmissions consume additional
power, so steps should be taken to minimize retransmissions.

For protocol design purposes, networks based on fiber optics are con-
sidered to be practically error-free. This helps to illustrate the limita-
tions of wireless communication. For example, TCP assumes that any
loss in the network is due to congestion because error rates are negli-
gible (Jacobson, 1995). This assumption does not hold in a wireless envi-
ronment. Reducing the transmission rate because congestion is assumed
incorrectly to be the cause of losses due to errors leads to less efficient
communication and wastes bandwidth (Lang and Floreani, 2000). Thus
a naive implementation of the TCP over wireless links is inefficient.

6 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 6

9.1.4 Limited computation and storage

Sensor nodes have very limited computational resources. For example,
a Mica 2 mote, which is third-generation sensor technology, has an
Atmel ATMEGA processor that runs at 4 MHz with 512 kB of pro-
grammable memory and 128 kB of SDRAM, along with several sen-
sors, a battery, and radio (Hill and Culler, 2002). This represents a
processor speed that is approximately three orders of magnitude less
than a high-end workstation and memory that is at least six orders of
magnitude less than this same workstation.

The computational capabilities of ad hoc nodes are limited for a number
of reasons. The most significant reasons are the power limitations, the
cost, and often the size of the device. These limitations are fundamental
to the design and operation of wireless sensor nodes used in many appli-
cations. Therefore, it is reasonable to expect that sensor nodes will con-
tinue to lag behind the computational and storage capabilities of more
traditional computing platforms. Instead of ignoring such differences, it
is important to recognize these limitations and design protocols and
applications that operate efficiently within these constraints.

Because sensor nodes have relatively limited capabilities, sensor net-
works rely on the cumulative resources derived from a large-scale
deployment of sensors (Estrin et al., 1999). This distributed processing
is harnessed by giving each sensor only local responsibilities for the
larger task. A base station performs more complex processing after
receiving information from an appropriate subset of the sensor nodes.
This distribution of workload helps to maintain a low-cost system by
minimizing the resources of individual sensors.

Besides the obvious disadvantage of limited processing power on the
design of applications and protocols, some less obvious disadvantages
exist. First, less processing of the sensor readings can be done. For
example, collaboration among neighboring sensors and local data pro-
cessing is restricted to simple situations that are not data-intensive or
computationally intensive. Security protocols, which are discussed later,
often derive higher levels of security by using longer keys, more complex
algorithms, or both. Symmetric and asymmetric security protocols are
discussed in Section 13.2, where tradeoffs between these two options
are explained in greater detail. A review of Section 13.2 with considera-
tion for resource-constrained sensor-node capabilities suggests which
are most suitable for wireless sensor networks. Security of the applica-
tion, although an important component for certain sensor applications,
cannot consume resources such that the sensor is unable to achieve its
primary purpose. Hence reduced computation implies lower levels of
security.

As a final example, consider data compression and FEC. Since the
overhead of wireless communication consumes a significant percentage

Challenges 7

Richard_CH09.qxd 8/11/04 3:24 PM Page 7

of the sensor node’s power, reducing the size of the data packets and the
number of retransmissions could reduce the power consumption of the
sensor node substantially. However, care must be taken that aggressive
data compression and error-correcting codes do not consume excessive
power. The appropriate use of these techniques in wireless sensor net-
works requires additional investigation before determining their opti-
mal use.

9.1.5 Storage constraints

In addition to the limited computing power, sensor nodes also have very
limited storage. Typical sensors have no permanent storage devices such
as hard disks. A few kilobytes of nonvolatile memory may be available,
and additional kilobytes of volatile memory usually are available. The
operating system and application code must run in this extremely lim-
ited area. An example of such an operating system is TinyOS (Hill et al.,
2000) which runs on a Mica sensor and requires only about 3500 bytes.
The application running on the sensor nodes is compiled with the OS into
a single program. All variables, values, and temporary workspace must
fit within the remaining space.

This requires each application be optimized for space utilization and
places significant bounds on the complexity of the application. Data
derived from sensors and the application requirements dictate some spe-
cific data-processing algorithms must be programmed into the sensor.
Additional application requirements determine the processing of the
data and the amount of storage required to perform the necessary com-
putation. A similar requirement exists for embedded systems in gen-
eral, and experience has shown that it is possible to develop programs
in this environment that accomplish the intended tasks (Panda et al.,
2001).

The extremely limited storage capacity of each sensor node presents
additional challenges. Although caching of data, such as results from
neighboring nodes, is useful for removing redundant communication
from the system (Intanagonwiwat, Govindan, and Estrin, 2000), the
opportunities for and benefits of caching data are restricted by the small
storage capacity. Buffering of local measurements also reduces redun-
dant communication, but the performance advantages similarly are
diminished by the storage restrictions. Often there exists a tradeoff
between these memory requirements of an application and the execu-
tion time of that application. The lack of sufficient space on the sensor
may require the use of less efficient algorithms. Consider the storage
requirements of security protocols, where space requirements of large
encryption keys may not be available. As a result, security is weakened
by the lack of available memory on the sensor.

8 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 8

9.1.6 Limited input and output options

Sensor nodes have very limited input and output options owing to their
small form factor. Even for devices as large as PDAs, a standard keyboard
is not feasible. Sensor nodes are significantly smaller. Input and output
peripherals will be almost nonexistent on a sensor node. There is no
output display and no keyboard, mouse, or stylus for input. The output
peripherals consist of at most a few light-emitting diodes (LEDs) and a
speaker. LEDs could be programmed in novel ways to flash patterns,
although at the cost of some power consumption and program code over-
head. Consequently, LEDs are limited to conveying simple messages,
such as indicating that the sensor is turned on, that it is functioning cor-
rectly, or that it is currently transmitting or receiving data. Speaker
output is limited to at most frequency, duration, and volume level, which
constrains the amount of information transmittable to the user.

Configuring and trouble-shooting a sensor node is made more chal-
lenging by the lack of I/O peripherals. Not only does diagnosis of indi-
vidual sensors present a problem, but evaluating sensor network
performance and finding software problems also are more difficult.
Consider attempting to debug a protocol by monitoring the execution of
a sensor. Without access to a display or the ability to obtain the meas-
ured sensor readings stored in memory, debugging the sensor becomes
much more difficult. Furthermore, if the only option for obtaining infor-
mation from a sensor node is through wireless communication, diagno-
sis of the system may interfere with operation of sensor network
protocols, which may impede isolation of the problem.

Because direct human-to-sensor-node interaction is extremely limited,
simulators and emulators are the primary mechanisms for debugging.
These tools are effective only to the extent that they correctly model the
operating environment of the sensors. For example, assumptions about
the wireless channel characteristics, the responses of the sensors, and
the energy capacity and energy drain of the sensor node affect the accu-
racy of the simulation results. Optimistic assumptions or simply unan-
ticipated situations lead to unforeseen problems with sensor nodes.
These discoveries are made only after deploying the sensors. Similarly,
if the sensor deployment occurs in a test bed rather than a real appli-
cation, some problems still may not be detected. The problem of track-
ing down the specification, design, or implementation mistakes is
substantially more challenging after a large-scale deployment.

Sensor configuration also becomes a more difficult task because
downloading even simple instructions likely is performed via radio.
Acknowledgments from the sensor may be required to determine that
the sensor has been configured properly. For large sensor networks,
limited feedback options may hamper the effort to configure the sensors
to collaborate according to the application demands. For scalability,

Challenges 9

Richard_CH09.qxd 8/11/04 3:24 PM Page 9

automatic configuration of the network is most desirable, but precon-
figuration and subsequent calibration of some sensor information still
may be required before initial deployment. Depending on the region of
deployment, such as a hostile or remote region, sensor calibration may
be performed among the sensors in the network (Bychkovskiy et al.,
2003). The limited user interface makes these tasks more challenging.

9.2 Security

Sensor networks are deployed for a wide range of purposes. Some of
these sensors require absolutely no security. A noncritical application,
such as a sensor that simply recognizes that someone has picked up an
object and responds, may not need any security. On the other hand,
sensors deployed for military applications require stringent security
mechanisms. Other types of sensor networks have more relaxed secu-
rity requirements. For example, a location tracking and management
system that tracks employee movements or parts in an industrial
research center may contain information useful to industrial spies.
Similarly, biomedical sensors may contain personal and privileged infor-
mation on patients that should not be accessible to the public
(Schwiebert et al., 2001). Privacy laws may even dictate that the exis-
tence of the device should be concealed from those who should not have
access to this information, such as potential employers. For example, an
implanted glucose monitor could reveal to an unauthorized person that
the wearer of the sensor has diabetes.

In the preceding examples, the sensor data need to be available, but
only to those with a legitimate need for this information. Arbitrary
access could lead to unintended problems. For many applications it
is difficult to determine in advance the potential misuses of sensor
data, implying that either security mechanisms exist as a precau-
tionary measure or needed security mechanisms may be omitted
because of an oversight when considering the security requirements
of the application.

Security requirements of wireless networks are discussed in Chapters
12 and 13, but it is still worthwhile to consider the particular limitations
of sensor nodes that complicate the application of security protocols to
sensor networks.

9.2.1 Small keys

As mentioned earlier, wireless sensor nodes have significantly less stor-
age space than other wireless computers. Since a significant amount of
this modest space is dedicated to the program code and the data pro-
cessing, storing large keys is not practical. For example, a 1024-bit

10 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 10

RSA1key would take up a significant fraction of the memory on a sensor.
Since the level of security increases with larger keys, smaller keys
reduce the security dramatically. If an adversary has access to signifi-
cantly more powerful computational resources than the sensor node
possesses, the adversary can break the security through brute force in
a relatively short amount of time. Because security concerns must
remain secondary to the main tasks of the sensor node, the security pro-
tocols must be adapted to the existing constraints and operate within
the available space. Therefore, security protocols must be adopted that
can provide sufficient levels of security with these smaller keys.

9.2.2 Limited computation

Another issue that has been mentioned before is the limited computing
power of the sensor nodes. In general, security protocols perform addi-
tional computations to increase the level of security. In other words, more
complicated algorithms offer improved security, but this requires that
sufficient computing power is available. Security protocols exist that can
operate on more constrained devices, but not at the same level of per-
formance. The power available to the sensor nodes is also limited, and
extensive computations for security purposes limit the lifetime of the
sensor node or reduce the energy available for other sensor tasks. Hence
one of the challenges for wireless sensor networks is to provide security
that meets or exceeds the requirements of the application without con-
suming too many computing resources.

9.2.3 Changing network membership

Over the lifetime of a sensor network, the active membership of the
sensor network varies. This variation may arise because of sensor nodes
powering their radios off to conserve energy (Chen et al., 2001; Xu,
Heidemann, and Estrin, 2001). Sensor-node failures and sensors that
die owing to depletion of their energy also change the membership of the
network. Security protocols that rely on sharing keys between neigh-
boring nodes need to continue to operate even though the neighbors of
a sensor node may change frequently during the lifetime of the sensor
network. In addition, routing and other distributed tasks may rely on
authentication of nodes. Storing keys and related data for a large
number of neighboring sensors often is impractical. On the other hand,
a single routing node or even a small subset of nodes cannot be assumed
without limiting the flexibility of the network protocols.

Challenges 11

1RSAis named after its inventors: Ronald L. Rivest, Adi Shamir, and Leonard Adleman.

Richard_CH09.qxd 8/11/04 3:24 PM Page 11

Using a single key for the entire network is an attractive option for
resolving this problem. However, this approach introduces the draw-
back that a single compromised sensor node is sufficient to allow an
adversary to decrypt any message in the network, as well as interfere
with the operation of any other sensor in the network. Sharing keys
between individual pairs of neighboring sensors increases security but
leads to problems with key distribution and key management. Handling
changing network membership requires a key distribution and man-
agement scheme that is both scalable and resilient to adversarial
attacks.

9.2.4 Arbitrary topology

Sensor networks are deployed in different ways. For example, sensors
in biomedical applications are likely to be implanted in specific locations;
the neighbors of each sensor are predetermined. For applications such
as transportation monitoring and management, sensors are deployed
with less precision but still with a well-defined distribution. On the
other hand, sensors deployed for large-scale tracking and monitoring
operations are likely to be deployed in an arbitrary fashion. Examples
of such applications are military surveillance, forest fire detection, and
animal tracking. For these applications, sensors are strewn from low-
flying aircraft or vehicles or by hand. Not only is the exact position of
each sensor be somewhat arbitrary, but also the density of nodes varies
over the region, and which nodes are neighbors of each sensor is unpre-
dictable before network deployment.

Because both the number and identity of neighboring sensors are not
known prior to network deployment, preconfiguration of security keys
based on sensor IDs is not possible. Instead, keys that must be shared
between neighboring sensors must be distributed and determined after
the sensors have been deployed. This means that each sensor must have
the ability to assign keys that are cryptographically secure based on com-
munication with neighboring sensors. Relying on communication with
a base station or some other central authority would not be scalable. For
this reason, local collaboration among neighboring sensors must be suf-
ficient to establish the keys.

Care must be taken with this approach to prevent malicious nodes
from adding themselves to the network. In other words, an adversary
should not be able to deploy a malicious node that can establish secure
communication with existing sensor nodes. Sensor nodes must not
authenticate nodes that do not belong to the sensor network. Periodic
deployment of additional sensors is beneficial for some applications,
especially when sensors are relatively inexpensive and do not have a life-
time that is sufficient for a given application. For example, a military

12 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 12

surveillance application may require the occasional redeployment of
additional sensors in order to maintain adequate network coverage.

Security protocols for wireless sensor networks must be robust to
node failures and the subsequent addition of nodes (Jamshaid and
Schwiebert, 2004). At the same time, some mechanism must be avail-
able that prevents sensors that do not belong in the sensor network
from masquerading as legitimate participants in the sensor applica-
tion. To prevent this, security protocols must have some technique that
is difficult to compromise and is sufficiently powerful to block adversarial
nodes from joining the network. At the same time, these protocols must
satisfy the space and computational limits.

9.3 Mobility

Ad hoc networks are not necessarily mobile. The ad hoc nature of the
network arises simply from the lack of fixed infrastructure. Of course,
the absence of a fixed network infrastructure leads directly to the con-
clusion that mobility is a reasonable feature for these devices. A user car-
rying such a device will not recognize any practical reason for having
to remain stationary while using the device. For certain applications,
such as animal tracking or sensors embedded in clothing and the human
body, the sensors necessarily are mobile. For PDAs and other small
portable wireless devices, mobility is a required property because the
user transports this device as he or she moves about.

For wireless sensors, mobility is not required for many applications.
For example, sensors embedded in buildings, roads, and bridges are
stationary. Sensors deployed for large-scale monitoring and surveillance
applications, such as forest fire detection, are less likely to be mobile.
Certainly, users of the network will not redeploy such nodes frequently
because there are simply too many nodes to make this possible with a
reasonable amount of effort. It has been proposed, however, that sen-
sors may be equipped with limited mobility to allow for automated repo-
sitioning of these sensors after the initial deployment (Zou and
Chakrabarty, 2003). The main objective for providing mobility for these
nodes is to allow repositioning of sensor nodes to create a more uniform
distribution that enhances the ability of the sensor network to cover the
area of interest adequately. Sensors that consume a modest amount of
power for mobility could reposition themselves periodically to overcome
uneven node distributions and uneven coverage that arises as nodes die.
This repositioning could be useful for efficient and reliable routing and
delivery of packets (Grossglauser and Tse, 2002).

Mobility of ad hoc nodes presents a number of additional challenges to
deploying and sustaining energy-efficient ad hoc networks. Although some
energy may be used in mobility if the node is providing the movement on

Challenges 13

Richard_CH09.qxd 8/11/04 3:24 PM Page 13

its own, as opposed to being transported by a human or an animal, the over-
head is unavoidable because of the effects that mobility has on the wire-
less communication protocols. In other words, the overhead occurs because
mobility is useful to the user.

9.3.1 Mobility requirements

A mobile ad hoc node may need to move in order to remain with the
person, vehicle, or animal that carries the sensor. Mobility also may
occur because of application needs. For example, nodes may move to
enhance their coverage of an area, to achieve or maintain an even dis-
tribution of nodes, or to react to changing application requirements. As
a node moves, connectivity with a different set of nodes in the network
may be required. In addition, as a node moves, this modifies the con-
nectivity of nodes that either had a direct link to this node in the past
or that obtain a direct link in the future.

Some applications must support mobility for the convenience of the
end user. Consider the case of a user with mobile devices embedded in
a vehicle, his clothing, his body, or carried on his person. The user would
like to continue using the device even though he is moving about.
Although this presents challenges to the underlying network protocols,
the reality is that users do not adopt technology that inconveniences
them too much. Hence it is most advantageous to provide users with easy
to use devices instead of imposing limitations that seem arbitrary and
unreasonable to an end user who is not knowledgeable about the under-
lying technology.

Other applications may use mobility to assist the application. In these
cases, mobility is provided to enhance the effectiveness of the sensor net-
work in achieving the objectives of the underlying application. For exam-
ple, mobility improves wireless network capacity by allowing nodes to
buffer messages until delivery to the destination is feasible using only
a modest amount of wireless bandwidth (Grossglauser and Tse, 2002).
In other cases, mobility may be required for the initial positioning of
sensor nodes or to reposition those sensor nodes (Zou and Chakrabarty,
2003). Application objectives determines the movement of the sensors;
whether the current arrangement of sensors satisfies these objectives,
and whether repositioning of some sensors can improve the sensor net-
work’s ability to maintain the application objectives. Assuming that
sensors can move without a major consumption of power, mobility may
be an energy-efficient and cost-effective method of improving sensor
performance. For example, if a significant number of sensor nodes have
died, moving the remaining sensors into a new configuration may be ade-
quate for application needs while eliminating the cost of redeploying
some additional sensors. However, protocols for determining how often

14 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 14

and where to move individual nodes need to be developed, along with
techniques for determining whether or not this redeployment fulfills the
application objectives. In fact, this decision-making process may con-
sume more power than actual movement of the sensors would.

9.3.2 Loss of connectivity

Loss of connectivity owing to mobility is possible during any sufficiently
long data transfer. The time until connectivity is lost depends on the
range of the devices, the initial distance between the pair of devices, and
the speed at which the devices move away from each other.

Although connectivity is lost, there may be a need to reestablish a con-
nection between the two endpoints of the communication. For example,
a person using a PDA to check e-mail would expect to continue reading
his e-mail even as he walks or drives around. The initial point of con-
nectivity to the mail server may be far away from the place where the
user finishes reading his e-mail. Similarly, a sensor in a car may need
to complete a data transfer even as the car moves beyond the range of
the current point of connectivity.

Loss of connectivity between a pair of nodes could occur because of the
movement of any of the nodes along the path between these two nodes.
If the two endpoints are stationary, but some other node along the path
moves out of radio range, another path must be created to allow com-
munication to continue. While this new path is being formed, packets
must be buffered or dropped. In either case, delay is introduced into the
network. In some cases this delay may not be significant, but for real-
time transmission of sensor readings or other types of data, the delay
may interfere with correct operation of the protocol. Simply flooding
each packet from the source to the destination can circumvent such
problems. Unfortunately, flooding is not an efficient strategy unless
nodes are moving too quickly to maintain routing paths because nodes
must make a large number of redundant data transmissions when using
flooding. Since wireless communication overhead is a significant com-
ponent of the power usage of a sensor node, flooding the network with
packets consumes too much energy. Techniques for dealing with broken
paths in an energy-efficient and robust manner are necessary for time-
critical data.

Connectivity may be lost not only between a pair of nodes but also with
the rest of the network. If the network becomes partitioned, then sepa-
rate parts of the network cannot share data until the network becomes
connected again. If a significant period of time passes between a node
disconnecting from the network and the node reconnecting with the
network, resynchronizing the node with the rest of the network is dif-
ficult. In some cases, reestablishing security between the node and the

Challenges 15

Richard_CH09.qxd 8/11/04 3:24 PM Page 15

rest of the network may be complicated if the node is separated from the
rest of the network for a long period of time. In general, we cannot avoid
prolonged disconnection at the protocol level, so the only option is to
design protocols that are flexible enough to deal with this situation. In
some sense, prolonged disconnection from the network is not signifi-
cantly different from a transient fault that keeps a node from commu-
nicating with the rest of the network, assuming that the node still
retains the state information it possessed at the time of disconnection.

9.3.3 Data loss

As mentioned earlier in this chapter, transmission errors are much
higher with wireless communication than over fiber optic or other wired
links. In addition to the higher data loss rate owing to the wireless
medium, movement of nodes leads to data loss. As described earlier,
packets are lost owing to the movement of any node along the path from
the source to the destination or the path from the destination back to
the source if acknowledgment packets or other data are returned to the
source. In some cases, the packets lost due to wireless channel errors
can be recovered by locally retransmitting the packet (Parsa and Garcia-
Luna-Aceves, 1994). However, when movement of the nodes causes the
connection to be broken, retransmitting the packet does not solve the
problem. Since the receiver is not within the range of the transmitter,
subsequent attempts at sending the same packet will fail unless the
transmitter or the receiver move close enough to be within range of the
other node. Instead, an alternative path must be found in order to
deliver the message.

Depending on the importance of the data that are lost, the packet may
be retransmitted or dropped. Retransmission of packets is appropriate
for packets with a high priority, but packets that have a low priority
should be dropped. In some cases, packets that arrive shortly after the
lost packet contain redundant information, which may allow this packet
simply to be dropped. Real-time data may be dropped simply because
the delay involved in resending the packet may exceed the deadline for
delivering the packet. When mobility breaks a connection, the delay to
reestablish the path is likely to be much higher than the delay that
arises when data are lost owing to channel errors. The mechanisms
used to rebuild the path must be sensitive to the requirements of the
application. In some cases, aggressive techniques must be used to find
a suitable alternative. In other cases, more conservative approaches
that allow energy savings may be more desirable. The tradeoffs between
increasing the delay in delivering packets and the overhead of recon-
structing paths quickly must be balanced based on the application’s
quality of service (QoS) requirements.

16 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 16

9.3.4 Group communication

Since the physical location of a mobile node changes, the neighbors of
that node also change. In addition, mobile neighbors may move away
from a node, so even if a particular node is stationary, there is no guar-
antee that this node will maintain the same set of neighbors. If enough
mobile nodes move a sufficient distance, almost all nodes experience a
continual fluctuation in neighbors. These changes in neighborhood often
are unpredictable, so the mobility results in a pair of nodes no longer
being neighbors at any time during the exchange of messages. The pro-
tocol must be robust enough to handle this in a clean way.

Mobility presents additional challenges for group communication
because the structure of the group could constantly change. For exam-
ple, assume that the group is represented as a multicast tree. As nodes
move about, the structure of the tree changes, which could modify the
parent and children of each node. Forwarding messages to ensure that
the messages are transmitted to every node in the group could be diffi-
cult, even without any strong requirements for reliability. When a node
receives a packet, the node may not be sure that its current parent has
received the same packet, and the node may not know whether the
packet needs to be transmitted to the children. Resending every packet
to all the neighbors could result in a great deal of redundant commu-
nication, draining the power and wasting the bandwidth. Furthermore,
a long period of time could be required before all the nodes stop send-
ing this particular redundant packet. This leads to delay in delivering
other packets. In cases where reliable communication is required,
acknowledgments may be transmitted up the tree. Delivery of these
acknowledgment packets could suffer from the same problems as the
original packet delivery did.

Besides the difficulty of maintaining the logical group owing to mobil-
ity, the group also could become disconnected for periods of time. For
example, if an ad hoc node moves beyond the communication range of
other nodes in the network, there is no way to transmit the information
to this particular node. Although the information still could be buffered,
there may be limited buffer space on the other nodes. Besides, there is
no guarantee that the disconnected node will return to the group any
time soon or even at all. It is possible that this node has failed, depleted
its power, been turned off, or otherwise become permanently separated
from the network. Instead of buffering messages for a node that will not
return, the node simply should be removed from the group. Buffering
is no longer required in this case, but determining when to remove a
node from the group is not trivial.

In certain situations, reliable protocols need to determine that all mem-
bers of a group have received a packet before initiating the transmission
of addition packets. Thus a single node disconnecting from the network

Challenges 17

Richard_CH09.qxd 8/11/04 3:24 PM Page 17

on a temporary basis could stop or substantially reduce the flow of pack-
ets among members of the network. This is obviously not desirable for any
long period of time, so some alternatives should be available when nodes
are disconnected from the network for some period of time.

9.3.5 Maintaining consistent views

A set of nodes need to maintain consistency for several reasons. For
example, hop-by-hop routing of messages can lead to loops in the rout-
ing tables if nodes do not have consistent information. As loops arise,
they need to be recognized and removed, essentially by achieving some
local consistency. This fixes the routing paths so that packets can make
progress. Another reason that consistency is needed in a network is to
reduce the number of retransmitted packets. Each time a packet is
transmitted, the transmitter and all receivers consume power. In addi-
tion, wireless bandwidth is a relatively scarce commodity in most cases;
unnecessary retransmissions place an additional burden on this
resource. Since packets often are transmitted over multiple hops, the
retransmission of a single packet could lead to a significant amount of
extra traffic. This extra traffic can be reduced when nodes have common
knowledge of the packet status. In other words, when the transmitter
of the packet learns that the receiver has obtained the packet, no
retransmission is attempted. Consistent information between the sender
and the receiver allows the suppression of these retransmissions.

Maintaining a consistent view in a wireless ad hoc network is difficult
because acknowledgments and other mechanisms for determining
whether or not a retransmission is required work less effectively with
higher packet loss rates and wireless channel interference. The mobility
of nodes makes this maintenance even more difficult because a trans-
mission that occurred originally over a single hop may require a retrans-
mission over several hops. This means that a new path must be found
between the source and destination, and the nodes along the path con-
sume additional power to accomplish this retransmission. Nodes can use
flooding to transmit data packets when a consistent view of routing infor-
mation does not exist, but flooding also increases power consumption.

Mobility also increases the difficulty of maintaining consistent infor-
mation among nodes because mobility changes the network topology. In
effect, this information changes by virtue of the mobility and needs to
be propagated because of mobility. In practice, all nodes may not need
to be notified of every change in network topology. At any given time in
a large network, each node is communicating with only a small subset
of the nodes in the network. (The only real exception to this situation
is a broadcast or other group operation.) However, since the distance
between nodes could be several hops, movement of any nodes along a

18 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 18

path could require the rebuilding of a valid path. This leads to commu-
nication delay and either temporary buffering of packets or dropping of
packets. Later we will consider protocols that address these problems
by not maintaining explicit paths between the source and destination
(Niculescu and Nath, 2003). Although this is an attractive option, it
cannot be used in all situations.

For high rates of mobility or when nodes are at the edge of their trans-
mission range, this mobility may interrupt the delivery of a packet. The
transmitter of the packet may not hear a retransmission request from
the receiver, so the transmitter is uncertain about whether the packet
was lost or not. Another problem is the successful delivery of the packet
but the inability to return an acknowledgment because the transmitting
node has moved beyond the transmission range of the receiver. Either
of these two situations leads to inconsistent information on the status
of packets—whether they have been received or not. Lack of consis-
tency can lead to retransmissions or additional delays in receiving these
packets. Thus mobility adds an additional dimension, beyond lossy wire-
less channels, to situations in which inconsistent information arises.
Protocols for resolving lost packets need to be robust to the mobility
effects that can take place during data and acknowledgment transmis-
sion and reception.

9.4 Summary

In this chapter we discussed several of the unique challenges for using
networks of wireless sensors. Besides describing the challenges, we
compared the characteristics and capabilities of existing sensors with
the properties of traditional networking environments. Wireless sensor
networks require different solutions because of the differing character-
istics of both the wireless medium and the sensor nodes that make up
the network. As we have discussed, protocols for wireless sensor net-
works are more useful if they incorporate these special features into
their design. By understanding these unique aspects of wireless sensor
networks, the protocols presented in Chapter 10 become more under-
standable.

References

Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks:
A Survey,” Computer Networks 38(4):393, 2002.

Blazevic, L., L. Buttyan, S. Capkun, S. Giordano, J. Hubaux, and J. Le Boudec, “Self-
Organization in Mobile Ad Hoc Networks: The Approach of Terminodes,” IEEE
Communications Magazine 39(6):166, 2001.

Bychkovskiy, V., S. Megerian, D. Estrin, and M. Potkonjak, “A Collaborative Approach to
In-Place Sensor Calibration,” in Proceedings of the 2nd International Workshop on

Challenges 19

Richard_CH09.qxd 8/11/04 3:24 PM Page 19

Information Processing in Sensor Networks (IPSN ‘03). Lecture Notes in Computer
Science 2634:301, 2003.

Chen, B., K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” in
International Conference on Mobile Computing and Networking (MobiCom); Rome,
Italy, ACM, 2001, p. 221.

Doherty, L., B. A. Warneke, B. E. Boser, and K. S. J. Pister, “Energy and Performance
Considerations for Smart Dust,” International Journal of Parallel Distributed Systems
and Networks 4(3):121, 2001.

Dulman, S., L. V. Hoesel, T. Nieberg, and P. Havinga, “Collaborative Communication
Protocols for Wireless Sensor Networks,” in European Research on Middleware and
Architectures for Complex and Embedded Systems Workshop, Pisa, Italy; IEEE
Computer Society Press, 2003.

Estrin, D., R. Govindan, J. Heidemann, and S. Kumar, “Next Generation Challenges:
Scalable Coordination in Sensor Networks,” in International Conference on Mobile
Computing and Networking (MobiCom); Seattle, WA, ACM, 1999, p. 263.

Grossglauser, M., and D. Tse, “Mobility Increases the Capacity of Ad Hoc Wireless
Networks,” IEEE/ACM Transactions on Networking 10(4):477, 2002.

Hill, J. L., and D. E. Culler, “Mica: A Wireless Platform for Deeply Embedded Networks,”
IEEE Micro 2(6):12, 2002.

Hill, J. L., R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System Architecture
Directions for Networked Sensors,” in Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems;
Cambridge, MA, ACM, 2000.

Intanagonwiwat, C., R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks,” in International Conference
on Mobile Computing and Networking (MobiCom); Boston, MA, ACM, 2000, p. 56.

Jacobson, V., “Congestion Avoidance and Control,” ACM SIGCOMM Computer
Communication Review 25(1):157, 1995.

Jamshaid, K., and L. Schwiebert, “SEKEN (Secure and Efficient Key Exchange for Sensor
Networks),” in IEEE Performance, Computing, and Communications Conference
(IPCCC); Phoenix, AZ, IEEE Computer Society, 2004, p. 415.

Johnson, D. B., “Routing in Ad Hoc Networks of Mobile Hosts,” in Proceedings of the
IEEE Workshop on Mobile Computing Systems and Applications; Santa Cruz, CA,
IEEE Computer Society, 1994, p. 158.

Lang, T., and D. Floreani, “Performance Evaluation of Different TCP Error Detection
and Congestion Control Strategies Over a Wireless Link,” ACM SIGMETRICS
Performance Evaluation Review 28(3):30, 2000.

McFarland, B., and M. Wong, “The Family Dynamics of 802.11,” Queue 1(3):28, 2003.
Mockapetris, P. V., and K. J. Dunlap, “Development of the Domain Name System,” ACM

SIGCOMM Computer Communication Review 25(1):112, 1995.
Niculescu, D., and B. Nath, “Trajectory Based Forwarding and Its Applications,” in

International Conference on Mobile Computing and Networking (MobiCom); San Diego,
CA, ACM, 2003, p. 260.

Panda, P. R., F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A.
Vandercappelle, and P. G. Kjeldsberg, “Data and Memory Optimization Techniques for
Embedded Systems,” ACM Transactions on Design Automation of Electronic Systems
(TODAES) 6(2):149, 2001.

Parsa, C., and J. J. Garcia-Luna-Aceves, “Improving TCP Performance Over Wireless
Networks at the Link Layer,” Mobile Networks and Applications 5(1):57, 2000.

Perkins, C. E., and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers,” in Proceedings of the Conference on
Communications Architectures, Protocols and Applications (SIGCOMM); London, UK,
ACM, 1994, p. 234.

Powers, R. A., “Batteries for Low Power Electronics,” Proceedings of the IEEE 83(4):687,
1995.

Rekhter, Y., and T. Li, A Border Gateway Protocol 4 (BGP-4), Internet Engineering Task
Force, RFC 1771, March 1995.

20 Chapter Nine

Richard_CH09.qxd 8/11/04 3:24 PM Page 20

Scaglione, A., and S. Servetto, “On the Interdependence of Routing and Data Compression
in MultiHop Sensor Networks,” in International Conference on Mobile Computing and
Networking (MobiCom); Atlanta, GA, ACM, 2002, p. 140.

Schwiebert, L., S. K. S. Gupta, J. Weinmann, et al., “Research Challenges in Wireless
Networks of Biomedical Sensors,” in International Conference on Mobile Computing and
Networking (MobiCom); Rome, Italy, ACM, 2001, p. 151.

Shenck, N. S., and J. A. Paradiso, “Energy Scavenging with Shoe-Mounted Piezoelectrics,”
IEEE Micro 21(3):30, 2001.

Welsh, E., W. Fish, and J. P. Frantz, “Gnomes: A Testbed for Low Power Heterogeneous
Wireless Sensor Networks,” in International Symposium on Circuits and Systems. Vol. 4.
2003, p. IV-836. Held in Bangkok, Thailand. Published by IEEE Press.

Xu, Y., J. Heidemann, and D. Estrin, “Geography-Informed Energy Conservation for Ad
Hoc Routing,” in International Conference on Mobile Computing and Networking
(MobiCom); Rome, Italy, ACM, 2001, p. 70.

Ye, W., J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless
Sensor Networks,” in Proceedings of the 21st International Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), Vol. 3; New York, NY,
IEEE Computer Society, 2002. p. 1567.

Zou, Y., and K. Chakrabarty, “Sensor Deployment and Target Localization Based on
Virtual Forces,” in Proceedings of the 22nd International Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM); San Francisco, CA,
IEEE Computer Society, 2003, p. 293.

Challenges 21

Richard_CH09.qxd 8/11/04 3:24 PM Page 21

Richard_CH09.qxd 8/11/04 3:24 PM Page 22

Chapter

10
Protocols

In Chapter 9 we described the many challenges of ad hoc networking,
including mobile ad hoc networking. Most of these topics remain areas
of active research, partly because the topics are new and partly because
the characteristics of wireless networks are changing so rapidly that
existing techniques may not be ideal or even suitable for future net-
works. As research progresses in these challenging problems, new
approaches will be developed, and better protocols will be designed.
Many of the core strategies, however, seem to have been identified.
Therefore, in this chapter we take a closer look at the protocols that can
be used to address these challenges.

10.1 Autoconfiguration

Ad hoc networks, sensor networks in particular, benefit from being self-
configurable. The initial deployment of sensors in an area could be
rather large. Allowing these sensors to configure themselves into a func-
tioning network has a number of advantages. First, human intervention
may be impractical or impossible. For example, sensors may be deployed
in an environment that is unsafe for humans, whether at a military loca-
tion, a remote geographic location, or an industrial setting that is not
suitable for humans. Second, large sensor networks require significant
labor to configure each sensor individually. Preconfiguring the network
becomes impractical if sensors are deployed randomly or in an ad hoc
fashion. Preconfiguration is also challenging if sensors that have
exhausted their battery supply or have failed are replaced periodically
with new sensors. Automatically configuring nodes in an ad hoc network
achieves good results if the overhead of configuring nodes is modest
and the algorithms for automatically configuring the nodes lead to good

1

Richard_CH10.qxd 8/11/04 3:25 PM Page 1

solutions. In this section we will describe a number of possible uses for
self-configuration in an ad hoc network. Based on this discussion, it
will become clear what the network requires for configuration, as well
as the specific functions of this autoconfiguration. Furthermore, this dis-
cussion helps to clarify the advantages of using automatic configuration
as opposed to manual configuration.

10.1.1 Neighborhood discovery

Neighborhood information in an ad hoc network informs each node
about the surrounding set of nodes in the network (Conta and Deering,
1998; Deering and Hinden, 1998). The use of this neighborhood infor-
mation varies with the application; however, nodes require some knowl-
edge of their neighbors for collaboration and coordination of efforts. For
example, if a sensor observes an event, the node may wish to check
with neighboring nodes to determine whether or not other sensor nodes
also have observed the same event. Multiple sensors that detect the
same event increase the level of confidence in the observation. These
readings can be combined using a soft decision parley algorithm, such
as the one proposed in Van Dyck (2002). In addition, a single compos-
ite message could be returned to the base station rather than separate
messages from each sensor (Heinzelman, Chandrakasan, and
Balakrishnan, 2002; Intanagonwiwat, Govindan, and Estrin, 2000;
Lindsey, Raghavendra, and Sivalingam, 2002). Furthermore, when mul-
tihop routing is used, the network may need neighborhood information
for routing packets.

Neighborhood discovery may choose to allow only bidirectional links
or also include unidirectional links. Unidirectional links occur when
node A can communicate directly with node B, although node B has no
direct connection to node A. Unidirectional links could arise because of
differences in transmission power among nodes (Prakash, 2001) or as a
result of obstacles. For example, a node at a higher elevation may be able
to transmit to a lower node, but not vice versa unless the node at a lower
elevation transmits with significantly more power. Allowing unidirec-
tional links may increase the network capacity because there are more
wireless communication links, but bidirectional links allow a node to
receive acknowledgments or listen for retransmission of packets.
Listening for retransmission allows passive acknowledgments because
if the receiver forwards the packet, it obviously received the packet.

Detection of unidirectional links is nontrivial because the node able
to transmit on this link will have difficulty determining if the receiver
can acquire the message. Assistance from other nodes is required to
determine this. In addition, link availability may be variable, and the
sender has no direct method to measure the quality of the link at a

2 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 2

given time. For this reason, many protocols restrict themselves to only
bidirectional links.

Detecting neighboring nodes is less difficult with a bidirectional link
because both nodes can send and receive on the same link. Each node
simply sends a probe message. Each node that receives a probe message
responds to the sender with an acknowledgment. After a few rounds,
every node knows all the neighboring nodes that share a link with this
node, assuming that the error rate on the links is relatively low. When
a mobile node moves into a new area, it detects other nodes in the area
by promiscuously listening to messages intended for other nodes (Pei and
Gerla, 2001). After the mobile node determines some of its neighbors, it
initiates neighbor discovery to identify remaining neighbors and notify
these nodes of its presence in the neighborhood.

10.1.2 Topology discovery

Topology information in an ad hoc network consists of the locations of
nodes relative to each other, including the density of nodes in a partic-
ular region. The topology of the network also could include the number
of nodes in the network and the size of the network—in other words, the
physical dimensions of the sensor network and the number of nodes in
this area. Based on this information, an average network density can
be determined, from which the regions of high and low sensor-node den-
sity can be extrapolated. Topology information also can include the
number of neighbors each node in the network has, as well as the aver-
age number of neighbors per node. This information is useful in decid-
ing how to organize the wireless network.

The most obvious reason for conducting topology discovery is to build
routing paths. A wireless sensor network may be deployed over a large
area with a need to communicate with a base station at some specific
location. In other cases, the base station may be mobile (Ye et al., 2002),
but nodes still need topology information in order to route packets to the
base station. Knowledge of the topology also provides an insight into the
distribution of sensor nodes in the area of interest. This information then
can be used to evaluate the coverage or exposure of the sensor network
(Meguerdichian et al., 2001a, 2001b). The topology information also can
be used to schedule nodes for sleep cycles to prolong the lifetime of the
network, as well as to select coordinators, cluster heads, or other group
leaders to enable hierarchical collaboration in the sensor network.

Over the life of the network, the network topology changes as sensor
nodes stop working because of faults or lack of power. Monitoring these
changes allows the network to figure out when and where to deploy
additional sensors to maintain a suitable quality of service (QoS) level.
Determining this information manually could take a significant amount

Protocols 3

Richard_CH10.qxd 8/11/04 3:25 PM Page 3

of time and effort, so discovering the topology information and main-
taining this information have practical advantages in making the ad hoc
network cost-effective.

Topology discovery can be built on neighborhood discovery. In general,
individual nodes do not need to be aware of the entire network topol-
ogy. However, accumulating this information at a base station or retain-
ing this information in some distributed fashion leads to better protocol
designs. For example, knowledge of the average number of neighbors
each node has can be used to select which nodes should be coordinators
of areas of interest within a sensor network. These coordinators then
could be combined in a hierarchical manner to provide robust and scal-
able support for communication across the sensor network.

Routing of data may not rely on generic network topology information
because orientation toward the base station or any particular source of
a request may be sufficient for routing the information to this location
(Niculescu and Nath, 2003; Salhieh and Schwiebert, 2004). However,
holes in the sensor network or other pathological situations such as
obstacles are examples of topologic information that could be used to sup-
plement the base routing protocol—either for efficiency or for robustness.

10.1.3 Medium access control schedule
construction

Wireless bandwidth is a relatively scarce resource in wireless sensor net-
works, so this bandwidth must be used efficiently by making sure that
as many packets as possible are delivered correctly. Because of the inher-
ent broadcast nature and energy required for wireless communication, col-
lisions must be avoided. To avoid collisions, each node cannot transmit a
message in any given area that interferes with a message from another
node. Spatial reuse of the wireless bandwidth becomes possible by limit-
ing the transmission range of a node and by coordinating communication
across neighboring regions. In this way, wireless bandwidth usage is
improved. Protocols for avoiding collisions can be divided into essentially
two categories: scheduling protocols and collision-resolution protocols.

Scheduling protocols assign some of the bandwidth to each node (or at
least each node that wishes to transmit a message) (Lu, Bharghavan, and
Srkant, 1997). Static assignments give a fixed amount of bandwidth to
each node without regard to its transmission requirements. Dynamic
assignments instead allocate bandwidth to nodes according to their sched-
uling schemes and their current communication needs. There are differ-
ent ways this bandwidth can be divided among the nodes. In addition to
spatial reuse realized through limiting the transmission range, the band-
width could be divided by frequency or time. Frequency division medium
access (FDMA) assigns one of a number of frequencies to each node so that

4 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 4

multiple nodes can transmit simultaneously without interfering with
each other (Wei and Cioffi, 2002). Time division multiple access (TDMA)
creates multiple time slots and assigns one or more of these time slots to
each node so that the same frequency can be shared among multiple
nodes without incurring any interference (Sohrabi et al., 2000).

One advantage of TDMA in wireless sensor networks is that a sensor
node can turn off its radio transmitter and receiver until it is ready to
send or receive a message. Since having the receiver powered up uses
energy even when it receives no messages, turning the receiver off for
a significant number of communication slots saves a dramatic amount
of power. Power usage of various wireless transceivers in transmit,
receive, and idle states can be found in Chen, Sivalingam, and Agrawal
(1999). However, since wireless sensors will send data only sporadi-
cally, the power consumption could be very high for leaving the trans-
ceiver in an idle state compared with powering down the transceiver
(Rabaey et al., 2000). For this reason, TDMA-type scheduling protocols
have been considered the most practical approach for wireless sensor
networks (Pottie and Kaiser, 2000). On the other hand, TDMA sched-
ules require sufficient synchronization among nodes to ensure that all
nodes conform to the schedule (Shih et al., 2001).

To build a TDMA schedule, nodes must have neighborhood informa-
tion. Once the number of neighbors has been determined, the number
and size of time slots can be determined. For consistency across the
network, the size of time slots can be fixed based on the expected (or
maximum) packet size. The maximum number of neighbors or the aver-
age number of neighbors also can determine the number of time slots,
both of which also require topology information. Once the local infor-
mation is determined, some coordination is required among neighbor-
ing regions because the neighbors of a given node vary somewhat from
the neighbors of its own neighbors. Coordination across adjacent neigh-
borhoods prevents collisions and allows efficient bandwidth use.
Dynamic TDMA schedules (Dyson and Hass, 1999), which allocate slots
only to nodes with data to transmit, result in more efficient bandwidth
usage because slots are not idle owing to being assigned to nodes with
no data to transmit. In addition, nodes with a larger volume of data can
obtain more than one slot to transmit data more quickly. Dynamic
TDMA schedules are accomplished by having a short reservation period
consisting of a number of minislots—each corresponding to one packet
transmission time slot. A node indicates its desire to transmit during the
current interval by randomly selecting one of these minislots and
attempting to reserve it. If a node succeeds in obtaining a particular slot,
it sends its packet during that time slot. In this way, nodes without
data to send do not waste a preassigned time interval, allowing band-
width to be used more efficiently.

Protocols 5

Richard_CH10.qxd 8/11/04 3:25 PM Page 5

Another option is to use an approach taken in protocols such as S-MAC
(Ye, Heidemann, and Estrin, 2002) and a proposed variant of Aloha that
uses preamble sampling (El-Hoiydi, 2002). These low-power MAC pro-
tocols have been proposed for use in wireless sensor networks to avoid
the energy and system overhead of maintaining synchronization and cre-
ating a schedule. Instead, these protocols turn the radio off when idle
to conserve power and turn the radio on periodically to listen for trans-
mission requests. When a node wants to send a packet, it transmits a
start symbol for a long enough period of time that the receiver wakes
up before the transmitting node sends the packet. Although this avoids
the overhead of scheduling time slots, there is the possibility that the
transmissions wakes up many nodes. This increases the power con-
sumption as some nodes that could remain idle assume that the mes-
sage is destined for them. These nodes can turn themselves off again by
processing the packet header and determining that the message is not
being sent to them. Even so, this processing overhead drains energy from
these sensor nodes.

Besides TDMA and FDMA scheduling, code division medium access
(CDMA) has been proposed for wireless communication (Hu, 1993).
CDMA signals are particularly difficult to detect by unintended
receivers, making them ideal for military applications. We do not con-
sider CDMA further here because the processing overhead is signifi-
cantly higher, which prevents their application in sensor networks given
current technology limitations.

The second type of wireless channel scheduling is collision avoidance.
An example of collision avoidance is IEEE 802.11 (ANSI, 1999), which
can use request-to-send (RTS) packets followed by clear-to-send (CTS)
packets to reserve a channel. After the reservation is obtained, the
packet can be transmitted. For low-power wireless devices, listening for
RTS packets can be a significant energy drain on these devices. In addi-
tion, collisions still can occur because of the hidden terminal problem
(Tobagi and Kleinrock, 1975), as well as other causes of interference. The
hidden terminal problem arises because a node receiving a message
from one node also may be in the communication range of another node
sending an RTS packet. Interference from these two messages prevents
the node from receiving the packet from either node. An example of the
hidden terminal problem is shown in Fig. 10.1, where the transmission
range of each node is shown as a circle centered at that node. In ths
figure, node A is sending a message to node B. Node C is out of the
range of node A, so node C does not know that node B is currently receiv-
ing a data packet from node A. Therefore, node C sends an RTS to node
B, interfering with (corrupting) the packet from node A to node B.

A related problem is the exposed terminal problem (Bharghavan et al.,
1994), where a node cannot send a message because it hears another node

6 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 6

transmitting, even though the recipients of the two messages would not
experience any interference. Although the exposed terminal problem
does not cause network interference, it does reduce the efficiency of the
wireless channel. Figure 10.2 depicts a simple example of the exposed
terminal problem. The network consists of four nodes. Node B is send-
ing a message to node A, but node C is also in the transmission range
of node B. Since node C overhears the transmission from node B to node
A, node C will not initiate a transmission to node D, even though these
two transmission would not interfere with each other because node A
cannot hear node C and node D cannot hear node B.

Scalability concerns also have been raised about collision-avoidance
protocols because there is no mechanism for ensuring fairness in packet

Protocols 7

Figure 10.1 Hidden terminal problem.

Figure 10.2 Exposed terminal problem.

Node BNode A Node C

RTSData

Node BNode A Node C

Data

Node D

Richard_CH10.qxd 8/11/04 3:25 PM Page 7

transmissions (Xu and Saadawi, 2002). This occurs when a small subset
of the nodes seize the wireless channel on a frequent basis, preventing
other nodes from transmitting data in a timely manner. For wireless
sensor nodes, which have limited storage available for buffering packets,
a significant delay in transmitting packets could result in dropped pack-
ets. For time-critical data, the delay in obtaining the wireless channel also
could prevent nodes from meeting their application requirements. For
these reasons, collision-avoidance protocols similar to IEEE 802.11 are not
well-suited for wireless sensor networks for many applications.

10.1.4 Security protocol configuration

Security protocols for wireless ad hoc networks are required for many
applications. Military applications have an obvious need for security, but
other types of sensors, such as those carrying medical or personal infor-
mation, need adequate security as well. In some cases, less obvious
needs of security also may exist, such as a desire for added privacy by
not disclosing one’s identity to surrounding sensor nodes. Data encryp-
tion can be used to protect the confidentiality of data. Encryption in wire-
less networks is discussed in Section 13.2.

Besides the need to encrypt or authenticate data produced by sensors,
control information such as routing updates also may require authen-
tication to prevent a malicious node from keeping data from being routed
properly in the network (Zhou and Haas, 1999). As discussed earlier,
sensor nodes have limited power, computing resources, and storage;
symmetric key encryption is a more likely choice for these networks. A
discussion of symmetric versus asymmetric key encryption and decryp-
tion also is found in Section 13.2.

The different demands for security, such as encryption and authenti-
cation, are addressed in Chapters 12 and 13; in this section we consider
the configuration issues for establishing security among various ad hoc
wireless nodes. We are interested in the key distribution problem, which
deals with providing keys to each of the nodes in the network (Jamshaid
and Schwiebert, 2004). Several options exist for key distribution, each
with its own advantages and disadvantages.

The simplest key distribution protocol is to preassign keys to each of
the sensor nodes. This is an economical and efficient solution when each
sensor node needs security only between itself and at most a few base
stations. The base station information can be provided when the sensor
network is established, and the security information can be embedded
into each sensor node prior to deployment. Whether these keys are used
for encryption of messages sent to the base station, decryption of mes-
sages received from the base station, or authentication of packets, the
necessary information is available prior to deploying the network.

8 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 8

However, when encryption or authentication is required among the
sensor nodes, preassigning keys is a much less attractive option. First,
keys are likely to be required between each pair of neighboring sensor
nodes that wish to communicate directly with each other. Depending on
the method of deployment, it may be difficult to predetermine which
nodes will be neighbors in the assembled network. Even if the sensors
are positioned manually, keeping track of the location of each sensor and
ensuring that each is placed correctly could be difficult. Determining
later that the protocol is not functioning properly because a sensor node
was placed in the wrong location, identifying which sensor should be
moved, and repositioning this sensor would be a time-consuming and
labor-intensive process. If an automated deployment strategy is used,
such as dropping a large number of sensors from an airplane, reposi-
tioning the sensors is quite complicated. In addition, as sensor nodes
exhaust their power or otherwise fail, neighbors of a sensor could change,
which would have to be anticipated in advance in order to preassign keys
to the sensor nodes (Jamshaid and Schwiebert, 2004). Furthermore,
later deployment of additional sensors will be difficult to integrate into
the existing framework of remaining sensors.

For applications in which secure communication between sensor nodes
is required, predeployed keys are not practical. Since control information,
such as routing, likely requires authentication for networks with a rea-
sonable level of security, most large wireless sensor networks require
mechanisms for authenticating neighboring sensors. For this reason,
other key establishment and key distribution protocols are required.

As of the writing of this book, key distribution in wireless sensor net-
works is a topic that has attracted limited research interest; no general
solution has been proposed. It seems reasonable to include the partici-
pation of the base station or some other more powerful node in estab-
lishing and distributing keys. The base station also can perform some
initial authentication to verify that particular nodes are not impostors
but rather legitimate members of the wireless ad hoc network. However,
scalable, secure, and robust protocols for achieving key distribution
have yet to appear. As wireless sensor networks become more wide-
spread, it is reasonable to assume that such protocols will be designed.

10.2 Energy-Efficient Communication

As mentioned earlier, wireless communication is the largest single con-
sumer of power in an ad hoc node (Pottie and Kaiser, 2000). Controlling
the communication cost is fundamental to achieving a long operating
lifetime for the wireless node. Hardware designs that lead to more effi-
cient radio transceiver designs help to some extent. The need to trans-
mit with sufficient power, as well as to receive the signal and distinguish

Protocols 9

Richard_CH10.qxd 8/11/04 3:25 PM Page 9

the signal from noise, limits the impact hardware designs alone can
make on the energy overhead of communication. Even though future
hardware designs may reduce the power drain of the radio significantly,
complementary software protocols are required to maximize the energy
efficiency of the communication. In this section we look at a number of
protocols that have been proposed for reducing the power consumed by
the radio. As we discuss each protocol, it becomes clear that some of these
solutions are orthogonal to others, allowing them to be combined to
achieve still further efficiencies than using either in isolation.

Although this section focuses on reducing energy consumption of wire-
less radio communications, other mechanisms for wireless communica-
tion have been proposed, some of which consume orders of magnitude
less power than radio communications. For example, as part of the
smart dust project (Warneke et al., 2001), the researchers have pro-
posed using a laser beam, reflected by the sensor nodes using a novel
mirror design, to transmit a binary signal. This is an intriguing idea,
although not suitable for all wireless communication because it requires
clear line of sight as well as pinpoint accuracy in aiming the laser.
However, for some applications, this is an excellent method, which also
suggests that other novel low-power approaches to energy-efficient com-
munication may yet be proposed.

10.2.1 Multihop routing

Energy consumed to transmit a packet on a wireless channel increases
substantially with the distance a packet is sent (Shih et al., 2001).
Ensuring that a packet is transmitted with a sufficient signal-to-noise
(SNR) ratio requires that the energy used for communication increases
at a rate of at least the square of the distance between the sender and
the receiver. For sensor nodes placed close to the ground, the energy
requirements increase with the distance raised to the fourth power
owing to ground reflections that occur with the small antenna heights
used for wireless sensors (Pottie and Kaiser, 2000). With polynomials
of this order, even a modest increase in distance leads to a significant
increase in the power expended for communication. Instead of trans-
mitting each packet directly from the sensor node to the base station,
nodes can send messages on a hop-by-hop basis. In many cases, hop-by-
hop transmissions reduce the total energy consumption.

Multihop communication also has the advantage of reducing inter-
ference in the network. When a wireless node sends a message, no other
node within the transmission range can receive another packet. For
this reason, reducing the signal strength of the transmitter decreases
the transmission range, which increases the number of sensors that
can transmit at the same time without interfering with each other. This

10 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 10

is known as spatial reuse of the bandwidth. Nodes at different locations
can transmit at the same time, in the same way that nodes in the same
region can transmit at the same time using different frequencies. Thus
multihop communication increases both concurrency and overall net-
work bandwidth. On the other hand, using multihop communication
means that, on average, more transmissions must be performed to
deliver a packet from the source to the destination. Consequently, the
benefits of spatial reuse must exceed the additional transmissions
required to deliver the average packet. If spatial reuse doubles the
number of simultaneous transmissions possible and the destination is
twice the previous distance, then spatial reuse through multihop com-
munication is not effective. Fortunately, this situation is unlikely to
occur because spatial reuse increases the diameter of the network lin-
early, whereas there is a quadratic increase in bandwidth reuse. The
reason for this discrepancy is that the diameter of the transmission
determines the distance, which in turn determines the number of hops
needed to reach the destination, whereas the amount of interference
caused by a transmission depends on the circle formed by the trans-
mission radius, which determines the level of potential spatial reuse.
Figure 10.3 depicts how spatial reuse in a wireless sensor network
allows multiple sensors to transmit a message at the same time with-
out interference. Because the transmission ranges of nodes A and B do
not intersect, the neighbors of these two nodes can receive their respec-
tive transmissions at the same time without interference.

To provide multihop communication, coordination between the sender
and receiver is accomplished along each hop in the end-to-end trans-
mission. This requires that the transceiver be active at both nodes and
that other nodes within the transmission range not use the wireless
channel. In addition, multihop transmission introduces some delay into
the network, so depending on the application requirements, the number
of hops may need to be controlled to give a timely response. Coordinating
schedules adds some overhead among neighboring nodes to ensure suc-
cessful transmission without interfering with other current or pending
transmissions. For a large sensor network, however, this overhead is
trivial compared with the overhead in scheduling direct transmissions
to a base station or some other centralized sink. Tight time synchro-
nization may be needed among sensors to avoid collisions. Since the
cost of keeping sensor nodes synchronized is relatively high, maintain-
ing a schedule is more difficult than simply creating the schedule.

In reality, the energy required to transmit a packet depends on some
constant cost to power the transmitter circuitry plus an additional factor
based on the packet size and distance. If the distance is small, the
energy to power up the electronics may be the predominant factor (Shih
et al., 2001). For this reason, dividing a dense network into arbitrarily

Protocols 11

Richard_CH10.qxd 8/11/04 3:25 PM Page 11

12

F
ig

u
re

 1
0.

3
Il

lu
st

ra
ti

on
 o

f
sp

at
ia

l r
eu

se
.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

N
o

d
e

A

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

N
o

d
e

B
S

en
so

r
no

de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

Richard_CH10.qxd 8/11/04 3:25 PM Page 12

small hops is likely to consume more power than using fewer longer hops
once the distance between hops becomes small enough. Depending on the
energy-consumption characteristics of the transceiver circuitry, an ideal
distance and number of hops can be determined. Even when an ideal dis-
tance from the standpoint of energy consumption has been determined,
shorter hops may be chosen for two reasons. First, spatial reuse of band-
width improves with smaller transmission distances, so shorter hops
may be selected to increase the network bandwidth effectively. Second,
using a larger transmission distance tends to increase the number of
neighbors each node has. This leads to an increase in the amount of
information maintained by each node, as well as additional overhead in
scheduling the channel. For both of these reasons, the best choice for hop
distance may not match the ideal distance as computed by the energy con-
sumption of the transceivers.

10.2.2 Communication scheduling

As discussed in the preceding section, scheduling wireless communica-
tion among sensor nodes offers a number of opportunities for saving
power. Scheduling nodes to operate on different frequencies or at dif-
ferent times reduces the number of collisions. Collisions consume addi-
tional energy because transmitted packets are not received correctly and
hence need retransmissions. Because wireless bandwidth is limited,
retransmitting packets can reduce the available bandwidth to less than
the amount required for other pending messages. Collisions that lead
to retransmissions also delay the delivery of packets, which may be a
drawback for time-sensitive or real-time applications.

TDMA allows nodes to power down the transceiver when no packet
is transmitted or received by this node. Of course, such scheduling relies
on synchronization among the sensor nodes, which adds some commu-
nication overhead (Elson and Estrin , 2001). Even if tight synchroniza-
tion is required, energy savings from communication scheduling must
exceed the overhead of maintaining the schedule.

Table 10.1 presents the power usage of two wireless radios employed
on typical mobile devices. As the table shows, the wireless radio uses
nearly as much power to receive a message as to transmit a message.

Protocols 13

TABLE 10.1 Average Current for Two IEEE 802.11b Cards

Chipset Sleep (mA) Idle (mA) Receive (mA) Transmit (mA)

ORiNOCO PC Gold 12 161 190 280
Cisco AIR-PCM350 9 216 260 375

SOURCE: Shih et al., 2001.

Richard_CH10.qxd 8/11/04 3:25 PM Page 13

In addition, a radio uses about the same amount of power whether cur-
rently receiving a message or idle waiting for a message to arrive.
Significant energy savings are realized only when the radio is turned
off or put in reduced energy state such as a sleep mode.

TDMA works by preceding each set of time slots with a number of min-
islots, each long enough for a request to be made to transmit a packet in
the corresponding frame. Each sensor node listens during this slot-reser-
vation window to see if any packets are destined for it. The sensor node
also randomly selects one of the minislots and attempts to reserve the cor-
responding slot whenever it has a packet to transmit. In general, the
rate of packets produced by a sensor node may be quite modest, so a fixed
schedule may be suitable. For example, if there are 10 wireless nodes in
the same region, each node could be assigned permanently one of 10 slots.
Figure 10.4 shows how the allocation could be organized in such as case,
with a short reservation period followed by each sensor receiving one of
the longer 500-ms transmission time slots. The nodes then simply listen
during the reservation period to determine if another sensor node wishes
to send a packet to this sensor during the corresponding time slot. Based
on this information, each sensor node can determine when to turn its wire-
less radio on and when to turn it off. This minimizes the time the wire-
less radio consumes power, leading to increased energy efficiency.

10.2.3 Duplicate message suppression

To further reduce power consumption for communication, transmitters
can send fewer packets. One way of accomplishing this is for sensor
nodes to transmit less frequently and thereby compress multiple sensor
readings into a single packet. When sensor readings do not change, there
may be no need to report the same information repeatedly. Periodic
transmission may be sufficient to inform neighboring sensors, as well as
the base station, that the node is still operational and that its readings
have not changed. Intervals for communication are based on the appli-
cation requirements, but it is reasonable to expect that this relatively
straightforward energy savings can be realized for most applications.

Besides suppressing duplicate data from a single sensor, multiple sen-
sors with identical readings can combine their data into a single message

14 Chapter Ten

Figure 10.4 Static TDMA schedule.

Node 1
transmission

slot

Node 2
transmission

slot

Node 9
transmission

slot

Node 10
transmission

slot

Reservation
slots

}

Richard_CH10.qxd 8/11/04 3:25 PM Page 14

(Intanagonwiwat, Govindan, and Estrin, 2000; Krishnamachari, Estrin,
and Wicker, 2002). Since multihop communication will be used for most
large sensor networks, local communication among neighboring sensors
to achieve a consensus, followed by the transmission of a single combined
packet over a number of hops, leads to a large energy savings for sen-
sors that normally function as routers on the path to the base station.

Nodes can combine duplicate messages using a number of approaches.
The first is simply to have neighboring nodes communicate with each
other to determine if other sensors also have detected the same event.
In the likely event that a similar reading is obtained by neighboring sen-
sors, these readings could be combined into a single message that is for-
warded to the base station. The result is that a single packet is
forwarded from a local set of nodes to the base station (Kumar, 2003).

The second approach is to perform duplicate message detection along
the path from the sensor nodes to the base station (Intanagonwiwat,
Govindan, and Estrin, 2000). Returning a large number of redundant
data to the base station, known as the broadcast storm problem, can
overwhelm the base station (Tseng et al., 2002). Instead, the base sta-
tion receives only a single message, which reduces the overhead for pro-
cessing at the base station, as well as avoiding the flooding of the base
station with a large number of duplicate packets. Besides preventing the
base station from being overwhelmed with an excessive number of mes-
sages that provide no additional useful information, the sensor nodes
close to the base station also receive less traffic, thus extending their life-
time.

Suppressing duplicate packets enroute to the base station requires
handling two problems. The first is detection of duplicate packets. One
typical mechanism for correctly detecting duplicate packets is to buffer
or cache packets for a short period of time and then to compare each
incoming packet with this buffered information. Packets with duplicate
information are discarded. Another option is to retain packets for some
period of time before transmitting them along the next hop. The receiv-
ing node compares additional packets received during this period of
time with this packet, and only one matching packet needs to be for-
warded. One advantage of this technique is that a counter could be
attached with the packet that is ultimately sent, allowing the base sta-
tion as well as intermediate nodes to determine the number of sensor
nodes that detected the same event. This may be useful in determin-
ing the validity of the information, provided that the counter is assigned
and incremented properly. If multiple sensors detect the same event,
the level of confidence that the event occurred can be increased. If only
a single node detects this event, the level of confidence is lower because
a faulty sensor or sensor reading could be responsible for generating
the event.

Protocols 15

Richard_CH10.qxd 8/11/04 3:25 PM Page 15

The second requirement for duplicate packet detection is to determine
if two packets actually represent the same event. For example, consider
the situation in which the sensor application is tracking animals in some
region of interest. If it detects two animals in different areas, these two
events should not be combined into a single event but rather should be
considered separate events. Likewise, events that occur at slightly dif-
ferent times should not be regarded as the same event but should be rec-
ognized as distinct events. Consequently, determination of duplicate
events means that the system must have some synchronization to detect
events that occur at the same time (Elson and Estrin, 2001), as well as
location information to determine where the events occurred. Without
this information, duplicate packet detection may not obtain sufficient
accuracy to make duplicate packet suppression a feasible option.
However, if these problems are resolved with sufficient accuracy, the
power savings could be significant, especially for intermediate sensor
nodes responsible for forwarding data to the base station. On the other
hand, redundant data sent to the base station could be critical data for
certain applications, such as military target tracking.

10.2.4 Message aggregation

Duplicate message suppression is one method for reducing the volume
of information that is transmitted through the sensor network. This is
essentially loss-free data compression, especially if a counter is included
that indicates how many sensors generated matching packets.

Message aggregation is often a lossy data-compression technique.
Essentially, readings from multiple sensors are combined into a single
packet (Heinzelman, Chandrakasan, and Balakrishnan, 2002; Lindsey,
Raghavendra, and Sivalingam, 2002). In some cases, these sensors
have produced the same data, but in other cases, the results may not
be the same. Combining messages that are the same is equivalent to
duplicate message suppression, but some messages with different infor-
mation also could be combined. This often leads to the loss of some
information.

Modest message aggregation results in combining the data from mul-
tiple packets. This leads to a modest improvement in total data trans-
mission because only a single message header is required. The
disadvantages of this approach are that variable packet sizes are more
difficult to buffer and process, and the probability of losing a packet
owing to communication errors increases with packet size. Although
methods exist for resolving this problem, the overhead is likely to be
greater than the savings obtained from removing a few headers.

More aggressive message aggregation, such as PEGASIS (Lindsey,
Raghavendra, and Sivalingam, 2002), compresses data from multiple

16 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 16

sensors into something that extracts the most relevant information
from the data without transmitting all the raw data to the base station.
For example, the readings of multiple sensors could be combined into
some general statistical information, such as the count, average, stan-
dard deviation, minimum, and maximum readings. The base station
then could use this composite information to reach a decision about
whether or not the sensor readings are valid. One method for accom-
plishing this aggregation is to perform local processing of the data and
then to send the result to the base station. In essence, sensors trade pro-
cessing power for transmission power. If raw sensor readings were trans-
mitted over several sensors to reach the destination, the energy
consumption could be significant. A dramatic reduction in the number
of messages or the size of messages saves enough energy to compensate
for the additional overhead of processing the packets locally. The
required processing must be modest because the storage space and pro-
cessing capabilities on a sensor node are quite limited. It should be pos-
sible to determine the ratio of data compression and energy consumption
of the processing performed at the sensor node for different applica-
tions. Based on this evaluation, one can determine whether or not an
overall energy savings will be achieved.

Since processing may be done at a single sensor node and the result-
ing energy savings are spread across many sensor nodes, the network
may achieve a total energy savings even if an individual sensor node has
a net loss of energy from performing data aggregation. In this case, a sen-
sible approach is to rotate the data-aggregation responsibility among
sensor nodes so that the power of one particular sensor node is not
depleted rapidly (Heinzelman, Chandrakasan, and Balakrishnan, 2002;
Lindsey, Raghavendra, and Sivalingam, 2002). Some sensor nodes also
may be positioned in more effective locations for accomplishing this
aggregation. For example, in a randomly distributed sensor network,
some sensors have more neighbors than others. Sensors with more neigh-
bors are better situated for receiving data from surrounding sensors and
aggregating these packets into a single packet. Furthermore, sensor
data readings often are event-triggered, so the location of the event
determines which sensors may participate in the message-aggregation
step. For example, an animal-tracking application generates sensor read-
ings where the animals are located, which probably is not equally dis-
tributed across the network. Opportunities for data aggregation are best
at the source of the sensor readings, so sensors in the neighborhood of
the event should perform the message aggregation. DFuse presents dis-
tributed algorithms and techniques for aggregating messages (Kumar et
al., 2003). These realities limit the effectiveness of distributing the pro-
cessing among remote sensor nodes that are not associated or responsi-
ble for the event.

Protocols 17

Richard_CH10.qxd 8/11/04 3:25 PM Page 17

A second method of performing data aggregation is to perform
incremental aggregation as the data move through the network
(Intanagonwiwat, Govindan, and Estrin, 2000). In this case, messages
are combined along the path from the sensor nodes to the base station.
As with duplicate-packet suppression, the feasibility of this approach
depends on the time interval in which the packets arrive, as well as the
ability of the algorithm to distinguish unrelated sensor readings from
sensor readings that can be combined. The extent to which distinct
readings must be differentiated, as well as the mechanisms for aggre-
gating multiple readings, is application-dependent. This helps to deter-
mine when this approach is suitable for a sensor network task.

A third method proposed for aggregating messages is to employ a clus-
tering approach. A specific sensor is designated as the cluster leader or
cluster head, and this node is responsible for combining readings from
sensors in the cluster (Heinzelman, Chandrakasan, and Balakrishnan,
2002). We discuss this concept of clustering later in this chapter.

In summary, there are multiple methods of aggregating messages.
Each has its own unique advantages and disadvantages. For some appli-
cations, data aggregation may not be desirable because the loss of any
information may hamper performing the sensing task correctly. It also
may be the case that the data processing is too complex to be performed
by a sensor node. For many applications, however, aggregating packets
can result in significant energy savings.

10.2.5 Dual-radio scheduling

As discussed earlier, a radio consumes similar amounts of power whether
transmitting, receiving, or idle. In order to transmit messages across a
sensor network, the receiver needs to be on while the transmitter sends
the message. If there were a way to determine when a transmitter was
ready to send a message, the radio could be turned off or placed in an
ultra-low-power deep-sleep mode until some other sensor node is ready
to send a packet to this sensor. Unfortunately, the only method of com-
municating between most sensors is by transmitting a message between
them. This presents a dilemma—a message must be transmitted to indi-
cate that communication is desired, but a message cannot be received if
the radio is not in the receive mode. Although this problem may appear
to by insurmountable, two different solutions have been proposed.

The first is to equip a sensor with two radios, each of which operates
on a different frequency (Shih et al., 2001). The data channel radio pro-
vides a wireless channel for communicating data among sensor nodes. The
other radio, which uses a control channel, is an extremely low-power
radio used to send control information to wake up the receiver. The pro-
tocol works by transmitting a brief message from the transmitter to the

18 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 18

receiver using the control channel radio. Receipt of this message causes
the receiver to power up its data channel radio. An acknowledgment
could be returned over the control channel to inform the transmitter
that the message has been received or to indicate that the receiver has
powered up its radio. Once the transmitting sensor is reasonably sure
that the receiver’s radio is turned on, the packet can be transmitted.
Since the control channel radio consumes much less power than the
data channel radio, the control channel radio can be left on constantly.
Leaving the data channel powered down until needed can realize a sig-
nificant power savings. However, this approach introduces some delay
into the transmission process. Therefore, for large networks with time-
sensitive data, this method may not be suitable. In addition, the added
cost and complexity of providing two radios on a single sensor instead
of one radio may be impractical for low-cost sensor applications. For most
types of sensors and sensor applications, however, this approach could
result in significant energy savings, provided that an extremely low-
power control channel radio can be built at a cost that does not exceed
the sensor’s cost target.

A second approach to solving this problem is to use two identical
radios that operate on different frequencies (Singh and Ragavendra,
1998). This has the advantage of reducing engineering costs because a
single radio design is needed. The control channel radio consumes the
same amount of power as the data channel, so leaving the control chan-
nel radio on all the time does not solve the problem. Instead, the con-
trol channel radio is turned on periodically to see if a message needs to
be transmitted to this sensor on the data channel. The control channel
stays on for a brief period of time to listen for requests. On receiving such
a request, the data channel is turned on, and the sensor node sends an
acknowledgment to indicate that it is ready to receive the message.
When a node wishes to transmit a packet, the control channel sends a
signal on a continuous basis until enough time has passed for the
receiver to wake up. Assuming that each sensor node adheres to this fre-
quency of turning on the control channel radio, both sensor nodes even-
tually synchronize, and data transmission occurs. Two different
frequencies are used so that sensor nodes using the control channel do
not interfere with current data transmissions. This also makes it much
easier for a sensor node listening on the control channel to determine
that a node is making a request to send a packet. The chief drawback
to this approach is the added delay that occurs in the network. If a
packet must be transmitted over many hops, there could be consider-
able delay in sending a packet from the source to the destination. For
small to medium-sized sensor networks, however, the hop-by-hop delay
in synchronizing the two sensors does not typically lead to a significant
delay.

Protocols 19

Richard_CH10.qxd 8/11/04 3:25 PM Page 19

10.2.6 Sleep-mode scheduling

The density of a network depends on the number of nodes in the region
occupied by the sensor nodes, as well as the transmission range of the
sensors. As the transmission range of a sensor increases, the number of
direct neighbors increases. This effectively increases the density of the
network. Similarly, distributing more sensors in the network increases
the average number of neighbors, which also increases network density.
With a random deployment, the density of the network varies across the
region of deployment. Some areas will have more sensors, and some will
have fewer. As nodes die or additional nodes are added to the sensor net-
work, the density also changes. With mobile nodes, the density in a par-
ticular section of the network is not constant but varies according to the
relative movement of sensors into and out of each area.

When sensor networks are dense, all nodes along a path do not need
their radios on in order for packets to be transmitted from the source to
the destination. Because the network is dense, multiple sensors could
receive the same packet and forward this packet along the path to its des-
tination. Energy can be saved in sufficiently dense networks by having
only some radios turned on (Chen et al., 2001). Through local coordina-
tion among sensors in a neighborhood, routing connectivity with the
base station or elsewhere can be maintained using a subset of these
nodes. To extend the lifetime of individual sensors, nodes can be sched-
uled to take turns serving as routers so that power is not depleted at spe-
cific nodes while other nodes retain a large quantity of power. Typically,
the selection of a specific sensor as the current router depends on the
energy of the surrounding sensors relative to the power remaining at this
sensor, along with the location of each sensor to ensure connectivity.

10.2.7 Clustering

Clustering is a hierarchical approach to support routing and data aggre-
gation in an ad hoc wireless network (Steenstrup, Beranek, and
Newman, 2000). The wireless network is divided into regions, in which
each region forms a cluster with a single node, the cluster head, desig-
nated as the leader of the cluster. Figure 10.5 shows an example of a
sensor network divided into two clusters. A dotted line shows the divi-
sion between the two clusters. Nodes in each cluster send a message to
the cluster head, which then combines these data and transfers the
information directly to the base station.

In a larger sensor network, cluster heads may communicate on a hop-
by-hop basis with the base station, but in a small sensor network such
as the one shown in Fig. 10.5, direct communication between the base
station and the cluster head may be reasonable. A number of algorithms
have been proposed for clustering sensors, but we focus first on the

20 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 20

21

F
ig

u
re

 1
0.

5
C

lu
st

er
 h

ea
ds

 in
 a

 c
lu

st
er

ed
 w

ir
el

es
s

se
n

so
r

n
et

w
or

k.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

C
lu

st
er

 H
ea

d
 1

C
lu

st
er

H
ea

d
 2

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

Richard_CH10.qxd 8/11/04 3:25 PM Page 21

basic ideas of clustering. Later we take a closer look at techniques for
building clusters.

The cluster head is responsible for coordinating activities among the
sensors within the cluster. For example, the cluster head is responsible
for routing packets from among nodes in its cluster or to nodes outside
the cluster. This function also puts the cluster head in an ideal position
for performing duplicate packet suppression or message aggregation.
Since each event that occurs is likely to be sensed by neighboring sen-
sors and relayed to the cluster head at approximately the same time,
the cluster head can readily determine if more than one sensor observed
the same event. It also may be able to combine multiple sensor readings
into a single aggregate packet that it relays to the base station.

When events occur at the boundary of two or more clusters, each clus-
ter head is unable to suppress duplicate information from all sensors
observing the event and may have difficulty aggregating data because
only a fraction of the sensor readings are from sensors in this cluster
(Kochhal, Schwiebert, and Gupta, 2003). Thus clustering is an attrac-
tive option for squelching redundant data or compressing similar sensor
readings, but it may not provide a complete solution. Cooperation among
cluster heads of adjacent clusters may be necessary to maximize data
aggregation or duplicate message detection. For this reason, the clus-
ters may need to be chosen carefully to maximize the usefulness of clus-
tering. In addition, care must be taken in clustering the ad hoc nodes
to ensure that there are not a large number of orphaned nodes that
subsequently must merge into relatively small clusters. A large number
of small clusters means more nodes than necessary serve as cluster
heads and expend additional energy.

A better approach divides the network into a number of equal clus-
ters, in which each cluster contains roughly the same number of nodes.
However, this could be difficult to achieve without a great deal of over-
head. Depending on the amount of information available about the net-
work topology, determining the ideal number of clusters also may be
difficult. In practice, the best clustering for a given network topology is
difficult to determine because an optimal clustering for random graphs,
as well as many regular graphs, is an NP-complete problem (Garey and
Johnson, 1979). In addition, mobility adds further complication to this
process because a good clustering may become very inferior later.
Clustering is likely to be a relatively expensive operation in terms of not
only the energy consumed in clustering the sensors but also the time
involved in building the cluster. Thus frequent creation of new clusters
is an unattractive option that should be avoided if possible.

Clustering can be based on a simple two-level hierarchy, or cluster
heads can be combined into metaclusters leading to a hierarchy of levels
that culminate in a single node or a few nodes at the highest level.

22 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 22

Building a multilevel clustering hierarchy may be advantageous when
routing information travels across multiple clusters. Nodes on the border
between two adjacent clusters can serve as gateways for forwarding
data from one cluster head to another. In essence, cluster heads form a
routing backbone (Chen et al., 2001) for transmitting information among
clusters, as well as providing a scalable mechanism for transmitting
sensor readings from individual sensors to a base station.

10.3 Mobility Requirements

Mobility of the ad hoc wireless network nodes introduces additional
complexity into the protocol designs. Decisions that are optimal at one
point in the time may be significantly suboptimal in the future because
nodes have moved to new locations. In addition to the resulting loss of
quality, routing protocols need to be modified to work properly despite
mobility. Otherwise, messages sent between a source and a destination
may not be delivered successfully. Similarly, clustering nodes into a
hierarchy is complicated by node mobility, especially if the cluster heads
move beyond the range of other nodes in the cluster. This could require
frequent selection of new cluster heads and may make clustering of
nodes impractical when high rates of mobility occur.

10.3.1 Movement detection

In order for a protocol to address mobility, there must be some mecha-
nism for detecting mobility. Besides determining if a node is mobile, rel-
ative mobility is also important. For instance, if all the nodes in the ad
hoc network move together, the mobility is not an issue. Consider a
number of ad hoc device users seated on a train. All these devices may
be moving at a high rate of speed, but as long as the passengers remain
seated and the devices stay with these passengers, the ad hoc network
does not detect any movement. Of course, connections with a base sta-
tion not located on the train would be subject to the effects of mobility,
but within the ad hoc network, no node mobility is detected.

As this example indicates, detecting mobility is more complicated
than determining that a node has changed location. Use of the Global
Positioning System (GPS) is sufficient to determine that a node is
moving, but the relative movement of nodes is required to make mobil-
ity a factor in the protocols. In other words, detection of movement is a
necessary condition for ad hoc network node movement but not a suffi-
cient condition. Instead, nodes need some mechanism for detecting that
they are moving toward each other or away from each other.

One technique for measuring relative movement of nodes is the received
signal strength indicator (RSSI) (Niculescu and Nath, 2001). Measuring

Protocols 23

Richard_CH10.qxd 8/11/04 3:25 PM Page 23

the received signal and monitoring the changes in the signal strength
determine the RSSI. Ideally, the value of the RSSI is proportional to the
distance between the sender and receiver. Hence the signal strength
increases as a node moves toward the sender and decreases as a node
moves away from the receiver. An advantage of this approach is that any
node in the transmission range can determine its relative position from
the sender, so nodes other than the receiver can update their positions.
The primary disadvantage of using RSSI to determine locations is the
weak correlation between the RSSI and the actual location. Multipath
interference, as well as obstacles that block or absorb part of the signal
strength, can give an inaccurate estimate of location (Patwari and Hero,
2003). Although RSSI may not give a good location, it gives a useful indi-
cation on the quality of a current connection between two nodes. This
information may be of more practical value than the relative location of
the node. For example, if one node is moving to a position where there is
an obstacle between the two nodes, the relative distance is less important
than the inability to communicate between the two nodes.

10.3.2 Patterns of movement

In an ad hoc mobile network, nodes move in an arbitrary pattern depend-
ing on the movement of the user or object that carries the node. For this
reason, it is difficult to determine what mobility patterns arise in prac-
tice. Determination of this pattern is valuable so that reasonable sim-
ulation studies of wireless protocols can be performed. It is reasonable
to expect that the performance of various algorithms for ad hoc networks
will differ depending on the mobility pattern. A common movement
model is the random waypoint model (Bettstetter, Hartenstein, and
Perez-Costa, 2002). In this model, nodes are stationary for a length of
time randomly chosen from some time distribution. Nodes then move
in a randomly chosen direction for a random distance. On moving this
distance, nodes then pause again for a random length of time. The
random waypoint model has been used in many different papers with
slight variations. Although easy to use, a random movement model may
not reflect realistic movement patterns of mobile nodes in typical ad hoc
networks. Movement patterns based on real user mobility patterns
allow more accurate analysis of protocols.

Certain protocols may work well for random movement patterns, but
real users may not follow a random movement pattern. For example,
there may be locations where users tend to congregate, such as a cof-
feeshop. Users may move to the coffeeshop and away from the coffeeshop
but not to random buildings near the coffeeshop. Similarly, within the
coffeeshop, users may move to specific locations, such as counters or
printers, more frequently than random locations throughout the shop.

24 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 24

Now that experimental mobile wireless networks have been deployed
in campus settings and other reasonably large configurations, some
measurements of real-world mobility patterns can be obtained (Kotz and
Essien, 2002). Whether or not mobile ad hoc networks exhibit similar
mobility patterns is not clear, but these studies provide data that are
helpful in developing simulation models for studying mobile ad hoc
wireless networks (Jardosh et al., 2003).

10.3.3 Changing group dynamics

Mobility breaks communication links between neighboring nodes. In
addition, any grouping of sensor nodes also can change because of mobil-
ity. For instance, clustering usually strives to build clusters where mem-
bers of the cluster are relatively close to the cluster head and to
distribute the cluster heads so that they are geographically dispersed.
When we introduce mobility into the equation, these choices lead to
temporary solutions. Even if a good clustering is made initially, the
quality of the clustering can degrade after an extended period of mobil-
ity. Of course, there is also the possibility that clustering improves after
mobility, but protocols still need to handle any potential degradation
introduced by mobility.

Changing group dynamics can cause problems for routing messages
because delivery of a message relies on the existence of a path from the
source to the destination. The routing path may require rebuilding if the
source, destination, or any node along the path moves outside the range
of any neighboring node on the routing path. On a more positive side,
however, it has been shown that the capacity of a wireless network can
be improved by mobility because nodes theoretically could buffer pack-
ets until the source and destination nodes move close to each other
(Grossglauser and Tse, 2002). This introduces significant latency into
the network, which requires a correspondingly large amount of buffer
space. On the other hand, this result does illustrate the idea that mobil-
ity in an ad hoc wireless network can be exploited to improve perform-
ance in some cases.

Group communication often relies on the construction of a logical tree
on the underlying network links, which means that specific nodes on the
tree have the responsibility of forwarding packets from their parent to
their immediate children or leaf nodes. When a node moves, restoring
communication so that paths exist between the multicast source and the
leaf nodes becomes quite challenging. For example, in Fig. 10.6a, one
node in the multicast tree, node B, has three children that must receive
the packets, and node B moves out of range of its parent; then either a
node that can transmit to all three children must be found, or more
than one parent node must be found to replace node B. In many cases,

Protocols 25

Richard_CH10.qxd 8/11/04 3:25 PM Page 25

more than one node is required to replace the forwarding previously per-
formed by node B. This situation is shown in Fig. 10.6b, in which the
three children that are orphaned each need to find a new parent. Node
B is able to keep the same parent, but this is not true in all cases. This
leads to additional bandwidth contention, as well as increasing the
chance of future disconnections, because more nodes perform the for-
warding functions.

Mobility also may cause one of the leaf nodes to move beyond the
transmission range of the other nodes. Thus the network may become

26 Chapter Ten

Figure 10.6 Example of the effects of mobility on a multicast tree.

(a)

(b)

Sensor node

Node B

Sensor node

Sensor node

Sensor node

Sensor node

Sensor nodeSensor node

Sensor node

Sensor
node

Sensor node

Sensor node

Sensor node

Sensor
node

Sensor node

Node B

Sensor node

Sensor node

Sensor node

Sensor node

Sensor nodeSensor node

Sensor node

Sensor nodeSensor node

Sensor node

Sensor node

Sensor node

Richard_CH10.qxd 8/11/04 3:25 PM Page 26

disconnected. If this disconnection is temporary, it should be possible to
buffer packets for a short period of time and deliver them when this node
is no longer disconnected. If the multicast group requires ordering that
needs an acknowledgment from each intended recipient, the progress
of the multicast group will be delayed until the separated leaf node is
reconnected to the multicast tree. Other options are to remove a node
when it becomes disconnected or to relax the consistency model so that
progress can be made even when one or more group members are dis-
connected.

10.3.4 Resynchronization

For group communication, all members of the group may need to main-
tain consistent information. In other words, group members must receive
information generated by each member in order to have the same view
of the system state. A database application with data distributed among
the various mobile ad hoc nodes must ensure that each node receives
all transactions. When a mobile node moves away from the rest of the
network, notification of these transactions is not possible until this node
moves back into range. Once this node returns to the network, the data-
base contents must be synchronized with the changes that have occurred
while this node was separated from the other nodes.

During this time, the separated mobile node also may wish to perform
its own transactions on the data. If these transactions are not prevented
because of being disconnected from the network, then these changes are
made only to the local copy of the data. Once this node reconnects with
the network, changes to the database made by this node need to be syn-
chronized with any changes that have been made to these data by other
nodes in the group. This synchronization can be complicated by the fact
that when this node reconnects with the rest of the network, other nodes
have become disconnected. Depending on the size of the group and the
mobility patterns of the group members, the frequency with which all
the group members are connected to the network simultaneously may
be quite small. Most of the time, at least one group member may be sep-
arated from the network. In this case, synchronizing the data among the
group members may be quite difficult because only partial information
about the updates is available at any given point in time. In addition,
a lengthy period of time may have passed between when a node sepa-
rated from the network and when the same node rejoins the network.
This could require buffering a large number of transactions so that
updates can be made. In cases in which updates are inconsistent, some
decision must be made on how to resolve this.

There are standard techniques from distributed databases that can
be applied to this problem (Bernstein and Goodman, 1981), including

Protocols 27

Richard_CH10.qxd 8/11/04 3:25 PM Page 27

conservative schemes that do not allow disconnected nodes to make
updates and optimistic schemes that do allow updates. In the case of con-
servative schemes, data inconsistencies are not possible, but nodes may
be prevented from modifying data for long periods of time, thus decreas-
ing the efficiency and usability of an application drastically. Optimistic
approaches allow transactions to be performed even when the group
members are disconnected from each other. This improves the efficiency
of the application but requires that conflicting updates be reconciled. In
some cases, this can be automated using certain rules. In other cases,
human involvement may be needed to resolve these inconsistencies.

Although this problem has been studied for distributed databases, the
limited resources available to the mobile nodes make certain options
impractical, such as buffering of a significant number of changes. Less
resource-intensive solutions are required for mobile ad hoc nodes. Even
though such complications can arise without mobility, mobility can lead
to extended periods of time when communication among group members
is not possible. Unreliable communications and node faults along with
the inherent problems associated with node mobility make these prob-
lems more challenging and complicated.

10.4 Summary

Most of these topics we examined in Chapter 10 remain areas of active
research. The main reason is that the characteristics and applications
of wireless sensor networks are changing so rapidly that existing tech-
niques may not be ideal or even suitable for future networks. However,
certain system requirements, such as scalability, will remain. For this
reason, many of the core strategies seem to have been identified. In
Chapter 10, we took a careful look at a number of protocols that have
been proposed. Knowledge of these protocols provides an excellent intro-
duction for the protocols we examine in Chapter 11.

References

ANSI/IEEE Standard 802.11, Wireless LAN Medium Access Control (MAC) Sublayer,
1999, and ISO/IEC 8802-11:1999, Physical Layer Specifications, 1999.

Bernstein, P. A., and N. Goodman, “Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13(2):185, 1981.

Bettstetter, C., H. Hartenstein, and X. Perez-Costa, “Stochastic Properties of the Random
Waypoint Mobility Model: Epoch Length, Direction Distribution, and Cell Change
Rate,” in International Workshop on Modeling Analysis and Simulation of Wireless
and Mobile Systems; Atlanta, GA, ACM, 2002, p. 7.

Bharghavan, V., A. Demers, S. Shenker, and L. Zhang, “MACAW: A Media Access Protocol
for Wireless LANs,” in Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM); London, UK,
ACM. 1994, p. 212.

28 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 28

Chen, B., K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” in
International Conference on Mobile Computing and Networking (MobiCom); Rome,
Italy, ACM, 2001, p. 221.

Chen, J.-C., K. Sivalingam, and P. Agrawal, “Performance Comparison of Battery Power
Consumption in Wireless Multiple Access Protocols,” Wireless Networks 5(6):445, 1999.

Conta, A., and S. Deering, Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification. Internet Engineering Task Force, RFC 2463,
December 1998.

Deering, S., and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification. Internet
Engineering Task Force, RFC 2460, December 1998.

Dyson, D., and Z. Hass, “A Dynamic Packet Reservation Multiple Access Scheme for
Wireless ATM,” Mobile Networks and Applications 4(2):87, 1999.

El-Hoiydi, A., “Aloha with Preamble Sampling for Sporadic Traffic in Ad Hoc Wireless
Sensor Networks,” in Proceedings of IEEE International Conference on Communications,
Vol. 5; New York, NY, IEEE Communications Society, 2002, p. 3418.

Elson, J., and D. Estrin, “Time Synchronization for Wireless Sensor Networks,” in
International Parallel and Distributed Processing Systems (IPDPS) Workshop on
Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing;
San Francisco, CA, IEEE Computer Society, 2001, p. 1965.

Estrin, D., R. Govindan, J. Heidemann, and S. Kumar, “Next Generation Challenges:
Scalable Coordination in Sensor Networks,” in International Conference on Mobile
Computing and Networking (MobiCom); Seattle, WA, ACM, 1999, p. 263.

Garey, M., and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York: W. H. Freeman, 1979.

Grossglauser, M., and D. Tse, “Mobility Increases the Capacity of Ad Hoc Wireless
Networks,” IEEE/ACM Transactions on Networking 10(4):477, 2002.

Heinzelman, W., A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,” IEEE Transactions on Wireless
Communication 1(4):660, 2002.

Hu, L., “Distributed Code Assignments for CDMA Packet Radio Networks,” IEEE/ACM
Transactions on Networking 1(6)668, 1993.

Intanagonwiwat, C., R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks,” in International Conference
on Mobile Computing and Networking (MobiCom); Boston, MA, ACM, 2000, p. 56.

Jamshaid, K., and L. Schwiebert, “SEKEN (Secure and Efficient Key Exchange for Sensor
Networks),” in IEEE Performance Computing and Communications Conference
(IPCCC); Phoenix, AZ, IEEE Computer Society, 2004, p. 415.

Jardosh, A., E. M. Belding-Royer, K. C. Almeroth, and S. Suri, “Towards Realistic Mobility
Models for Mobile Ad Hoc Networks,” in International Conference on Mobile Computing
and Networking (MobiCom); San Diego, CA, ACM,2003, p. 217.

Kochhal, M., L. Schwiebert, and S. K. S. Gupta, “Role-Based Hierarchical Self Organization
for Ad hoc Wireless Sensor Networks,” in ACM International Workshop on Wireless
Sensor Networks and Applications; San Diego, CA, ACM, 2003, p. 98.

Kotz, D., and K. Essien, “Analysis of a Campus-Wide Wireless Network,” in International
Conference on Mobile Computing and Networking (MobiCom); Atlanta, GA, ACM, 2002,
p. 107.

Krishnamachari, B., D. Estrin, and S. Wicker, “The Impact of Data Aggregation in Wireless
Sensor Networks,” in ICDCS International Workshop of Distributed Event Based
Systems (DEBS); Vienna, Austria, IEEE Computer Society, 2002, p. 575.

Kumar, M., “A Consensus Protocol for Wireless Sensor Networks,” M.S. thesis, Wayne
State University. August 2003.

Kumar, R., M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran,
“DFuse: A Framework for Distributed Data Fusion,” in ACM Conference on Embedded
Networked Sensor Systems (SenSys); Los Angeles, CA, ACM, 2003, p. 114.

Lindsey, S., C. Raghavendra, and K. M. Sivalingam, “Data Gathering Algorithms in
Sensor Networks Using Energy Metrics,” IEEE Transactions on Parallel and
Distributed Systems 13(9):924, 2002.

Protocols 29

Richard_CH10.qxd 8/11/04 3:25 PM Page 29

Lu, S., V. Bharghavan, and R. Srkant, “Fair Scheduling in Wireless Packet Networks,”
ACM SIGCOMM Computer Communication Review 27(4):63, 1997.

Meguerdichian, S., F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage Problems
in Wireless Ad-Hoc Sensor Networks,” in Proceedings of the 20th International Annual
Joint Conference of the IEEE Computer and Communications Societies INFOCOM;
Anchorage, Alaska, IEEE Computer Society, 2001a, p. 1380.

Meguerdichian, S., F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure in Wireless Ad-
Hoc Sensor Networks,” in International Conference on Mobile Computing and
Networking (MobiCOM); Rome, Italy, ACM, 2001b, p. 139.

Niculescu, D., and B. Nath, “Trajectory Based Forwarding and Its Applications,” in
International Conference on Mobile Computing and Networking (MobiCom); San Diego,
CA, ACM, 2003, p. 260. 2003, p. 260.

Niculescu, D., and B. Nath, “Ad Hoc Positioning System (APS),” in IEEE Global
Telecommunications Conference (Globecom) 2001, Vol. 5; San Antonio, TX, IEEE
Communications Society, 2001, p. 2926.

Patwari, N., and A. Hero, “Using Proximity and Quantized RSS for Sensor Localization
in Wireless Networks,” in ACM International Workshop on Wireless Sensor Networks
and Applications; San Diego, CA, ACM, 2003, p. 20.

Pei, G., and M. Gerla, “Mobility Management for Hierarchical Wireless Networks,” Mobile
Networks and Applications 6(4):331, 2001.

Pottie, G. J., and W. J. Kaiser, “Wireless Integrated Network Sensors,” Communications
of the ACM 43(5):51, 2000.

Prakash, R., “A Routing Algorithm for Wireless Ad Hoc Networks with Unidirectional
Links,” Wireless Networks 7(6):617, 2001.

Rabaey, J., M. Ammer, J. da Silva, D. Patel, and S. Roundy, “PicoRadio Supports Ad Hoc
Ultra-Low Power Wireless Networking,” IEEE Computer Magazine 33(7):42, 2000.

Salhieh, A., and L. Schwiebert, “Evaluation of Cartesian-Based Routing Metrics for
Wireless Sensor Networks,” in Communication Networks and Distributed Systems
Modeling and Simulation (CNDS); San Diego, CA, The Society for Modeling and
Simulation International, 2004.

Shih, E., P. Bahl, and M. J. Sinclair, “Wake on Wireless: An Event Driven Energy Saving
Strategy for Battery Operated Devices,” in International Conference on Mobile
Computing and Networking (MobiCom); Atlanta, GA, ACM, 2002, p. 160.

Shih, E., S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan, “Physical
Layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor
Networks,” in International Conference on Mobile Computing and Networking
(MobiCom); Rome, Italy, ACM, 2001, p. 272.

Singh, S., and C. S. Ragavendra, “PAMAS—Power Aware Multi-Access Protocol with
Signaling for Ad Hoc Networks,” ACM SIGCOMM Computer Communication Review
28(3):5, 1998.

Sohrabi, K., J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for Self-Organization of a
Wireless Sensor Network,” IEEE Personal Communications 7(5):16, 2000.

Steenstrup, M., “Cluster-Based Networks,” in Ad Hoc Networking, Charles E. Perkins (ed.).
Reading, MA: Addison-Wesley, 2000, p. 75.

Tobagi, F., and L. Kleinrock, “Packet Switching in Radio Channels: II. The Hidden
Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution,” IEEE
Transactions on Communications 23(12):1417, 1975.

Tseng, Y.-C., S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The Broadcast Storm Problem in a Mobile
Ad Hoc Network,” Wireless Networks 8(2–3):153, 2002.

Van Dyck, R. E., “Detection Performance in Self-Organized Wireless Sensor Networks,”
in IEEE International Symposium on Information Theory; Lausanne, Switzerland,
IEEE, 2002, p. 13.

Warneke, B., M. Last, B. Leibowitz, and K. S. J. Pister, “Smart Dust: Communicating with
a Cubic-Millimeter Computer,” IEEE Computer Magazine 34(1):44, 2001.

Wei, Y., and J. M. Cioffi, “FDMA Capacity of Gaussian Multiple-Access Channels with ISI,”
IEEE Transactions on Communications 50(1):102, 2002.

Xu, S., and T. Saadawi, “Revealing the Problems with 802.11 Medium Access Control
Protocol in Multi-Hop Wireless Ad Hoc Networks,” Computer Networks 38(4):531, 2002.

30 Chapter Ten

Richard_CH10.qxd 8/11/04 3:25 PM Page 30

Ye, F., H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier Data Dissemination Model for
Large-Scale Wireless Sensor Networks,” in International Conference on Mobile
Computing and Networking (MobiCom); Atlanta, GA, ACM, 2002, p. 148.

Ye, W., J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless
Sensor Networks,” in Proceedings of the 21st International Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), Vol. 3; New York, NY,
IEEE Computer Society, 2002, p. 1567.

Zhou, L., and Z. J. Haas, “Securing Ad Hoc Networks,” IEEE Networks 13(6):24, 1999.

Protocols 31

Richard_CH10.qxd 8/11/04 3:25 PM Page 31

Richard_CH10.qxd 8/11/04 3:25 PM Page 32

Chapter

11
Approaches and Solutions

In previous chapters we have considered a number of challenges to
using ad hoc networks, in particular wireless sensor networks. As we
discussed earlier, large-scale deployment of wireless sensor networks has
become feasible only recently. Until recently, the cost of these nodes
was too high, the size of sensor nodes was too large, and the capabili-
ties for sensing and computation were too limited for many applica-
tions. Because wireless sensor networks became broadly applicable only
a short time ago, the protocols for using sensor nodes and networking
them together efficiently are relatively new. Although the protocols will
continue to improve and new ideas will be developed, we can recognize
a number of general approaches. By reviewing these approaches, the
essential ideas that have been developed to date can be understood and
evaluated. Future protocols will improve on these protocols, but this
progress will benefit from knowledge of the existing protocols.

11.1 Deployment and Configuration

Although configurations vary with the application requirements, gen-
eral deployments of wireless sensors consist of a large number of inex-
pensive sensors, each with a limited operating lifetime. Initial placement
of the sensors must be done in a cost-effective way, or the advantages
of using low-cost sensors are lost in the overhead associated with labor-
intensive installation. Periodic replacement of faulty or energy-depleted
sensors must be performed to preserve the ability of the sensor net-
works to meet the application requirements. This too must be accom-
plished without excessive costs. These considerations have motivated the
protocols designed for the initial deployment and configuration, as well
as subsequent redeployments to replenish the networks.

1

Richard_CH11.qxd 8/11/04 3:26 PM Page 1

11.1.1 Random deployment

To enable limited human interaction in the placement of sensors,
random deployment has been suggested. Random deployment occurs
because sensors are strewn about the area of interest rather than being
placed individually at specific locations. Examples include dropping
sensors from an airplane to facilitate military applications that require
monitoring enemy troops or a strategically important location (Estrin
et al., 1999). In this case, the cost of human-intensive deployment of
sensors is not the only consideration; the danger associated with mili-
tary operations also may prevent manual placement of the sensors.
Sensors dropped from the air land in an arbitrary arrangement. The
sensor coverage is likely to be less even than manual placement, which
may require that extra sensors be used to increase the chance of having
sufficient coverage throughout the sensing area. Given the locations of
the sensors and the sensing range of each sensor, the coverage of the
area of interest can be computed (Meguerdichian et al., 2001). A worst-
case analysis could be conducted to figure out how many extra sensors
to redeploy.

Another alternative is the use of mobile sensors that can move to
better positions after deployment (Zou and Chakrabarty, 2003). The
movement can be based on the location of each sensor, the number of
sensors in the network, and their ideal positions. This may require on-
site coordination among sensor nodes because obstacles or uneven ter-
rain can affect the sensing range and thus their ideal placements.

11.1.2 Scalability

Whether random deployment is employed or some other technique is
adopted for positioning the sensors, scalability becomes a concern when
many sensors are used. As the number of sensors grows, manual deploy-
ment usually grows superlinearly with the size of the network. As the
number of nodes increases, additional personnel may be needed to con-
figure the sensors. Furthermore, interaction among neighboring sensors
may introduce additional overhead so that increasing the network den-
sity leads to a superlinear increase in the deployment overhead.

Because the primary advantages of sensor networks are based on the
low cost of the sensors, a large number of sensor nodes will be used to
monitor the environment near the point of interest. For this reason, scal-
ability is important in deployment and configuration, as well as the
actual sensing functional requirements, such as routing and event detec-
tion. To make the configuration process scalable, the process must be at
least partially automated. The first step in configuring the network is
to organize the nodes into a network. We discuss protocols for this self-
organization process in the following section.

2 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 2

11.1.3 Self-organization

For sensor networks of any reasonably large size, some organization into
a localized hierarchical structure is useful. Self-organization is the
process of nodes in the network imposing some simple scalable organi-
zation on the network. Thus self-organization makes the process less
labor-intensive, lowering costs and time for deploying the network.

Self-organization can create a number of structures needed for other
higher-layer protocols. For example, nodes can self-organize to assign
a unique address to each sensor node (Chevallay, Van Dyck, and Hall,
2002), or address size (in bits) can be reduced to reduce the packet over-
head (Schurgers, Kulkarni, and Srivastava, 2002). Coordination among
sensors is required to ensure that local addresses are unique, which is
useful for messages exchanged among neighboring nodes; however,
when messages need to be sent to destinations that are farther away, a
unique address is required.

Self-organization also has been proposed as a way of creating clusters
using the LEACH protocol (Heinzelman, Chandrakasan, and Balakrishnan,
2002). In the simplest case, clusters provide a two-level hierarchy—each
sensor forwards readings to the cluster leader (cluster head) responsible for
this sensor. The cluster head then aggregates data from multiple sensors
and forwards these composite data to the base station.

LEACH proposes a number of different techniques for choosing clus-
ter heads. In the most basic case, cluster heads select themselves using
a random number based on the number of sensors in the network, the
number of sensors that should serve as cluster heads at any point in
time, and how long it has been since this sensor was a cluster head.
Based on this information, some randomly chosen nodes become clus-
ter heads. Nodes that do not become cluster heads listen for signals
from neighboring cluster heads. A sensor joins the cluster of the cluster
head with the strongest received signal. Because cluster heads are
chosen randomly, the performance of the network could be poor if the
cluster heads do not have a roughly uniform distribution. For example,
if all cluster heads end up on one-half of the sensor area, the nodes on
the other side of the region will have to expend much more energy to
reach a cluster head. Even if the clusters exhibit a better distribution,
there is a reasonable possibility that the number of nodes per cluster
will not be uniform. For this reason, other options, such as allowing the
base station to select the cluster heads or having some other fixed rota-
tion among the sensor nodes may perform better (Heinzelman, 2000).

11.1.4 Security protocol configuration

Security protocols for wireless sensor networks also require configura-
tion (Carman, Kruss, and Matt, 2000). In most cases, security protocols

Approaches and Solutions 3

Richard_CH11.qxd 8/11/04 3:26 PM Page 3

require some authentication and coordination among neighboring sen-
sors. To prevent the compromise of one sensor from compromising the
entire sensor network, some pairwise key exchange is required. Unless
the positioning of the sensors is predetermined, the identification of
neighbors of each sensor node cannot be determined until deployment.
Protocols that require preassignment of keys may not work in situations
where each pair of neighboring nodes needs a unique key. Because of
the potentially large number of sensors being deployed and the limited
storage space of each sensor, assigning a key for every potential pair
of sensors is not practical. The preassigned keys may be given to sen-
sors that end up not being neighbors. The same problem cannot occur
if the sensors are placed manually, but this assumes that no mistakes
are made in placing the sensors. If a sensor is misplaced, then these
keys cannot be used because communication occurs between neigh-
boring nodes, and the absence of keys between physically neighboring
nodes prevents secure communication. Tracking down such erroneous
placements could be labor-intensive, leading to substantial delays in the
deployment and significantly increasing the cost associated with the
sensor deployment. Deployments of additional sensors to replace sen-
sors that are no longer functional also is complicated if these newly
deployed sensors must work with some of the sensors that have been
deployed already.

Instead, secure communication between neighboring nodes should be
established based on some configuration performed after the sensors
have been deployed. This requires some key-establishment protocol. To
prevent impostors from infiltrating the network, a fixed key that is
shared with the base station may be required, although care must be
taken to ensure that compromising any sensor node does not result in
the entire network being compromised.

Sensor nodes generally communicate with only a subset of the other
sensor nodes. For example, communication between a sensor node and the
cluster head is needed with a hierarchical organization of the sensor net-
works. Similarly, each cluster head may need to communicate with a
subset of the other cluster heads. Communication with neighboring nodes
generally is sufficient for a flat organization. Thus pairwise security keys
are needed among only a few of the possible pairs of sensor nodes, but the
selection of these pairs cannot be made before deployment of the net-
work unless the nodes are placed carefully, as explained earlier.

The SEKEN protocol (Jamshaid and Schwiebert, 2004) provides a
secure protocol for the pairwise key setup in wireless sensor nodes. The
protocol assumes that each sensor node is provided with a private device
identifier that has been stored in the base station. In addition, the public
key of the base station is loaded into each sensor node, which eliminates
the need for a trusted certification authority. Each node, starting with

4 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 4

the node nearest the base station, forwards a packet to the base station
with its device identifier and a timestamp encrypted using the base
station’s public key. The base station allocates a key for each sensor node,
with sensor nodes that already have been assigned a key forwarding
requests from another node, e.g., B1, to the base station after append-
ing their own encrypted ID so that the base station can gain some under-
standing of the network topology. Once more than one node has been
assigned a security key, the base station also provides keys that can be
shared with the neighboring node that initially forwarded the message
for B1. The protocol also handles the addition of more nodes or the
removal of nodes. Although the SEKEN protocol supports only a linear
array of sensor nodes, extensions to a generic two-dimensional sensor
network are possible.

11.1.5 Reconfiguration/redeployment

The lifetime of different sensors within the same network could vary
dramatically. The most energy-consuming aspect of sensor operation is
communication. Because protocols may place additional demands on
some subset of the sensors, such as the sensors near the base station or
the sensors far from the base station, redeployment of some sensors
may be required to meet the application requirements. Even if most of
the sensors are still operational, segments of the sensing field may have
inadequate coverage because of the death of sensors in that region.

Redeployment of sensors requires that these newly deployed sensors
be incorporated into the existing network. Security keys, locally assigned
addresses, and other application-specific parameters that are deter-
mined through self-organization need to be supplied to these newly
introduced sensors. The existing self-organization network protocols
may require a reconfiguration protocol to add new sensor nodes in an
already organized network. For example, when using random cluster
head selection such as LEACH, it may be necessary to update all the
sensors in the network when additional sensors are added. Otherwise,
an inadequate or wrong number of cluster heads may be chosen because
the number of sensors in the network has changed, and nodes no longer
have an accurate estimate of the energy remaining in other nodes.

11.1.6 Location determination

For many sensor applications, the physical location of the sensors is very
important. For example, consider an application where the sensors mon-
itor some large area for events, such as a forest fire detection system in a
large national park. If an event occurs—a fire starts—the information
must be relayed from the sensors that detected the fire to the base station
so that the park rangers can be informed. A crucial piece of information

Approaches and Solutions 5

Richard_CH11.qxd 8/11/04 3:26 PM Page 5

is the location of the sensors that detected the fire. Otherwise, the park
rangers have no idea where the fire started.

Location information is also useful for routing protocols, where the dis-
tance and direction from the source to the destination can be useful for
finding routing paths. Location information also can simplify the selec-
tion of cluster heads and clusters, as well as other approaches for organ-
izing local groups of sensors. Location information also can be used to
perform sleep scheduling or to construct time division multiple access
(TDMA) communication schedules. Although knowledge of a node’s
neighbors is sufficient for constructing these schedules, position infor-
mation can make the process more efficient because nodes can compute
their own neighbors more easily, as well as their two-hop neighbors,
without exchanging several rounds of messages.

Determining the location of individual sensors is not difficult in theory;
simply equip each sensor with Global Positioning System (GPS) capa-
bilities, and then each sensor can record and store its location. For sta-
tionary sensors, this is particularly attractive because the GPS readings
are not required after startup. In practice, however, the cost of equip-
ping each sensor with GPS may make the sensors too expensive. In
addition, the added power and size requirements for a GPS receiver
also may make these sensors unsuitable for certain applications.
Eventually, the cost of GPS receivers will decline, but it will be some time
before use of GPS on typical sensors becomes affordable.

One option for addressing this problem is to provide GPS (or manu-
ally configured location information) to a subset of the sensor nodes.
These sensors then function as beacons or anchors that can be used by
other sensors in the network to determine their coordinates (Savvides,
Han, and Srivastava, 2001). By listening to several beacons, a node can
determine an approximate location. For instance, the distance can be
estimated by using the received signal strength (Niculescu and Nath ,
2001), by measuring the delay between sonic and radiofrequency (RF)
transmissions (Girod et al., 2002; Savvides, Han, and Srivastava, 2001),
or simply by considering the transmission range and location of each
beacon (Bulusu, Heidemann, and Estrin, 2000; Savarese, Rabaey, and
Beutel, 2001). Given the distance between a sensor and at least three
beacons, the position of the sensor can be approximated. Once a node
has obtained an approximate location, that node can serve as a beacon
for other sensors. In Fig. 11.1, for example, node A can be used as a
beacon for location information for node B once node A approximates its
location. In this way, each sensor obtains an initial estimate of its loca-
tion using only a few sensors that are equipped with GPS. The initial
location estimate is refined further using an iterative approach where
each sensor uses additional information from neighboring sensors to
obtain a better approximation (Patwari and Hero, 2003; Savarese,

6 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 6

Rabaey, and Beutel, 2001). After a series of refinement steps, the sen-
sors achieve a location that has sufficient accuracy for the application.
In the forest fire monitoring application, for example, a position that is
accurate within, say, 10 m should be satisfactory. Being notified that a
fire has started at the sensor location, the smoke and flames should be
visible even if the recorded location of the sensor is off by a few meters.

Another option is to produce a local coordinate system (Bulusu,
Heidemann, and Estrin, 2000; Capkun and Hubaux, 2001; Shang et al.,
2003). This coordinate system can be used to assign a relative location
for each sensor. The coordinate system has its own orientation, although
the distances among sensors should be preserved as close to the actual
distances as possible. When a sensor detects an event, the relative loca-
tion within the sensor network needs to be translated into an absolute
location that the application can understand. As long as the base sta-
tion has its absolute physical position, as well as its location based on
the relative coordinate system, a translation is possible. Once the base
station is incorporated into the local coordinate system, finding a
sensor’s location is straightforward. The simplest way to resolve local
coordinate systems is to align them. This can be accomplished easily by
providing a compass with each sensor node or at least a sufficient
number of sensor nodes (Niculescu and Nath, 2003b). With the addition
of a compass, the orientation of the device with respect to North can be

Approaches and Solutions 7

Figure 11.1 Using beacon nodes for location determination.

Beacon

Beacon

Sensor Node A

Beacon

Sensor Node B

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Sensor
node Sensor

node

Sensor
node Sensor

node

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Richard_CH11.qxd 8/11/04 3:26 PM Page 7

determined. Using this information to construct the coordinate axes
allows the coordinate systems to be aligned. In the absence of a compass
to provide a common orientation to the sensor nodes, converging coor-
dinate systems is significantly more difficult.

Another drawback to local coordinate systems is the overhead involved
in building and maintaining the coordinates. Especially when nodes
are mobile but also as nodes die and more sensors are introduced into
the network, updates in the coordinate system may need to propagate
throughout the sensor network. Local positioning systems (Capkun and
Hubaux, 2001) have been proposed as a technique for defining local
coordinate systems without the participation of all the nodes in the net-
work. This idea has been extended to allow the construction of a coor-
dinate system maintained only by the sensors involved in a particular
communication (Niculescu and Nath, 2003b). In other words, all nodes
on the path from the source to the destination, or on the paths to mul-
tiple destinations in the case of group communication, need to share a
coordinate system so that messages can be transmitted between the
source and the destination(s). Nodes not involved in the communication
can be unaware of this coordinate system. This limits the number of
nodes that must participate in the construction of the local coordinate
system. This may be advantageous when the nodes are mobile because
fewer node locations need to be updated, and unneeded information is
not maintained. The drawbacks are that a number of local coordinate
systems may need to be constructed at any given point in time, there is
a time delay associated with building these coordinate systems, and
changes in network topology can require that paths be reassembled and
additional nodes incorporated into the coordinate system.

The main advantage of using GPS to determine the position of sen-
sors is the flexibility in translating the location into a value that is
meaningful to users and network components outside the wireless sensor
network. Although having only a few beacon nodes equipped with GPS
receivers lowers the cost of deployment, there is still added cost and com-
plexity. In addition, GPS cannot be used inside buildings and other
places where GPS signals cannot be received. The main advantage of
constructing a local coordinate system is that the limitations, cost, and
complexity of using GPS receivers with the sensors are eliminated. The
main drawbacks of this approach are that the location determined for
each sensor may be less accurate, and constructing the local coordinate
system often requires participation of the entire network.

11.2 Routing

Routing is the fundamental component of the network layer protocols.
Routing allows the multiple devices that make up the network to exchange
information. For this reason, routing in wireless sensor networks has been

8 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 8

well studied by the networking research community. A number of pro-
tocols have been proposed for routing in wireless sensor networks, and
additional protocols continue to be proposed. Each has its own advan-
tages and disadvantages. As with other topics discussed in this chap-
ter, routing in wireless sensor networks is a topic of ongoing research,
but many of the core approaches have been identified. Further progress
on these different protocols will determine which, if any, of these pro-
tocols ends up becoming predominant.

Routing in wireless sensor networks differs from routing in other types
of networks for two reasons: (1) the nodes have limited resources for
gathering routing information and maintaining routing tables, and (2)
the traffic patterns that are generated are likely to be different. The
traffic patterns differ because the sensor readings are a primary source
of traffic. Some applications accumulate readings peridically, but for
many applications, the primary traffic occurs when events are sensed.
The sensing and reporting of events are likely to be somewhat random
because events are likely to occur in an unpredictable and arbitrary pat-
tern. Once a sensor detects an event, however, tracking that event in the
network becomes more predictable. For example, the event may proceed
from one location to another along a trajectory that can be predicted
with some accuracy (Goel and Imielinski, 2001). Another reason that
traffic patterns in wireless sensor networks differ is that the vast major-
ity of the traffic has a base station as either a source or a destination of
the message. Communication between two sensors is much less common,
with the exception of neighboring sensors that require local collaboration.

When a node senses an event of interest to the application, which is
indicated by a sensor reading that is outside the normal operating range,
the node must transmit this event to the base station. Of course, some
local processing certainly is possible, and this processing may result in
some messages being suppressed or combined with the readings of nearby
sensors. However, we ignore these considerations in this section. Instead,
we focus on the protocols used to transfer sensor readings from the source
to the destination once a decision has been made to send this message.

The protocols that we discuss in this section generally assume one of
two models. Either all the sensors provide periodic feedback, or the pri-
mary source of traffic is from responses from sensors that detect events.
The best routing algorithm depends on these traffic characteristics. In
some applications, both types of traffic may be required, which warrants
using a hybrid approach or using more than one approach.

11.2.1 Event-driven routing

Because sensors interact with the physical world, the data that are
routed in the network are based on the readings of the sensors. Rather
than having the base station query particular nodes for their current

Approaches and Solutions 9

Richard_CH11.qxd 8/11/04 3:26 PM Page 9

readings, it has been suggested that having the base station query the
network for sensor readings with particular characteristics is a more
useful model for wireless sensor networks (Intanagonwiwat, Govindan,
and Estrin, 2000). For example, the base station might send a request
that all nodes that have detected a temperature above 120°F report
their readings. This is useful for detecting a fire. The request is flooded
throughout the network, and the nodes that respond are those with
this reading. In other words, rather than requesting sensor readings
from a particular sensor node, we request a particular type of sensor
reading from any sensor node that possesses such a reading. This type
of network interaction is consistent with the kinds of communications
we anticipate from a typical sensor network application.

11.2.2 Periodic sensor readings

Another reasonable type of communication that a sensor network may
generate is a periodic response from all the sensors. On a regular basis,
all the sensors transmit their sensor readings to the base station
(Heinzelman, Chandrakasan, and Balakrishnan, 2002). This gives the
base station a snapshot of the entire region covered by the sensors. It
also might be useful for diagnosing sensor faults. For example, when a
particular sensor has a reading that is not shared by any of the neigh-
boring sensors, it is reasonable to suspect that that sensor is reporting
incorrect information because it is either faulty or malicious.

An example application where such periodic readings may need to be
accumulated is the temperature monitoring of a large building. If you
have ever worked or lived in a large building with multiple floors that
has a central heating or air-conditioning system, then you know that the
temperature in the building can vary dramatically from room to room.
There may be rooms that are uncomfortably cold, whereas other rooms
in the same building are unbearably hot. The problem is that the heat
distribution is not controlled efficiently so either the heating or air con-
ditioning is not distributed effectively. In some cases, this may result
from having too few thermostats or having them placed with a distri-
bution that is less than ideal such as near a computer monitor. An alter-
native approach to this problem uses a large number of wireless sensors
to monitor the temperature in various locations of the building (Kintner-
Meyer and Brambley, 2002). For instance, placing sensors in each room,
with multiple sensors in a large room, will allow for the accumulation
of more data. These data can be used to modify the heating or cooling
flow in the building. Not only does this increase the comfort of the build-
ing occupants, but also achieves a greater energy efficiency.

It is well known that a system cannot be controlled at a rate faster
than the feedback of changes can be obtained. A real-world example is

10 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 10

climate control in a car. If the temperature is too hot or too cold, you
adjust the output of the heater (or air conditioner). After the adjustment,
however, you need to wait until the temperature changes as a result of
the change in settings. Otherwise, you simply continue to change things
without knowing if you are getting close to your goal—you may simply
oscillate between a car that is too hot and too cold. For this reason,
some feedback time is required in this system. Sensors measure the tem-
perature and send it to the control center (base station). Based on these
measurements, the temperature or distribution of heat is modified.
After waiting enough time to ensure that the modifications have affected
the system, the sensors take new measurements. Further adjustments
then are made. This ongoing cycle can be achieved best by getting peri-
odic readings from all the sensors.

There are two mechanisms for conducting periodic readings. In the
first method, each sensor sends its message individually to the base
station; in the other method, nodes have a hierarchical structure where
nodes transmit their messages to a higher-level node that combines
these messages into a single packet that is forwarded higher up the hier-
archy. In the case of a two-level hierarchy, for instance, nodes send to
their cluster head, which forwards the message directly to the base sta-
tion. Each of these approaches has advantages and disadvantages, so
we consider both approaches. Briefly, sending separate messages to the
base station can result in more energy consumption, but combining
sensor readings into a single packet can lead to loss of information.

We first consider the idea of sending separate messages. One approach
is to send a message directly to the base station from each sensor
(Heinzelman, Chandrakasan, and Balakrishnan, 2002). There are two
disadvantages to this approach. First, contention for bandwidth becomes
acute and severely limits the scalability of this approach. Second, nodes
far from the base station expend significantly more energy to transmit
their messages. Therefore, the nodes far from the base station deplete
their energy much more quickly. On the other hand, if sensors use mul-
tihop communication to transmit messages to the base station, then
sensors close to the base station must consume a large percentage of
their power forwarding messages from other sensors to the base station.
This causes the sensors near the base station to run out of energy much
sooner than the other nodes in the network.

To avoid either of these situations, nodes can use multihop trans-
mission only when nodes closer to the base station have enough power
and memory to perform data forwarding. The base station can send sig-
nals to synchronize nodes and create a transmission schedule for the
sensor nodes. Even with modest overhead to accumulate the remaining
energy levels at the neighbors, the performance of the protocol may
better balance energy usage among the sensor nodes. The nodes in the

Approaches and Solutions 11

Richard_CH11.qxd 8/11/04 3:26 PM Page 11

network dissipate their energy at approximately the same rate whether
they are close to the base station or far from the base station. This
approach is best when the sensor readings cannot be aggregated into a
single packet or a few packets. When a high percentage of data aggre-
gation is possible, it is better to aggregate packets at a neighboring
node and forward only a single packet or a small number of packets.

When the sensor readings can be aggregated or compressed into a very
small fraction of the original data volume, combining or clustering data
readings into a single packet and then forwarding only that single
packet can save significant amounts of energy. This observation has
been incorporated into the LEACH (Heinzelman, Chandrakasan, and
Balakrishnan, 2002) and PEGASIS (Lindsey, Raghavendra, and
Sivalingam, 2002) protocols.

The simplest version of the LEACH protocol randomly selects a
number of the sensor nodes to function as cluster heads, each of which
advertises its availability. Each cluster head performs its duties for
some period of time, after which different sensors take over the role of
cluster head. Since the responsibilities of the cluster head lead to addi-
tional energy consumption, periodically changing the cluster heads bal-
ances the energy consumption more or less evenly among the sensors
throughout the network.

Experiments suggest that having approximately 5 percent of the
nodes function as cluster heads at any time gives good performance.
Each sensor node that is not a cluster head listens to these advertise-
ments and selects the closest cluster head. Once each cluster head has
determined the membership of its cluster, a schedule is created for the
transmissions from the sensor nodes in the cluster to the cluster head.
On receiving messages from the sensors in this cluster, the cluster head
sends a single packet to the base station that combines the readings of
all the sensors. The assumption is that each sensor is significantly closer
to its cluster head than to the base station. Because the cluster head
sends only a single packet a relatively long distance, the amount of
energy consumed in communicating with the base station is reduced sig-
nificantly. This leads to a substantial increase in the lifetime of the
sensor nodes.

In LEACH, each sensor chooses the closest cluster head, and the clus-
ter heads are chosen randomly, so there is no assurance as to what the dis-
tribution of clusters. Since a number of nodes may be assigned to the same
cluster, the data may need to be aggregated into a very small fraction of
the originally transmitted information. Depending on the application, this
level of compression, which is likely to be lossy compression, may or may
not be suitable. In some cases, there is a natural tradeoff between reduc-
ing the power consumption for transmitting information to the base sta-
tion and obtaining high-quality information at the base station.

12 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 12

Randomly selecting the cluster heads depends on each sensor having
some idea of its probability of becoming the cluster head. Each sensor
then independently makes a decision on whether or not to become a clus-
ter head. This approach implies that achieving the desired number of
cluster heads may not always occur. In some instances, more than an
optimal number of sensors may decide to become cluster heads. In other
cases, fewer than optimal may. In addition, there is no guarantee that
the cluster heads are distributed evenly in a geographic sense. If a poor
distribution occurs, some sensors may need to transmit their values a
long distance to reach the nearest cluster. In extreme cases, some sen-
sors may send further to reach their chosen cluster head than sending
directly to the base station. For these reasons, other options for select-
ing the cluster heads have been proposed (Heinzelman, 2000). One
example is allowing the base station to preselect the cluster heads. This
may require sensors to inform the base station periodically of their
remaining energy so that sensors can be chosen in a way that extends
the life of the entire network as long as possible.

A second approach to aggregating data is the PEGASIS protocol
(Lindsey, Raghavendra, and Sivalingam, 2002). In this protocol, a chain
of sensors forms starting from sensors far from the base station and
ending with the sensors close to the base station. The sensor readings
are aggregated on a hop-by-hop basis as they travel through each sensor
node. Figure 11.2 shows a possible chain for this sensor network. The
messages are aggregated hop by hop until a single packet is delivered
to the base station. The chain is created so that each link of the chain
is between two nearby sensors to the extent possible. The problem of
finding the optimal chain is NP-complete, so the PEGASIS protocol
uses a heuristic that produces a reasonably good chain. Since the data
are aggregated over short hops, there are no long-distance transmissions
from a cluster head to a base station. This reduces the overall energy
usage; there are essentially no messages that travel a long distance, pro-
vided that there are sensor nodes near the base station. In addition, no
cluster heads need to be chosen, which means that the energy require-
ments placed on each sensor node are roughly equivalent. However,
there are two drawbacks to this approach. The first is that a significant
delay can occur in transmitting the sensor readings to the base station.
Since a sensor must receive the data, process the data, combine these
data with the local readings, and then transmit the aggregated data to
the next sensor, delay occurs at each sensor in the chain. Since each
sensor is included in the chain, the delay grows linearly with the number
of sensors in the network.

The delay could become very significant for large sensor networks, and
this limits scalability. For many applications, sensor readings must be
obtained within some short time after the readings are obtained. When

Approaches and Solutions 13

Richard_CH11.qxd 8/11/04 3:26 PM Page 13

14

F
ig

u
re

 1
1.

2
S

en
so

r
ch

ai
n

 f
or

 d
at

a
ag

gr
eg

at
io

n
.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

Richard_CH11.qxd 8/11/04 3:26 PM Page 14

monitoring environmental conditions, timely feedback may be required
to react to sensor readings. For instance, the temperature measure-
ments in a high-rise office building may not be delivered for a consid-
erable length of time if they must travel from sensor to sensor
throughout every room in the building.

The modified version of the PEGASIS protocol addresses the issue of
excessive delay (Lindsey, Raghavendra, and Sivalingam, 2002). In
essence, a tree is created so that a hierarchy of nodes is created, and the
nodes forward messages up the hierarchy. This results in more energy
consumption but reduces the delay from linear time to O(log n) time for
n sensors. In fact, the energy-delay product is better with a tree hier-
archy because the time decreases much more compared with the
increased energy consumption. Any sensor that is not a leaf node in
this tree has additional resource demands because it must receive mul-
tiple messages and aggregate those messages. However, nodes at higher
levels of the hierarchy perform roughly the same amount of work as
those at lower layers of the hierarchy, assuming that each parent in the
tree has the same number of children. By rotating the responsibility to
serve as a parent node, the energy consumption among sensor nodes can
be maintained at approximately an equivalent level.

The second drawback is that a very high level of data aggregation is
required. Otherwise, the packet size grows significantly. If the sensor
readings are all aggregated into a single packet the same size as the orig-
inal, then either the original packet must be padded to be unnecessar-
ily large, which wastes energy, or the data that eventually reach the base
station are a small fraction of the data generated by the sensors. For
example, with 100 sensors in the wireless network, the base station
receives only about 1 percent of the data produced by the sensors. For
some applications, such as counting the number of sensors with a par-
ticular reading, this is sufficient. However, for many applications, where
the unique reading of each sensor is required, this level of aggregation
is not acceptable. On the other hand, if the packet size is permitted to
grow, then the energy savings decrease rapidly, and sensors near the
base station consume a disproportionately large amount of energy. In
fact, unless significant aggregation rates can be obtained, the advan-
tages of hop-by-hop aggregation are limited.

With periodic transmission of the sensor readings from all the sen-
sors in the network, the best choice of protocol depends on the data-
aggregation rate. At least some modest data aggregation is always
possible because the packet headers from two different messages can be
replaced with a single header. Compression or aggregation of the packet
data, however, depends on the application requirements and the type of
sensor readings obtained. If the application can tolerate some loss of data,
then more aggressive compression of the data is possible, which can result

Approaches and Solutions 15

Richard_CH11.qxd 8/11/04 3:26 PM Page 15

in significant energy savings for communication. On the other hand, if only
a limited amount of aggregation is possible for a given application, pro-
tocols such as LEACH and PEGASIS do not deliver a significant reduc-
tion in energy consumption. In extreme cases, where essentially no data
aggregation is possible, LEACH and PEGASIS probably consume more
energy than protocols that do not rely on data aggregation.

11.2.3 Diffusion routing

As mentioned earlier, routing in wireless sensor networks is either peri-
odic feedback of readings from all the sensors in the network or feed-
back from sensors that have readings that match particular query
values. In the preceding section we considered protocols that support the
periodic feedback of readings from the sensors. In this section we con-
sider protocols for routing messages from sensors that have readings
that match the requirements of a request from the base station or some
other node (Intanagonwiwat, Govindan, and Estrin, 2000).

For purposes of illustration, we assume that the request comes from
the base station. Although other network nodes could generate the
request, a base station or other gateway node that connects the sensor
node with the outside world or a larger network is the most likely source
of the queries. The process is initiated by distributing a request from the
base station to all the nodes in the network. This generally is accom-
plished by controlled flooding, except when the request is hard-coded in
the sensor application.

Controlled flooding consumes some resources but is the only way to
get the request to all the sensor nodes. There are different ways of con-
trolling the flooding. For example, the base station simply could send a
message with enough power that it reaches all the sensor nodes. The
message also could be sent on a hop-by-hop basis from one sensor node
to another. Each sensor would forward a particular request once so that
only a limited number of messages are sent. A third option is to forward
messages along particular predefined paths or directions so that all the
nodes receive the message (Niculescu and Nath, 2003a).

Once the request has been disseminated, the sensors with readings
that match the request transmit their readings back to the base sta-
tion. As an example, we consider an animal-tracking application.
Suppose that we are conducting a study of how particular animals
move about a certain area. Sensors capable of detecting these animals
are deployed in the area of interest. The base station sends a query
asking that any sensor that currently detects an animal report the rel-
evant information, such as location and number of animals sensed.
The query might include parameters such as the frequency of responses
and the length of time the animals should be tracked. The problem

16 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 16

then becomes one of routing the information from these sensors back
to the base station in an energy-efficient method.

Directed diffusion (Intanagonwiwat, Govindan, and Estrin, 2000)
solves this problem by initially sending messages from the sensor nodes
to the base station in a reverse flooding operation. Figure 11.3 shows the
initial transmission of the query from the base station to the sensor
nodes. Messages move toward the base station from each sensor with
corresponding readings. Nodes that receive the message and are along
a path to the destination forward this message toward the base station.
Sensor nodes that receive multiple copies of the same message sup-
press forwarding. In effect, messages are funneled from individual
sensor nodes to the base station.

Figure 11.4 depicts an initial pattern of packet routing from the sen-
sors that detected the event to the base station. Of course, this way of
delivering messages to the base station is not particularly energy effi-
cient. To improve the energy efficiency, it is necessary to suppress some
of the sensors forwarding messages toward the base station.

Figure 11.5 shows one possible set of routing paths that could remain
after some duplicate path suppression. The directed diffusion protocol
uses both positive and negative feedback to either encourage or dis-
courage sensor nodes from forwarding messages toward the base sta-
tion. This feedback can be based on, for example, the delay in receiving
data. In this case, a sensor that receives the same message from mul-
tiple nodes sends positive feedback to the first and negative feedback
to the others. Another option is to have a node send with less frequency
unless it receives positive reinforcement. In effect, the forwarding of the
message times out after some number of packets are forwarded. This is
commonly referred to as soft state because the forwarding does not con-
tinue unless a message is received periodically to retain this state. This
feedback propagates throughout the network to suppress multiple trans-
missions. Eventually, messages use a single path from the source to the
base station.

Maintaining a single path from each sensor to the base station, per-
haps with some data aggregation along this path when similar packets
merge from two separate sensors, is the most energy-efficient way of
delivering messages to the base station. On the other hand, sensor nodes
are less reliable than other network components because the power
source is self-contained, and these nodes are relatively inexpensive. For
this reason, the probability of delivering a message from a distant sensor
to the base station increases if multiple paths are supported. This is
especially true when the paths are disjointed or essentially disjointed
so that there are no common nodes on these paths.

The tradeoff between energy efficiency and the high probability of
delivering packets depends on the application’s desired QoS. The best

Approaches and Solutions 17

Richard_CH11.qxd 8/11/04 3:26 PM Page 17

F
ig

u
re

 1
1.

3
D

ir
ec

te
d

di
ff

u
si

on
 r

eq
u

es
t

di
ss

em
in

at
io

n
.

Tr
an

sm
is

si
on

 to
 a

ll
se

ns
or

s

Tr
an

sm
is

si
on

 to
 a

ll
se

ns
or

s

Tr
an

sm
is

si
on

 to
 a

ll
se

ns
or

s

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

K
A

B
O

O
M

!!!

18

Richard_CH11.qxd 8/11/04 3:26 PM Page 18

19

F
ig

u
re

 1
1.

4
In

it
ia

l p
ro

ce
ss

in
g

of
 a

n
 e

ve
n

t-
dr

iv
en

 q
u

er
y.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

K
A

B
O

O
M

!!!

Richard_CH11.qxd 8/11/04 3:26 PM Page 19

20

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay B

as
e

st
at

io
n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

K
A

B
O

O
M

!!!

F
ig

u
re

 1
1.

5
D

ir
ec

te
d

di
ff

u
si

on
 r

ou
ti

n
g

pa
th

s
af

te
r

re
du

n
da

n
t

pa
th

 s
u

pp
re

ss
io

n
.

Richard_CH11.qxd 8/11/04 3:26 PM Page 20

choice of path redundancy also varies based on the characteristics of the
sensors, including the mean time to failure and the sleep pattern.

11.2.4 Directional routing

Routing in large sensor networks requires a scalable mechanism for deliv-
ering messages. Routing tables are not a good option because sensors
have limited storage space, and consuming a large amount of this space
for storing routing information is not realistic. Furthermore, centralized
routing is not a viable option because contacting a central node in order
to determine routing paths is not energy efficient either. Besides, this
could add significantly to the routing delay. Although it may be possible
to maintain routing paths to a few base stations or other central nodes,
general-purpose routing is not scalable if a path for every possible desti-
nation needs to be stored and maintained. One method for enabling scal-
able routing is to have the routing paths implicit in the network. In other
words, the routing path is effectively encoded in the network.

For a dense wireless sensor network or mobile ad hoc network, we
can assume that, on average, there is sufficient sensor coverage so that
a sensor is available in any direction in which we need to route. For
example, there could be additional nodes that are approximately North,
South, East, and West of the current sensor so that messages can be
forwarded in some direction toward the destination. For this type of net-
work, the location of the destination relative to any node in the network
is sufficient to determine the orientation in which to route the message.
Given the orientation in which the message must be sent, the next
sensor that can be used to forward the message can be determined.
Figure 11.6 depicts a scenario in which a message is forwarded on a
direct line from the sensor node to the base station or as close to a
straight line as possible given the positions of the sensor nodes. Each
hop of the path is determined on a greedy basis. Although the path in
this case follows very closely with the direct path from the sensor to the
base station, this is not possible in all cases.

Various techniques have been proposed for enabling this sort of rout-
ing, including Cartesian routing (Finn, 1987), Trajectory-based for-
warding (Niculescu and Nath, 2003a), and directional source aware
routing (Salhieh et al., 2001). Although each of these protocols differs
in their particulars, the general idea is similar—routing messages based
on the geographic location of each sensor as well as the destination.

Cartesian routing creates a straight line from the source of the mes-
sage to the destination. The message is then routed on a hop-by-hop
basis through sensors that are on this path. This is particularly useful
for mobile nodes because maintaining long routing paths when inter-
mediate nodes are moving on the path is difficult. These nodes may

Approaches and Solutions 21

Richard_CH11.qxd 8/11/04 3:26 PM Page 21

22

F
ig

u
re

 1
1.

6
S

im
pl

e
ex

am
pl

e
of

 g
eo

gr
ap

h
ic

 f
or

w
ar

di
n

g.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

Richard_CH11.qxd 8/11/04 3:26 PM Page 22

move out of range of the neighboring nodes on the path, thus prevent-
ing packets from being forwarded until an alternative path is built when
a traditional routing protocol is used. However, no routing path is main-
tained with Cartesian routing. Instead, when the message arrives at one
node, it simply finds the best current node along the path toward the
destination and forwards to this node. The node chosen may vary with
each packet depending on the mobility patterns and the speed with
which nodes move. As long as there is adequate density in the network,
there should be a node available at each hop along the path that can for-
ward the message on toward its destination.

With the directional source aware protocol (Salhieh et al., 2001), rout-
ing again is done based on the current location and the location of the
destination. In order to avoid the need for creating location information
for each of the sensors, the sensors are assumed to be distributed in a
regular topology. For example, a two-dimensional grid can place the
sensor nodes. Although random deployment has some advantages, a reg-
ular placement of each sensor leads to a more uniform coverage of the
region. In addition, a random deployment of sensors can be augmented
with mobile sensors to move these sensors into a more regular distribu-
tion. In this case, nodes can perform routing easily as long as each node
knows its relative location within the sensor network. Fixed sensors are
assumed. Although some initial repositioning of the nodes does not com-
promise the protocol, support for mobility within the network has not
been considered by this protocol. Research on the directional source
aware routing protocol (Salhieh and Schwiebert, 2004) has focused on
selecting paths for delivering messages between sensor nodes, as well as
delivering messages from the sensors to a base station that maintains
the lifetime of the sensor network for as long as possible.

Trajectory-based forwarding (Niculescu and Nath, 2003a) is a signif-
icant generalization of Cartesian routing. Trajectory-based forwarding
uses the geographic location of the ad hoc nodes to determine the route,
which avoids having to store routing tables or make use of other cen-
tralized routing facilities. Rather than sending along a direct path from
the source to the destination, a message can follow any path specified
with a parametric equation. For instance, the trajectory could be a sine
wave that originates at the source and terminates at the destination
(Niculescu and Nath, 2003a). At each hop in the path, nodes forward
messages to the most appropriate node toward the destination. The
determination of the most appropriate node is made in a number of dif-
ferent ways. For example, the node that is closest to the path of the tra-
jectory, the node that provides the most progress toward the destination
while maintaining some close association to the trajectory, or some node
that represents a compromise between these two choices could be chosen.

Approaches and Solutions 23

Richard_CH11.qxd 8/11/04 3:26 PM Page 23

Direction-based routing schemes rely on the position of the current
node and the destination in order to deliver messages to the destination.
Whether the route is a straight path from the source to the destination
or some other path, the intermediate nodes required to deliver the mes-
sage are not important, so no information is maintained about these
nodes. The assumption of sufficient network density guarantees that
either there is a suitable candidate node for forwarding the message
toward the destination or one will appear shortly because of network
mobility. In the absence of mobility, the path may terminate at some
point before the destination is reached. An example is when the path is
traveling due West, and there is a hole in the network that prevents a
message from being forwarded West. In this case, the message must be
misrouted—routed temporarily in an incorrect direction—so that the
path can be restored later. The best path around a hole cannot be deter-
mined using only local information. This requires some additional
knowledge of the perimeter of the hole to make the best decision on
how to send the message. For example, routing the message North
instead of West may result in a very long path, whereas routing the mes-
sage South instead could lead to a much shorter path. Of course, the
opposite situation is also possible, where routing North could be signif-
icantly shorter. Without knowledge of the extent of the hole, there is no
mechanism for making the correct choice.

A protocol for finding the perimeter of a sensor network, as well as the
perimeters of any holes in the network, has been proposed (Martincic
and Schwiebert, 2004). The protocol constructs a perimeter at network
initialization time by exchanging local information on which nodes are
surrounded by neighboring nodes. Nodes that are surrounded by other
nodes are not on the edge of the network and are not on the boundary
of a hole. By exchanging this local information, the boundaries can be
determined without requiring the exchange of global information on
the positions of all the sensors. Later the network can make use of the
perimeter information for routing, as well as collaboration among neigh-
boring nodes. If there are mobile nodes in the network, then the holes
and the boundaries of these holes, as well as the boundary of the entire
network, can change. Thus the perimeter information must be updated
to maintain valid data for use in routing around obstacles.

11.2.5 Group communication

Routing information from a group of sensors to the base station can be
accomplished as individual transmissions from each of these sensors.
However, it is more energy efficient to combine these readings into a
single message if these sensors are close together and have obtained sim-
ilar readings. In addition, a higher level of confidence can be placed on

24 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 24

the sensor readings if multiple adjacent sensors obtain the same read-
ing. Similarly, a lower level of confidence should be placed on a sensor
reading if neighboring sensors that are functioning at the same time do
not have the same observation.

In many cases it should be possible to determine that several sensors
have generated the same readings using some local communication and
local processing. A resource-constrained protocol for combining these
sensor readings into a single value with some greater confidence in the
correctness of the sensors’ observations should allow this collaboration to
be performed on a local basis rather than requiring global communica-
tion or the participation of many nodes. Ideally, each node should share
information only with other sensors that overlap its sensing range. If the
radio transmission range of each sensor is equivalent to at least twice its
sensing range, a node can collaborate with all the sensors that overlap
any portion of this sensor’s sensing range using direct communication.
Figure 11.7 shows the effect of having a radio transmission that is exactly
twice the sensing range or slightly less than twice the sensing range. In
the first case, sensor node A can communicate with node B. In the second
case, the transmission range of node A is less, so although the sensing
regions of node A and node B overlap, they cannot communicate with
each other directly. The radio transmission range is shown with a solid
circle, and the sensing range is shown with a dashed line. This allows each
sensor to maintain its own local group of sensors and coordinate readings
among these sensors.

A sensor reaches an agreement if a majority of its neighbors have
obtained the same reading or one that is approximately the same (Kumar,
2003). If no other neighboring sensors share this same reading, a sensor
can assume that there is some problem with its measurement. The meas-
urement then could be retaken, or the sensor could perform other actions
to recalibrate the sensor or reset components to try to recover from an
error. Malicious sensors could avoid sending an acknowledgment of cor-
rect readings to a sensor node but could not prevent a consensus from
being reached unless more than half the sensors were malicious or faulty.
Sensors also could listen to the request for collaboration and refuse to
forward messages from nodes that have not attempted to reach consen-
sus or are transmitting bogus information. These procedures increase the
confidence that the base station places in the sensor readings that are
obtained from the network. The energy required for transmitting the
same reading from the multiple sensors is also reduced significantly.
Assuming that each sensor generates a message when it obtains an
interesting sensor reading, reducing n sensor readings into a single mes-
sage saves a significant amount of energy as the value of n increases.

Another option is to combine similar messages as they travel through
the network (Intanagonwiwat, Govindan, and Estrin, 2000). As each

Approaches and Solutions 25

Richard_CH11.qxd 8/11/04 3:26 PM Page 25

message approaches the base station, there are fewer remaining paths.
Therefore, the probability increases that the message uses a node that
has been or will be used for other equivalent messages from other sen-
sors. To combine the messages as they travel through the network, it will
be necessary to buffer some packets in order to wait for similar packets
to arrive. In addition, some mechanism is required to determine that
these packets are synchronized in the sense that the corresponding
readings occurred at the same time. We discuss protocols for synchro-
nizing sensor nodes in the next subsection.

Combining messages that record the same event can be done in the net-
work between the sources and the base station whenever the paths used
by these sources merge on the way to the base station. These messages

26 Chapter Eleven

Figure 11.7 Relationship between the sensing range and the transmission range.

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor Node A

Sensor node

Sensor node

Sensor node

Sensor nodeSensor node

Sensor node

Sensor nodeSensor node
Sensor node

Sensor Node B

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor Node A

Sensor node

Sensor node

Sensor node

Sensor nodeSensor node

Sensor node

Sensor node
Sensor node

Sensor node

Sensor Node B

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Sensor node

Richard_CH11.qxd 8/11/04 3:26 PM Page 26

can be merged only if they arrive at roughly the same time, or a signif-
icant amount of caching delay is introduced between arrival of the first
message and arrival of subsequent matching messages. The opportunity
to combine matching packets is likely to increase the closer a packet gets
to the base station because the number of paths decreases closer to the
base station as paths merge. Of course, the advantages of combining
packets decreases the closer the packets are to the base station because
there are fewer remaining hops. Thus the energy that can be saved by
sending a single message instead of multiple messages decreases with
fewer hops. The tradeoff between the delay in transmitting the packets
to the base station and the memory available for caching packets, the
difficulty of matching equivalent responses, and the energy consump-
tion for sending multiple messages determines whether this combining
is practical. Combining these packets make sense only when the appli-
cation can tolerate significant delays and the sensors have sufficient
resources for caching these messages. If the application needs to receive
the sensor readings as quickly as possible, or if the sensor nodes cannot
buffer packets for a substantial period of time, then combining messages
within the network is not a realistic option.

11.2.6 Synchronization

Synchronization is an important element of many wireless sensor net-
work applications. As mentioned elsewhere, data aggregation requires
synchronization. Collaboration among sensors requires some synchro-
nization. In addition, the base station needs accurate timestamps to
perform the data aggregation. TDMA scheduling also requires local syn-
chronization among sensor nodes. Although the synchronization does not
always need to be extremely precise, some loose synchronization must
be maintained for TDMA scheduling to work correctly.

Keeping all the sensors synchronized with each other would be an
expensive operation, especially as the accuracy of the synchronization
increases. Since sensors are expected to observe interesting information
only occasionally, maintaining close synchronization at all times is not
required. Furthermore, a great deal of power could be wasted main-
taining synchrony among nodes that do not require it, such as nodes that
do not communicate directly with each other. Instead, a protocol has
been proposed that keeps a relatively loose level of synchrony among
nodes until an event is sensed (Elson and Estrin, 2001). After sensing
an event, the sensors establish a more accurate time synchronization,
which can be used to determine whether or not events detected by mul-
tiple sensors occurred at the same time or not. Based on the locations
of these sensors and whether or not the sensors observed an event at
the same time, a determination can be made about whether a unique

Approaches and Solutions 27

Richard_CH11.qxd 8/11/04 3:26 PM Page 27

event has been observed by multiple sensors or different events are
being reported.

By avoiding the overhead of closely synchronizing the sensors except
when an event occurs, the energy requirements are reduced substan-
tially. By synchronizing only when an event is registered, time syn-
chronization is achieved when necessary. Another protocol, such as the
Network Time Protocol (Mills, 1994). can be used to maintain loose syn-
chronization among nodes so that closer synchronization can be estab-
lished when needed. This loose synchronization allows nodes to maintain
a schedule that can be used to contact neighboring nodes and establish
the close synchronization required when events occur.

Because of the importance of time synchronization for many wireless
sensor applications, other efficient synchronization protocols have been
proposed. Another synchronization protocol that has been proposed is
the Reference Broadcast Synchronization (RBS) protocol (Elson, Girod,
and Estrin, 2002). The RBS protocol is a receiver-receiver-based protocol.
Although multiple rounds of the RBS protocol can be used to obtain a
better estimate, we describe just a single round. The protocol starts with
a source sending a signal to two receivers. Each receiver records the time
when this signal was received. Based on this, the two receivers determine
their relative clock differences, assuming that both nodes take the same
amount of time to process the signal after they receive it. There is clock
drift among the sensor nodes because no two clocks run at exactly the
same rate. Processing multiple signals over a period of time allows the
clock drift to be estimated more closely. In addition, the difference in the
clocks can be estimated more accurately with multiple samples. In fact,
the RBS protocol can achieve synchronization accuracy of several
microseconds.

A hierarchical approach can be used for synchronization in wireless
sensor networks. This is the approach taken by the Timing-Sync Protocol
for Sensor Networks (TPSN) (Ganeriwal, Kumar, and Srivastava, 2003).
A root node, which could be a base station, initiates the synchronization
process by sending a level_discovery protocol message to each neigh-
bor. These nodes assign their level as level 1 and propagate the message.
As the message radiates out from the root node, the levels are assigned
based on the minimum number of hops needed to receive this message.
Once each node has determined its level in the tree, each pair of nodes
that wishes to synchronize sends a message to each other. For example,
node A sends a message to node B, which then responds with another
message back to node A. By exchanging the timestamps of when these
packets were sent and received, the two clocks can be synchronized
within a reasonably tight range. This protocol is an example of a sender-
receiver synchronization protocol. The TPSN protocol is capable of syn-
chronizing two neighboring nodes within several microseconds.

28 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 28

11.3 Fault Tolerance and Reliability

Ad hoc nodes, and especially mobile nodes, naturally are less reliable
than traditional computing devices because communication links are
transient. In addition, these nodes are expected to be inexpensive and
often do not have the energy resources for long-term operation. For
instance, the sensors may be deployed with battery power and replaced
after some period of time when the batteries fail. It is unlikely that sen-
sors designed for one-time use will be built with expensive components
to prevent failure. It is more likely that the cost of sensor nodes will be
modest enough that they can be replaced easily at a lower cost than
designing them for long-term use. Sensor nodes also are more suscep-
tible to failure because of their direct exposure to the environment. For
these reasons, sensor applications and protocols must be designed with
failures and fault recovery as basic assumptions. In other words, not only
should the protocols and applications recover from faults, but they also
should be designed to operate with the expectation that faults are part
of the normal operating situation rather than being anomalous events
that should be recovered from so that the application can return to
normal operation. Protocols at all layers of the protocol stack must work
together to keep faults from preventing the application from receiving
correct information or otherwise performing the desired task. In this sec-
tion we consider a number of protocols at various layers of the traditional
protocol stack that could be used to make sensor applications and pro-
tocols provide the necessary level of fault tolerance and fault recovery.
As can be seen in this discussion, these protocols can operate in con-
junction with each other and often perform better together than sepa-
rately. In other words, the sum is greater than the parts.

11.3.1 FEC and ARQ

Wireless communication is inherently unreliable compared with wired
connections. Fiber optic cables, for example, have error rates that are neg-
ligible. For all practical purposes, transmission errors on fiber optic cables
can be ignored in terms of network performance. Of course, these rare
errors must be detected for reliable communications to be supported.
However, the protocols can treat such errors as anomalies that should be
corrected so that the system can return to the normal operating state as
soon as possible. A classic example is the Transmission Control Protocol
(TCP), which treats an error as network congestion (a lost packet) rather
than a transmission error because errors on wired channels are so rare that
handling these special cases separately would not make a significant dif-
ference in performance (Jacobson, 1995; Lang and Floreani, 2000). In fact,
depending on the mechanism to handle errors, the system performance

Approaches and Solutions 29

Richard_CH11.qxd 8/11/04 3:26 PM Page 29

may decline because the overhead of using this mechanism when almost
all packets do not require this mechanism could easily exceed the per-
formance gains when this rare event arises.

Wireless connections, on the other hand, are much less reliable. Bit
errors on wireless channels are a normal condition. For this reason,
specific techniques are required to operate in the presence of errors.
There are two general techniques for addressing bit errors at the phys-
ical layer (Lettieri, Schurgers, and Srivastava, 1999). One technique is
Forward Error Correction (FEC), which uses extra bits in a packet to
allow bit errors to be corrected when they arise during transmission. In
general, the more error-correcting bits that are included, the more bit
errors that can be corrected. On the other hand, including the number
of error-correcting bits in a packet decreases the number of data bits that
can be sent or increases the packet size. Automatic Repeat Request
(ARQ) refers to a set of protocols used to request retransmission of pack-
ets that have errors. There are essentially three choices: (1) stop and
wait, which does not send a packet until it receives a positive acknowl-
edgment for the previous packet, (2) go-back-N, which resends all pack-
ets from the point at which an error was observed, and (3) selective
repeat, which resends only the packets that have errors. Not resending
packets that do not have an error saves wireless bandwidth but can
require an arbitrarily large buffer. The choice between FEC and ARQ
depends on a number of factors, including the error distribution on the
wireless channel, whether bursty or uniform error patterns exist, and
the probability of bits being erroneous. These two techniques can be used
together as a hybrid approach or individually.

11.3.2 Agreement among sensor nodes
(Reliability of measurements)

Wireless sensor nodes need to operate under a wide variety of environ-
mental conditions. In addition, wireless sensor nodes are likely to be rel-
atively inexpensive. For these reasons, the sensor readings may have a
wide variability in accuracy (Elnahrawy and Nath, 2003). Faulty nodes
are discussed in the next section, so in this section we will confine our
discussion to sensor readings that are inaccurate because of limitations
in the sensing materials. These could be viewed as transient faults, but
we consider them to be simply the inherent nature of working with
analog sensors; accuracy in a digital sense just is not possible. For this
reason, there is an advantage in using redundant sensors—sensors with
overlapping areas of sensing—to measure the target phenomenon. These
sensors can then collaborate to improve the accuracy of the resulting
readings. In other words, by reaching a consensus on interesting read-
ings, sensors can more reliably transfer data to the base station. The

30 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 30

other advantage of locally reaching consensus, of course, is that nodes
expend less energy in the network in transmitting the sensor readings
to the base station.

For wireless sensor networks that have been organized based on hier-
archical clustering, there is a straightforward approach to performing
consensus because the cluster head simply can combine the information
received from each cluster member. The results will then be forwarded
up the hierarchy to the base station. The drawback to this approach is
that events of interest do not necessarily occur within the boundary of
a single cluster. Thus the event may be sensed by nodes in multiple clus-
ters, leading to the transfer of multiple packets, one from each cluster,
back to the base station. Depending on the amount of redundancy near
the event and how this redundancy is partitioned among adjacent clus-
ters, the clusters may obtain different consensus sensor readings. This
could result in the base station receiving multiple readings for the same
event and then needing to resolve this discrepancy after receiving these
packets. To combat this problem, a recent proposal has been to cluster
the wireless sensor network based on the sensing capabilities of the
sensors (Kochhal, Schwiebert, and Gupta, 2003). If this is done suc-
cessfully, the boundaries between adjacent sensors should be better
structured to reduce the number of clusters that need to participate in
reaching consensus after an event is sensed. The essential idea is to
refrain as far as possible from splitting sensors that are very close into
separate clusters. Thus events that are near a sensor are likely to be
observed primarily by sensors in the same cluster.

When the wireless sensor network is not organized into clusters,
there are essentially two options—groups can be formed locally on an
ad hoc basis as events occur (Kumar, 2003), or the groups can be formed
ahead of time to build consensus when events occur (Gupta and Birman,
2002). An example can best illustrate the difference between these two
options. If the groups are preformed, then we have the grouping shown
in Fig. 11.8, where the sensors have been partitioned into a grid, and
each sensor belongs to the group composed of the sensors in this grid.
When an interesting sensor reading is obtained, the other sensors in
the same group are consulted, and a consensus is generated with these
sensors. The result is then forwarded to the base station.

Events that occur near a grid edge present challenges for reaching
consensus. Either data must be exchanged between adjacent groups, or
multiple partial results must be sent toward the base station for further
processing. On the other hand, if the group is not formed ahead of time,
then when an interesting sensor reading occurs, a node queries its
neighbors, those with the same sensing range, for their current read-
ings. Fig. 11.9 demonstrates this possibility. An event occurs at some
location within the sensor network. A group consisting of the sensors

Approaches and Solutions 31

Richard_CH11.qxd 8/11/04 3:26 PM Page 31

F
ig

u
re

 1
1.

8
A

pr
io

ri
 g

ro
u

pi
n

g
of

 w
ir

el
es

s
se

n
so

rs
.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

G
ro

u
p

 1
G

ro
u

p
 2

G
ro

u
p

 3
G

ro
u

p
 4

32

Richard_CH11.qxd 8/11/04 3:26 PM Page 32

F
ig

u
re

 1
1.

9
E

ve
n

t-
tr

ig
ge

re
d

gr
ou

pi
n

g
of

 w
ir

el
es

s
se

n
so

rs
.

W
ire

le
ss

 li
nk

to
 a

 g
at

ew
ay

B
as

e
st

at
io

n

S
en

so
r

no
de

S
en

so
r

no
de

C
h

o
se

n
 C

lu
st

er
 H

ea
d

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
de

S
en

so
r

no
deS
en

so
r

no
de

K
A

B
O

O
M

!!!

33

Richard_CH11.qxd 8/11/04 3:26 PM Page 33

within the circle shown forms with one of these sensors serving as the
cluster head. Although the problem of resolving events along grid edges
is avoided, some additional delay may be experienced. The nodes then
produce consensus by consulting these sensors, and the agreed-on read-
ing is forwarded to the base station.

The main advantage of forming a group only after an event occurs is
that the sensors that are able to observe this event reach consensus
among themselves and forward this result to the base station. A second
advantage is that the sensors do not need to maintain a great deal of
state information. For example, there is no need to maintain a list of sen-
sors within the group because the group forms only after the event
occurs. The sensors then reach consensus with the neighbors, but these
neighbors can change over time. For example, some sensors may be
sleeping or have exhausted their power supplies. Thus a sensor with an
interesting reading needs to coordinate only with active neighboring sen-
sors. For wireless sensor networks that have frequent changes in active
sensors, maintaining state information on the groups has limited use-
fulness. The primary disadvantage of this approach is that there is
some delay in forming the consensus. Since sensors may not know their
neighbors, the group formation must be conducted after an event is
observed. Only after the group has been formed on the fly can the con-
sensus-generation process begin. Although there is some added delay in
generating consensus, forming the groups after events occur may enable
a more accurate consensus value to be generated because all the nodes
that could have observed the event are participants in the consensus-
forming process.

11.3.3 Dealing with dead or faulty nodes

There are a number of strategies for dealing with dead or faulty nodes. Of
course, these nodes cannot be used, but simply ignoring these nodes and
operating the network without them may not be acceptable. For example,
the dead or faulty nodes may leave holes in the sensor network coverage
that prevent the wireless sensor network from performing the desired
functions in at least part of the area of interest. Manually repairing or
replacing the sensor nodes generally is not an attractive option unless the
sensors have a relatively long life span or are costly. When the sensors have
been deployed in a remote or inhospitable location, manual replacement
may be impossible. Even when it is physically possible to repair or replace
the sensors, this may not be a very cost-effective or scalable option.

Rather than replacing or repairing sensors, a better option might be
to deploy extra sensors—in effect, creating an initial sensor network that
is more dense than necessary. These extra sensors then can sleep until
they are needed. For wireless sensors that have renewable energy

34 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 34

sources, the sensors could recharge while sleeping. By rotating the
active state and sleep state among the wireless sensor nodes, the over-
all lifetime of the sensor network could be extended in proportion to the
additional sensors that are deployed. This has the added advantage of
not leaving portions of the sensor network without adequate coverage
from the time of failure until the time of repair.

Because faults are somewhat unpredictable, deploying additional sen-
sors uniformly in the wireless sensor network may not be adequate.
The failure or depletion of energy may not be uniform. For example, sen-
sors closer to the base station may perform more communication and
thus consume energy more rapidly. Even if the additional sensors are
not deployed in a nonuniform pattern, such as placing more sensors
close to the base station, the problem will not be solved completely.
Other instances of sensor failure patterns may be unpredictable when
the sensors are deployed. For example, the events concentrated in a
particular region of the sensor network may cause these sensors to con-
sume significantly more power than other sensors. Another example
would be when most of the sensors in one region are destroyed. As an
example, consider an elephant-tracking application. If a herd of ele-
phants happens to stomp through a portion of the sensor network,
destroying most of the sensors, the extra sensors that have been
deployed will not prevent the sensor coverage from lapsing in this region.
An avalanche, mudslide, or flash flood could produce a similar result.
An additional localized deployment may be used to recover from such
situations, but there is another option.

Mobile sensors could be used to recover from the scenarios such as
those just described, where an unanticipated catastrophe occurs in one
region of the sensor network (Zou and Chakrabarty, 2003). The extra
sensors then could move to the depleted region to fill the hole. Locally
coordinating this movement within the sensor network would be quite
challenging, so participation of the base station or some other central
node in determining when and where to move these extra sensors seems
the most practical approach.

11.4 Energy Efficiency

As pointed out repeatedly in the past few chapters, limited energy is one
of the primary distinguishing characteristics of wireless sensors.
Because wireless communication consumes a relatively large percent-
age of the power, most of the solutions that have focused on improving
energy efficiency have addressed reducing the number of messages gen-
erated. However, because wireless sensors have additional components
and energy is such a precious commodity, it makes sense to optimize
sensor design and operations across all functions.

Approaches and Solutions 35

Richard_CH11.qxd 8/11/04 3:26 PM Page 35

11.4.1 Uniform power dissipation

One method of ensuring that the sensor network performs its functions
as long as possible is to maximize the lifetime of the sensor network.
Some authors have defined the network lifetime as the time until the
first node dies (Chang and Tassiulas, 2000; Singh, Woo, and
Raghavendra, 1998), but this is not a particularly useful metric for
wireless sensor networks. Because a large wireless sensor network mon-
itors a relatively large region and there generally is some overlap among
the sensors, the death of a single sensor does not significantly reduce
the performance of the typical wireless sensor network. In fact, if a
single sensor failure did prevent the sensor network from fulfilling its
intended task, then the wireless sensor network has no fault tolerance.

Instead, a more reasonable metric is when the sensor network can no
longer perform its intended function. Although it is difficult to define this
precisely for most applications, designing the protocols so that all the
sensors die at roughly the same time or so that sensors die in random
locations instead of in specific regions extends the lifetime of the entire
sensor network as long as possible. Achieving uniform energy con-
sumption rates is possible for sensor networks that provide periodic
feedback to the base station, but for sensor networks that provide only
event-driven feedback, organizing the protocols to balance the lifetime
of all the sensors is probably impossible.

It is necessary to balance the energy consumption for wireless com-
munication in order to achieve uniform power dissipation. This means
that a balance must be found between sending messages on a hop-by-hop
basis from the sensor nodes to the base station and sending directly to
the base station. Clustering seems like an attractive solution to this
problem, provided that the cluster heads are rotated in a logical manner
to balance the energy consumption among the sensors. However, one
drawback to clustering is that some of the messages are sent away from
the base station in order to reach the cluster head. The information from
this sensor then must be sent from the cluster head to the base station,
resulting in a larger total distance for the wireless communication. Since
the energy used for a wireless communication increases with at least the
square of the distance, over time this could become a significant ineffi-
ciency in the communication protocol. An approach that achieves a better
balance between the two extremes of transmitting directly to the base
station and using hop-by-hop communication without the inefficiencies
of communicating with the cluster head would be attractive.

In practice, clustering works well when the messages are combined. In
other words, when a relatively high percentage of data aggregation is per-
mitted, sending to the cluster head is not likely to reduce the efficiency
significantly. Protocols such as LEACH (Heinzelman, Chandrakasan,
and Balakrishnan, 2002) and PEGASIS (Lindsey, Raghavendra, and

36 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 36

Sivalingam, 2002) are attractive options under these circumstances. On
the other hand, the overhead in sending away from the base station in
order to reach the cluster head can be costly when little data aggregation
is possible. Instead, sending either directly to the base station or for-
warding to the neighbor nearest to the base station, depending on the
power available, could reduce the overall energy consumption and yield
nearly uniform power dissipation. Although some overhead is involved in
this approach because the remaining energy must be gathered from the
neighbors, the energy consumption of selecting and rotating cluster heads
may exceed this overhead. This is especially the case when nodes can
gather this information by promiscuous monitoring of transmissions
by neighboring nodes.

11.4.2 Sensor component power
management

A second option for reducing energy consumption is to decrease the
power consumption of a sensor node by powering down various compo-
nents of a wireless sensor (Sinha and Chandrakasan, 2001). For exam-
ple, power is consumed by a wireless transceiver whether a sensor is
receiving a message or the transceiver is idle, although the power con-
sumption in both cases is less than the energy consumed for transmit-
ting a packet (Chen, Sivalingam, and Agrawal, 1999). However, since
wireless sensors send data only sporadically, the power consumption
could be very high for leaving the transceiver in an idle state compared
with powering down the transceiver (Rabaey et al., 2000). Table 10.1
shows the energy consumed by a few wireless transceivers in each of
these three modes.

If a sensor node is sleeping, turning off the wireless transceiver saves
a significant fraction of the power. Powering down the sensors and the
processor, except for a low-power watchdog process, can extend the life-
time of a wireless sensor for years. However, even when the sensor
remains operational, powering down the transceiver can increase the life
of the sensor significantly. Many wireless sensor nodes provide a range
of power settings that determine which components are powered down
and at what level each component is powered down.

Sensor networks should avoid protocols that require turning the trans-
ceiver on and off repeatedly over short intervals of time. Because addi-
tional energy is consumed in turning the wireless transceiver back on,
more energy is consumed than a naive model of the energy consump-
tion would predict (Sinha and Chandrakasan, 2001). Instead, the energy
consumption of powering down the transceiver and then powering the
transceiver back up should be included in the model. For transceivers
that can be powered off for a significant fraction of the time, turning off

Approaches and Solutions 37

Richard_CH11.qxd 8/11/04 3:26 PM Page 37

the transceiver makes sense. However, if the transceiver must be on a
significant fraction of the time, or if the intervals between being ready
to transmit or receive a packet are short, then turning the sensor off
actually might increase the total power consumed.

Some wireless transceivers have a number of power levels, which
allow a relatively modest sleeping mode from which the sensor could be
returned to full power with less energy. Choosing the best sleep mode
for a given sensor is an optimization problem that can be difficult to solve
in practice unless the sleeping times can be approximated with a high
degree of accuracy and the energy consumption model is accurate.
However, an optimal solution may not be necessary. Instead, an approx-
imate solution that yields a significant percentage of the optimal energy
savings could be adequate for many applications.

11.4.3 MAC layer protocols

Turning off the wireless transceiver or other sensor components is a
physical-layer optimization for saving energy. However, there are other
layers of the protocol stack where energy can be saved. For example,
energy also can be saved at the MAC layer by scheduling the wireless
transmissions. Two sources of overhead can be addressed at the MAC
layer. The first is the communication for scheduling the wireless chan-
nel. The second is the energy wasted when packet collisions occur and
packets must be retransmitted.

Wireless computer communication on typical wireless devices com-
monly uses the IEEE 802.11 protocol (ANSI, 1999). This protocol option-
ally sends Request-to-Send (RTS) and Clear-to-Send (CTS) packets to
schedule the wireless channel. The other choice is to listen for the avail-
ability of the channel prior to transmitting a packet. If the channel is
busy, then a node that wishes to send uses an exponential back off to
request the wireless channel again at some point in the future. In order
to reduce collisions, all nodes need to have their transceivers on so that
they can detect the requests from other nodes. This means that even
some nodes that are not planning to transmit or receive a message
cannot turn off their transceivers or else delay transmission after turn-
ing their transceivers back on for some initial listening. In addition, the
hidden terminal and exposed terminal problems mean that even with
the RTS and CTS scheduling mechanisms, collisions still can occur. For
these reasons, IEEE 802.11-type scheduling protocols are not popular
for wireless sensor networks. Instead, a different protocol for wireless
sensors may be more appropriate.

The most common approach for wireless sensor networks is to use a
time division multiple access (TDMA) protocol (Pottie and Kaiser, 2000;
Sohrabi et al., 2000). A TDMA protocol divides the wireless channel into

38 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 38

different time segments. In each transmission phase, a number of reser-
vation mini-slots are used to reserve each of the transmission slots.
Sensors can indicate whether or not they wish to transmit a message
during the scheduling time segment. If a sensor is successful in acquir-
ing one of the time slots, then the message can be transmitted during this
time interval. One advantage of using a TDMA protocol is that nodes that
are not planning to send or receive a packet need to have their transceiver
on only during the reservation time slot for the purpose of seeing if other
sensors are sending a packet to them. The second advantage is that col-
lisions are avoided, except for relatively small reservation packets, so that
the wireless bandwidth can be used efficiently. Eliminating packet
retransmissions and allowing inactive sensors to turn off their trans-
ceivers for most of the time can save significant power. However, TDMA
protocols require that nodes be reasonably well synchronized in order to
schedule transmissions during the correct time slot, to ensure that trans-
missions occur during the correct time slot, and to ensure that the
receiver is prepared to receive the message when the transmitter starts
the transmission. Since wireless sensor networks usually use hop-by-hop
communication or need to schedule communication among only a rela-
tively small set of cluster heads, synchronization on a local basis could
be sufficient for achieving the necessary level of time synchrony among
the senders and receivers.

11.4.4 Tradeoffs between performance
and energy efficiency

Energy efficiency also can be obtained at higher layers of the protocol
stack, but this usually requires that the application accept more delay.
One example is synchronizing the wireless sensors. Maintaining syn-
chronous clocks is very useful when attempting to consolidate readings
from multiple sensors—otherwise, it is difficult to determine whether
two sensors observed the same event or two distinct events that occurred
within a short period of time. However, keeping the sensors synchronized
is not possible without a large number of messages and the resulting
communication overhead. Instead, the sensors could maintain only loose
synchronization and generate tight clock synchronization only after an
interesting event occurs (Elson and Estrin , 2001). Although this is a fea-
sible solution in many cases, some added delay is encountered. This
additional delay could result in a performance penalty for some real-time
applications but also offers significant energy savings.

Another approach to realizing energy savings in a wireless sensor
network is to first aggregate data in the wireless sensor network and
then to send only the aggregated sensor readings to the base station.
This can result in significant energy savings for large sensor networks

Approaches and Solutions 39

Richard_CH11.qxd 8/11/04 3:26 PM Page 39

when the size of the aggregated sensor readings is comparable with the
size of a single packet. However, aggregating packets can lead to the loss
of information, which can have a negative impact on the performance
of the sensor application. In addition, waiting for multiple packets to
arrive so that they can be aggregated introduces delay into the trans-
mission process. This delay can produce significant energy savings but
does involve a reduction in the application performance for real-time
sensor applications.

In essence, any energy-efficiency protocol, whether energy-efficient
routing or application-layer protocols, involves some increased delay, loss
of accuracy, or other performance penalty. Balancing the energy savings
against the performance penalties and achieving the application require-
ments are one of the challenges in designing wireless sensor network-
ing protocols.

11.5 Summary

In Chapter 11, we have reviewed many wireless sensor networking pro-
tocols that have been proposed in the past few years. From this review,
we see the novel approaches the researchers have taken to meeting
both the requirements and demands of a wireless sensor network. The
protocols for using sensor nodes and networking them efficiently are rel-
atively new. Although protocols for these problems will continue to
improve and new ideas will be developed, we have seen many general
approaches. Future research will improve on these protocols, but this
progress will benefit from knowledge of the existing protocols. Therefore,
the protocols presented in Chapter 11 are an attractive base upon which
to build further research in wireless sensor networking.

References

ANSI/IEEE Standard 802.11, Wireless LAN Medium Access Control (MAC) Sublayer and
ISO/IEC Standard 8802-11, Physical Layer Specifications. 1999.

Bulusu, N., J. Heidemann, and D. Estrin, “GPS-Less Low-Cost Outdoor Localization for
Very Small Devices,” IEEE Personal Communications 7(5):28, 2000.

Capkun, M., and J. Hubaux, “GPS-Free Positioning in Mobile Ad-Hoc Networks,” in
Proceedings of the 34th Annual Hawaii International Conference on System Science;
Island of Maui, IEEE Computer Society, 2001, p. 3481.

Carman, D. W., P. S. Kruss, and B. J. Matt, “Constraints and Approaches for Distributed
Sensor Network Security,” in NAI Labs Technical Report 00-010, 2000.

Chang, J., and L. Tassiulas, “Energy Conserving Routing in Wireless Ad-Hoc Networks,”
in Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), Vol. 1; Tel-Aviv, Israel, IEEE Computer Society, 2000, p. 22

Chen, J.-C., K. Sivalingam, and P. Agrawal, “Performance Comparison of Battery Power
Consumption in Wireless Multiple Access Protocols,” Wireless Networks 5(6):445, 1999.

Chevallay, C., R. E. Van Dyck, and T. A. Hall, “Self-Organization Protocols for Wireless
Sensor Networks,” in 36th Annual Conference on Information Sciences and Systems;
Princeton, NJ, Princeton University Press, 2002. (Published in CD)

40 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 40

Elnahrawy, E., and B. Nath, “Cleaning and Querying Noisy Sensors,” in ACM
International Workshop on Wireless Sensor Networks and Applications; San Diego, CA,
ACM, 2003, p. 78.

Elson, J., and D. Estrin, “Time Synchronization for Wireless Sensor Networks,” in
International Parallel and Distributed Processing Systems (IPDPS) Workshop on
Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing;
San Francisco, CA, IEEE Computer Society, 2001, p. 1965.

Elson, J., L. Girod, and D. Estrin, “Fine-Grained Time Synchronization Using Reference
Broadcasts,” in Proceedings of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI); Boston, MA, Usenix Association, 2002, p. 147.

Estrin, D., R. Govindan, J. Heidemann, and S. Kumar, “Next Generation Challenges:
Scalable Coordination in Sensor Networks,” in International Conference on Mobile
Computing and Networking (MobiCom); Seattle, WA, ACM, 1999, p. 263.

Finn, G., “Routing and Addressing Problems in Large Metropolitan-Scale Internetworks,”
Technical Report ISI Research Report ISI/RR-87-180, University of Southern California,
Los Angeles, CA, March 1987.

Ganeriwal, S., R. Kumar, and M. Srivastava, “Timing-Sync Protocol for Sensor Networks,”
in ACM Conference on Embedded Networked Sensor Systems (SenSys); Los Angeles, CA,
ACM, 2003, p. 138.

Girod, L., V. Bychkovskiy, J. Elson, and D. Estrin, “Locating Tiny Sensors in Time and
Space: A Case Study,” in IEEE International Conference on Computer Design: VLSI in
Computers and Processors; Freiburg, Germany, IEEE Computer Society, 2002, p. 214.

Goel, S., and T. Imielinski, “Prediction-Based Monitoring in Sensor Networks: Taking
Lessons from MPEG,” Computer Communications 31(5):82, 2001.

Gupta, I., and K. Birman, “Holistic Operations in Large-Scale Sensor Network Systems:
A Probabilistic Peer-to-Peer Approach,” in International Workshop on Future Directions
in Distributed Computing (FuDiCo). Lecture Notes in Computer Science 2584:180, 2003.

Heinzelman, W., “Application-Specific Protocol Architectures for Wireless Networks,”
Ph.D. thesis, Massachusetts Institute of Technology, June 2000.

Heinzelman, W., A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,” IEEE Transactions on Wireless
Communication 1(4):660, 2002.

Intanagonwiwat, C., R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks,” in International Conference
on Mobile Computing and Networking (MobiCom); Boston, MA, ACM, 2000, p. 56.

Jacobson, V., “Congestion Avoidance and Control,” ACM SIGCOMM Computer
Communication Review 25(1):157,1995.

Jamshaid, K., and L. Schwiebert, “SEKEN (Secure and Efficient Key Exchange for Sensor
Networks),” in IEEE Performance Computing and Communications Conference
(IPCCC); Phoenix, AZ, IEEE Computer Society, 2004, p. 415.

Kintner-Meyer, M., and M. R. Brambley, “Pros and Cons of Wireless,” ASHRAE (American
Society of Heating, Refrigerating and Air-Conditioning Engineers) Journal 44(11):54,
2002.

Kochhal, M., L. Schwiebert, and S. K. S. Gupta, “Role-Based Hierarchical Self-
Organization for Ad Hoc Wireless Sensor Networks,” in ACM International Workshop
on Wireless Sensor Networks and Applications; San Diego, CA, ACM, 2003, p. 98.

Kumar, M., “A Consensus Protocol for Wireless Sensor Networks,” M.S. thesis, Wayne
State University, Detroit, MI, August 2003.

Lang, T., and D. Floreani, “Performance Evaluation of Different TCP Error Detection
and Congestion Control Strategies over a Wireless Link,” ACM SIGMETRICS
Performance Evaluation Review 28(3):30, 2000.

Lettieri, P., C. Schurgers, and M. B. Srivastava, “Adaptive Link Layer Strategies for
Energy Efficient Wireless Networking,” Wireless Networks 5(5):339, 1999.

Lindsey, S., C. Raghavendra, and K. M. Sivalingam, “Data Gathering Algorithms in
Sensor Networks Using Energy Metrics,” IEEE Transactions on Parallel and
Distributed Systems 13(9):924, 2002.

Martincic, F., and L. Schwiebert, “Distributed Perimeter Detection in Wireless Sensor
Networks,” in Networking Wireless Sensors Lab Technical Report WSU-CSC-NEWS/04-
TR01, Detroit, MI, 2004.

Approaches and Solutions 41

Richard_CH11.qxd 8/11/04 3:26 PM Page 41

Meguerdichian, S., F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage Problems
in Wireless Ad-Hoc Sensor Networks,” in Proceedings of the 20th International Annual
Joint Conference of the IEEE Computer and Communications Societies INFOCOM;
Anchorage, Alaska, IEEE Computer Society, 2001, p. 1380.

Mills, D. L., “Internet Time Synchronization: The Network Time Protocol,” in Z. Yang and
T. A. Marsland (eds.), Global States and Time in Distributed Systems. New York, NY:
IEEE Computer Society Press, 1994.

Niculescu, D., and B. Nath, “Trajectory Based Forwarding and Its Applications,” in
International Conference on Mobile Computing and Networking (MobiCom); San Diego,
CA, ACM, 2003a, p. 260.

Niculescu, D., and B. Nath, “Ad Hoc Positioning System (APS),” in IEEE Global
Telecommunications Conference (Globecom) 2001, Vol. 5; San Antonio, TX, IEEE
Communications Society, 2001, p. 2926.

Niculescu, D., and B. Nath, “Localized Positioning in Ad Hoc Networks,” in IEEE
International Workshop on Sensor Network Protocols and Applications; Anchorage,
Alaska, IEEE, 2003b, p. 42.

Patwari, N., and A. Hero, “Using Proximity and Quantized RSS for Sensor Localization
in Wireless Networks,” in ACM International Workshop on Wireless Sensor Networks
and Applications; San Diego, CA, ACM, 2003, p. 20.

Pottie, G. J., and W. J. Kaiser, “Wireless Integrated Network Sensors,” Communications
of the ACM 43(5):51, 2000.

Rabaey, J., M. Ammer, J. da Silva, D. Patel, and S. Roundy, “PicoRadio Supports Ad Hoc
Ultra-Low Power Wireless Networking,” IEEE Computer Magazine 33(7):42, 2000.

Salhieh, A., J. Weinmann, M. Kochhal, and L. Schwiebert, “Power Efficient Topologies for
Wireless Sensor Networks,” in International Conference on Parallel Processing;
Valencia, Spain, IEEE Computer Society, 2001, p. 156.

Salhieh, A., and L. Schwiebert, “Evaluation of Cartesian-Based Routing Metrics for
Wireless Sensor Networks,” in Communication Networks and Distributed Systems
Modeling and Simulation (CNDS); San Diego, CA, The Society for Modeling and
Simulation International, 2004.

Savarese, C., J. Rabaey, and J. Beutel, “Locationing in Distributed Ad-Hoc Wireless Sensor
Networks,” in Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Vol. 4; Salt Lake City, Utah, IEEE, 2001, p. 2037.

Savvides, A., C.-C. Han, and M. B. Srivastava, “Dynamic Fine-Grained Localization in Ad-
Hoc Networks of Sensors,” in International Conference on Mobile Computing and
Networking (MobiCom); Rome, Italy, ACM, 2001, p. 166.

Schurgers, C., G. Kulkarni, and M. B. Srivastava, “Distributed On-Demand Address
Assignment in Wireless Sensor Networks,” IEEE Transactions on Parallel and
Distributed Systems 13(10):1056, 2002.

Shang, Y., W. Ruml, Y. Zhang, and M. Fromherz, “Localization from Mere Connectivity,”
in 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing;
Annapolis, Maryland, ACM, 2003, p. 201.

Singh, S., M. Woo, and C. Raghavendra, “Power-Aware Routing in Mobile Ad Hoc
Networks,” in International Conference on Mobile Computing and Networking
(MobiCom); Dallas, TX, ACM, 1998, p. 181.

Sinha, A., and A. Chandrakasan, “Dynamic Power Management in Wireless Sensor
Networks,” IEEE Design and Test of Computers 18(2):62, 2001.

Sohrabi, K., J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for Self-Organization of a
Wireless Sensor Network,” IEEE Personal Communications 7(5):16, 2000.

Zou, Y., and K. Chakrabarty, “Sensor Deployment and Target Localization Based on
Virtual Forces,” in Proceedings of the 22nd International Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM); San Francisco, CA,
IEEE Computer Society, 2003, p. 1293.

42 Chapter Eleven

Richard_CH11.qxd 8/11/04 3:26 PM Page 42

Chapter

12
Wireless Security

This chapter presents problems relating to computer security. We first
discuss the traditional problems of security, and then we focus on how
mobile and wireless systems introduce some additional problems and
make some traditional problems more difficult. We conclude with a dis-
cussion of ad hoc networks and electronic commerce. Chapter 13 will
describe how these problems are addressed.

12.1 Traditional Security Issues

In this section we present the traditional security criteria. While these
apply to nonmobile computing as well, they are important for mobile
computing not only because the same risks are present but also because
certain properties of mobile computing increase some of these risks,
such as eavesdropping in a wireless network. Below we introduce the
major categories that describe security problems, specifically integrity,
confidentiality, nonrepudiation, and availability.

12.1.1 Integrity

Integrity is the first aspect of providing security we describe. Integrity
can refer to either system integrity or data integrity. A system provides
integrity if it performs its intended function in an unimpaired manner,
free from deliberate or inadvertent unauthorized manipulation of the
system. Data maintains its integrity if the receiver of the data can verify
that the data have not been modified; in addition, no one should be able
to substitute fake data.

As an example of the need for data integrity, consider a company that
has a payroll database that determines how much each employee is

1

Richard_Ch12.qxd 8/17/04 2:09 PM Page 1

paid. If an unethical employee can gain access to the database and
modify it, he can cause the company to write him paychecks of any
amount. The company has a strong motivation to maintain integrity of
this data. As another example, consider a law enforcement officer who
seizes a disk from a suspect. The officer will need to show that the
integrity of the disk’s data was maintained if he wishes to submit it as
evidence to a court.

12.1.2 Confidentiality

Confidentiality refers to data and is provided when only intended recip-
ient(s) can read the data. Anyone other than the intended recipients
either cannot retrieve the data because of access mechanism protec-
tions, or other means, such as encryption, protect the data even if they
are stolen or intercepted.

In the preceding example, management of the company with the pay-
roll database may not want every employee to know the CEO’s salary.
Only certain people should be able to have access to this information.
Sometimes even the metadata need to have confidentiality preserved.
The sender and recipients of an e-mail message may need to be protected
as well as the contents of the message. For example, a person may not
wish others to know that he subscribes to a newsletter for people who
suffer from a particular disease.

12.1.3 Nonrepudiation

Nonrepudiation is a property of data and means that the sender should
not be able to falsely deny (i.e., repudiate) sending the data. This prop-
erty is important for electronic commerce because vendors do not want
clients to be able to deny that they made purchases and thus must pay
for any services or goods they received.

Currently, credit card companies lose billions of dollars to fraud, and
those losses eventually wind up as charges to legitimate customers, as
various charges to cover the “cost of doing business” for the company.
Any online vendor would want nonrepudiation to prevent customers
from claiming that they never made a purchase. Similarly, a law
enforcement investigator who finds an incriminating e-mail message
sent from a suspect must be able to prevent the suspect from denying
that he sent the message, claiming it was a forgery by someone trying
to frame him.

12.1.4 Availability

Availability is a property of systems where a third party with no access
should not be able to block legitimate parties from using a resource.

2 Chapter Twelve

Richard_Ch12.qxd 8/17/04 2:09 PM Page 2

Denial-of-service (DoS) attacks are fairly commonplace on the Internet.
They can involve one site flooding another with traffic or one site send-
ing a small stream of packets designed to exploit flaws in the operat-
ing system’s software that take the site down (either crash or hang the
operating system or disable any network communication to or from
the site).

There have been numerous DoS attacks; notable ones include “syn
flood,” “smurf,” “ping of death,” and “teardrop.” The “syn flood” attack
(http://www.cert.org/advisories/CA-1996-21.html) creates many “half-
open” Transmission Control Protocol (TCP) connections so that the target
computer no longer accepts any new connections. The “smurf” attack
(http://www.cert.org/advisories/CA-1998-01.html) sends an Internet
Control Message Protocol (ICMP) packet to a broadcast address result-
ing in a large number of replies, flooding a local network. The “ping of
death” attack (http://www.cert.org/advisories/CA-1996-26.html) crashes
target machines by sending them ping packets larger than they can
handle. The “teardrop” attack crashes machines that improperly han-
dled fragmented TCP/IP packets with overlapping Internet protocol (IP)
fragments.

The Computer Emergency Response Team Coordination Center
(CERT/CC) presents information on various DOS attacks (http://www.
cert.org/tech_tips/denial_of_service.html). Similarly, SecurityFocus’s
bugtraq (http://www.securityfocus.com/archive/1] and SecuriTeam
(http://www.securiteam.com/) are good forums for information on these
problems. Many vulnerabilities are presented in [Hacking Exposed].

Distributed denial-of-service (DDoS) attacks are on the rise. Similar
to a DoS attack, the DDoS attack sends a flood of traffic to disable a site.
Unlike the DoS attack, though, the DDoS attack employs a large number
(hundreds or more) of machines to participate in the attack. In a DoS
attack, network engineers can configure firewalls and routers to block
traffic from the offending machine. In a DDoS attack, blocking the mali-
cious traffic becomes difficult because there are so many machines
involved. The attacking machines typically are zombies, compromised
machines unrelated to the attacker that run software for the attacker.
By using zombies, attackers hide their trail because the zombies typi-
cally have all logging disabled and hide most of their connections to the
attacker.

Any machine can be a zombie, from a business’s machine, to a labo-
ratory full of PCs, to a home user with a cable modem. Home users are
popular targets because high-speed home Internet connections such as
cable modems and digital subscriber line (DSL) connections allow their
computers to be online continuously, many home computers are poorly
protected, and few home users know how to determine if their machine
is running some malicious programs in the background. Any individual

Wireless Security 3

Richard_Ch12.qxd 8/17/04 2:09 PM Page 3

flow from a DDoS attack may be unnoticeable—it is the aggregate flow,
directed at a single site, that becomes devastating.

Another aspect of attacks against availability is that the effects can
either be temporary or permanent. Temporary attacks only prevent
system availability while the attack occurs, whereas a permanent attack
keeps the system down even after the attack ends. A permanent attack
might crash the operating system (or the networking parts of the oper-
ating system) by sending a single malformed packet that keeps the
system down until an operator reboots it. Alternatively, if the system
runs on batteries, the attack may disable the system permanently by
causing it to waste all its power on useless transmissions. In some cases
the batteries are not intended to be replaced. See Section 13.2.2 for
more details on resource-depletion/exhaustion attacks.

In January 2003, the Sapphire/Slammer SQL worm used a known
buffer overflow vulnerability in Microsoft’s SQL server to propagate
itself across the Internet. It spread extremely rapidly, doubling the
number of infected machines approximately every 8.5 seconds. After
3 minutes the propagation rate flattened out because of the adverse
effect it had on the Internet by consuming nearly available bandwidth.
Whether intended or not, it caused a massive DDoS attack on the
Internet [Slammer].

12.2 Mobile and Wireless Security Issues

Until now, we discussed general security issues that apply to all systems.
We now focus on some of the problems that are either unique to or exac-
erbated by mobile computing, especially wireless systems. We will dis-
cuss detectability, limited resources, interception, and theft-of-service
problems.

12.2.1 Detectability

One problem associated with wireless communication is detectability.
Nonmobile users typically do not face this problem. In some circum-
stances, the mobile users do not want their wireless system to be
detected, and this is part of the reason they are mobile. The best exam-
ple of this is a military one, such as a soldier in the field not wanting
the enemy to detect the presence of his mobile communication system
and hence his physical location.

Even if strong encryption is used and the data cannot be deciphered,
the mere presence of the signal can put the user at risk. If the enemy
can detect the signal and locate its position, the device can be jammed
by local radio frequency (RF) interference, the soldier can be captured
by troops sent to that location, or he can be killed by remote weapons
that target that location (e.g., bombs, artillery shells, etc.).

4 Chapter Twelve

Richard_Ch12.qxd 8/17/04 2:09 PM Page 4

For maximum safety, the signal should not be able to be detected. It
can change frequencies, try to blend in with background signals, use very
directional antennas, or use the minimal power required for reception.

12.2.2 Resource depletion/exhaustion

Another problem unique to mobile systems is that the resources often
are very limited. To keep the mobile unit small and lightweight, the
designers often make compromises. The CPU speed may be an order of
magnitude or more slower than that of conventional desktop machines.
The network bandwidth may be similarly limited.

The biggest constraint on these systems is the battery. Often these sys-
tems run on internal batteries because AC power is not available owing
to location (e.g., being outside) or because they are moving continually
and would require a very long and impractical extension cord. The
normal lifespan of the batteries in such devices may be measured in
hours or weeks, but they are finite. Additionally, their lifespan is related
to their activity, so the more a unit must compute and transmit, the
shorter the time its battery lasts.

This leaves these devices open to resource-depletion and exhaustion
attacks. The former involves an attack that shortens the lifespan of the
battery, causing it to fail “naturally” at a later date but much sooner than
it would normally. The latter involves an attack that consumes (and
wastes) all the power in the battery, leaving the unit unable to function.
In ad hoc networks, these attacks can cause key routing nodes in the
network to fail, leaving parts of the network unreachable.

12.2.3 Physical intercept problems

One major difference between wired and wireless systems is the ease of
physical intercept of the signal. In wireless systems, the signal is broad-
cast through the air, where any receiver can intercept it. This problem
is related to the detectability problem because once the signal can be dis-
cerned, the data can be read. In general, the approaches to mitigate this
problem involve directional antennas, low-power transmissions, and
frequency-hopping/spread-spectrum technology at the physical layer
and encryption techniques at higher layers. Later chapters will show
how this problem is handled by specific networks, such as personal and
local area networks.

12.2.4 Theft of service

A final problem we will discuss is theft of service. While this problem has
plagued computer systems seemingly forever, wireless systems are par-
ticularly prone to it. Normally, a system requires a user name and pass-
word to gain access to it. However, it is common to install wireless local

Wireless Security 5

Richard_Ch12.qxd 8/17/04 2:09 PM Page 5

area network systems simply by taking them “out of the box” and plug-
ging them into the network, and they “just work.” Typically, by default,
security settings are disabled, and if not, then the factory-set default pass-
words are commonly known. Unauthorized users simply need to be nearby,
and their computers will connect automatically to the wireless network,
get a dynamically assigned IP address, and put them on the Internet. It
is so simple that users may not realize that they are on the wrong network.
For example, a user may be sitting outside a coffee shop known to have a
public wireless Internet connection. A business next door also may have
a wireless network, and because of the user’s physical location, she may
have better reception to the next-door business’s wireless network and con-
nect to it, thinking that she is connecting to the coffee shop’s network. Of
course, this example assumes that the user has no malicious intent, nor
any knowledge of what network she is using. Much effort has been put
forth to document many of these networks, as we will see below.

12.2.5 War driving/walking/chalking

There is a whole class of war terms that originate from the term war
dialing. Back in the 1980s, before the widespread popularity of the
Internet, hackers and crackers would search for phone numbers with
modems attached to them by using programs that would dial every
number in an exchange and listen for the modem tones. The 1983 movie
War Games featured the use of war dialing by the main character.

Since then, as wireless local area networks gained popularity faster
than any awareness of any best practices in security, the new fad is to
find wireless networks. War driving is the wireless equivalent of war
dialing. The technique involves taking a computer with a wireless card
running some detection software [netstumbler, kismet, airsnort,
wardriving] and optionally a Global Positioning System (GPS) and driv-
ing around a city. The software detects the presence of wireless networks,
and the GPS gives the location for later reference. There are sites that
have composite maps built up of wireless access points and their pro-
tections, if any. Users can then look up the location of the nearest
Internet connection. Of course, the legality of this is questionable and
is beyond the scope of our discussion.

War walking and similar variants (e.g., war flying) reflect different
modes of transportation. In this case, the term refers to scanning for
wireless networks by using a lightweight computer (personal digital
assistant or palmtop or small laptop) and walking around an area. A
pedestrian often can get closer to the perimeter of a site than a vehicle
and can get a more accurate picture of wireless networks that bleed out
through the walls of buildings. On the other hand, war walking is slower
than war driving and covers a much smaller area individually.

6 Chapter Twelve

Richard_Ch12.qxd 8/17/04 2:09 PM Page 6

One other variant that started to become popular in 2002 is war
chalking, which is the practice of marking the presence of wireless net-
works with chalk either on sidewalks or on the sides of buildings. The
three symbols shown in Fig. 12.1 represent an open network, a closed
network, and a Wired Equivalent Privacy (WEP) password protected
network.

Between the war chalkers and the extensive databases to query on the
locations of open wireless networks on the Internet, the presence of wire-
less networks must be considered public knowledge. Administrators
cannot rely on any “security through obscurity” techniques to preserve the
anonymity of their networks or, worse, their network’s unprotected status.

12.3 Mobility

One of the essential characteristics of mobile computing is that the loca-
tions of the nodes change. Mobility provides many freedoms, but it also
increases several security risks. Dynamically changing routes, potential
lack of a trusted path, disconnected operation, and power limitations all
increase the security risks.

12.4 Problems in Ad Hoc Networks

Single-hop and multihop are terms to describe infrastructure versus ad
hoc–based networks. In the former, wireless stations communicate
directly with the base station, whereas ad hoc networks must propa-
gate messages from one wireless station to the next until they reach the

Wireless Security 7

W

Open
network

Closed
network

WEP
protected
network

Figure 12.1 War-chalking symbols.

Richard_Ch12.qxd 8/17/04 2:09 PM Page 7

destination or a boarder (typically the Internet). Ad hoc networks form
on the fly, without a fixed infrastructure.

Data in ad hoc networks typically pass through several other ad hoc
nodes. Typically, there is no guarantee as to the identity of these inter-
mediate nodes, so “man in the middle” attacks can be used to copy or
corrupt data in transit. Because nodes are mobile, the route between any
two nodes is dynamic, even if the endpoints are stationary.

12.4.1 Routing

There are several security risks associated with routing. The first is
spoofing, in which one node impersonates another. An example of this
type of attack is “ARP spoofing”, in which one machine responds to an
Address Resolution Protocol (ARP) request meant for another machine.
After doing so, traffic intended for the original machine is sent to the
impersonator. Another attack “ARP cache poisoning,” causes all traffic
to pass through a malicious node that permits “man-in-the-middle”
attacks in which the malicious node sees all traffic and can either silently
copy it or actively corrupt it as it passes through.

A route between two nodes can be disabled by two malicious nodes that
share a common segment along the route. In an ad hoc network, key
routing nodes can be disabled via a resource-exhaustion attack in this
manner.

12.4.2 Prekeying

We will cover encryption in Chapter 13, but one problem when using
encryption or authentication is key management, which involves creat-
ing, sharing, storing, and revoking encryption keys. Public key encryp-
tion (described in Section 13.2) is one way to avoid needing a key exchange.
If a symmetric key algorithm is used, then the two endpoints must agree
on a key, either via a key-exchange protocol, such as IKE or Diffie-
Hellman, [IKE, Diffie-Hellman or decide on a key a priori. Of course, if a
fixed key is used, then there is no easy way to handle compromised keys,
nor to change them periodically to avoid the risk of exposure through use.
For some applications, because of either network or processor limitations
or application constraints, a high-cost key-exchange protocol is not prac-
tical. For example, an ad hoc network of low-powered sensors that report
weather data periodically, such as temperature and dew point, that is
intended to run only for a week or so probably does not have the processing
power to handle a key-exchange protocol. In addition, the raw data from
individual nodes are of little value to any adversary. And since there are
numerous sensors, forged data from a single node will not have a great
affect on the overall “big picture” that is derived from the data.
Alternatively, other applications need and can support protection schemes

8 Chapter Twelve

Au: Not
present in
the
reference
list. Please
check.

Richard_Ch12.qxd 8/17/04 2:09 PM Page 8

that use a key-exchange protocol. Typically, the problems with prekey-
ing make it an undesirable approach unless the data sensitivity and
node life spans are very limited. Section 9.1.4 discusses the problem of
prekeying on microsensor networks.

12.4.3 Reconfiguring

Reconfiguring poses another problem in ad hoc networking. Because ad
hoc networks are, by nature, dynamic, as nodes move they go out of
radio contact with some nodes and come into contact with other nodes.
The network topology itself changes over time. This means that a pre-
vious route from node X to node Y may no longer work. Ad hoc routing
algorithms must be able to reconfigure the underlying view of the net-
work dynamically. In addition, some segments of the network may
become unreachable. Two nodes that were in contact previously now
may lose contact, even when both nodes are stationary (if nodes along
the path are mobile). Applications running in this environment must
be fault-tolerant. And finally, as a node moves, it may establish contact
with a completely different network. Again, the software must handle
these changes, and the security components must provide protection
rather than simply leaving nodes and the network “wide open.”

12.4.4 Hostile environment

The mobile environment is often more hostile than the nonmobile one.
In a non-mobile environment, physical boundaries and barriers have
more meaning and change less frequently. In a mobile environment,
eavesdropping is easier. Physical locations often are not secured, e.g.,
coffee shops and airports, and nodes go in and out of contact regularly.
In some contexts, such as an ad hoc network of soldiers, even signal
detection could cause them to be captured or worse.

12.5 Additional Issues: Commerce

Electronic commerce is a prime application of and domain for mobile
computing. The vast commercial potential for this drives the develop-
ment and deployment of the technology, making commonplace mobile
computing a reality. Generally, security is at odds with convenience,
and in a commercial market, convenience takes precedence. Businesses
often regard the loss of revenue from fraud and theft as the “cost of doing
business” and calculate it into their fees. For example, credit card com-
panies lose billions of dollars a year on fraud; these losses are eventu-
ally passed on to the end customer.

Because of the importance of electronic commerce, we will discuss
some of the security concerns that have the greatest impact on it.

Wireless Security 9

Richard_Ch12.qxd 8/17/04 2:09 PM Page 9

12.5.1 Liability

Currently, liability issues relating to computer security are still being
determined. Not only do computers contain potentially useful informa-
tion, such as customer credit card numbers, but machines on the
Internet also can be used as springboards to launch attacks on other
Internet computers. Some businesses have been sued because of their
lack of “due diligence” by not installing patches, antivirus software, and
similar protection.

12.5.2 Fear, uncertainty, and doubt

Another aspect of electronic commerce is the “intangibles” from public
perceptions. For example, a company that makes children’s cartoons
places a great deal of value on their wholesome, family-friendly image.
Anything perceived to damage that image, such as having the com-
pany’s Web site defaced by pornography, would be of more concern to the
company than, say, copyright infringement, which can be handled by a
lawsuit.

Companies that suffer from break-ins often are reluctant to report
them because of the fear that such a report will hurt their reputations.
Often, the costs of these break-ins simply are included as the cost of
doing business.

Often security is perceived as a one-shot application, if at all. Install
virus protection or a firewall, and the system is protected—end of story.
Many places do not even go that far and simply feel that security can
be added later, if needed. This is in the commercial domain; in the
home computer domain, security is even scarcer, even though many
home sites have high-speed, continuous connections to the Internet. The
result is that known bugs and old exploit scripts continue to work years
after they are published; for example, Web sites still see attempted
attacks by the “code red” worm from 2001, years after it was first
released.

12.5.3 Fraud

One of the biggest problems with electronic commerce is fraud, typically
purchases billed with stolen or faked credit card numbers. The credit
card numbers can be stolen by breaking into machines and getting cus-
tomer lists or through many other means, including physical means,
such as “dumpster diving.” Often purchases are made to fake addresses.

One scam involved placing orders to be delivered to legitimate
addresses. These often were in wealthy neighborhoods, with houses that
had long driveways with mailboxes at the end of the driveway—driveways
long enough that the delivery drivers could drop off a package in the

10 Chapter Twelve

Richard_Ch12.qxd 8/17/04 2:09 PM Page 10

mailbox, the thief who had ordered it could later retrieve the package, and
the owner of the house would never see it or know of any package.

This is not a new problem, just another form of nonrepudiation.
Because the recipient of the merchandise legitimately can repudiate
(i.e., deny) the claim that she purchased the merchandise, the online
vendor must take the loss because it was a card not present (CNP) pur-
chase, in which there is no signature of the card owner. If there were
nonrepudiation, the true purchaser of the merchandise would not be
able to fake the credentials of another person, such as an “unforgeable”
signature.

12.5.4 Big bucks at stake

The amount of money lost is large—billions of dollars each year. The
potential market, from hardware to infrastructure providers to online
merchants and services, is vast. The boom of the dot-com companies of
the late 1990s attests to this. While many companies with shaky busi-
ness plans failed, Amazon, eBay, and other vendors have demonstrated
that electronic commerce can be profitable. Many vendors faced DoS
attacks in 2000, [CNNDOS], including Yahoo, eBay, CNN, and eTrade.
Since margins are often small, profit lost from fraud or other security-
related problems can push a business over the edge into failure.
Computer security is essential to electronic commerce.

12.6 Additional Types of Attacks

We conclude the chapter with a discussion of a few specific types of
attacks, specifically “man in the middle” attacks, traffic analysis, replay
attacks, and buffer-overflow attacks.

12.6.1 “Man in the middle” attacks

A man in the middle attack occurs when a malicious node inserts itself
in the path between two nodes. The most obvious use is to eavesdrop on
the conversation between the two nodes. In addition, the malicious node
may choose to modify the data from the source before it forwards them
to the recipient or simply to drop certain packets.

A common way for such an attack to occur is through “ARP cache poi-
soning,” in which the malicious node replies to an Address Resolution
Protocol (ARP) query claiming to be the IP address of the real next node
on the route to the destination. This may require launching a brief DoS
attack on the real node to prevent it from being able to answer the ARP
query in a timely fashion. By redirecting all traffic through itself, the
malicious node can even defeat the protections of isolating traffic pro-
vided by switched Ethernets over the nonswitched, shared networks.

Wireless Security 11

Richard_Ch12.qxd 8/17/04 2:09 PM Page 11

12.6.2 Traffic analysis

Even without decrypting the data, attackers can gain insight about the
meaning of the data by observing properties such as message sizes,
communication pairs, and the sequence of encrypted back-and-forth
conversations. This technique is called traffic analysis. There are sto-
ries about pizza deliveries to the Pentagon dramatically increasing the
night before military actions; another, during World War II, describes
numerous science fiction magazine subscriptions noted to places such
as Oak Ridge and Los Alamos [comp.risks]. If true, even without know-
ing the content of what was occurring, an adversary could make guesses
and gain more information than is desired. Similarly, an adversary can
surmise a great deal about the meaning of different communication
flows without knowing the actual content because of standard protocol
headers at each communication layer. For example, a typical Simple
Mail Transfer Protocol (SMTP) conversation includes “HELO,” “MAIL,”
“RCPT,” and “DATA” messages, in addition to TCP protocol headers.
Without knowing the content of the message, an observer may infer
that one site is sending mail to another by observing 3 brief messages
of the appropriate size followed by a longer (“DATA”) message with the
appropriate timing between the messages.

12.6.3 Replay attacks

A replay attack involves reusing data in a packet observed by a malicious
node. For example, if a malicious node observes an authentication
sequence, it may be able to resend the reply sequence if the authenti-
cator issues the same challenge. Often the attacker must build up a large
repository of previously seen challenges and responses, but disk space
is cheap. The simplest version of this attack is observing a username and
password if they are sent as plain text.

Replay attacks can work even if the data are encrypted if the mali-
cious node has observed the challenge before. Replay attacks can be
defeated by including information that cannot be reused in the packets,
called a nonce, such as a sequence numbers or timestamps.

12.6.4 Buffer-overflow attacks

Buffer-overflow attacks are not characteristic of mobile or wireless sys-
tems or even networking or routing per se. But they are such a common
type of attack that they deserve a mention. A buffer-overflow attack
occurs when a code segment that reads input does not perform any
bounds checking on the amount of input it accepts. If the input exceeds
the input buffer space allocated for it, it overwrites memory adjacent to
the buffer. Typically, the calling stack or data for local variables gets

12 Chapter Twelve

Richard_Ch12.qxd 8/17/04 2:09 PM Page 12

corrupted. The buffer overflow is designed so that the extra data cause
the program to execute different code by changing variable values, pro-
gram flow, or similar. Commonly, the overflow code causes a command
shell to execute. If these attacks are performed on a program running
with root privileges, then the shell has root as well.

Some languages, such as Java, have built-in boundary checking to pre-
vent buffer overflows. Others, such as Perl and Lisp, automatically
increase buffer sizes as required. These techniques eliminate the effec-
tiveness of many of the common buffer-overflow attacks. However, there
is an enormous code base still out there with vulnerable code, much of
it low-level operating system code. The effort to review, let alone fix, this
code is equally enormous. Thus there will continue to be vulnerable
code for quite some time.

12.7 Summary

In this chapter we presented four important security criteria and how cer-
tain attacks prevent a system from achieving these criteria. We also
described how the mobile computing environment introduces further
complications and risks. In Chapter 13 we focus on some general
approaches to handling the security problems mentioned in this chapter.

References

[airsnort] http://airsnort.shmoo.com/.
[CNNDOS] Messamer E., and D. Pappalardo, “One Year after DoS Attacks, Vulnerabilities

Remain,” CNN.com/SCI-TECH, February 8, 2001, http://www.cnn.com/2001/TECH/
internet/02/08/ddos.anniversary.idg/index.html.

[comp.risks] Spencer H., “Re: Pentagon Pizza,” comp.risks 10(16), July 31, 1990, http://cat-
less.ncl.ac.uk/Risks/10.16.html#subj11.1.

[GRC] Gibson S., “Distributed Reflection Denial of Service,” Gibson Research Corp.,
http://grc.com/dos/drdos.htm.

[HackingExposed] McClure S., J. Scambray, and G. Kurtz, Hacking Exposed.Berkeley, CA:
Osborne/McGraw-Hill, 1999.

[kismet] http:://www.kismetwireless.net/.
[netstumbler] http://netstumbler.com.
[Slammer] Moore D., V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “The

Spread of the Sapphire/Slammer Worm,” Feb. 2003, http://www.cs.berkeley.edu/
~nweaver/sapphire/.

[wardriving] http://wardriving.com/.

Wireless Security 13

Richard_Ch12.qxd 8/17/04 2:09 PM Page 13

Richard_Ch12.qxd 8/17/04 2:09 PM Page 14

Chapter

13
Approaches to Security

In Chapter 12 we discussed some of the problems associated with pro-
viding security to mobile computing. This chapter presents, at a high
level, several approaches taken to protecting data. We will see these
methods employed in subsequent chapters.

13.1 Limit the Signal

The first way to protect data is to limit the accessibility of the signal. At
the lowest levels, this means restricting who can see the signal on the wire.

13.1.1 Wire integrity and tapping

In a traditional Ethernet, signals do not radiate far beyond the wire, so
eavesdropping requires physical proximity to the network cable and phys-
ically tapping the line. This is done by splicing into the line (old “thick-
net” Ethernet used “vampire” taps to add stations to the network, which
actually tapped into the wire), stealing a line from a hub (which splits a
network into a star topology), bridging the network, or similar techniques.
Tapping can be detected by the change in electrical resistance in the wire.
In addition, wires can be placed inside protective conduit, making it
harder to tap. To increase the protection, the conduits can be pressurized
with an inert gas (e.g., N2) so that any physical taps cause a pressure drop,
allowing the location (within a segment) of the tap to be detected.

13.1.2 Physical limitation

The problem then becomes physically limiting who has access to the
machines or the endpoints once the problem of tapping the wire between
endpoints has been addressed. Machines need to run secure (enough)

1

Richard_Ch13.qxd 8/20/04 4:15 PM Page 1

operating systems and have accounts and secure passwords. Users need
to log out or lock screens if they are not present to prevent “lunchtime
hacking,” in which an unauthorized user sneaks into an authorized
user’s office to use his computer while the authorized user is gone.
Another approach to deal with this is to use a behavior-based intrusion
detection system that detects changes in the usage pattern.

The problem in public computer areas or labs still exists, in which an
unauthorized user can unplug the cable to a protected computer and
plug it into her own. Routers and switches can filter outbound packets
and block access to an unknown Ethernet card. However, a user can
reboot a legitimate machine using her own floppy disk or CD-ROM,
running her own operating system. To prevent this, machines can be con-
figured so that they cannot be booted from these devices.

If the information is important enough to protect, additional protec-
tion can be added to any computer area, such as surveillance cameras
or human guards. It becomes a game of cat-and-mouse, in which the
weak link in the system moves elsewhere to a different (and stronger)
component of the system, making it more difficult to subvert the system
security. The operating expense also increases with protection.

To increase protection further, data on the network should be
encrypted so that even if there is a physical breach of the network and
someone can eavesdrop, the stolen data will be meaningless. We discuss
the basics of encryption in the next section.

13.2 Encryption

One of the most common and useful techniques to protect data is encryp-
tion. Encryption has been used for thousands of years; in fact, a simple
technique called the Caesar cipher was said to be used by Julius Caesar.
Since modern computer speeds have rendered many techniques inse-
cure, we will focus on the essential components of the methods that are
used currently. As computers get faster, key lengths may need to
increase; however, since each bit added to a key doubles the time
required to break the algorithm via a brute-force attack, the algorithms
are scalable, assuming that no fundamental flaws are discovered.
Encryption methods can be divided into two classes: public key and pri-
vate key. Both of these are discussed below.

13.2.1 Public and private key encryption

Private key or symmetric encryption. In symmetric or private key encryp-
tion, the same key is used to encrypt as well as decrypt the data. Both
parties share the key, which must be kept secret. The encryption and
decryption functions can be described as:C = Ek(P) P = Dk(C).

2 Chapter Thirteen

Richard_Ch13.qxd 8/20/04 4:15 PM Page 2

The encryption and decryption functions, E and D, respectively, may
be the same function or may be different, depending on the algorithm
used. The encryption function takes the key k and plaintext P and pro-
duces ciphertext C as output. The decryption function takes the key k
and ciphertext C and produces plaintext P as output.

Public key or asymmetric encryption. In asymmetric or public key encryp-
tion, there are two keys, a public key and a. As the names imply, the pri-
vate key is known only by the owner, whereas the public key is made
publicly available. The public and private key encryption and decryp-
tion can be described as:

C = Eprivate(P) P = Dpublic(C)

C = Epublic(P) P = Dprivate(C)

Text that is encrypted with the private key can be decrypted only
with the public key, and text that is encrypted with the public key can
be decrypted only with the private key.

13.2.2 Computational and data overhead

Encryption is an effective way to protect information. However, there
are costs associated with using encryption. In this section we discuss the
computational and data overhead associated with using encryption (and
decryption).

Private key algorithms generally run significantly faster than public
key ones. This computational overhead becomes a factor when signifi-
cant amounts of data must be encrypted (or decrypted) or if the pro-
cessing power of the computer is limited, as in palmtop devices or sensor
networks.

Block-oriented algorithms might pad the plaintext (e.g., with spaces
or nulls) to fill up a block, but the ciphertext is generally the same size
as the plaintext. Thus the data overhead from padding is minimal, espe-
cially considering modern data transfer rates and the size of primary
and secondary storage. The keys themselves are not generally a signif-
icant overhead, unless there are many of them; a 1024-bit key consumes
only 128 bytes. However, because a message encrypted using a public
key can only be decrypted by a single recipient, i.e., the owner of the pri-
vate key, a message sent to several recipients must be encrypted sepa-
rately, once for each recipient, thus significantly increasing the size of
the encrypted message. The same message could be encrypted only once
with the sender’s private key, but that will not provide privacy because
anyone could obtain and use the sender’s public key to decrypt the mes-
sage. Each recipient causes the message size to increase by the size of

Approaches to Security 3

Richard_Ch13.qxd 8/20/04 4:15 PM Page 3

the message to encrypt. In this approach, for n recipients and a message
length of |M|, the message overhead is n ×|M|.

Hybrid approaches reduce these costs. For example, Pretty Good
Privacy (PGP) [PGP, RAS-FAQ] combines public and private key encryp-
tion. The data are encrypted using a symmetric key approach and a ran-
domly generated one-time key (a session key). The session key itself is
encrypted using public key encryption. This method allows the text of
the message to be encrypted using the faster symmetric key approach.
If the sender wants to include additional recipients, only the symmet-
ric key itself must be encrypted using a different public key rather than
the entire message. By reducing this overhead, PGP scales well for mul-
tiple recipients. In this approach, for n recipients, a key length of |K|,
and a message length of |M|, the message overhead is n ×|K|+|M|. A
strong session key is on the order of 128–256 bits (16–32 bytes); gener-
ally, |K|<<|M|, therefore the message overhead of this approach is sig-
nificantly less than that of a public key approach.

13.3 Integrity Codes

Integrity codes are used to detect changes to data from either acciden-
tal or deliberate errors, such as during transmission or from a compro-
mised middleman. We describe the principles behind the techniques
and discuss how they can be used to help protect data.

13.3.1 Checksum versus cryptographic hash

Checksums are a common type of basic integrity code and are trans-
mitted with the data. The receiver applies a simple formula to the data
and compares the result with the integrity code that was transmitted
to ensure with high probability that he received the message intact.
Parity bits and cyclic redundancy checks (CRCs) are examples of check-
sums.

Parity bits, used by (very) old modems, are a simple example of a
checksum. In even parity, all the bits in a byte added together must be
even, and if not, the parity bit is set to 1 (to make it even). Odd parity
is similar, but the bits must sum to an odd number. This method can
detect single-bit errors.

A cyclic redundancy check (CRC) is more sophisticated checksum that
uses polynomial math to compute the parity bits. Thus the input is divided
by a polynomial term, and the remainder represents the CRC. This oper-
ation is equivalent to binary arithmetic with no carries. The polynomial
used for CRC-32 is G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 + x5 + x4 + x2 + x + 1 and was selected because its properties allow it

4 Chapter Thirteen

Richard_Ch13.qxd 8/20/04 4:15 PM Page 4

to detect single-bit errors, two-bit errors, errors with an odd number of
bits, and burst errors. CRC-32 is a 32-bit CRC used in many applica-
tions, including Ethernet and file compression. For a detailed explana-
tion of the mathematics behind CRC computation and implementations
of CRC algorithms in C, refer to [CRC].

The main problem with checksums is that they are easily predicted
and forged. If a bit is changed, it is easy to determine how the check-
sum will change. Similarly, for every bit change, it is easy to determine
an additional bit in the stream to change to counteract the effect of the
first change, thus leaving the unchanged checksum still valid. Thus,
while checksums can detect simple transmission and other accidental
errors, they cannot detect malicious errors in which the data are mod-
ified intentionally (see Section 15.3.6). Protection from malicious changes
requires a cryptographically secure hash.

A hash function is a function that takes an input of arbitrary size and
produces a fixed-size output. A one-way hash function is a function that
is computationally infeasible to invert; i.e., the source cannot be easily
determined given the hash [RSA-FAQs, Schneier].

A cryptographically secure hash is a one-way hash function in which
a small change in the input results in a very large change in the hash.
Typically, a single-bit change in the source changes approximately half
the bits in the hash. MD2, MD5, and SHA [RSA-FAQs, Schneier] are
examples of cryptographically secure hash functions. These functions
protect the integrity of data, when used in a message authentication code
(MACs), discussed in the next section.

13.3.2 Message authentication code (MAC)

A message authentication code (MAC) is a one-way hash function plus
a secret key. MACs can be performed in two ways, as shown in Fig. 13.1.
In the first approach, the function computes the MAC by encrypting the
hash of the message using the key; in the second approach, the function
computes the MAC by taking the hash of the message and the key con-
catenated together. MACs protect the message’s authenticity without
secrecy. The MACs are attached to the message.

MACs serve as a type of tamperproof seal, allowing the easy detec-
tion of changes to the original message. Because the MAC uses a cryp-
tographically secure hash, any change to the message results in a very
different hash, and it is computationally infeasible to determine how to
change the message so that it once again matches the MAC. Since a
(secret) key is required to create the MAC, the MAC cannot be replaced
with one that matches the modified message without access to the key
(which, presumably, is not compromised). MACs are a relatively low-cost
way to protect the integrity of a message. There are various ways to

Approaches to Security 5

Richard_Ch13.qxd 8/20/04 4:15 PM Page 5

create a MAC, e.g., putting the key at the beginning or at the end of a
message. In the book Applied Cryptography, Schneier presents several
algorithms to compute MACs, such as MAA and RIPE-MAC, and one-
way hash functions and stream ciphers.

13.3.3 Payload versus header

A packet consists of a header and a payload. The header contains source
and destination address information and additional information such as
the protocol, sequence number, and special flags. The payload is the

6 Chapter Thirteen

ABCDEFG
HIJKLMNOP

ABCDEFG
HIJKLMNOP

MAC

P! X. #/ [n +p
1c <M ex xq ^P

Rk os qp …

Plaintext

Key

MAC = Ekey (MD5 (Plaintext))

Plaintext
with MAC

Figure 13.1 Two methods to compute a MAC.

Richard_Ch13.qxd 8/20/04 4:15 PM Page 6

data. Protocols can be layered, so one layer’s payload can be a complete
packet (header and payload) from another higher layer. One question
to consider when using encryption is whether to encrypt just the pay-
load or the entire packet.

The simplest approach is to encrypt just the payload. This simplifies
the process because only the endpoints need to have keys or perform any
encryption or decryption. However, there is a lot of information in the
packet headers that can be useful for attackers. Even exposing the
sender and recipients can be more than is desired. Another alternative
is to encrypt the packet header as well.

13.3.4 Traffic analysis

Even with encryption and integrity codes, packets are still vulnerable
to a traffic analysis attack. This is particularly problematic if the header
and payload are encrypted together because many parts of the header
are predictable. And given enough samples of plaintext and the equiv-
alent ciphertext, the key can sometimes be determined. An observer
near either the source or the destination of the packets can infer quite
a bit by just watching the patterns of data flow without knowing the con-
tents of the flow. IP Security (IPSec) addresses some of the threats of
traffic analysis, especially by using its tunnel mode.

13.4 IPSec

IP Security (IPSec) are protocols that provide security for Internet
Protocol (IP) packets [IPSec]. There are three main components to IPSec.
The Internet key exchange (IKE) defines a hybrid protocol to negotiate
and provide authenticated keying material for security associations in
a protected manner. The authentication header (AH) provides message
integrity. The encapsulating security payload (ESP) provides confiden-
tiality. We discuss AH and ESP in the following subsections.

13.4.1 Authentication header (AH)

The AH uses a MAC (see Section 13.3.2), referred to as an integrity
check value (ICV), to guarantee the integrity of the data. It also can
prevent replay attacks (see Section 12.6.3) by including a sequence
number in the header. Similar to ESP (described below), it can oper-
ate in transport or tunnel mode. In transport mode, the AH informa-
tion is added immediately following the IP header information; in
tunnel mode, the entire original IP datagram becomes the payload of
the IPSec packet, with the AH providing integrity for both its headers
and the payload.

Approaches to Security 7

AU: Cross
reference
to 12.6.3
ok?

Richard_Ch13.qxd 8/20/04 4:15 PM Page 7

For point-to-point (i.e., nonmulticast) communication, AH algorithms
include “keyed MACs based on symmetric encryption algorithms (e.g.,
DES) or on one-way hash functions (e.g., MD5 or SHA-1) [RFC2402].”

On receiving a packet, the destination checks the packet’s sequence
number to make sure that the packet is not a duplicate and discards it
if it is. The destination then computes the MAC for the packet and com-
pares it with the ICV in the packet. If the values match, it accepts the
packet. If not, it discards the packet and makes an entry in an audit log.

13.4.2 Encapsulating security payload
(ESP)

The ESP is a mechanism to provide confidentiality and integrity to data
by encrypting the payload. ESP operates in one of two modes, tunnel
mode or transport mode, and the packet’s payload consists of either the
upper-layer protocol (e.g., TCP, UDP, ICMP, or IGMP) or the entire IP
datagram, respectively. The ESP consists of the encrypted data plus
additional data fields, such as initialization vectors, integrity check
values, padding, etc., as needed by the particular encryption algorithm
used. In transport mode, the ESP is added after the IP header, before
any upper-layer protocols. The original IP headers are still visible. In
tunnel mode, the entire IP datagram is encrypted within the ESP. Tunnel
mode can be used by security gateways. The endpoint hosts communi-
cate with the security gateways (through a protected intranet), and the
security gateways communicate with each other via IPSec. The only
plaintext an eavesdropper on the Internet can see is the security gate-
way addresses. The eavesdropper will not see the true source and des-
tination because they are encrypted, contained within the ESP. This
technique helps to prevent traffic analysis attacks because the eaves-
dropper sees only a collection of packets and cannot tell individual flows
or conversations that comprise the flow. Figure 13.2 illustrates how
ESP works. RFC 2406 details ESP [RFC2406].

13.5 Other Security-Related Mechanisms

This chapter concludes with a brief summary of additional methods
used to secure systems.

13.5.1 Authentication protocols

Authentication protocols provide a mechanism to verify a user’s
claimed identity when he establishes a connection to a remote system.
Protocols that allow a remote system login or code execution, such as
telnet, ssh, and RPC, use the remote operating system’s authentica-
tion mechanism (typically a username and password combination).

8 Chapter Thirteen

Richard_Ch13.qxd 8/20/04 4:15 PM Page 8

Other protocols use different mechanisms, such as the Point-to-Point
Protocol (PPP), which is used commonly to provide an IP connection over
a serial (modem) line. Two mechanisms for authentication are the
Challenge Handshake Authentication Protocol (CHAP) and the
Lightweight Extensible Authentication Protocol (LEAP), which are based
on the Extensible Authentication Protocol (EAP). We describe each below.

Challenge handshake authentication protocol (CHAP). The Challenge
Handshake Authentication Protocol (CHAP) is an example of a popular

Approaches to Security 9

ABCDEFG
HIJKLMNOP

ABCDEFG
HIJKLMNOP

MAC

P! X. #/ [n +p
1c <M ex xq ^P

Rk os qp …

Plaintext

Key

Plaintext
with MAC

MAC = MD5 (Plaintext || key)

Figure 13.2 Tunnel-and-transport mode.

Richard_Ch13.qxd 8/20/04 4:15 PM Page 9

protocol that authenticates users of the Point-to-Point Protocol (PPP)
based dial-up systems. CHAP allows one system to identify itself to
another when they both have a shared secret. The authenticator is the
system at the end of the link with resource to grant. It grants its
resources to remote systems only after they have completed authenti-
cation. The peer is the system attempting to connect to the authentica-
tor. If both systems require authentication, the authenticator and the
peer can switch roles and use CHAP again in the other direction.

In CHAP, the authenticator issues a challenge to the peer. The peer
sends a response back to the authenticator, and the authenticator then
replies with “success” if the peer properly identified itself or “failure” oth-
erwise. After success, the authenticator issues new challenges periodically.
Figure 13.3 shows an example of the challenge/response conversation in
CHAP.

The challenge consists of an identifier and a value. The response is
generated by computing the MD5 hash of the identifier concatenated to
the shared secret concatenated to the value. The authenticator computes
this value too, compares it with the peer’s response and issues a success
message if they match and a failure message if not.

The algorithm is fast and simple. The identifier number in the chal-
lenge helps to prevent replay attacks because the identifiers are not
reused. Since the authenticator rechallenges the peer again periodically,
the time of exposure to a particular attack is limited. However, this pro-
tocol does require a shared secret between the two systems. Operating
system passwords typically are stored as one-way hashes that cannot be
reversed and thus cannot be used with CHAP. Therefore, the plaintext
password must be available somewhere. If a third-party performs the
authentication, then the shared secret must be transferred there by
some mechanism, which creates a risk of exposure.

Extensible authentication protocol (EAP). The Extensible Authentication
Protocol (EAP), as the name suggests, is a generic authentication pro-
tocol that allows different authentication methods to be used and new
protocols to be added easily. PPP supports EAP [PPP EAP, Aboba], as
does [WPA] and 802.11i (see Sections 15.4 and 15.5).

There are four different types of EAP packets: request, response, suc-
cess, and failure. The request packet, shown in Fig. 13.4, is sent by the
authenticator to the peer (or “supplicant” in 802.1x terminology (see
Section 15.5.2) [802.1x]) and contains a “type” field to indicate what is
being requested. The “identifier” field allows the peer to differentiate
between retransmissions of old requests and new requests. The “type”
field specifies what type of authentication mechanism is being used. A
value of 13 specifies EAP Transport Layer Security (TLS) [Aboba]. The

10 Chapter Thirteen

Au: Please
provide
complete refer-
ence.

Please
provide
complete
reference.

Au: Is
reference to
Section 15.5.2
ok?
Reference
[802.1x] cited
correctly?

Richard_Ch13.qxd 8/20/04 4:15 PM Page 10

“type-data” field contains data specific to the authentication mecha-
nism used. The response packet shares the same format as the request
and is sent from the peer to the authenticator in response to a request.
The code indicates the type of packet, 1 for request and 2 for response.

Approaches to Security 11

Transport mode

Internet

Internet

Workstation Workstation
After ESP

|orig IP hdr | ESP | | |
ESP | ESP|
|(any options)| Hdr | TCP | Data |
Trailer |Auth|

-------- Encrypted

Authenticated

Private
network

Private
network

Network gatewayWorkstation

Workstation

Network
gateway

Tunnel mode

After ESP
--

| new IP hdr* | | orig IP hdr* | | |
ESP | ESP|
|(any options)| ESP | (any options)
|TCP|Data|Trailer|Auth|

------------ Encrypted

Authenticated

Before ESP

|orig IP hdr | |
|
|(any options)| TCP |
Data

Before ESP

|orig IP hdr | |
|
|(any options)| TCP |
Data

Figure 13.3 CHAP authentication.
Au:
Caption
ok?

Richard_Ch13.qxd 8/20/04 4:15 PM Page 11

The “flags” field allows specifying message fragmentation, start mes-
sages, and the presence of the TLS “message length” field.

12 Chapter Thirteen

Authenticator

Challenge

Response

Success/Failure

Peer

Challenge = ID || value

Response = MD5
(ID || shared secret ||

value)

Resp’ = MD5 (ID ||
shared secret ||

value)
If (Resp’ = Response)

then Send Success
else Send Failure

Figure 13.4 An EAP request/response packet.

0

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

+ ++− − +−

+ ++− − +−

+ ++− − +−

+ ++− − +−

1 2 3

0 0 10

| | | |

| | | |

| | |TLS Message Length TLS Data ...

TLS Message LengthType Flags

Code Identifier Length

EAP initially defines several types of request/response types and
allows for additional ones to be added to the standard, thus making it
an extensible protocol. The protocol allows the peer to negotiate with the
authenticator as to the type of authentication used. All implementations
must support the “MD5-challenge” type, which is similar to CHAP with
MD5 specified as the algorithm. The authenticator sends a “challenge”

Richard_Ch13.qxd 8/20/04 4:15 PM Page 12

to the peer as a request, and the peer sends a “response” that is calcu-
lated by taking the MD5 hash of the concatenation of the identifier, a
shared secret, and the challenge. The authenticator then performs the
same calculation and compares its value with that of the response and
sends a success or failure packet as appropriate. The success and fail-
ure packets are sent by the authenticator to the peer to indicate suc-
cessful or unsuccessful authentication, respectively.

EAP provides a simple mechanism to allow one endpoint to authen-
ticate itself to another. It specifies a simple protocol to allow the
exchange of data. EAP defines a basic mechanism (MD5) to be used for
authentication and allows additional mechanisms to be added, extend-
ing the protocol.

Variants of EAP have been proposed to address some of its limitations,
including the lack of protection of the user’s identity, lack of a key
exchange mechanism, and lack of support for packet fragmentation and
reassembly. Protected EAP (PEAP) was designed by Microsoft to extend
EAP by wrapping EAP within TLS [PEAP]. Similarly, the Extensible
Authentication Protocol–Tunneling, Trusted Layer Security (EAP-TTLS)
is a competing standard. Cisco has created the Lightweight EAP (LEAP),
a proprietary protocol based on EAP [LEAP]. Note that this is not to be
confused with the similarly named Lightweight and Efficient Application
Protocol (LEAP; see http://www.leapforum.org/).

EAP is, as the name suggests, an extensible framework that is used as a
base for various other authentication protocols [RFC2484, RFC2433
RFC2716].

Remote authentication dial In user service (RADIUS). The Remote
Authentication Dial In User Service (RADIUS) is a protocol to convey
authentication, authorization, and configuration information between
a network access server and an authentication server and authenticate
the links along the path to the node requesting authentication. This pro-
tocol was intended originally to provide centralized management of dis-
persed serial lines and modem pools. It uses a single “database” of users
that includes authentication data, specifically user names and pass-
words, and configuration information, which includes the types of serv-
ices to provide the user, such as SLIP, PPP, telnet, etc. RADIUS is used
as a general-purpose third-party authentication server for network
access, as part of 802.1x, and 802.11i (see Sections 5.2, 15.5, and 15.5.2).
RADIUS uses the challenge/response model described earlier and sup-
ports CHAP as well as other protocols [RADIUS RFC 2865].

13.5.2 AAA

Authentication, authorization, and auditing (AAA) help to maintain the
security of systems. An IETF Working Group focuses on developing the

Approaches to Security 13

Au: Please
provide
complete
reference.

Au: Please
provide
complete
reference for
RFC2484,
RFC2433

Au: Cross
reference to
Sections 5.2,
15.5, and
15.5.2 ok?

Richard_Ch13.qxd 8/20/04 4:15 PM Page 13

requirements for AAA and protocols that implement them [AAA].
Authentication answers the question, “Are they who they claim to be?”
and is defined as follows: “The act of verifying a claimed identity, in the
form of a preexisting label from a mutually known name space, as the
originator of a message (message authentication) or as the endpoint of
a channel (entity authentication) [IETF-AAA-dr].” Digital signatures,
MACs, authentication headers, passwords, and biometrics are all mech-
anisms that provide authentication.

One form of passwords is the one-time password, in which a different
password (or phrase) is used each time for authentication. SKEY is an
example of a one-time password scheme, in which a function is applied
repeatedly to a random number. Each result, x1, x2, . . . , xn, is saved in
a list for the user, and the final result is saved by the system. The user
authenticates by providing xn–1, which the system uses to compute xn and
compares with the stored value. If successful, the system then stores xn–1,
and the user must provide xn–2 to authenticate. Passwords are useless
once they have been used because no further computations depend on
them [Hallerde/SKEY, RFC 1760].

Authorization answers the question, “Do they have permission to do
it?” and is defined as “The act of determining if a particular right, such
as access to some resource, can be granted to the presenter of a partic-
ular credential [IETF-AAA-dr].” The authorization process involves
checking privileges, access control lists, and possibly roles [RBAC-Intro,
Ferraiolo, NIST RBAC].

Accounting is the process of maintaining an audit log or history of
what happened and is defined as “The collection of resource consump-
tion data for the purposes of capacity and trend analysis, cost alloca-
tion, auditing, and billing. Accounting management requires that
resource consumption be measured, rated, assigned, and communi-
cated between appropriate parties [IETF-AAA-dr].” Audit logs do not
provide protection on their own, and in fact, many are used solely for
billing purposes. However, by maintaining a record of users, transac-
tions, times, and other similar information, the logs can indicate what
information was altered, deleted, or otherwise compromised; when it
occurred, exactly or within a time window of a certain granularity; and
who was responsible.

Audit logs indicate if it was a legitimate, authorized user (perform-
ing illegal operations), and if it was an external user, it can provide
some information as to the source. Note that external users attacking
through the Internet typically use compromised machines (zombies) to
perform the attacks, often employing a number of zombies as stepping
stones. The IP address in an audit log will point only to the last zombie
in the chain; typically zombies are (re)configured so that their auditing
mechanisms are disabled.

14 Chapter Thirteen

Richard_Ch13.qxd 8/20/04 4:15 PM Page 14

13.5.3 Special hardware

In addition to the techniques discussed in this chapter, special hardware
can be used. One type of hardware is smartcards that contain crypto-
graphic tokens or run algorithms to generate one-time passwords.

Another type of hardware is a transmitter that makes it difficult to
receive transmissions. Personal and local area networks, as well as
cell phones (see Chapters. 14 through 17), transmit with only enough
power for the corresponding receiver to detect the signal successfully.
In addition, they use frequency-hopping and spread-spectrum technol-
ogy to increase the effective bandwidth, which also has the effect of
making it more difficult to reconstruct the signal. Of course, anyone
with the right hardware, such as an 802.11b card, can receive 802.11b
signals. Military communications use similar techniques, but the hard-
ware is restricted.

Finally, another security risk is the electromagnetic radiation gener-
ated by the computer itself. With the right hardware, it is possible to
reconstruct the source of the signals (a screen image, keys pressed by a
wireless keyboard, etc.). The Department of Defense has developed a set
of standards and procedures to reduce the emanations to a sufficiently
low level, known as Transient ElectroMagnetic Pulse Emantation
STandard (TEMPEST) [Caloyannides]. In addition, it is possible to
reconstruct a screen image by observing the glow on a wall opposite a
CRT monitor using special hardware and applying signal processing
techniques [Kuhn]. By restricting physical access to the area, this threat
can be mitigated. “Physical access” in this sense means direct contact
with the computer, as well as any indirect contact, such as radio and
light waves. The room must be electrically shielded, to block any elec-
tromagnetic radiation, and no one outside the room is permitted to look
inside. Unfortunately for those working in such places, no windows are
permitted.

13.6 Summary

In this chapter we introduced techniques to provide data security, includ-
ing public and private key encryption and message integrity codes. We
described IPSec and some authentication protocols used for dial-up pro-
tocols such as PPP. In the next several chapters we will see how some
of these techniques are used to protect personal, local, and wide area
networks.

References

[AAA] “Authentication, Authorization and Accounting (AAA),” Internet Engineering
Working Group, http://www.ietf.org/html.charters/aaa-charter.html.

Approaches to Security 15

Richard_Ch13.qxd 8/20/04 4:15 PM Page 15

Aboba B., D. Simon, “PPP EAP TLS Authenticaion Protocol”, ftp://ftp.rfc-editor.org/in-
notes/rfc2716.txt.

Aboba B., L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz (eds.). “Extensible
Authentication Protocol (EAP),” Request for Comment 3748, June 2004, ftp://ftp.rfc-
editor.org/in-notes/rfc3748.txt.

[Caloyannides] Caloyannides M., “Computer Forensics and Privacy,” Artech House, 2001.
[CHAP] RFC 1994, Simpson W., “PPP Challenge Handshake Authentication Protocol

(CHAP),” August 1996, http://www.ietf.org/rfc/rfc1994.txt.
[CRC] Williams R., “A Painless Guide to CRC Error Detection Algorithms,” August 19,

1993, ftp://ftp.rocksoft.com/papers/crc_v3.txt..
[EAP-TTLS] Funk P., and S. Blake-Wilson, “EAP Tunneled TLS Authentication Protocl

(EAP-TTLS),” Internet-Draft, PPPEXT Working Group, Feb. 2002, http://www.
ietf.org/proceedings/02jul/I-D/draft-ietf-pppext-eap-ttls-01.txt.

[Ferraiolo] Ferraiolo and Kuhn, “Role Based Access Control,” 15th National Computer
Security Conference, 1992.

[Hallerde/SKEY] Haller N.M., “The S/KEY TM One-Time Password System,” In:
Proceedings of the Internet Society Symposium on Network and Distributed Systems,
1994.

[IETF-AAA-dr] IETF Internet Draft, “Authentication, Authorization and Accounting
(AAA) Transport Profile,” October 2002, http://www.ietf.org/internet-drafts/draft-ietf-
aaa-transport-08.txt.

[IPSec] “IP Security Protocol (IPSec),” Internet Engineering Task Force Working Group,
http://www.ietf.org/html.charters/ipsec-charter.html.

[Kuhn] Huhn M.G., “Optical Time-Domain Eavesdropping Risks of CRT Displays,” In:
Proceedings of IEEE Symposium on Security and Privacy, 2002.

[NIST RBAC] NIST RBAC Site, http://csrc.nist.gov/rbac/.
[PEAP] Andersson H., S. Josefsson, G. Zorn, D. Simon, and A. Palekar, “Protected EAP

Protocop (PEAP),” Internet Draft, PPPEXT Working Group, Feb. 2002, http://www.
globecom.net/ietf/draft/draft-josefsson-pppext-eap-tls-eap-02.html.

[PPP EAP TLS] RFC 2716, Aboba B., and D. Simon, “PPP EAP TLS Authentication
Protocol,” October 1999, http://www.ietf.org/rfc/rfc2716.txt.

[PPP EAP] RFC 2284, Blunk L., and J. Vollbrecht, “PPP Extensible Authentication Protocol
(EAP),” March 1998, http://www.ietf.org/rfc/rfc2284.txt.

[RADIUS] RFC 2865, Rigmey C., A. Rubens, W. Simpson, and S. Willens, “Remote
Authentication Dial in User Service (RADIUS),” June 2000, http://www.ietf.org/rfc/
rfc2865.txt.

[RBAC-Intro] RBAC, “An Introduction to Role-Based Access Control,” http://csrc.nist.gov/
publications/nistbul/csl95-12.txt.
[RFC 1760] RFC 1760, Haller N.M., “The S/KEY One-time Password System.” Feb. 1995,

http://www.ietf.org/rfc/rfc1760.txt.
[RFC 2402] Kent S., and R. Atkinson, RFC 2402, “IP Authentication Header (RFC 2402),”

http://www.ietf.org/rfc/rfc2402.txt.
[RFC 2406] Kent S., and R. Atkinson, RFC 2406, “IP Encapsulating Security Payload (ESP)

(RFC 2406),” http://www.ietf.org/rfc/rfc2406.txt.
[RSA-FAQ] RSA Online FAQs, “RSA Laboratories’ Frequently Asked Questions About

Today’s Cryptography, Version 4.1,” http://www.rsasecurity.com/rsalabs/faq/index.html.
[Schneier] Schneier B., Applied Cryptography, 2nd ed. New York, NY: John Wiley & Sons,

1996, pp. 455–459.
PGP encryption (RSA too?)
[802.1x] “802.1x—Port Based Network Access Control”, http://grouper.ieee.org/groups/

802/1/pages/802.1x.html.

16 Chapter Thirteen

Richard_Ch13.qxd 8/20/04 4:15 PM Page 16

Chapter

14
Security in Wireless Personal

Area Networks

This chapter presents security techniques used in personal area net-
works. We will see how the ideas presented in Chaps. 12 and 13 are
applied on the Bluetooth wireless personal area network (WPAN), specif-
ically how data are protected via encryption, how authentication is per-
formed (including key exchange), and what limitations and problems are
present in the design.

14.1 Basic Idea

Wireless personal area networks (WPANs) provide connectivity between
nodes that are relatively close, within 10 m. WPANs function as an
alternative to a cable, e.g., linking a wireless headphone to a portable
CD player. Bluetooth is an industry standard protocol for WPANs and
is now developed as one of the IEEE 802 standards [IEEE 802.15].

Bluetooth can link a headphone and CD player together. It also can link
two personal digital assistants (PDAs) together so that they can exchange
business cards. Or a printer can use Bluetooth to let different devices
send print jobs to it. While Bluetooth was intended originally to be a
“wireless cable” to link devices together, its uses have expanded to include
networking to support Internet protocol (IP). Bluetooth can serve as the
physical layer link for IP services between wireless computers.

14.1.1 Bluetooth specifications

Since Bluetooth was designed to be a sort of “wireless cable” that con-
nects devices, such as a computer and a printer or a CD player and

1

Richard_Ch14.qxd 8/17/04 2:10 PM Page 1

headphones, it has a small coverage area, typically targeted at approx-
imately 10 m, although the coverage can extend to 100 m; however, it
adjusts its transmission power to what the receiver needs. There are
three classes of Bluetooth transmission:

� Class 1: 100 mW (+20 dBm) max (100 m range)
� Class 2: 2.5 mW (+4 dBm) max
� Class 3:1 mW (0 dBm) max (10 m range)

Bluetooth supports point-to-point (unicast) and point-to-multipoint
(multicast) transmission with a variety of data rates. The initial
Bluetooth standard specified a transmission rate of 1 Mbps. At the low
end, Task Group 4 in IEEE 802.15 supports low data rates, with low
complexity and long battery life (lasting from months to years), of 20,
40, and 250 kbps. At the high end, Task Group 3 supports high data rates
of 11 to 55 Mbps. TG3A uses an alternative physical layer, including
ultra wideband (UWB) radio, with data rates beyond 100 Mbps.

Bluetooth networks transmit on the 2.4-GHz band, which is an unli-
censed frequency range. It uses 79 channels between 2.402 and 2.480
GHz (in the United States and most of Europe). Because the band is unli-
censed, Bluetooth can conflict with 802.11 and metropolitan area net-
works, such as 802.16; however, these groups are working together to
ensure “harmonization” in order to minimize conflicts with each other.
In addition, microwave ovens operate on that frequency. While they
generally are shielded properly, testing shows that poorly shielded ovens
can jam radios and reduce throughput by 75 percent (although an owner
of such a leaky oven probably has bigger problems to worry about than
reduced throughput).

Bluetooth uses a fast-frequency-hopping algorithm, which switches
frequencies at a rate of 1600 times per second. Packets are short, typi-
cally around 350 bytes, and forward error correction (FEC) provides
data integrity.

14.1.2 Bluetooth network terms

Master. Each Bluetooth network, called a piconet, (see below) has one
device serving as the master, and the other devices serve as slaves. The
master determines the frequency-hopping sequence of the piconet, as
well as performing other functions, such as swapping parked nodes into
the piconet. A node can be in multiple piconets but serves as the master
of at most one piconet.

Slave. All nonmaster nodes in a piconet are slaves.

2 Chapter Fourteen

Richard_Ch14.qxd 8/17/04 2:10 PM Page 2

Piconet. The smallest collection of nodes connected together by
Bluetooth is called a piconet. A piconet is a collection of two to eight
Bluetooth active devices. One unit acts as master, and the remaining
devices act as slaves. Piconet addresses are 3-bit values, thus support-
ing up to seven slaves and one master. Piconets are ad hoc networks,
forming dynamically. Each piconet has a different frequency-hopping
sequence determined by the device address of the master.

Scatternet (Multipoint). A scatternet is a collection of piconets joined by
a device that is a master in one piconet and a slave in another.

Bluetooth allows multipoint transmissions. Within a piconet, the
master can send to multiple recipients. There is no specification for
scatternet multipoint, and different vendors implement multipoint
transmissions differently with no interoperability guarantees.

Bluetooth node states. Bluetooth nodes are in one of several states.
Devices not connected are in standby mode and monitor 32 frequencies
once every 1.28 s. Devices connected to a piconet are in the active state.
Devices wishing to connect to another device send out a page if they know
the device address of the destination. If the destination address is
unknown, they send out an inquiry, and a piconet master that receives the
inquiry sends a page on 16 frequencies and then on the other 16 frequen-
cies if no response is received [BTstates, BTstates2, wirelessnetworks].

In addition to these states, Bluetooth devices can be in one of three
power saving states: hold, park, and sniff.

Hold. Devices placed in hold mode are completely inactive, except for
an internal timer that determines when the device leaves hold mode and
resumes normal operation. The master places a slave in hold mode; a
slave also can request that its master place it in hold mode. This is used
for low-power nodes.

Park. Devices in park mode remain synchronized to the piconet but
have no 3-bit piconet address and do not participate in the piconet. They
listen to traffic from the master in order to resynchronize with the
piconet and receive broadcast messages. The master places nodes in
and out of the park state. Parked nodes can request the master to
remove them from that state during a certain time slot. Also, parking
allows the master to support more than 7 devices—the master parks
devices to free up the 3-bit piconet address, so other devices can par-
ticipate.

Sniff. Devices in sniff mode listen to the piconet at a reduced rate, thus
saving power.

Security in Wireless Personal Area Networks 3

Richard_Ch14.qxd 8/17/04 2:10 PM Page 3

14.1.3 Bluetooth security mechanisms

Bluetooth has several mechanisms to provide security. First, the trans-
mitters use the lowest power required for their data to be received. This
means that intruder nodes farther away from the transmitter than the
receiver is find the signal to be weak at best. This requires the intruder
to be in very close physical proximity, which may expose the intruder
to a higher risk of detection than he is willing to accept. In truth, this
mechanism was designed to save power and increase the life of the
device, but it also has the fortunate side effect of increasing physical
security.

Channel hopping provides additional protection, making it difficult to
snoop on the data stream. The fast rate of hopping makes it hard for a
casual observer to “sniff ” the data stream off of one channel or guess the
hopping sequence. Again, this mechanism was not designed for security
but instead was designed to allow many nodes to share the same fre-
quency bands without interfering with each other.

Data are protected by the optional use of encryption. The encryption
algorithm is, essentially, a stream cipher that XORs the data stream
with a stream of numbers from a pseudorandom-number generator
(PRNG) seeded by an encryption key. The keys are created and distrib-
uted by a key exchange algorithm, so keys are not sent as plaintext.
Finally, nodes can perform authentication and authorization to verify
the identity and access of both parties that are communicating. We dis-
cuss the keys and encryption mechanisms in the next sections.

14.2 Bluetooth Security Modes

Bluetooth defines three modes of security for devices: nonsecure, service-
level enforced security, and link-level enforced security.

� Nonsecure. A device in the nonsecure mode does not initiate any secu-
rity procedure. This is intended for public use devices, such as a walk-
up printer.

� Service-level enforced security. A device in the service-level enforced
security mode permits access to itself depending on the service request.
For example, a PC may allow a user to download files to it but does
not allow its own files to be read.

� Link-level enforced security. A device in the link-level enforced security
mode requires authentication and authorization for use, e.g., cell
phones.

The Bluetooth standard defines security levels for devices and serv-
ices. It defines two security levels for devices: trusted and untrusted.

4 Chapter Fourteen

Richard_Ch14.qxd 8/17/04 2:10 PM Page 4

Trusted devices allow unrestricted access to all services, whereas
untrusted devices do not. Services can be in one of three security levels:
open, authentication, and authentication and authorization. In the first,
the services are open to all devices. The second requires authentication
from the devices, whereas the third requires both authentication and
authorization for the device.

14.3 Basic Security Mechanisms

Bluetooth uses encryption and link-layer keys. Encryption keys protect
the data in a session, whereas link-layer keys provide authentication and
serve as a parameter when deriving the encryption keys. Link-layer
key lifetimes are either semipermanent or temporary. Semipermanent
keys can be used after the current session to authenticate Bluetooth
devices. Temporary keys can be used only during the current session;
they are often used in point-to-multipoint communication in which the
same information is transmitted to several recipients.

Four entities are used for link-layer security:

� A 48-bit publicly available device address, fixed and unique for each
device

� A 128-bit pseudorandom private key for authentication
� An 8- to 128-bit private key for encryption (The variable length accom-

modates different countries’ export restrictions.)
� A 128-bit pseudorandom number generated by the device

Note that the device address is the only publicly available value.
Link-layer keys are used in authentication and serve as a parameter in
deriving the encryption key. The pseudorandom private key can be one
of four basic types. Generally, it is fixed for each Bluetooth unit, although
it can be derived from the private key from each of a pair of communi-
cating devices.

The four basic types of link-layer keys used in Bluetooth security are

� The initialization key is used as a link-layer key when there are not
yet any unit or combination keys. This key is used only during instal-
lation and typically requires the user to enter a personal identifica-
tion number (PIN) on the unit.

� The unit key is generated in each device when the device is installed
and is stored in nonvolatile memory and (almost) never changed.

� The combination key is derived from information from two devices that
communicate with each other. A different combination key is gener-
ated for each pair of communicating devices.

Security in Wireless Personal Area Networks 5

Richard_Ch14.qxd 8/17/04 2:10 PM Page 5

� The master key is a temporary key that replaces the current link-
layer key. It can be used when the master device wants to transmit
to multiple recipients at once.

The keys are used to create the (shared) encryption key (see Section
13.2). When two units need to communicate with each other, they can
use the unit key of one of the devices, or they can use a combination of
both unit keys for more security, if desired. If more than one unit is to
share a transmission, i.e., multipoint, then nodes in the multipoint
transmission can use a master key. Finally, a node uses an initialization
key if no link-layer key is available. Each of the keys is discussed below.

14.3.1 Initialization key

The security layer uses the initialization key to form a secure chan-
nel to exchange other link-layer keys. It creates the initialization key
by using a combination of a PIN code, which varies from 1 to 16 octets
(8 to 128 bits), with the (fixed) Bluetooth device address (48 bits), and
a random 128-bit number using the E22 algorithm. The strength of
the initialization key lies in the length of the PIN, which can be entered
manually into each device or stored. The initialization key is used
only for key exchange during the generation of the other link-layer keys
and is discarded after the key exchange.

14.3.2 Unit key

The unit key is associated with the device. It is 128 bits and is generated
with the E21 algorithm using the Bluetooth device address and a random
number, both 128 bits long. The device creates the key the first time it
is operated, stores the unit key in nonvolatile memory, and rarely changes
it. Devices can choose whose unit key to use. This is particularly useful
if one device has limited memory and cannot store extra keys.

14.3.3 Combination key

The combination key allows two devices to communicate with each other
securely. This key is generated during the initialization process if it is
needed by both devices concurrently. The two devices, A and B, each com-
pute a number, LK_KA and LK_KB, respectively. Each node computes this
number using the E21 algorithm, which takes a random number and the
Bluetooth device address (a fixed 48-bit number) as input. The two devices
then securely exchange the random numbers they used by XORing the
number with the current link-layer key (which is the initialization key)
and transmitting the result to the other device. Each device extracts the
random number by XORing it with the current link-layer key. Since A and

6 Chapter Fourteen

Richard_Ch14.qxd 8/17/04 2:10 PM Page 6

B know each other’s Bluetooth device address, A now computes LK_KB

with the E21 algorithm using B’s random number and B’s device address.
Similarly, B computes LK_KA. The combination key is computed by
XORing LK_KA and LK_KB (see Fig. 14.1).

14.3.4 Master key

The master key is the only temporary key. The master device generates
it using the E22 algorithm with two 128-bit random numbers. A random
number is sent to slaves, which use it and the current link-layer key to
generate an overlay. The master key is XORed with the overlay by the
master and sent to the slaves, which can extract the master key from
it. This procedure must be done for each slave (see Fig. 14.2).

14.4 Encryption

There are three modes for Bluetooth encryption:

� In the first mode, nothing is encrypted.
� In the second mode, broadcast traffic is not encrypted, but individu-

ally addressed traffic is encrypted with the master key.
� In the third mode, all traffic is encrypted with the master key.

The packet payload is encrypted when encryption is enabled. Encryp-
tion is performed with the E0 stream cipher and is resynchronized for

Security in Wireless Personal Area Networks 7

Unit A Unit B

LK_KA = E21(LK_RANDA, BD_ADDRA) LK_KB = E21(LK_RANDB, BD_ADDRB)

CA = LK_RANDA⊕K CB = LK_RANDB⊕K
CA

CB

LK_RANDA = CA⊕K

LK_KA = E21(LK_RANDA, BD_ADDRA)LK_KB = E21(LK_RANDB, BD_ADDRB)

LK_RANDB = CB⊕K

KAB = LK_KA⊕LK_KB KAB = LK_KA⊕LK_KB

Authentication

Figure 14.1 The combination key.

Richard_Ch14.qxd 8/17/04 2:10 PM Page 7

each payload. The E0 stream cipher consists of a payload key genera-
tor, a key stream generator, and the encryption/decryption part (see
Fig. 14.3).

Essentially, the algorithm consists of XORing the data payload stream
with a stream of pseudorandom numbers. The pseudorandom-number

8 Chapter Fourteen

Figure 14.2 The master key.

Master Slave

Kmaster = E22(RAND1, RAND2, 16)

OVL = E22(K, RAND, 16)

C = OVL⊕Kmaster

Rand

C

Kmaster = OVL⊕C

Authentication

OVL = E22(K, RAND, 16)

Figure 14.3 Bluetooth encryption.

Payload key
generator

Key stream
generator

Kc

Address

Clock

RAND

Z

Payload key

Plain text/cipher text

Cipher text/plain text

Richard_Ch14.qxd 8/17/04 2:10 PM Page 8

generator is initialized with an encryption key. This key is generated from
the current link-layer key, a 96-bit ciphering offset number (COF), and
a 128-bit random number. The COF is based on the authenticated cipher-
ing offset (ACO), which is generated during the authentication process.

When the link manager (LM) activates encryption, it generates the
encryption key. This key automatically changes every time the Bluetooth
device enters the encryption mode.

14.5 Authentication

Bluetooth authentication uses a challenge/response protocol with sym-
metric encryption and shared secrets. If unit A wants to verify unit B’s
claim of identity, unit A sends a challenge to unit B. Unit B encrypts the
challenge and sends the result back as a response. Unit A also encrypts
the challenge and then compares it with the response it receives from
unit B. If they match, then they both share the same secret key, and thus
unit A has authenticated unit B. If unit B wants to authenticate unit A,
then the process repeats, with unit B sending a (different) challenge to
unit A (see Fig. 14.4).

The challenge is a random numberthat becomes an input to the encryp-
tion algorithm E1. The algorithm takes two other inputs, the Bluetooth
device address of the “claimant” (unit B) and the link-layer key, which
is the shared secret. The E1 function produces a value, the authenticated
ciphering offset (ACO), that is used as a parameter for the encryption key
generation if authentication is successful (see Fig. 14.5).

14.6 Limitations and Problems

Since Bluetooth uses the unlicensed 2.4-GHz radio band, it is suscepti-
ble to both unintentional and intentional jamming. Other devices that
operate in the same band, including some 802.11 and home/RF devices,
as well as microwave ovens, could interfere with signal reception. The
signals also could be jammed intentionally by transmitters that are
nearby or significantly stronger than the Bluetooth transmitters.
However, the low power requirements and signal hopping make Bluetooth
more resilient to casual jamming.

Other problems include key management. Until a secure link is estab-
lished, the keys and data used to derive them are sent in the clear. The
only mitigation is to use a PIN code entered into each device, but this
can be cumbersome. Bluetooth supports only device authentication, not
user authentication. Thus, a stolen device, such as a PDA, could gain
unauthorized access to data and resources unless the applications them-
selves provide an additional layer of security.

Finally, like any wireless device, care must be used when connecting
it to an existing network because it might be unintentionally exposing

Security in Wireless Personal Area Networks 9

Richard_Ch14.qxd 8/17/04 2:10 PM Page 9

part of the internal network that had been protected behind a firewall
[wirelesssecurity].

Bluetooth Attacks. In addition to the previously discussed limitations,
Bluetooth is vulnerable to a number of attacks [BTSec, BTHype,
BTWeakness]. If two sites, A and B, communicate with each other using
A’s unit key (KA) because of limited memory on A, then afterwards site
B can impersonate A as well as eavesdrop on A’s communications
because B knows that the key that will be used. Variations of a man-
in-the-middle attack are possible. If an attacker can synchronize with
the frequency-hopping sequence, then it can eavesdrop.

The secrecy of the combination key depends on the PIN, which is 1 to
16 characters long and typically has a default value of zero. Many PINs

10 Chapter Fourteen

Figure 14.4 Bluetooth authentication.

Verifier
User A

Claimant
User B,

with identity IDB

SRES = E(key, IDB, RAND)

Rand

SRES

Check: SRES’ = SRES

SRES’ = E(key, IDB, RAND)

Richard_Ch14.qxd 8/17/04 2:10 PM Page 10

are only four characters long, so brute-force attacks against the PIN are
quite feasible. It should be noted that short PINs are a problem in the
implementation and use, not in the Bluetooth specification.

Another area of vulnerability is the cipher algorithms used.
Jakobsson and Wetzel described a cipher attack on a 256-bit key that
requires O(266) operations. This attack is not practical, but it does show
that the search space, which has a size of O(2256) for a brute-force attack
on a 256-bit key, can be vastly reduced. This casts doubt on the over-
all strength of the encryption, and the question remains open as to
how much more efficient the attack can be made.

These authors also describe another type of attack in which the loca-
tion and movements of the victim are tracked rather than the content
of the data. For example, tracker devices could be installed at airports
and train stations and record the IDs of all Bluetooth devices that pass.
When fed to a central repository, attackers would build up a picture of
people’s movements as well as their current location.

14.7 Summary

In this chapter we presented Bluetooth or IEEE 802.15, a protocol for
WPANs, describing how it establishes the various link keys it uses to
perform encryption and how it authenticates devices. We also described
some limitations of the security mechanisms. Chapter 15 covers the
IEEE 802.11 WLAN protocol and its security mechanisms.

Security in Wireless Personal Area Networks 11

Figure 14.5 Bluetooth authentication in detail.

AU_RANDA

BD_ADDRA

Link key

ACO
SRES’

?
=

SRES

E1E1

AU_RANDA

BD_ADDRA

Link key

ACO
SRES

Claimant (Device B)Verifier (Device A)

AU_RANDA

SRES

Richard_Ch14.qxd 8/17/04 2:10 PM Page 11

References

[BTHype] Sutherland E., “Despite the Hype, Bluetooth has Security Issues that cannot
be ignored,” Nov. 28, 2000, http://alllinuxdevices.com/news_story.php3?ltsn=2000-11-29-
002-03-PS-HH-WL.

[BTSec] Anand N., “An Overview of Bluetooth Security,” February 22, 2001, SANS web
site, http://www.giac.org/practical/gsec/Nikhil_Anand_GSEC.pdf.

[BTstates] “How networks are formed and controlled,” http://www.swedetrack.com/
images/bluet10.htm.

[BTstates2] Monson H., “Bluetooth technology and implications,” Dec. 14, 1999,
http://www.sysopt.com/articles/bluetooth/index2.html.

[BTWeakness] Jakobsson M., and S. Wetzel, “Security Weaknesses in Bluetooth,” Lecture
Notes in Computer Science, vol. 2020. Berlin: Springer-Verlag, 2001.

[IEEE 802.15] http://grouper.ieee.org/groups/802/15/.
[wirelessnetworks] Pahlavan K., and P. Krishnamurthy, Principles of Wireless Networks,

A Unified Approach. New York, NY: Prentice-Hall, 2002.
[wirelesssecurity] Nichols R.K., and P.C. Lekkas, Wireless Security, Models, Threats, and

Solutions. New York, NY: McGraw-Hill, 2002.

12 Chapter Fourteen

Richard_Ch14.qxd 8/17/04 2:10 PM Page 12

Chapter

15
Security in Wireless Local

Area Networks

This chapter presents the security techniques used in local area net-
works, specifically the IEEE 802.11 standard. After an introduction to
the IEEE 802.11 wireless local area network (WLAN) standard, we dis-
cuss its security mechanisms and focus on the flawed wired-equivalent
privacy (WEP), covering its intentions and shortcomings, as well as the
ways to get the best protection given limited coverage; WiFi Protected
Access (WPA), an interim protocol to fix the shortcomings of WEP; and
802.11i, the IEEE standard to provide strong encryption, key manage-
ment, and support for authentication. We conclude by discussing virtual
private networks (VPNs) and firewall protections in the context of
WLANs.

15.1 Basic Idea

WLAN coverage has a radius of around 100 m typically. This covers sev-
eral rooms or a small company with a few offices. Of course, actual cov-
erage depends on where it is deployed, the material in the walls, the
frequency range, other nearby radio sources, etc. WLANs offer a cheap
alternative to running a wire to every office, allowing fast installation.

Many wireless access points (see below) work directly “out of the box,”
requiring no configuration. The user simply plugs them into the network
and a power outlet, and they work. The downside is that most devices
default to being very open, with most security features disabled; these
features often are overlooked for an “out of the box” installation. In
addition, the users may not know that some of the security features are
either limited or flawed.

1

Richard_Ch15.qxd 8/17/04 4:51 PM Page 1

IEEE 802 is the LAN/metropolitan area network (MAN) standard
committee that has numerous subgroups within it. IEEE 802.11 is the
WLAN standard subcommittee. And within it, there are several com-
mittees for different 802.11 standards. Each of the standards subcom-
mittees represents different technologies or protocols. Some use different
frequencies, and some use different protocols. Below we define some
basic architecture concepts common to all WLANs.

The wireless station (WS) is the remote or mobile unit. The access point
(AP) or base station is the nonmobile unit that connects the wireless net-
work into a wire-based network. The AP acts as a bridge or router and
usually has some protection mechanisms built in. 802.11 networks can
be organized in two different ways: infrastructure or ad hoc.

A basic service set (BSS), identified by a 6-byte string, is a network
formed by an AP and the wireless stations that are associated with it.

An extended service set (ESS) is two or more BSSs that form a single
logical network. As they move, wireless stations can switch seamlessly
from one AP to another with no disruption of service. The APs coordi-
nate the handoff among themselves, generally via an Ethernet connec-
tion. Figure 15.1 shows an example of two BSSs forming an ESS.

When wireless stations communicate through an AP, it is called infra-
structure mode.

An independent basic service set (IBSS) is a set of wireless stations
that communicate with each other directly without using an AP. In con-
trast to infrastructure mode, this type of communication is called ad hoc
mode, and such a network is referred to as an ad hoc network. Typically,
ad hoc networks form when a group of wireless stations wish to share

2 Chapter Fifteen

Figure 15.1 Two BSSs forming an ESS.

Access point Access point

Basic service set (BSS) --
single cell

Basic service set (BSS) --
single cell

Extended service set (ESS) --
multiple cells

Remote
stations

Ethernet

Richard_Ch15.qxd 8/17/04 4:51 PM Page 2

information with each other. If all the ad hoc nodes are within range of
each other, routing is trivial (i.e., broadcast). The situation becomes more
complex when the ad hoc network extends beyond the reception radius
of the nodes, and complex ad hoc routing protocols must be used, such
as [AODV], [TORA], [OLSR], and [OSPF]. Figure 15.2 shows an exam-
ple of an IBSS. Wireless ad hoc routing is discussed in Chapter 12.

A service set identifier (SSID) is a 32 byte string that identifies the
name of the network, either the IBSS or the ESS.

15.2 Wireless Alphabet Soup

IEEE 802.11 was the initial protocol created in 1997 using the 2.4 GHz
frequency range and supporting 1 and 2 Mbps via frequency-hopping
spread spectrum (FHSS) and direct-sequence spread spectrum (DSSS).
Different task groups within the 802.11 working group created and revised
the 802.11 standard, e.g., support for higher data rates and the use of the
5-GHz frequency range. Each new or revised standard receives a new
suffix letter. Currently, there is an “alphabet soup” of IEEE 802.11 pro-
tocols [802soup]. Before discussing the most relevant protocols relating
to security, we provide a brief overview of the various “802.11-something”
protocols.

� 802.11a is a physical-layer standard that uses orthogonal frequency
division multiplexing (OFDM) in the 5-GHz band, supporting speeds
from 6 to 54 Mbps. 802.11a offers the highest speeds currently, although
the range for the highest speeds is limited, and transmission rates drop
to slower speeds beyond a short distance. 802.11a has leap-frogged over
802.11b as the fastest 802.11 technology available, having a maximum

Security in Wireless Local Area Networks 3

Figure 15.2 An IBSS.
Independent basic
service set (IBSS)

Au: Please
provide
complete
reference for
AODV, TORA,
OLSR, OSPF.

Richard_Ch15.qxd 8/17/04 4:51 PM Page 3

speed of 54 Mbps. However, it faces competition from 802.11g, which
provides similar speeds but with better signal propagation than 802.11a
and is compatible with (soon to be legacy) 802.11b cards.

� 802.11b uses DSSS in the 2.4-GHz range to achieve faster speeds of
5.5 and 11 Mbps using complementary code keying (CCK) and is
widely deployed. Wired-equivalent privacy (WEP) is the scheme to
provide data protection and is described later in this chapter. 802.11b
is currently the most widely deployed version of 802.11 cards for home
and business but this will change rapidly as 802.11a and 802.11g
become more widely available and less expensive.

� 802.11c provides required information to ensure proper bridging oper-
ations and is used when developing APs.

� 802.11d provides “global harmonization.” It defines physical-layer
requirements to satisfy the different regulatory organizations in dif-
ferent parts of the world, e.g., United States, Japan, and Europe. This
includes both the 2.4- and 5-GHz bands and only affects those devel-
oping 802.11 products.

� 802.11e extends the MAC layer of 802.11 to provide quality-of-service
(QoS) support for audio and video applications. These MAC-level
changes will affect all 802.11 operating frequencies (i.e., 2.4 and 5
GHz) and will be backwards-compatible with the existing protocol.

� 802.11f defines a standard so that different APs can communicate
with each other. This “inter access point protocol” will allow wireless
stations to “roam” from one AP to another. Currently, 802.11 defines
no standard, so each vendor can create its own incompatible means
to implement roaming.

� 802.11g specifies a higher-speed extension to the 2.4-GHz band.
802.11g extends 802.11b to support up to 54 Mbps. 802.11g uses
OFDM rather than DSSS. Essentially, 802.11g is designed to make
802.11b compete with the bandwidth of 802.11a.

� 802.11h provides “spectrum-managed 802.11a” to address the require-
ments in Europe for use of the 5-GHz band. The functions provided
include dynamic channel selection (DCS) and transmit power control
(TPC), which will help to prevent any interference with satellite com-
munications. 802.11h eventually will replace 802.11a.

� 802.11i standardizes MAC enhancements for 802.11 security. It is
designed to address the problems and shortcomings of WEP, incorpo-
rating 802.1x and stronger encryption techniques, such as the
advanced encryption standard (AES), the follow-on to DES. 802.11i
updates the MAC layer to provide security for all 802.11 protocols. In
the meantime, many vendors are using WPA, which incorporates

4 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 4

many features that are in the proposed 802.11i specification, even
though the standard is still being developed. Section 15.5 discusses
the 802.11i protocol in more detail.

� 802.11j addresses 4.9- to 5.0-GHz operation in Japan (group formed
on November 2002).

� 802.11k defines and exposes radio and network information to facili-
tate the management and maintenance of a wireless and mobile LAN.
Also, it will enable new applications to be created based on this radio
information, such as location-enabled services.

In the following sections we discuss WEP, WPA, and 802.11i, three pro-
tocols to provide protection for 802.11.

15.3 Wired-Equivalent Privacy (WEP)

WEP is the security scheme provided with 802.11b. Since wireless com-
munication presents an easy target for casual eavesdropping, WEP was
designed to raise the baseline security level to be comparable with stan-
dard wired Ethernet. Sniffing packets off a wired network requires a
user to physically tap into the network; the WEP designers wanted to
make sniffers go through a similar level of effort to get similar infor-
mation from a wireless network. However, several severe design flaws
rendered WEP virtually useless against a skilled, knowledgeable
attacker. In this section we present the design goals of WEP, its data
frame, and how encryption, authentication, and decryption work, and
then we discuss the flaws and potential remedies. Even though WEP is
considered passé, especially now that WPA and 802.11i exist, it is useful
to understand what it was designed to do and what its problems are.

15.3.1 WEP goals

WEP was designed originally to support a few criteria. First, it had to
be “reasonably strong.” Of course, this is a debatable point, but the goal
was to raise the bar on security so that some effort must be spent to break
the protection. Second, it had to be self-synchronizing. Stations must be
able to resynchronize with the AP without requiring user intervention,
such as a password, because the stations may go in and out of coverage
frequently. Third, it must be computationally efficient so that it can be
performed in either hardware or software because some processors may
be low-power, low-speed devices. Fourth, it had to be exportable. Although
the United States relaxed some of the encryption restrictions in January
of 2000 as part of the “Wassenaar arrangement,” [wassenaar] other coun-
tries still tightly restrict encryption technology. On the other hand, no

Security in Wireless Local Area Networks 5

Au: Please pro-
vide complete
reference for
wassenaar.

Richard_Ch15.qxd 8/17/04 4:51 PM Page 5

country restricts the strength of protection used for authentication. And
finally, WEP must be optional.

WEP consists of a secret key of either 40 or 104 bits (5 or 13 bytes)
and an initialization vector (IV) of 24 bits. Thus the total protection, as
it is sometimes called, is 64 or 128 bits (often mistakenly referred to as
64- or 128-bit “keys” even though the keys are 40 or 104 bits). The key
plus the IV is used to seed an RC4-based pseudorandom-number gen-
erator (PRNG). This sends a stream of pseudorandom numbers that is
XORed with the data stream to produce the ciphertext. In addition, an
integrity check value (ICV) indicates if the data stream was corrupted.
The ICV is a simple CRC-32 checksum. Figure 15.3 shows a block dia-
gram of WEP encryption.

15.3.2 WEP data frame

The WEP data frame, shown in Fig. 15.4, consists of an IV of 4 bytes,
the data or protocol data unit (PDU) of 1 or more bytes, and the ICV of
4 bytes. The IV can be further divided into 3 bytes (24 bits) of the actual
initialization vector plus 1 byte that uses 2 bits to specify a key and 6
bits of padding. With the 2 bits, the device can store up to four differ-
ent secret keys (recall that the keys are not transmitted but are local to
the device).

15.3.3 WEP encryption

The encryption process is shown in the block diagram in Fig. 15.3. It
takes the plaintext message, the IV, and the secret key as input and pro-
duces as output a message consisting of the ciphertext message and the
IV by performing the following steps:

1. Compute the ICV using CRC-32 over the plaintext message.

2. Concatenate the ICV to the plaintext message.

6 Chapter Fifteen

Figure 15.3 Block diagram of WEP encryption.

Initialization
vector (IV)

Secret Key

Plaintext

Seed
PRNG

Integrity algorithm

Cipher-
text

Integrity check value
(ICV)

Key
sequence

Message

Richard_Ch15.qxd 8/17/04 4:51 PM Page 6

3. Choose a random IV and concatenate it to the secret key, and use it as
input to the RC4 PRNG to produce the pseudorandom key sequence.

4. Encrypt the plaintext and the ICV by doing a bitwise XOR with the
key sequence from the PRNG to produce the ciphertext.

5. Append the IV to the front of ciphertext.

15.3.4 WEP decryption

Decryption of WEP data is, more or less, just the reverse of the encryp-
tion. The algorithm takes the secret key and the message consisting of
the ciphertext and ICV as input and produces the plaintext message and
an error flag as output by performing the following steps:

1. Generate the key sequence k using the IV of the message.

2. Decrypt the ciphertext message by doing a bitwise XOR with k to gen-
erate the original plaintext and ICV.

3. Verify the integrity of the message by computing the ICV on plain-
text, ICV’, and comparing it with the recovered ICV from step 2.

4. Trap errors, if ICV ≠ ICV’, by sending an error to the MAC manage-
ment layer and back to the sending station.

15.3.5 WEP authentication

APs perform an optional challenge/response style of authentication to
the wireless stations, as shown in Fig. 15.5, as follows:

Security in Wireless Local Area Networks 7

Figure 15.4 WEP data frame.

IV (4 bytes)
Data

(PDU) (>=
1 byte)

ICV (4 bytes)

Initialization
vector (3 bytes)

1 byte

Pad
(6 bits)

Key ID
(2 bits)

Richard_Ch15.qxd 8/17/04 4:51 PM Page 7

1. The wireless station (WS) sends an authentication request to the AP.

2. The AP sends a (random) challenge text T back to the WS.

3. The WS sends the challenge response, which is text T, encrypted
with a shared secret key.

4. The AP sends an acknowledgment (ACK) if the response is valid and
a NACK if it is invalid.

15.3.6 WEP flaws

There are a number of problems with WEP. First, from the start, it was
designed to be “as good as” wired Ethernet, as opposed to providing
“strong” security. WEP has been broken by various groups [Walker,
Borisov, and Fluhrer].

WEP provides no automated key management, and the IEEE stan-
dard does not specify any distribution mechanism. All keys must be

8 Chapter Fifteen

Figure 15.5 WEP authentication.

Wireless Station

Authentication
request

Challenge text

Challenge response

ACK

Access Point

Au:Please
provide
complete
reference for
Walker, Borisov,
and Fluhrer.

Richard_Ch15.qxd 8/17/04 4:51 PM Page 8

entered manually, and typically, all wireless stations in one network uses
the same password. The risk that a device inadvertently shares the
password increases with the number of devices sharing this password.
In addition, rekeying an entire network can be an administrative night-
mare. All users must be informed that the passwords (i.e., keys) are
changing as of a certain date, after which they will be locked out of the
network until they get the new code.

Often the same key is used for both encryption and authentication,
which then ties the two functions together (i.e., if one is compromised,
then both are). Another weakness in the design is the limit of the number
of keys that can be used, i.e., four. Finally, using a single key for the
whole network increases the chance of keystream reuse.

Collision attacks. Keystream reuse is another problem. The more often
a key is used, the easier it is to crack it. The three factors in WEP are
the encryption key (IV plus secret key), the plaintext, and the cipher-
text. If any two are known, the third can (eventually) be derived. The
encryption key consists of the IV, which is transmitted in the clear with
each packet, and the secret key, which is not transmitted.

While changing the IV with every packet is recommended, the IEEE
does not specify a standard as to how often the IV must change. Reusing
the IV values increases the risk of an attacker being able to subvert
WEP’s protection.

The IV often is initialized to 0. This happens when the wireless card is
initialized, such as when the computer is rebooted or the card is removed
and inserted or possibly if the wireless station is brought out of a sleep
mode. Typically, the IV is incremented by one each time, so there is a low-
value bias to the IVs. If a random increment is used, a 50 percent chance
of collision exists after approximately 5000 packets. If sequential incre-
ments are used, then a 24-bit IV can roll over in less than half of a day
in a busy net (note that it is possible to make a net busy by inducing traf-
fic on it, even if the encrypted data cannot be decrypted).

A keystream attack requires ciphertext from a reused keystream and
partial knowledge of the plaintext. In essence, since P XOR K = C, if P
(plaintext) and C (ciphertext) are known, K (key) can be computed. The
known plaintext can be from predicted data (e.g., the “password:” prompt
at a login) or generated by an attacker (e.g., junk mail sent to the remote
machine), or in certain cases an AP may broadcast both encrypted and
unencrypted data such as if the same data must be sent to a wireless
station and a station on the wired network to which the AP connects.
Attackers can build decryption dictionaries by observing the traffic on
the network. This requires time and space, although given that tens of
gigabytes of disk space are commonplace, space is no longer a serious
constraint. If a known keystream is reused, then the attacker can use
it to create arbitrary messages.

Security in Wireless Local Area Networks 9

Richard_Ch15.qxd 8/17/04 4:51 PM Page 9

Forgery attacks. Another weakness of WEP is that the ICV uses the
CRC-32 as a checksum rather than a cryptographically secure hash
function (see Section 13.3.1). CRC-32 is an unkeyed linear function of
the message. An attacker can alter bits in the encrypted message and
then alter the checksum to match the modified encrypted message with-
out having any knowledge of the plaintext message. This means that
WEP cannot (adequately) ensure message integrity.

While the RC4 algorithm generally is strong, an attacker can use the
APs to decrypt the traffic. If the AP can be convinced to route traffic
through the wired network, the data is sent in the clear, which pro-
vides plaintext to compare with the ciphertext transmitted by the AP.
ARP cache poisoning is one method to do this, although it is not a flaw
in WEP. IP redirection is another, in which the attacker modifies the
encrypted packet’s address so that it is delivered to the attacker’s
machine in the clear. Another attack type is reaction attacks, in which
the attacker cleverly flips a few bits in a message and observes any
TCP ACKs (which have a known, fixed packet size), which serves as an
oracle to decrypt 1 bit of the plaintext.

Weak key attacks. While RC4 generally is a strong algorithm, there are
certain initialization vectors that produce poor results and reveal some
of the bits of the plaintext, and the pattern for these IVs is well known.
Many programs, such as [WEPcrack], can analyze a packet stream taken
from [AirSnort] looking for the bad IVs and use it to crack the secret key.
It takes around 7 GB of data, on average, to produce enough bad IVs to
crack the secret key. This may be a lot of data for a home network but
not that much for an active network (less than 2 hours at 11 Mbps). And
an attacker could induce the traffic on a network if not enough is pres-
ent. This is one of the most serious problems with WEP, because the tools
to crack WEP are widely available.

Replay attacks. Finally, WEP is vulnerable to replay attacks, in which
an attacker can eavesdrop and record a sequence of packets from an
authorized user and then replay the recorded sequence back to the AP,
impersonating the authorized user. This type of attack could be used to
authenticate an AP or even to replay a traffic stream such as an Internet
purchase (imagine discovering that you bought 50 copies of a DVD
instead of one).

15.3.7 WEP fixes

Before discussing the protocols to replace WEP, we briefly discuss how
some of WEP’s weaknesses can be addressed.

First, to prevent reaction attacks, cryptographically secure hashes,
such as MD5 and SHA-1, should be used as integrity check codes rather

10 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 10

than a CRC. Second, better key management can increase security.
Individual keys should be used per wireless station rather than per net-
work. And changing of keys should be done, like voting in Chicago,
early and often. These, of course, require changes to the protocol.

Some simple network configuration changes also can increase the
protection. First, the wireless networks should be outside the firewall
or at least not inside the network, possibly blocked by another firewall.
In this way, if the wireless network is compromised, it does not bypass
any of the security mechanisms used to protect the wired network from
machines on the Internet. A VPN tunnel should be used to get from the
wireless network into the protected network. Finally, a router or fire-
wall can be configured to block outbound traffic from the wireless net-
work to the Internet so that attackers cannot use the wireless network
as a launching point for attacks on the Internet. Figure 15.6 shows an
example of such a configuration. The best answer at this point is to
upgrade to a better protocol. WPA is currently available and provides

Security in Wireless Local Area Networks 11

Figure 15.6 A protected wireless network configuration.

File servers

Router/internal firewall

Border router/firewall

Internet

Workstation Workstation Workstation

Workstations inside firewall

Wireless link Wireless link

VPN Link

Outbound
blocked by
firewall

Ethernet

Wireless access point

Web server

“DMZ”

Au: Caption
OK?

Richard_Ch15.qxd 8/17/04 4:51 PM Page 11

stronger protection than WEP, and 802.11i was ratified as a standard
in late June 2004 and will be available as “WPA2.”

15.4 WPA

Wi-Fi protected access (WPA) was created as an interim measure to
increase the security of 802.11b networks. Recognizing that WEP has too
many flaws but that it will still be some time before the IEEE adopts the
802.11i protocol for security, WPAwas created in 2002 by a vendor alliance
(the Wi-Fi Alliance) to provide stronger protection until 802.11i arrived.

Many of the ideas in 802.11i are in WPA, and in fact, vendors expect
that the upgrades will involve driver and firmware changes only.

Instead of 40-bit keys, as used in WEP, WPA uses 128-bit keys for
encryption and hashing to generate new “random” keys for each use.
This key protocol is called the Temporal Key Integrity Protocol (TKIP).

The Extensible Authentication Protocol (EAP) allows network admin-
istrators to select the method to use for authentication, such as bio-
metric. Also, authentication is performed both ways, by the client and
by the server. WEP provides only client authentication via a static pass-
word, which must be shared by all users of a network.

WPA also provides automatic key management to generate, configure,
and distribute keys [ComputerWPA].

15.5 802.11i

The 802.11i Working Group is tasked with providing security for 802.11
and addressing the weaknesses and shortcomings of WEP. 802.11i pro-
vides two layers, the lower for encryption and the higher for access con-
trol. The lower layer supports two encryption protocols, TKIP for legacy
equipment and CCMP for future equipment. 802.1x, an IEEE standard
for port-based network access control, provides the authentication and key
management. We discuss the two layers below [802.1x, CACM802.11i,
802.11considerations].

15.5.1 Encryption protocols

The Temporal Key Integrity Protocol (TKIP) and the Counter Mode
with CBC-MAC Protocol (CCMP) are two encryption algorithms sup-
ported by the 802.11i standard. The standard is designed to be exten-
sible, so new algorithms could be added, such as the Advanced
Encryption Standard (AES).

TKIP. is a short-term fix for the weaknesses of WEP that maintains com-
patibility with existing hardware. TKIP requires four new algorithms: a

12 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 12

message integrity code (MIC) called “Michael”; IV sequencing, a new per-
packet key construction; and a key distribution. TKIP was designed to
fix the biggest flaws in WEP and provide protection against collision,
weak key, forgery, and replay attacks.

Michael is a keyed hash that was designed to be a computationally
low-cost MIC to run on low-power processors. It uses a 64-bit key, the
source and destination address, and the plaintext data of the 802.11
frame. It partitions packets into 32-bit blocks and computes the result
using shifts, XORs, and addition to create the 64-bit result. TKIP
requires the keys to be changed at least once per minute and whenever
there is an MIC validation error. The MIC prevents forgery attacks.

TKIP extends the 24-bit IV to 48 bits, referred to as the TKIP sequence
counter (TSC). While WEP never specified how often the IV should
change, TKIP requires that the TSC be updated with every packet. The
TSC is constructed from the first and second bytes of the WEP IV and
adds 4 extra bytes as the extended IV. The initialization vectors are now
required to be a strictly increasing sequence that starts at 0 when the
base key is set. When the IV reaches its maximum value, data traffic
halts, and the protocol must generate a new base key and restart the IV.
Because of this, any out-of-sequence packet is discarded, which prevents
replay attacks.

TKIP extends the MAC protocol data unit (MPDU) by 12 bytes total,
4 for the extended IV and 8 for the MIC, and is 20 bytes longer than an
unencrypted frame. WEP frames extend the frame by 8 bytes compared
with an unencrypted frame.

The per-packet encryption key is generated by combining the tempo-
ral key, the transmitter address, and the TSC in a nonlinear two-phase
key mixing function. The first phase uses the temporal key, the trans-
mitter MAC address, and the 4 most significant bytes of the TSC to
create an intermediate value that can be cached and used for up to 216

packets. Note that since the transmitter address is used to create the
key, different hosts generate different values even using the same tem-
poral key. The second phase takes the intermediate value and mixes it
with the 2 least significant bytes of the TSC to produce the per-packet
key. The second phase decorrelates the packet sequence numbers from
the per-packet key, blocking weak key attacks.

TKIP uses two keys. One is the 64-bit key Michael uses, and the other
is a 128-bit key used by the mixing function to create the per-packet
encryption key.

802.1x authenticates the remote station after it associates with the
AP. It then gets a fresh master key and distributes it.

TKIP is designed so that an attack that changes the packet sequence
number also changes the per-packet encryption key so that either the
traditional WEP ICV or the TKIP MIC can catch the error. The MIC

Security in Wireless Local Area Networks 13

Richard_Ch15.qxd 8/17/04 4:51 PM Page 13

makes it computationally infeasible to create an attack that alters the
data in a packet. Since the MIC uses the source and destination address,
packets cannot be redirected to unauthorized destinations or fake a
source address.

CCMP. The Counter Mode with CBC-MAC Protocol (CCMP) is a new
encryption method defined by 802.11i and designed to provide a long-
term solution to the problems in WEP without TKIP’s constraint of
using only existing hardware. CBC-MAC is a method to make a Message
Authentication Protocol (MAC) using cipher block chaining (CBC) (see
Section 13.3.2) [CBC-MAC]. CBC-MAC uses the advanced encryption
standard (AES), which can support a number of different modes or algo-
rithms. The counter mode provides privacy, whereas the CBC-MAC pro-
vides authentication and data integrity. AES is a symmetric, iterated
block-mode cipher using 128-bit blocks for encryption. The encryption
key length for 802.11i is set at 128 bits as well.

CCMP adds 16 bytes to the frame size compared with unencrypted
packets and is identical to a TKIP frame except that there is no ICV; thus
it is 4 bytes shorter than a TKIP frame.

CCMP uses a 48-bit initialization vector called the packet number (PN).
Similar to TKIP, the CCMP PN is much longer than WEP and allows the
same AES key to be used for the lifetime of the association. The PN serves
as a sequence number that CCMP uses to prevent replay attacks.

AES, unlike TKIP, does not need any per-packet keys and thus has
no per-packet key-derivation function. The same AES key is used to
provide confidentiality and integrity for all the data sent during a single
association. Like TKIP, CCMP uses an MIC to protect the integrity of
the data. The MIC length ranges from 2 to 16 bytes and is significantly
stronger than TKIP’s Michael. CCMP does not require any ICV, unlike
TKIP and WEP [80211iNIST]

15.5.2 Access control via 802.1x

IEEE 802.1x is a standard for “port-based network access control” and is
used by 802.11i as the mechanism to provide user authentication and
encryption key distribution, both features that WEP did not provide.
802.1x is designed for both wired and wireless networks and provides a
framework in which different upper-layer authentication protocols can be
used. A port is any sort of controlled access and can be a router or a switch
for a wired Ethernet, a modem line for a dial-up network, or a wireless AP.

802.1x defines three roles. An authenticator is the endpoint that enforces
the authentication process for the other endpoint of the connection. The
supplicant is the endpoint requesting access from the authenticator at the
other end of the link. An authentication server (AS) is the entity that

14 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 14

decides, based on the credentials provided by the supplicant, if the sup-
plicant is authorized to access the services provided by the authentica-
tor. The AP acts as a bridge and forwards the credentials from the
supplicant to the AS. Typically, RADIUS is the server used as the AS.

The authenticator defines two types of ports. An uncontrolled port
allows uncontrolled exchange of data between the two ends regardless
of the authorization state. A controlled port allows the exchange of data
only if the current state of the port is “authorized.”

Figure 15.7 shows an example of how the authentication works. Initially,
the supplicant can communicate with only the authentication server, via
the authenticator’s uncontrolled port. Once the supplicant has established
its authentication, the controlled port’s state is changed from “unautho-
rized” to “authorized,” and the supplicant then has access to the services
provided by the authenticator—in this case, access to the Internet.

The actual authentication protocol and credentials used depend on the
upper-level authentication protocol used. 802.1x merely provides the
framework for the exchange of data for these higher-layer protocols.

For 802.11i, two types of keys are generated. Session (or pairwise) keys
are unique to each association between a client and an AP and create a
private virtual port between the two. Group (or groupwise) keys are shared
by all the clients connected to an AP and are used for multicast traffic.

Unlike WEP, the keys are generated dynamically, without any inter-
vention of a network administrator. By using an authentication server,
the system supports a centralized security management model as

Security in Wireless Local Area Networks 15

Figure 15.7 802.1x authentication.

LANLAN

Authenticator System 1 Authenticator System 2

Uncontrolled port Uncontrolled portControlled port Controlled port

Port unauthorized Port authorized

Richard_Ch15.qxd 8/17/04 4:51 PM Page 15

opposed to having credentials spread over many APs on a network.
Since each individual remote station uses a different primary key for
encryption, it becomes much harder to eavesdrop on a network or build
up a dictionary of keys.

A master key, called the pairwise master key (PMK), is used to gen-
erate the lower-level keys employed by the MAC-layer encryption (for
TKIP and CCMP). A RADIUS server can serve as the AS, if present.
Alternatively, the network can be configured to use shared keys, pre-
loaded into every device, and not use dynamic key management. This
would be more typical for home use. If no AS is present, then the PMK
must be entered manually into each device (the AP and the remote sta-
tion). The PMK is still used to generate the session keys that are used
for the actual MAC-layer data encryption.

15.6 Fixes and “Best Practices”

The 802.11 area is very dynamic, with new standards that are evolving
rapidly. In fact, the area is changing so fast that any detailed technical
advice we present will, in all likelihood, be out of date 6 months after it
is published. And, in fact, in the time between writing and editing this
book, 802.11i was ratified. Instead, we present some of the broader
aspects of how to protect a system, rather than focusing on specific,
ephemeral technical details.

15.6.1 Anything is better than nothing

There are various flaws in the different protection schemes and mech-
anisms available. However, unless the goal is to provide open access to
everyone, WLANs should not be run “wide open” with no protections at
all. Anything that makes it more difficult for an adversary to gain access
to your network increases the level of protection.

Many access points provide MAC address—based protection. The
administrator can specify a set of MAC addresses that are allowed to
use the AP. This is another way to “raise the bar” for security. However,
several problems exist with this approach. The size of the list of MAC
addresses in the AP may be limited, and thus this might not be usable
on a network with a large number of users. If the user base is relatively
dynamic, it might be impractical to continually update each AP with a
new list of good or bad MACs. Finally, some wireless cards allow the user
to specify the MAC address, so they can be faked and are not a reliable
way to block intruder access.

15.6.2 Know thine enemy

Having a realistic assessment of the capabilities and motivations of an
adversary allows administrators to make informed decisions about the

16 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 16

types and levels of protections needed. Is she a casual adversary who is
looking for Internet access from the first easily available system? Or is she
targeting your system in particular? How much time and money is she will-
ing to spend trying to get at your resources? Does she care if you detect
her activities? In [802.11guts], Geier suggests several security policies for
wireless networks.

15.6.3 Use whatever wireless security
mechanisms are present

The best answer is to use 802.11i with 802.1x for authentication and
have a separate authentication server. Smaller residential setups may
not have all these components, and some installations may be stuck with
using legacy hardware (even though individual wireless cards and APs
are relatively inexpensive). If 802.11i, called “WPA2,” is not available,
then use WPA and, literally better than nothing, WEP.

Using WEP forces the adversary to spend some, albeit a small, amount
of time to break into the system. Some manufacturers have fixes, such
as WEPplus, that fix some of WEP’s worse problems by not using known
bad initialization vector values.

IEEE 802.1x, discussed in Section 15.5.2, provides “port-based net-
work access control” using existing standards, including the Extensible
Authentication Protocol (EAP), the Challenge Handshake Protocol
(CHAP), and RADIUS (see Section 13.5.1).

WPA was the bridge to provide better security than WEP until 802.11i
was finalized and products that support it become available. As of this
writing, only one product supports 802.11i, but more are sure to follow
shortly.

15.6.4 End-to-end VPN

Virtual private network (VPN) software allows a remote system to be
part of another subnet by encapsulating the data, encrypting it, and
then sending the packet to a firewall (tunneling). The firewall decrypts
the data, unencapsulates them, and then retransmits them on the pri-
vate network, making it appear as if the data originated locally.
Similarly, data bound for the remote system from inside the private
network are sent to the firewall and similarly tunneled to the remote
system, at which point they are delivered as if they were a local
packet. Since the data are encrypted as they pass between the nodes
in the “virtual” network, eavesdroppers cannot compromise the data
confidentiality.

By using VPN software or hardware, the wireless network can sit “out-
side” the trusted network and tunnel out of only that subnet. VPNs
generally use strong encryption.

Security in Wireless Local Area Networks 17

Richard_Ch15.qxd 8/17/04 4:51 PM Page 17

15.6.5 Firewall protection

A firewall protects networks, both wired and wireless, by serving as the
delineation between a private network sitting “behind” the firewall and
the public network exposed to arbitrary Internet traffic. Only certain,
specified traffic enters the private network. Traffic may be permitted to,
say, the mail and Web servers, whereas all other traffic is blocked. For
a home installation that has no public servers, no unsolicited inbound
traffic may be permitted. Usually, inbound traffic is permitted if it was
initiated by an outbound connection from behind the firewall. Firewalls
also can prevent inside traffic from getting out, preserving data confi-
dentiality, as well as preventing internal machines from being used as
the source of an attack against other machines on the Internet. A fire-
wall may be a separate computer or hardware device, or it can be some
form of “personal firewall” software running on the user’s machine.
Hardware firewalls typically are better than personal firewalls because
they serve a single purpose and run on a simplified operating system
that runs only the firewall software. There are a number of products that
combine the functionality of a cable modem, router, and firewall using
Network Address Translation (NAT) that allow numerous home com-
puters to share a single IP address on the Internet using the built-in
Dynamic Host Configuration Protocol (DHCP) to issue the internal IP
addresses. These devices are inexpensive and very convenient and as a
side effect protect the users’ computers from hostile Internet traffic.
Figure 15.8 shows an example of such a configuration. They may not,
however, protect the wireless component of the network adequately by
default. Also, some compatibility problems exist between NAT and IPsec,
which is used in some VPN implementations.

15.6.6 Use whatever else is available

SSID. A simple first step to protect a wireless AP is to change the SSID
to something other than the default. For example, it is well known that
linksys and tsunami are the default SSIDs for LinkSys and Cisco APs,
respectively. The less an attacker knows about the system, such as the
AP hardware, the better.

Use good passwords. All default passwords for hardware are public
knowledge, so it is important to at least change the password so that it
is not “default” or blank. The next step is to use a good password that
is not guessed or cracked easily, e.g., avoid dictionary words.

Closed network. In addition, the AP can be set so that it does not broad-
cast the SSID in the beacon frame; i.e., it is not announcing its presence

18 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 18

continuously. This is known as a closed network (see Section 12.2.5). A
wireless station must know the SSID before it can associate with the AP,
as opposed to casually observing the SSID in the beacon. However, this
merely obscures the SSID because it is broadcast in the clear by the wire-
less station when it associates with the AP and can be detected easily by
a wireless packet sniffer. However, it does raise the level of protection.

Limit the radio wave propagation. While shielding your house or living in
a Faraday cage may eliminate stray radio transmissions, it is a bit
extreme for home use. Moving the AP toward the center of the desired
coverage area is a simple step that forces the signals to pass through more
walls before reaching outside attenuating them more than if the AP sat
right next to a window. Commercial wireless networks require more
planning in terms of physical layout than home networks (assuming

Security in Wireless Local Area Networks 19

Figure 15.8 Example of a home network using NAT.

Internet

External IP address:
24.1.2.3

Workstation
IP address:

192.168.1.102

Mac II

Laptop computer
IP address:

192.168.1.104

Laser printer
IP address:

192.168.1.103

Internal (NATed) IP addresses:
192.168.1.*

Combination cable/DSL modem, router,
wireless access point, and firewall.

Runs DHCP, NAT, 802.11a/b/g, 802.3, etc.

Cable or DSL line

Wireless link

IP address:
192.168.1.101

Richard_Ch15.qxd 8/17/04 4:51 PM Page 19

that a single AP is insufficient). Directional antennas also limit the
signal propagation.

IDS. Running an intrusion detection system (IDS) provides an addi-
tional layer of security. While an IDS does not prevent an attack, it
allows the user to know that one occurred, often giving enough details
to help stop the attack or prevent it from recurring. There are many
freely available IDSs, such as [snort].

15.7 Summary

In this chapter we presented the basic components and operation of WLANs
using the IEEE 802.11 protocol. We described the numerous 802.11 sub-
groups and WEP, the original security mechanism of 802.11b, specifically,
its goals and functions, as well as the problems in its design. We described
802.11i , the follow-on security protocol for 802.11, as well as “best practices”
for use in concert with the mechanisms in the 802.11 protocol. Chapter 16
covers wireless metropolitan area networks (WMANs), which provide
Internet connectivity to the local area networks.

References

[802.11considerations] Walker J., “802.11 Security Considerations and Solutions,” Intel
Developer Forum, Spring 2002, http://developer.intel.com/idf.

[802.11guts] Geier J., “The Guts of WLAN Security Policy,” November 12, 2002,
http://www.80211-planet.com/tutorials/article.php/1499151.

[802.11itutorial] Eaton D., “Diving into the 802.11i Spec: A Tutorial,” CommsDesign,
Nov, 26, 2002, http://www.commsdesign.com/design_corner/ OEG20021126S0003.

[802.1x] “802.1x—Port Based Network Access Control”, http://grouper.ieee.org/
groups/802/1/pages/802.1x.html.

[80211iNIST] Cam-Wignet N., T. Moore, D. Stanley, and J. Walker, “IEEE 802.11i
Overview,” presented at the NIST 802.11 Wireless LAN Security Workshop, Falls
Church, Virginia, December 4-5, 2002, http://csrc.nist.gov/wireless/
S10_802.11i%20Overview-jw1.pdf.

[802soup] Geier J., “802.11 Alphabet Soup,” Tutorial on 80211planet web site,
http://www.80211-planet.com/tutorials/article.php/1439551.

[airsnort] AirSnort Homepage, http://airsnort.shmoo.com/
[CACM802.11i] Cam-Winget N., R. Housley, D. Wagner, and J. Walker, “Security Flaws

in 802.11 Data Link Protocols,” Communications of the ACM, May 2003, 46(5), pp.
35–39.

[CBC-MAC] National Institute of Standards and Technology. FIPS Pub 113: “Computer
Data Authentication,” May 30, 1985.

[ComputerWPA] Dailey Paulson L., “Vendors Push Wireless LAN Security,” Computer,
January, 2003, p. 28.

[snort] http://www.snort.org/.
[WEPcrack] “WEPCrack, and 802.11 Key Breaker,” http://wepcrack.sourceforge.net/.

20 Chapter Fifteen

Richard_Ch15.qxd 8/17/04 4:51 PM Page 20

Chapter

16
Security in Wireless Metropolitan

Area Networks (802.16)

Metropolitan area networks (MANs) link local area networks (LANs) to
larger networks, such as the Internet, through a high-speed connec-
tion. This chapter presents the security mechanisms in the newly
approved IEEE 802.16 standard for wireless MANs, which provides the
interface to high-speed wireless links using licensed and unlicensed
radio bands to fixed locations, such as rooftop antennas. We describe the
protocol, the security mechanisms, and potential limitations.

16.1 Broadband Wireless Access

MANs link commercial and residential buildings to the Internet through
a high-speed connection. Typically, an Internet service provider (ISP)
supplies the MAN. The links can be dedicated high-speed lines, such as
T1 (1.54 Mbps), T3 (45 Mbps), OC3 (155 Mbps), OC12 (622 Mbps), and
beyond, or they can be a broadband link, i.e., a link (wire) that carries
more than one channel at once, such as cable modem or a digital sub-
scriber line (DSL). Dedicated lines provide more reliable connections and
higher speeds but generally are very expensive.

Note that the answer to the question, “What counts as high speed?”
changes faster than a speeding packet (on a “high-speed” connection).

Cable modem and DSL, two popular, inexpensive options for Internet
service for residential users and smaller businesses, currently provide
around 3 Mbps (i.e., twice T1 speed) at a fraction of the cost of a dedi-
cated line. However, a third option has become available recently and
is growing in popularity: broadband wireless access (BWA).

1

Richard_Ch16.qxd 8/17/04 2:10 PM Page 1

16.2 IEEE 802.16

In late January 2003, the IEEE approved IEEE 802.16 as a standard.
The first certified products are planned to be available by the end of 2004
[wimax]. 802.16 is the Working Group on broadband wireless access
standards for MANs [IEEE 802.16]. The goal of the group is to provide
fixed BWA to large areas. They are, in essence, competing with DSLs
and cable modems.

802.16 is related to 802.11 (see Chapter 15), the wireless LAN stan-
dard, in that they are both under the same 802 LAN/MAN standards
committee. However, 802.16 provides fixed wireless connectivity; i.e.,
the source and destination do not move, typically using line-of-sight
antennas. 802.16 supports communication from 2- to 66-GHz bands in
both licensed and unlicensed bands. 802.16 is the only 802 protocol
that supports transmission on licensed bands. Task Group A covers
the 2- to 11-GHz bands, and Task Group C covers the 10- to 66-GHz
bands. Task Group 2a covers the coexistence of 802.16 and 802.11 pro-
tocols on the same unlicensed frequencies.

802.16 connects the base station (BS) at the ISP to the subscriber
station (SS) at the business or residence and supports speeds up to
268 Mbps.

802.16 supports three types of transmission methods at the physical
layer: single-carrier modulation (SC), orthogonal frequency division
multiplex (OFDM), and orthogonal frequency division multiple access
(OFDMA). The unlicensed bands use OFDM, which 802.11a uses as
well. Security for 802.16 is provided by a privacy sublayer, described in
the next section [WMANunleash, WMANconsensus].

16.3 802.16 Security

The privacy sublayer of 802.16, operating below the common-part sub-
layer, protects the transmitted data by providing security mechanisms
for authentication and data encryption. Since MANs provide Internet
connectivity service from a provider to a paying subscriber, the provider
must verify the identify of the subscriber. A key management protocol,
Privacy Key Management (PKM), allows the BS to control access to the
network and the SS and BS to exchange keys. The encapsulation pro-
tocol encrypts the packet data that are transmitted. The packet data (the
MAC PDU payload) is encrypted; the header information is not. MAC
management messages also are not encrypted [IEEE 802.16].

The privacy sublayer is based on the Baseline Privacy Interface Plus
(BPI+) specification for Data Over Cable System Interface Specification
(DOCSIS). Each customer transceiver, the SS, has its own digital cer-
tificate, which it uses for authentication and key exchange.

2 Chapter Sixteen

Richard_Ch16.qxd 8/17/04 2:10 PM Page 2

16.3.1 Key management

The PKM protocol uses X.509 digital certificates, the RSA [RFC2459]
public key encryption algorithm [PKCS#1], and strong symmetric encryp-
tion for key exchange between the BS and the SS. As in many other sys-
tems, it uses a hybrid approach of public and symmetric encryption.

The public key encryption establishes a shared secret, the authori-
zation key (AK), between the SS and BS. Then the AK is used with sym-
metric encryption to exchange the traffic encryption keys.

In the initial authorization exchange, the BS (server) authenticates
the SS (client) through use of the X.509 certificate. Each SS is issued a
certificate by the manufacturer, which contains the SS’s public key and
MAC address. When the BS receives a certificate from an SS, it verifies
the certificate and then uses the SS’s public key to encrypt the author-
ization key. By using the certificate for authentication, the BS prevents
an attacker from using a cloned SS to masquerade as a legitimate sub-
scriber and steal service from the BS. An attacker that does not have
the SS’s private key from the SS’s certificate could not decrypt the
authorization key sent by the BS and therefore not steal service suc-
cessfully from the BS. Refer to the “Key management protocol” in sec-
tion 7.1.2 of the IEEE 802.16 standard [802.16std]. Figure 16.1 shows
an example of key management.

16.3.2 Security associations

A security association (SA) is the set of security information shared by
the BS and one or more SSs to support secure communications. 802.16
defines three types of SAs:

� Primary. A primary security association is established during the ini-
tialization process of the SS.

� Static. Static SAs are provisioned within the BS.
� Dynamic. Dynamic SAs are created and destroyed as specific service

flows are created and destroyed.

Static and dynamic SAs can be shared by multiple SSs.
The SA’s shared information may include the cryptographic suite

employed, as well as the traffic encryption key (TEK) and initialization
vectors (IVs). An SAID identifies each SA. A cryptographic suite is the
SA’s set of methods for data encryption, data authentication, and TEK
exchange.

Currently, 802.16 supports the following two cryptographic suites:

� No encryption, no authentication, and 3-DES with a 128-bit key
� CBC mode, 56-bit DES, no authentication, and 3-DES with a 128-bit key

Security in Wireless Metropolitan Area Networks (802.16) 3

Au: Please
provide
complete refer-
ence for
RFC2459.

Au: Please
provide
complete
reference for
PKCS#1.

Au: Please
provide
complete refer-
ence for
802.16std.

Richard_Ch16.qxd 8/17/04 2:10 PM Page 3

Additional codes are reserved for additional suites.
Each SS establishes an exclusive primary SA with its BS. Using PKM,

the SS requests the keying material from the BS. The BS ensures that
each client has access only to SAs that it is authorized to access.

16.3.3 Keying material lifetime

The SA’s keying material includes the data encryption standard (DES)
key and the CBC IV and has a limited lifetime. The BS informs the SS
of the remaining lifetime of the keying material when it is delivered to
the SS. The SS must request new keying material from the BS before
the current one expires. If the current one does expire before a new one
is received, the SS must perform a network entry (i.e., reinitialize and
start over).

4 Chapter Sixteen

Figure 16.1 Key management in 802.16.

Subscriber station (SS)

Authentication
request (cert)

Response (encrypted
authentication key)

Base station (BS)

Resp = Epub-key(key)

Certificate
(public key +

MAC address)

Verify MAC address
generate authentication

key (key)

Key = Dpriv-key(Resp)

Symmetric encryption with
authorization key used for
data transmission between

SS and BS

Encrypted data

Richard_Ch16.qxd 8/17/04 2:10 PM Page 4

The AK lifetime is 7 days, and the grace time timer is 1 hour [802.16tuto-
rial]. The grace time provides the SS with enough time to reauthorize,
allowing for delays, before the current authorization key expires. The
grace time specifies the time before the AK expires when reauthoriza-
tion is scheduled to begin.

16.3.4 Subscriber station (SS) authorization

The SS first sends an authentication information message to the BS con-
taining the manufacturer’s X.509 certificate. The SS then sends an
authorization request to the BS containing:

� The SS’s X.509 certificate issued by the manufacturer
� A description of supported cryptographic algorithms
� A connection identifier (CID)

After the BS has validated the request, it creates an authorization key
and encrypts it with the SS’s public key. The reply includes:

� The encrypted AK
� A 4-bit sequence number to distinguish different AKs
� The key’s lifetime
� The identifier for the SA (SAID)

After initial authorization, an SS reauthorize itself periodically with
the BS. Successive generations of AKs have overlapping lifetimes to
avoid service interruptions. The SS and BS can have two simultaneously
active AKs. Once the BS has an AK, it can obtain a TEK.

16.3.5 Encryption

For each SA, the SS requests a key from the BS. The SS sends a key
request message, and the BS sends a key reply containing the keying
material. The TEK in the message is triple DES encrypted using a two-
key triple DES key encryption key derived from the AK. The reply also
contains the CBC IV and the lifetime of the key. Similar to the author-
ization key, the SS maintains two overlapping keys. The second key
becomes active halfway through the life of the first key, and the first
expires halfway through the life of the second, causing the SS to send
a new key request to the BS. Each successive key maintains this half-
step synchronization.

The BS is able to choose what cryptographic suite to use, based on the
list of available suites the SS provided.

Security in Wireless Metropolitan Area Networks (802.16) 5

Richard_Ch16.qxd 8/17/04 2:10 PM Page 5

16.4 Problems and Limitations

In [802.16enhancements], Johnson and Walker point out several limi-
tations to and potential problems with the current 802.16 specification
and suggest enhancements to improve security. Since this is a rapidly
evolving standard, we will cover just some of the highlights.

First, 802.11i (see Section 13.5) has now set the standard for current
best practices in wireless security, and 802.16 falls short in a few places.
Authentication occurs only in one direction; specifically, the base authen-
ticates the subscriber, but not vice versa.

Authentication is based on X.509 certificates, which are difficult to
administer. The RSA algorithm is used for key establishment which
may be too compute intensive and slow for some devices or require more
expensive hardware. DES is used for one of the encryption suites, which
is not regarded as secure. There is no data authentication, which is
regarded as mandatory in the wireless environment. In addition, there
is no data replay protection.

Johnson and Walker make several recommendations. AES-128 should
be added to the cryptography suites to enhance the protection. Data
authentication needs to be added. This would be in the form of a MAC using
the AES block cipher, following what is done in 802.11i. IVs should be
sequential in order to maximize the time between rekeying. For sequen-
tial IVs, reuse occurs after N IVs; for randomized IVs, reuse occurs after
√N IVs. Currently, the same TEK is used in both directions, for the uplink
and the downlink. This leads to a higher chance of initialization vector
reuse. Instead, two different keys should be used.

Authorization should be bidirectional; i.e., users should perform
authorization on the BS. Rather than relying solely on the factory-
installed RSA key pair, adding an 802.1x-style authentication suite
would add capabilities and bring it in line with the other 802 standards
(802.3 and 802.11). In addition, rather than using a factory-installed key
pair, a smart card system would allow more flexibility.

16.5 Summary

In this chapter we presented the IEEE 802.16 WMAN protocol and its
security mechanisms. 802.16 provides support for MANs, providing the
“last mile” of a high-speed wireless Internet link to a commercial sub-
scriber and eventually residential subscribers. As mentioned earlier,
802.16 is still a new, evolving standard, and as of this writing, it will be
some time before commercial hardware is available. Thus our discus-
sion focused on the mechanisms in the standard, as well as changes that
would provide protection similar to 802.11i by using the encryption
suites and authentication protocols in 802.11i and 802.1x. Chapter 17
covers WWANs.

6 Chapter Sixteen

Richard_Ch16.qxd 8/17/04 2:10 PM Page 6

References

[802.16enhancements] Johnson D., and J. Walker, “802.16 Security Enhancements,” IEEE
802.16 Presentation Submission, Contributed document IEEE C802.16d-03/60r1,
September 9, 2003, http://grouper.ieee.org/groups/802/16/tgd/contrib/C80216d-03_60r1.
pdf.

[802.16tutorial] Marks R.B., C. Eklund, K. Standwood, and S. Wang, “The 802.16
WirelessMAN MAC: It’s Done, but What Is It?”, 802 LMSC Plenary Session, November
2001, http://grouper.ieee.org/groups/802/16/docs/01/80216-01_58r1.pdf.

[DOCSIS] http://www.cablemodem.com/specifications/specifications11.html.
[IEEE 802.16] http://grouper.ieee.org/groups/802/16/.
[wimax] Worldwide Interoperability for Microwave Access Forum (WIMAX), http://

www.wimaxforum.org (December 2003).
[WMANconsensus] Marks R.B., “Consensus IEEE 802.16 Standard Marks Maturation of

Broadband Wireless Access Industry,” EE Times, April 1, 2002, http://grouper.ieee.org/
groups/802/16/docs/02/C80216-02_04.pdf.

[WMANunleash] Marks R.B., I.C. Gifford, and B. O’Hara, “Standards from IEEE 802
Unleash the Wireless Internet,” IEEE Microwave Magazine 2, pp. 46–56, June 2001,
http://grouper.ieee.org/groups/802/16/docs/01/80216c-01_10.pdf.

Security in Wireless Metropolitan Area Networks (802.16) 7

Richard_Ch16.qxd 8/17/04 2:10 PM Page 7

Richard_Ch16.qxd 8/17/04 2:10 PM Page 8

Chapter

17
Security in Wide Area Networks

Wireless wide area networks (WWANs) are very large-scale wireless net-
works. 802.16 provided coverage in a metropolitan area, say, 10 miles, to
a fixed location. A WWAN must provide continuous coverage across a
much larger area, such as an entire state or country. And nodes in a
WWAN can move and must remain connected. Currently, the only tech-
nology that provides this type of coverage is satellite and cell phones.
Although satellite technology provides truly global coverage, the current
cost makes it impractical for common use. Cell phone technology, on the
other hand, is practically ubiquitous and much more affordable. Therefore,
we focus on cell-based WWANs in this chapter.

17.1 Basic Idea

Low-power cells share frequencies and use spread-spectrum technology
allowing multiple users per channel per cell. High redundancy allows
voice quality to be maintained. Handoffs from one cell to another occur
as the mobile unit passes out of one cell’s coverage area and into
another’s. (Actually, multiple base stations are received at once, and the
strongest is used.) While many locations have poor or no coverage, cel-
lular wireless networks provide the closest approximation to ubiqui-
tous connectivity this side of satellite phones. And in large metropolitan
areas, cell coverage is ubiquitous, including base stations located in
underground public transportation stations, so connectivity is main-
tained even on a moving train.

Initially, cellular networks just carried voice. The next step was to use
these networks to carry data, say, to provide Internet connectivity
through the cell phone. The first incarnation was cellular modems, which
converted a digital signal to an analog signal by modulating a carrier.

1

Richard_Ch17.qxd 8/17/04 2:39 PM Page 1

It then converted the carrier to a digital signal, sent it across the air and
through the wires, and then converted it back to an analog signal that
was input into the receiver’s modem. The modem then converted the
analog signal back to a digital signal. This connects to some sort of dial-
up that presumably connects to the Internet. Figure 17.1 shows the
process of hops and conversions. Obviously, the results are suboptimal
because performance is lost with each conversion.

A more direct approach, now available, takes the digital information
from the computer and transmits it directly over the air to the cellular

2 Chapter Seventeen

Figure 17.1 An inefficient way to send digital data over a cellular network.

Laptop computer

Modem

Cell phone Cellular base station

Modem

Analog

Digital

Radio

ISP server

Cellular modem

ISP modem

Modem

ISP telephone system

Cellular radio link

Telephone network
(digital)

Line from telephone pole
(analog or digital)

Richard_Ch17.qxd 8/17/04 2:39 PM Page 2

provider. The cellular provider functions directly as an ISP and provides
Internet connectivity. The cellular provider gives the device connecting
to the phone a direct Internet protocol (IP) address. Figure 17.2 shows
this approach.

The United States uses three wireless network standards: TDMA,
CDMA, and GSM. Time domain multiple access (TDMA) uses differen-
tial quadrature phase shift keying (DQPSK) for time multiplexing infor-
mation to archive a data rate of 48.6 kbps. Code division multiple access
(CDMA) is a spread-spectrum technique similar to direct sequence
spread spectrum (DSSS) used in 802.11b [CDMA]. GSM uses a combi-
nation of TDMA/frequency division multiple access (FDMA).

17.2 CDMA

CMDA is a spread-spectrum technique. The transmitter uses a code,
shared by both endpoints, to send each bit of data across a large frequency

Security in Wide Area Networks 3

Figure 17.2 A more efficient way to send digital data over a cellular network.

Laptop computer

Modem

Cell phone Cellular base station

ISP server

Cellular modem

Cellular radio link

Router

Router

InternetAnalog

Digital

Radio

Richard_Ch17.qxd 8/17/04 2:39 PM Page 3

range. The receiver uses the code to reconstruct the original data from
the spread-spectrum signal. This frequency-spreading technique makes
it very difficult to intercept the signal unless the code is known. While
CDMA had been developed originally for military applications, its com-
mercial goal was its larger capacity over TDMA-based systems rather
than security. CDMA’s relatively strong security property comes from the
low probability of interception (LPI) of the data because of the encoding
used for spread spectrum as compared with GSM’s weak(er) encryption
of its data [CDMA].

17.3 GSM

Global systems for mobile communication (GSM) is one type of cellular
phone network, and it has security mechanisms that provide authenti-
cation and encryption. GSM is based on TDMA; thus, intercepting the
signals is much easier than in CDMA. Therefore, GSM has separate
security mechanisms to encrypt the data it transmits. GSM security
mechanisms are based on a shared secret between the home location reg-
ister (HLR) and the subscriber identity module (SIM)—in other words,
the security modules in the phone and the central station. A subscriber
identity module is a removable hardware device that provides security,
is managed by network operators, and is independent of the terminal
device in which it resides. GSM provides mechanisms for authentication
and encryption.

17.3.1 GSM authentication

The shared secret Ki is a 128-bit key. Authentication is performed when
the HLR or base station sends a 128-bit random number called a challenge
to the mobile station (MS), i.e., the phone. The MS calculates the response,
a 32-bit signed response (SRES), by using the A3 algorithm feeding the
challenge and the shared secret as input. The base station then compares
the SRES received from the MS with the expected value. Figure 17.3
shows the process [GSMInterception].

17.3.2 GSM encryption

The MS and base station use a 64-bit session key Kc for data encryption
of the over-the-air channel. They calculate Kc by using Ki and a 128-bit
random number, which are the same numbers used to calculate the
SRES. Instead of using the A8 algorithm as was originally specified,
however, most manufacturers use the A3 algorithm to calculate Kc as
well. This is done to reduce the number of cryptographic algorithms to
encode in the telephone firmware.

The session key is not used to encrypt the data directly. Instead, it is
used to generate the keystream that encrypts the data. In Chap. 13 we

4 Chapter Seventeen

Richard_Ch17.qxd 8/17/04 2:39 PM Page 4

showed that a basic stream encryption algorithm works by XORing the
datastream with a keystream generated by a pseudorandom-number
generator (PRNG) provided with an initial seed. In this case, the seed
is Kc, and the PRNG is the A5 algorithm. Actually, the seed is Kc and the
frame number (which is 22 bits). Figure 17.4 shows GSM encryption.

The frame numbers are generated implicitly and can be guessed.
Thus, if an adversary determines Kc, he can decrypt the traffic. The
mobile station can authenticate itself at the beginning of each call, but
this is not generally done in practice. Thus an MS can retain the same
Kc for days. In addition, once the base station (base transceiver station,
BTS) receives the frames, it decrypts the data and sends them in plain-
text to the backbone network.

17.4 Problems with GSM Security

GSM security has several shortcomings, including session life, weak-
nesses in the COMP-128 algorithm, as well as encryption used between
only the MH and BS. We discuss these limitations and others below.

Security in Wide Area Networks 5

Figure 17.3 GSM authentication.

Base station
(HLR)

Mobile station
(MS)

SRES = A3 (Challenge, Ki)
(SRES = 32 bits)

Challenge

SRES

Check: SRES’ = SRES

Ki= shared secret
(128 bits)

SRES’ = A3 (Challenge, Ki)

Ki= shared secret
(128 bits)

Challenge = random
number (128 bits)

Richard_Ch17.qxd 8/17/04 2:39 PM Page 5

17.4.1 Session life

The first problem is the long life of authenticated sessions. While the
mobile station may be requested to reauthenticate at the beginning of
each call, typically this is not done. This means that the same session
key Kc is used for days. The longer a session key is used, the weaker it
becomes.

17.4.2 Weak encryption algorithm

Traffic is encrypted via the A5 algorithm only over the air between the
mobile and base stations. The data are decrypted when they arrive at
the base station and are sent from the base station to the operator’s
backbone network in plaintext.

Almost all GSM implementations use the COMP-128 algorithm for
both A3 and A8 algorithms. The session key Kc generated by COMP-128
is actually 54 bits, with 10 zero bits added to pad it to 64 bits. Obviously,
this reduces the key space. Even non-COMP-128 algorithms use only
54 bits for Kc.

While real-time interception and decryption of over-the-air trans-
missions is (currently thought of to be) impossible, there are other
attacks to GSM security. In [GSMInterception], Pesonen calculates that

6 Chapter Seventeen

Figure 17.4 GSM encryption.

. .
 .

Base Station
(HLR)

Mobile Station
(MS)

Kc = A8(Rand, Ki)
(Kc = 64 bits)

Rand

Ki = shared secret
(128 bits)

Keystream# = A5 (Kc, Frame #)
(Keystream = 114 bits,
Frame # = 22 bits)

Ki= shared secret
(128 bits)

Rand = random
number (128 bits)

Kc = A8 (Rand, Ki)

E1 = Keystream1⊕P1

P2 = Keystream2⊕E2

Keystream# = A5(Kc, Frame #)
(Keystream = 114 bits,
Frame # = 22 bits)

E2 = Keystream1⊕P2

P1 = Keystream2⊕E2

E1

E2

Richard_Ch17.qxd 8/17/04 2:39 PM Page 6

a brute-force attack on a 254 bit key using a 600-MHz Pentium III would
take about 250 hours using one processor. “Modern” computers are
easily five times faster, dropping the time to 50 hours. Pesonen also men-
tions a technique to reduce the time by one third, thus reducing the time
to, roughly, 30 hours. By using multiple CPUs and distributed comput-
ing, the time can be reduced further. Therefore, what was infeasible a
few years ago quickly becomes very possible and affordable. Additional
approaches, such as divide and conquer, further reduce the search space.
[WirelessSecurityA5] describes the cryptanalysis of the A5 algorithm. In
[Golic], Golic published an attack on the A5 algorithm with a complex-
ity of O(240), as well as time and space tradeoffs to further reduce the
computation time.

17.4.3 Encryption between mobile host and
base station only

Gaining access to the signaling network allows an eavesdropper to listen
to unencrypted data traffic, as well as all the authentication data
(RAND, SRES, and Kc). Networks commonly use microwave or satellite
links, for which eavesdropping equipment does exist.

17.4.4 Limits to the secret key

If an attacker compromises the secret key Ki, the entire security scheme
is compromised. While the GSM network detects if two phones with the
same IDs are operating simultaneously and closes the account, the net-
work cannot detect a passive eavesdropper silently decrypting the data.
In addition, it is possible to retrieve Ki from a subscriber identity module
(SIM) because of a flaw in COMP-128. By sending selected challenges,
the COMP-128 algorithm responds in a way that reveals information
about Ki. This attack takes hours to complete and requires physical
access to the SIM.

Two variants of the A5 algorithm exist: A5/1 and A5/2, with the former
more secure than the latter. In 2000, approximately 230 million cus-
tomers in Europe and elsewhere were using these two algorithms.
Biryukov and colleagues [RT-A5] propose two attacks on A5/1 that can
be performed in real time on a PC after a one-time data initialization
step is completed. The first attack requires eavesdropping on the output
of the algorithm for the first 2 minutes of the conversation and computes
the key in approximately 1 second. The second attack requires 2 seconds
of the conversation and computes the key in several minutes.

The main problem with GSM security is that it relies on the secrecy
of the A5 algorithm, which was not publicly scrutinized. Once the algo-
rithm leaked out in the middle to late 1990s, serious flaws were dis-
covered. This is an example of the fallacy of “security by obscurity.”

Security in Wide Area Networks 7

Richard_Ch17.qxd 8/17/04 2:39 PM Page 7

17.4.5 Other problems

There are several other GSM problems. No data integrity algorithm is
used; therefore, data could be modified and the receiver could not detect
it. Authentication is performed in only one direction, from the user to
the network. No mechanism exists to identify the network to the user.
Also, there is no indication to the user that encryption is being used.

17.5 The Four Generations of Wireless:
1G–4G

The first generation (1G) of wireless wide area communications, pres-
ent in the 1970s and 1980s, used analog signals to transmit voice sig-
nals only. The second generation (2G) started in the 1990s and used
digital signals for voice and data. GSM and TDMA are 2G. 2.5G repre-
sents technology improvements in the between 2G and 3G. The third
generation (3G) supports higher data rates, from 144 kbps to 2 Mbps and
beyond, and typically is packet-switched using CDMA. 3G examples
include EDGE, GPRS, and W-CDMA. The fourth generation (4G) will
provide much higher data rates, in excess of 20 Mbps, and is expected
to be deployed around 2006 to 2010 (http://www.netmotionwireless.com/
resource/glossary.asp). At this point, it is still unclear what will be in 4G
versus 3G, but mostly likely 4G will be integrated with WPANs and
WLANs.

17.6 3G

3G security is based on GSM [MyagmarGupta] but is designed to fix its
shortcomings. The security mechanisms of 3G provide authentication,
confidentiality, and encryption, and are described below.

Authentication. GSM authentication provides protection from unau-
thorized service access and is based on the A3 algorithm, which is known
to have limitations. Encryption is used to protect both the user data and
the signaling data. The A8 and A5 algorithms are used but are not strong
enough.

In the authentication and key agreement (AKA) phase, the user and
network authenticate each other and agree on a cipher key (CK) and an
integrity key (IK). The keys expire after a specified time limit.

Confidentiality. Confidentiality is provided by identifying users with a
permanent identity, called the international mobile subscriber identity
(IMSI) and a temporary mobile subscriber identity (TMSI). Transmission
of the IMSI is not protected; it is sent as plaintext. Therefore, a more
secure mechanism is needed. The user and network agree on the cipher
key and algorithm during the AKA phase.

8 Chapter Seventeen

Richard_Ch17.qxd 8/17/04 2:39 PM Page 8

Encryption. Recall that a subscriber identity module (SIM) is a remov-
able hardware device connected to the phone that provides security. In
addition, the phones indicate when encryption is being used and what
level is available (2G or 3G).

The Third Generation Partnership Project (3GPP) is a standards
group focused on 3G technology, including GSM, General Packet Radio
Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), and
Wideband Code Division Multiple Access (WCDMA). GGPP security pro-
vides some changes and enhancements of GSM security. Security mech-
anisms include sequence numbers to defeat false base station attacks.
Key lengths were increased so that stronger algorithms can be used for
encryption and integrity. New mechanisms provide security support
within and between networks. Links between the base station and
switch are now protected because security is based within the switch.
Integrity mechanisms for the terminal identity, the international mobile
equipment identity (IMEI), were designed into the system from the
beginning rather than added on as an afterthought.

The authentication algorithm is not defined, but guidance is given as
to what to use. When roaming, only the level of protection supported by
the smart card is used, so a GSM card is not protected against a false
base station attack when using a 3GPP network [3GSecurity].

The IMEI, which identifies the phone, is not protected either, but it
is not a security feature.

Users can unwittingly “camp” on a false base station and will no
longer receive paging signals from the serving network (SN).

If encryption is disabled, an intruder can hijack incoming and outgo-
ing calls by posing as a “man in the middle” and then taking over once
the call is connected.

Attacker Capabilities. In order to perform an attack, an attacker must
have one or more of the following capabilities: eavesdropping, imper-
sonation of a user, impersonation of a network, “man in the middle,” or
compromising authentication vectors in the network. We list the capa-
bilities in increasing order of effort to obtain and complexity. Therefore,
a given capability implies possessing all capabilities listed above it. We
describe each capability in more detail below.

Eavesdropping. This capability allows the intruder to receive sig-
naling, data, and control information associated with other users.
This requires a modified mobile station.

Impersonation of a user. This capability allows the intruder to send
signaling, control, and data information such that it appears to orig-
inate from a different user. This requires a modified mobile station.

Security in Wide Area Networks 9

Richard_Ch17.qxd 8/17/04 2:39 PM Page 9

Impersonation of a network. This capability allows the intruder to
send signaling, control, and data information such that it appears to
originate from a different network or system component. This requires
a modified base station.

“Man in the middle.” This capability allows the intruder to place
himself between the target user and the network. Being a “man in the
middle” allows the intruder to eavesdrop, modify, delete, reorder,
replay, and fake signaling, control, and data messages between the
user and the network. This requires a modified base station in con-
junction with a modified mobile station.

Compromising authentication vectors in the network. This capabil-
ity allows an intruder to possess a “compromised authentication
vector” including challenge/response pairs and cipher and integrity
keys. The intruder obtains this information by compromising net-
work nodes or eavesdropping on signaling messages on network links.

In addition, there are several types of denial-of-service (DoS) attacks.
An attacker can send a fake (spoofed) user deregistration request, ren-
dering the victim unreachable. An attacker can fake a location update
request, which causes the network to register the victim in a new (wrong)
location, causing the victim to be unreachable because she will be paged
in the wrong location. An attacker with a modified base station can
entice a user to “camp” on (connect to) the false base station, rendering
the victim out of reach of paging signals of the real network.

17.7 Limitations

2G data rates are on the order of 9.6 to 28.8 kbps. 3G currently goes up
to 140 kbps. Within a few years, it should support speeds in the megabit
per second range, with plans to support speeds in the tens, if not hun-
dreds, of megabits per second. While the envisioned rates are, relatively
speaking, “fast,” they will always be orders of magnitude slower than
other network types. The 802 wireless networks (802.11, 802.15, 802.16)
support speeds from 50 to 200 Mbps now. Ethernet (802.3) supports
gigabit and faster rates now. There always are tradeoffs to consider
when using the cellular networks. The speed is slower than other types
of wireless, or wired, networks, but the mobility and ubiquity of cover-
age of the network supports highly mobile applications and platforms.

17.8 Summary

In this chapter we presented the security features of and the threats to
WWANs based on cellular technology, specifically, GSM and 3G. 3G is

10 Chapter Seventeen

Richard_Ch17.qxd 8/17/04 2:39 PM Page 10

based on CDMA, which has a low probability of interception that pro-
vides data security. 3G security extends features in GSM, has identified
weaknesses in GSM and attempts to address them. As part of this effort,
3G has identified the major threats it faces in terms of security.

Cellular WWANs are evolving rapidly, with bandwidth moving from
kilobits to megabits per second. Although these networks have limita-
tions, they offer continuous wide area coverage across large areas. While
total global coverage is unlikely for terrestrial-based technology, 3G,
and 4G in the next few years, will play a major role in providing the
infrastructure for ubiquitous mobile computing.

References

[3GSecurity] 3GPP3G TR 33.900, “A Guide to 3rd Generation Security,”
ftp://ftp.3gpp.org/TSG_SA/WG3_Security/_Specs/33900-120.pdf.

[CDMA] Nichols, Ibid, pp. 16–28, 494–495.
[Golic] Jovan Dj. Golic J., “Cryptanalysis of Alleged A5 Stream Cipher,” Advances in

Cryptology—EUROCrypt ’97, May 1997, pp. 239–255, http://jya.com/a5-hack.htm.
[GSMInterception] Lauri Pesonen L., “GSM Interception,” Department of Computer

Science and Engineering, Helsinki University of Technology, http://www.dia.unisa.it/
ads.dir/corso-security/www/CORSO-9900/a5/Netsec/netsec.html.

[MyagmarGupta] Suvada Myagmar S., and V. K. Gupta “3G Security Principals,”
http://choices.cs.uiuc.edu/MobilSec/posted_docs/3G_Security_Overview.ppt.

[RT-A5] Biryukov A., A. Shamir, and D. Wagner, “Real Time Cryptanalysis of A5/1 on a
PC,” Lecture Notes in Computer Science, vol. 1978. Berlin: Springer-Verlag, 2000.

[WirelessSecurityA5] Nichols R., and P. Lekkas, Wireless Security Models: Threats, and
Solutions. New York, NY: McGraw-Hill, 2002, pp. 324–325.

Security in Wide Area Networks 11

Richard_Ch17.qxd 8/17/04 2:39 PM Page 11

Richard_Ch17.qxd 8/17/04 2:39 PM Page 12

Appendix

A
Brief Introduction to

Wireless Communication
and Networking

1.1 Wireless Communication Basics

Similar to wireline communication, a one-way (simplex) wireless com-
munication requires a transmitter (transmitter electronics plus antenna)
generating (electromagnetic) signals that can be properly received and
deciphered by a receiver (receiving electronics plus antenna). Bidirectional
communication requires a pair of transceivers—each transceiver consists
of a transmitter and a receiver. Although it is possible for a transceiver
to be designed such that it can transmit and receive at the same time,
for various reasons such as the cost of the unit and its weight, a trans-
ceiver is designed with shared components (such as antenna) between
its transmitter and receiver—leading it to either send or receive signals
at any time. Hence, bidirectional communication in wireless networks
is usually half duplex. Depending on various factors such as the power
used for amplification of the wireless signal, properties of the medium,
sensitivity of the receiver, and the signal interference from various other
sources, a wireless transceiver’s signal can be received at a certain dis-
tance from it. Directionality of the transceiver’s antenna also plays a cru-
cial role in this. An omnidirectional antenna radiates signals with almost
equal strength in all the directions, whereas a directional antenna radi-
ates signals with substantially more strength in some directions than
others. The region around a transceiver within which the signal of a
transceiver can be satisfactorily received is called the coverage area of
the transceiver. Conceptually, a bidirectional wireless link exists between
a pair of transceivers within the coverage area of each other since each

369

Richard_appA.qxd 9/15/04 5:01 PM Page 369

can receive signals sent by the other. All other factors remaining constant,
the coverage area of a transceiver can be increased or decreased by
adjusting the power used for amplifying the signal.

Suppose that the receiver and the transmitter are separated by a dis-
tance R. For a fixed distance d, the (average) power Pr of the signal received
by the receiver is proportional to the (average) power Pt of the transmit-
ted signal. Under some simplifying assumptions (which we won’t go into
here) the relationship between Pt and Pr can be expressed as follows:

(1)

where a is the propagation loss exponent and K is the proportionality
constant, which is dependent on the characteristics of the antennas. The
value of the propagation loss exponent is usually between 4 and 2. It
should be noted here that the above relationship holds when the receiv-
ing antenna is in the far-field region (as opposed to near-filed region),
i.e., R is greater than some minimum distance that marks the bound-
ary of the near-field region around the transmitting antenna.

Depending on the sensitivity of the receiver, the received power has
to be greater than a certain minimum threshold value Pr-th for the
receiver to be able to detect the transmitted signal. Hence the maximum
distance Rmax that a receiver can be from the transmitter and still detect
the signal from it can be determined from Eq. (1):

(2)

As can be seen from Eq. (2), as Pt increases Rmax increases, although
very slowly.

Conceptually, Rmax is the radius of the cell of the transmitter (assum-
ing an omnidirectional transmitting antenna). In reality, the cell bound-
ary in a given direction may depend on many factors such as the
directionality of the antenna and the terrain. So, although we denote the
cells as circular regions, in reality a cell may have very irregular geom-
etry. In fact there are two power thresholds that may be associated with
the receiver:

1. Pr-th-detect: the threshold above which the transmitter detects that
the channel is busy and refrains from transmission.

2. Pr-th-recv: the threshold above which the transmitter is able to correctly
receive a packet.

Obiviously, Pr-th-detect <= Pr-th-recv => Rmax-detect >= Rmax-recv.

R
PK
P

t

r

a

max
-th

/

=

1

P
PK
Rr
t

a
=

370 Appendix A

Au:
Subscripts
“t” & “r”
OK?

Au: Pl.
check
subscript
r-th.

Au: Pl.
verify
symbols

Richard_appA.qxd 9/15/04 5:01 PM Page 370

Wireless transceivers are usually designed to generate and perceive
the signal within a certain frequency range called a frequency band.
Frequency bands are consistent with the frequency bands allocated by
the FCC. Most of these bands require a license issued by the FCC to use
them. The exceptions are the Industrial Scientific and Medical (ISM)
bands that do not require licenses for using them, and hence they can
be freely used as long as the user abides by the FCC guidelines of not
using transmission power greater than 1 MW.

The signal propagation properties vary with the frequency. As the
frequency of the signal increases, its penetrability decreases and the dis-
tance to which it can propagate within a medium (say air) decreases.
Hence, at higher frequencies (such as infrared) the transceivers have to
be in the line-of-sight of each other. At lower frequencies (such as radio
frequencies) the line-of-sight is not required, since signal can be reflected
from various objects and reach the receiver from various indirect paths.
Wireless signals experience fading. There are two types of fading: short-
term fading and long-term fading. This results in severe variability of
the available bandwidth of a wireless link. Fading in a wireless medium
results in much higher bit error rates than in wireline communication.
For more in-depth coverage, interested readers can consult many excel-
lent books available on wireless communication [1].

1.2 Wireless Network Architectures

There are several types of wireless networks being currently used.
Figure A.1 shows several different types of mobile network architectures.

1.2.1 Wireless local area network (WLANs)
and mobile IP

An access point (AP) is usually a (mostly static) wireless transceiver con-
nected to the wireline network. A mobile can establish a bidirectional
link with an access point using a common protocol such as IEEE 802.11
or Bluetooth. Of course, the mobile has to have the appropriate proto-
col stack and hardware (e.g., PCMCIA card or built-in transceiver) to
communicate with an IEEE802.11 or a Bluettooth access point. Wireless
LANs are being used to provide wireless hot spots or oases in places such
as airports, coffee shops, hotels, shopping malls, and homes. A wireless
LAN permits mobility, which is restricted within the coverage area of
the access point. For short-range technology, the radius of the coverage
area can be a few meters (e.g., around few meters for RFIDS, around
10 m for Bluetooth), whereas for long-range technology this can range
from several hundred to several thousand (kilo) meters (e.g., around
300 m for IEEE 802.11 Wireless LANs, several kilometers for satellite
cells). Protocols such as Mobile IP provide wide-area mobility. Mobile IP

Brief Introduction to Wireless Communication and Networking 371

Richard_appA.qxd 9/15/04 5:01 PM Page 371

372

S
ta

tic
 h

os
t

W
ire

le
ss

ac
ce

ss
 p

oi
nt

R
ou

te
r

LA
N

In
te

rn
et

P
S

T
N

(1
)

In
te

rn
et

-b
as

ed
 m

ob
ile

 n
et

w
or

k
(in

fr
as

tu
ct

ur
e-

ba
se

d)
(2

)
M

ob
ile

 c
el

lu
la

r
ne

tw
or

k
(in

fr
as

tu
ct

ur
e-

ba
se

d)

(3
)

M
ob

ile
 a

d
ho

c
ne

tw
or

k
(in

fr
as

tr
uc

tu
re

-le
ss

)

M
ob

ile
 m

’s
tr

aj
ec

to
ry

B
as

es
ta

tio
n

(c
el

l d
)

M
ob

ile
 s

w
itc

hi
ng

 c
en

te
r

(M
S

C
)

M
ob

ile
 h

os
t

IE
E

E
 8

02
.1

1/
bl

ue
to

ot
h

w
ire

le
ss

 L
A

N

S
ta

tic
 h

os
t

M
ob

ile
 IP

S
in

gl
e

ho
p

co
m

m
un

ic
at

io
n

us
in

g
IE

E
E

80
2.

11
 a

d
ho

c
m

od
e

M
ul

tih
op

 c
om

m
un

ic
at

io
n

us
in

g
ad

 h
oc

 r
ou

tin
g

pr
ot

oc
ol

s
e.

g.
 D

S
R

,
A

O
D

V.

B
as

es
ta

tio
n

(c
el

l c
)

F
ig

u
re

 A
.1

D
if

fe
re

n
t

T
yp

es
 o

f
M

ob
il

e
N

et
w

or
ks

.

Richard_appA.qxd 9/15/04 5:01 PM Page 372

is an extension of the Internet Protocol (IP) to support seamless mobil-
ity across IP networks.

1.2.2 Wireless cellular networks

In a wireless cellular network, several base stations (BS) are deployed
in the service such that each location in the service area is within the
range of at least one base station. These base stations can communicate
with each other and other static computers via a wireline (or another
wireless) network. The coverage area of a base station is called its (wire-
less) cell.

When an active mobile (a mobile that is actively involved in commu-
nication) moves out of the coverage area of one base station, it (or the
system) tries to hand off to another base station in order to continue
communicating. In a cellular network, cells of adjoining base stations
usually overlap to allow a smooth handoff of a mobile’s connections from
one base station to another. Further, in wireless telephony the available
frequency range (bandwidth) is divided into (wireless communication)
channels. A channel is wide enough (minimum of 64 kbps) to accom-
modate one voice circuit. Adjoining cells use different (sets of) channels
to reduce (co-channel) interference.

Mobile ad hoc networks. A mobile ad hoc network is a network estab-
lished by an ad hoc group of mobile computers with wireless transmis-
sion capabilities. IEEE 802.11 has an ad hoc mode that permits
establishing such networks. Since the transmission range of each mobile
computer is limited, multihop packet transmission may be needed to
deliver a packet to its destination mobile computer. Several multihop
routing protocols have been developed, for example, dynamic source
routing (DSR) and ad hoc distance vector (AODV). Multihop routing in
mobile ad hoc networks poses several challenges. For one, the topology
of the network changes as the nodes move around. Further, the nodes
in the network are mostly battery powered and so an intermediate
node’s energy is depleted in forwarding a packet for someone else. Hence,
the development of energy-efficient routing protocols for mobile ad hoc
networks is an active area of research.

For more in-depth coverage, interested readers can consult many
excellent books available on wireless and mobile networks [2].

References

T. Rappaport, Wireless Communications and Principles, Prentice Hall, 1996.
K. Pahlavan and P. Krishnamurthy, Priciples of Wireless Networks, Prentice Hall, 2002.

Brief Introduction to Wireless Communication and Networking 373

Au: Please
provide
publisher’s
location.

Richard_appA.qxd 9/15/04 5:01 PM Page 373

Richard_appA.qxd 9/15/04 5:01 PM Page 374

Appendix

B
Questions

Chapter 1

1. What characteristics distinguish mobile computing from distributed
computing?

2. Conduct a survey to find out about the state-of-the-art in mobile comput-
ing.

3. Compare the mobile computing applications supported on cellular phones
with those supported on laptops and personal digital assistants (PDAs).

4. What are the most important challenges facing mobile computing today?
Explain each of the challenges.

5. Adaptation requires a mobile client to sense changes in its environment
(such as, change in the received signal strength, and roundtrip delays),
guess the cause of these changes, and then react appropriately. However,
a mobile client can only have local information about its environment.
Give an example showing that two very different changes in the global envi-
ronment can lead to the same changes in the local environment of a mobile
client.

6. An adaptive mobile information system may trade off the fidelity of data
delivered with the performance (e.g., it may choose to deliver lower fidelity
data to achieve low data access latency). Describe how one could compare
the “goodness” of adaptive mobile information systems.

7. Application-aware adaptation requires the underlying system to not only
allocate resources to various concurrent applications (processes) running
on the system but also do resource revocation when the available resources
(such as bandwidth) become scarce. Discuss some of the issues that should
be taken into account in developing a resource revocation scheme.

375

Richard_appB.qxd 9/15/04 5:01 PM Page 375

8. In which of the layer(s) in the entire system architecture including the net-
working protocol stack, the operating system and the middleware should
support for mobility be incorporated? Provide justification for your answer.

9. Give four different examples of adaptations from the computing domain.
Identify the type of adaptation involved for each. Develop state-based
models for these adaptation techniques.

10. In what ways (if any) does mobility impact the peer-to-peer computing
model?

11. Explain all the different kinds of adaptations performed/supported by
Odyssey, Rover, and WebExpress.

12. Read the abstracts of papers published in recent conferences on mobile
computing, such as ACM Mobicom and Mobisys, and identify some of the
current research challenges being addressed by researchers.

13. Identify some of the formal methods that can help in design and specifi-
cation of adaptive software systems.

Chapter 2

1. What are the various components of a Mobility Management System?

2. What are the various issues involved in handover in a cellular system?

3. Explain the impact of size and shape of location area on the cost of
registration-area-based location management schemes.

4. Compare the location management schemes for mobile phones in cellular
networks with location management schemes developed for supporting
Internet mobility.

5. List some of the techniques for improving scalability of location manage-
ment.

6. What is the importance of call-to-mobility ratio in the context of location
management schemes?

7. Is it possible in a location management scheme to reduce search (update)
cost without impacting the update (search) cost? Explain your answer
using examples.

8. Forwarding pointer chaining is an optimization technique suitable for low
CMRs. Also, eager cache updating is an optimization technique suitable
for high CMRs.

a. Justify why we would want to have both techniques available in a
mobile cellular network.

b. Is it beneficial to maintain a forwarding pointer chain as well as do
eager cache maintenance for a mobile user? Explain why or why not.

376 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 376

9. Would it make sense to simultaneously use lazy and eager cache updat-
ing for a mobile user? Explain.

10. Describe how domain name system (DNS) can be used in location man-
agement.

11. Cellular networks are typically modeled in two dimensions. Does it make
sense to model them in three dimensions as overlapping spheres? Explain
why or why not? Assuming that it makes sense to model them in three
dimensions, explain how that can affect location management algorithms.
Clearly state all assumptions you make.

12. How is mobility supported in IPv6?

13. Research various techniques proposed for location management in mobile
ad hoc networks.

14. Study various routing schemes developed for mobile ad hoc networks, e.g.,
dynamic source routing (DSR) and ad hoc on-demand distance vector
(AODV), from the perspective of what location management operations
(search and update) are included in each.

15. Explain some of the security problems related to location management.

16. Explain some of the privacy concerns related to location management.
Propose a scheme for privacy-preserving location management.

17. List some of the currently available location-based services.

Chapter 3

1. Conduct a survey on currently available push-based commercial data serv-
ices for mobile users.

2. List advantages and disadvantages of the pull-based and push-based data
access models, from the perspective of mobile computing.

3. Explain issues involved in the use of caching for improving data avail-
ability. Contrast how the caching techniques used for improving avail-
ability differ from those used for improving performance.

4. Traditionally, performance of a caching technique is measured using the
metric of miss ratio (the percentage of data accesses which resulted in a
cache miss). The underlying assumption of this metric is that all cache
misses have the same cost.

a. Explain why this is a valid assumption in current computer systems
where cached and primary copies are strongly connected.

b. Explain why this assumption does not hold in a mobile computing
environment with frequent disconnections and variable quality
links.

Questions 377

Richard_appB.qxd 9/15/04 5:01 PM Page 377

c. Suggest a possible set of metrics for caching in mobile computing. State
any assumptions you make about the mobile computing environment.

5. What are the different types of consistency maintenance schemes used for
distributed data caching for Internet-based applications? Discuss how
mobility impacts these techniques.

6. Can the two proxies (intercepts) used in the WebExpress architecture be
combined into a single proxy? Why or why not?

7. Explain with example(s) how the use of cyclic redundancy codes (CRC) in
WebExpress helps in reducing the traffic between the client and the server.

8. Develop a scheme for caching location-sensitive data? How is your scheme
different from traditional caching schemes for non-location-sensitive data?
What performance metrics would you use to evaluate your scheme? Does
your scheme take into account the mobility pattern of a mobile?

9. How do the research distributed caching techniques developed for mobile
ad hoc networks differ from those developed for infrastructure-based mobile
systems?

10. What are some of the issues in data management for mobile databases?

11. How can caching help in saving energy on a mobile computing device?

Chapter 4

1. What is the relationship between pervasive or ubiquitous computing and
mobile computing?

2. What is the importance of proactivity and self-tuning in the development
of ubiquitous computing (ubicomp) systems?

3. List and give examples of different types of contexts relevant in the mobile
computing domain.

4. Design a ubicomp object (e.g., a ubicomp pen). Develop usage scenarios of
your ubicomp object, clearly identifying the contexts it handles. Identify
the technologies that are needed to implement your ubicomp object. Are
these technologies currently widely available?

5. Give an example to show that in some cases humans and technologies
have to coevolve for the technology to become “invisible”.

6. Design an e-mail system to minimize human distraction.

7. Investigate the notion of augmented reality. How is it different from vir-
tual reality?

8. List some of the metrics for evaluating ubicomp objects.

9. Study the project Aura at CMU and summarize its key features in rela-
tion to ubiquitous computing.

378 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 378

10. Discuss some of the ways in which pervasive computing technology can
impact important applications such as health monitoring and homeland
security.

11. Describe the ubiquitous computing applications envisioned in some
Hollywood movies such as Minority Report. What are some of the major
advances that need to happen to make these applications a reality?

12. Play a devil’s advocate role and make an argument in support of the claim
that ubiquitous Computing will never succeed.

13. What are some of the system management challenges associated with per-
vasive computing?

Chapter 6

1. Propose a creative mobile application that uses Odyssey for adaptation.
Your solution should include a description of which resources must be
monitored, the necessary warden(s), any additional servers, interactions
with the viceroy, and the like. You should also develop a detailed diagram
of the system.

2. What are the complications in providing a general definition of fidelity? Are
fidelity levels between different data types comparable? Why or why not?

3. What problems arise when applications adapt independently to changing
resource levels, rather than cooperating to perform adaptation?

4. Design a high-level mobile application using the Puppeteer model. Sketch
a diagram showing where fidelity levels change in your adaptive applica-
tion.

5. Is there a killer application for mobile agents? Is there a class of applica-
tions for which mobile agents very significantly reduce development effort?

6. The use of mobile agents raises some serious security risks. Identify and
explain these risks. Can you think of a different computing model, which
provides some (or all) of the benefits of mobile agents with significantly
reduced risk?

7. Identify some circumstances in which temporal locality in an agent’s com-
munications paradigm is not a detriment.

8. What are the difficulties in supporting agent migration (at an implemen-
tation level)? What can be done to reduce the severity of these difficulties?

Chapter 7

1. How are service discovery frameworks and mobile agent systems similar?
How are they different?

Questions 379

Richard_appB.qxd 9/15/04 5:01 PM Page 379

2. For this question, you should refer to RFCs 2608 and 2609, available at
http://www.srvloc.org/srvloc-standards.html. A service template in the
Service Location Protocol (SLP) defines a particular service type through
the standardization of attributes (and their types) and the format of serv-
ice URLs. After reviewing RFCs 2608 and 2609, and possibly the sample
services available at http://www.isi.edu/in-notes/iana/assignments/svrloc-
templates/ (e.g., “printer”), propose a robust standard for an SLP Blender.
You may look at an actual blender, in an actual kitchen, to see how a
blender behaves. Your service template should meet all the requirements
specified in the RFCs.

3. Rework question 1, above, but use Universal Plug and Play (UPnP).

4. Rework question 1, above, but use Jini.

5. What are the primary benefits of service catalogs? Under what circum-
stances might it be better to choose a service discovery framework that
doesn’t use service catalogs?

6. UPnP and SLP can operate without service catalogs. What technical prob-
lems arise in trying to modify the Jini specification to work in a directory-
less fashion (i.e., without lookup servers)? Ignore the fact that there are
other centralized servers in a Jini setup (e.g., for RMI).

7. What are the significant barriers to interoperability for service discovery
frameworks?

8. What benefits does the eventing service in a service discovery framework
provide for an application developer?

9. What are the novel security features of the Ninja service discovery frame-
work? Are these applicable to the other frameworks discussed in the
chapter?

10. Research the MD5 and SHA-1 cryptographic hash algorithms. How can
these kinds of algorithms be used to generate universally unique identi-
fiers (UUIDs)?

Chapter 8

1. Select a potential application of wireless sensor networks. How do the lim-
itations of wireless sensor nodes affect your design?

2. Review the latest version of the Zigbee specification to see what problems
it addresses and what protocols for wireless sensor networks need to be
built upon this platform.

3. Energy is severely limited in wireless sensor networks. Review the latest
research on some passive energy source, such as solar or vibration energy.
How much power can it supply and what duty cycle would this allow for
a wireless sensor?

380 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 380

4. List the different constraints on a wireless sensor and the relationship
among these constraints.

5. What are the differences between wireless sensor networks and other
types of ad hoc networks?

6. Choose a critical wireless sensor node application and try to develop a
complete list of possible security concerns.

7. Find a commercially available wireless sensor other than the MICA mote.
What are the resources available on this device?

8. For some specific wireless sensor node application, characterize the traf-
fic pattern for the application.

9. Consider an industrial or commercial application of wireless sensor nodes.
Attempt to quantify the costs of the network versus the benefits. Include
the entire life cycle of these sensors, including installation and mainte-
nance, in your calculations.

10. What are the special requirements for space-based wireless sensor net-
works? How do these nodes differ from more typical wireless sensor nodes?

Chapter 9

1. Investigate cross-layer optimizations for wireless sensor networks. Review
the current research literature and see what efficiencies are gained.

2. What are the advantages and disadvantages of caching sensor readings in
a wireless sensor network?

3. Devise a communication protocol using a small number of LEDs to relay
as much information as possible to an observer.

4. Download Tiny O/S or another publicly available operating system for wire-
less sensors. Implement a simple protocol and test it with the simulator.

5. How can the neighbors of a sensor (the local topology) change even if there
is no mobility? What problems does this create?

6. What are the advantages and disadvantages of deploying wireless sensors
in a random fashion, which leads to an arbitrary topology?

7. The book describes the long-term performance improvement of Carbon-Zinc
batteries. Investigate the performance trend for some other battery tech-
nology or for small solar cells.

8. What special security requirements do biomedical sensors have?

9. Study the option of combining a rechargeable battery with a passive power
source. Estimate the duty cycle using numbers for some existing com-
mercial rechargeable batteries and passive energy sources.

Questions 381

Richard_appB.qxd 9/15/04 5:01 PM Page 381

10. Would a static storage device, such as a memory stick, alleviate the severe
data storage limits of a wireless sensor? What is the cost for such an
approach?

Chapter 10

1. Find out what the energy usage is for other wireless network cards. How
does the energy usage vary with the different states? How would this
affect the protocol design?

2. Carefully design a protocol for initializing, assigning, and incrementing
counters for duplicate packet counters as described in the chapter.

3. What are the trade-offs with using a dual-radio solution for channel sched-
uling? What would be the advantages and disadvantages of using a
speaker on each sensor for the same purpose?

4. What are the functions needed for autoconfiguration of a wireless sensor
network?

5. Investigate what the resource requirements should be for a wireless sensor
network to employ CDMA. How do these requirements compare with the
capabilities of current wireless sensors?

6. For a real system, find the amount of energy used to power up the elec-
tronics versus the energy consumed for transmission. What is the optimal
hop distance using this information, assuming a distance-squared model?

7. What are the advantages and disadvantages of using TDMA to schedule
communications in a wireless sensor network?

8. How can mobile sensors be used to extend the lifetime of a wireless sensor
network? Give an example.

9. What are the two general categories of medium access control (MAC) in a
wireless network? Which is more suitable for a wireless sensor network?
Justify your answer.

10. Investigate recent proposals for secure key distribution in wireless sensor
networks.

Chapter 11

1. Propose different definitions of network lifetime. What are the advantages
and disadvantages of each? Consider your answers from the perspective
of specific applications.

2. Review some recent publications on time synchronization in wireless sensor
networks. Compare these papers with the approaches described in this
chapter.

382 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 382

3. Review some recent publications on location determination in wireless
sensor networks. Compare these papers with the approaches described in
this chapter.

4. What is meant by data-centric communication? Why is this a useful model
for many sensor network applications?

5. What are the two models for communication in wireless sensor networks?
Give an example application where each is an appropriate model.

6. Directional routing relies on a dense enough network to forward packets from
the source to the destination. Assuming a random deployment, what den-
sity is required to ensure delivery to the destination with high probability?

7. How could trajectory-based routing be used for efficient broadcasting?
What is the most efficient solution you can come up with?

8. What are the advantages and disadvantages of forming a group for con-
sensus only after an event occurs?

9. Does data aggregation require time synchronization? Why or why not?

10. Give three examples where off-loading some of the work to the base sta-
tion leads to better performance than distributing the problem to the
sensor nodes throughout the network.

Chapter 12

1. Give three examples of real attacks against integrity, confidentiality, non-
repudiation, and availability. Use news, bugtraq, securiteam, Slashdot,
CERT, or other sites as sources for information on attacks.

2. What makes a distributed denial of service (DDoS) attack more difficult
to detect and defend against than a normal denial of service (DoS) attack?

3. Create a DoS-resistant routing protocol (e.g., using dynamic rerouting,
with pairs of nodes watching each other).

4. What is the difference between resource depletion versus resource exhaus-
tion attacks? Give an example where depletion is worse than exhaustion.
Give an example where exhaustion is worse than depletion.

5. Assume you are sitting in a coffee shop with a laptop computer equipped
with a wireless card. Instead of connecting to the coffee shop’s network, you
accidentally connect to the network of the business next to the coffee shop.
What are the legal implications for accidental theft of service? The answer
may depend on the country and state and will depend on your actions.

6. Is war driving illegal? The answer will change with time, intent, and
location.

7. Ad hoc wireless networks exacerbate many of the problems related to
computer security. Are there any security problems they help mitigate?

Questions 383

Richard_appB.qxd 9/15/04 5:01 PM Page 383

8. Describe a method to avoid traffic analysis attacks.

9. Why is encryption not sufficient to defeat a replay attack? Provide an
example. Show how it can be defeated by using a nonce. Give three dif-
ferent ways to generate the nonce.

10. Give an example of a buffer overflow attack.

Chapter 13

1. Explain how encryption provides security. Include more than just data con-
fidentiality.

2. What are the benefits of using hybrid approaches for encryption?

3. Why does a MAC use a cryptographically secure hash function? What pur-
pose does the key serve? Is it public or private?

4. What is the difference between tunnel mode and transport mode in IPSec
and when would each be appropriate to use?

5. Why does the AH not encrypt the header? When would you want to encrypt
the header? Would you ever not want to encrypt the payload? Why or why
not?

6. Download the latest RFCs describing IPSec (hint: use www.rfc-editor.org)
and describe the most recent developments and changes to the protocol.

7. IPSec and NAT were known to have compatibility problems. What work
has been done to remedy the situation? Hint: look at www.ietf.org.

8. Describe the authentication mechanisms your computer uses when you
connect to the Internet. What authorization methods are provided? What
auditing?

Chapter 14

1. How many devices can be associated with a scatternet? How many devices
can be associated with a scatternet at the same time? Why are these dif-
ferent?

2. Describe the three modes of security for Bluetooth devices.

3. Describe the four types of link keys used in Bluetooth. For what and how
is each one used?

4. Why is the length of the PIN the “key” factor in the security of the keys?

5. The various algorithms used by Bluetooth, such as E0, E21, and E22, are
standard algorithms that have not been published (although many of them

384 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 384

have eventually been discovered). This is often referred to as security by
obscurity. What are the risks? It seems like all security is based on hiding
some information on how is this different?

6. Name four typical applications for a Bluetooth network. What are the secu-
rity demands of each one? For each, is the basic Bluetooth security model
sufficient? Why or why not?

Chapter 15

1. What is the point of an extended service set (ESS)? Why would you want
multiple access points to share the same network name?

2. Give three examples of uses for an independent basic service set network.

3. No one has defined an independent extended service set network (IESS)
as an ad hoc network that has multiple access points cooperating with each
other, performing handoffs and the like. Give an example of such a net-
work (hint: two areas are military operation or disaster relief). And IESS
has not been defined because many hard problems lurk when trying to
make it work. Describe why an IESS is much more difficult to run than
an ESS.

4. 802.11 is a very dynamic area. Pick any four of the subcommittees of the
802.11 group alphabet soup that has had recent activity (within the last
year) and describe their accomplishments or their next goals. How many
new subgroups have been created since this book was published?

5. Where did the designers of WEP go wrong? What did they get right?

6. Explain how WEP encryption and decryption works. Assuming the RC4
PRNG functions as advertised (and ignore the existence of bad IV values),
on what does the security of the encryption depend? Is that reasonable or
a flaw?

7. Could some other mechanisms, such as a network sniffer or intrusion
detection system, be configured to watch for WEP attacks? If so, explain
how. If not, explain why.

8. What is the difference between 802.11, 802.11i, and 802.1x?

9. Describe how an 802.11 system could be protected using four different
mechanisms. This can include capabilities intrinsic to 802.11 hardware,
as well as 802.11i or WEP, and additional layers.

Chapter 16

1. What are the differences between the needs of local and metropolitan area
network users?

Questions 385

Richard_appB.qxd 9/15/04 5:01 PM Page 385

2. The destinations for WMANs are generally assumed to be fixed. What
benefit is there to using wireless as opposed to just running a wire for
the last mile?

3. What assumptions allow 802.16 to use certificates for key management?

4. How is 802.16 extensible?

5. What is the “grace time” and what happens if it is exceeded?

6. How is 802.16 encryption similar to 802.11i?

7. In 802.16, the BS authenticates the SS. What risks exist because the SS
does not authenticate the BS?

8. Why are sequential IV values better than random ones? Why would it not
be easy to guess the next IV if they are used sequentially?

Chapter 17

1. Why is WWANs an approximation of the notion of ubiquitous computing?

2. GSM uses 54 bits instead of 64 bits for the encryption key. By how many
orders of magnitude is the search space reduced?

3. Calculate how long a brute-force attack on GSM encryption would take
using Pesonen’s approach using currently available technology, and using
multiple processors? How much would it cost?

4. Research what the current state of the art is with respect to 4G systems.
How close are they to wide deployment and what features do they have that
3G lack?

5. Show how several individual security technologies can be subverted (e.g.,
VPN, WEP, WPA, Bluetooth authentication, and firewalls). How are com-
ponents vulnerable individually at the different layers?

6. Design a protocol to incorporate personal, local, and wide area networks
for communication, depending on network availability, bandwidth
requirements, and the like (e.g., virtual tourist kiosks).

7. Describe the different threats and requirements for security for a WPAN,
WLAN, WMAN, and WWAN. Why does end-to-end encryption not solve
all the problems?

8. Why can one wireless technology not support all potential uses (personal,
local, metro, wide)? What are the strengths and weaknesses of each?
Even if each can do it (e.g., internet over PAN or LAN supporting personal
network), why are they not appropriate?

9. What are some of the weak points in 3G security?

386 Appendix B

Richard_appB.qxd 9/15/04 5:01 PM Page 386

10. 3G systems are vulnerable to what kind of attacks?

11. Would a combination of 3G/802.16/802.11/802.15 systems provide better or
worse security? What kind of attacks could be mounted against this com-
bination and what sort of resources would this involve? Why does the
combination strengthen/weaken the security beyond just any one of the
individual protocols?

Questions 387

Richard_appB.qxd 9/15/04 5:01 PM Page 387

Richard_appB.qxd 9/15/04 5:01 PM Page 388

Index

3G, 364, 367
3GPP (Third Generation Partnership

Project), 365
802.11a wireless networks, 116–117

A
AAA (see Authentication, authorization,

and auditing)
AAFZ algorithm, 65, 67
ABs (authentication blocks), 165
Access points (APs), 27–30, 330, 332
Access time, 68
Access transparency, 4
Accuracy, 116–117
ACPI (Advanced Configuration and

Power Interface), 114
Active Badge Location System, 100–101,

106
Active context, 96
Actuators, 104
Ad hoc networks, 330, 331
Ad hoc wireless sensor networks, 171–188

applications of, 182, 185–188
arbitrary topologies of, 202–203
autoconfiguration of, 213–221
and changing group dynamics, 237–239
changing membership in, 201–202
clustering in, 232–235
communication in, 196
communication scheduling in, 225–226
data loss in, 206
defined, 173
dual-radio scheduling in, 230–231
duplicate message suppression in,

226–228
energy-efficient communication in,

221–235
example of, 176

fault tolerance/recovery in, 273–279
group communication in, 207–208
lack of centralized mechanisms in, 178,

192–193
lack of preexisting infrastructure in,

175
and limited access to base station, 175,

177
loss of connectivity in, 205–206
MAC layer protocols, 282–283
maintaining consistent views in,

208–209
message aggregation in, 228–230
mobility in, 235–240
mobility of, 203–209
movement detection in, 235–237
multihop routing in, 222–225
power-limited devices in, 177–178,

193–196
resource constraints with, 191–200
resynchronization in, 239–240
routing in, 252–272
security in, 200–203, 293–295
security protocols in, 220–221, 247–249
self-organization in, 247
sleep-mode scheduling in, 232
uniform power dissipation in, 280–281
unique features of, 178–184
(See also Smart sensors)

Adaptability, 3–4
and environmental constraints, 5–6
and transparency, 4–5

Adaptation(s), 110–111, 113–123
and agility, 116–117
application-aware, 6–7, 19, 114,

117–119
changing functionality as mechanism

for, 8–9

389

Richard_Index.qxd 10/8/04 4:18 PM Page 389

Adaptation(s) (Cont.):
characterizing strategies for, 115–117
as concept, 109
conflicting, 122–123
contextual, 98
developing and incorporating, 11–12
and fidelity, 115–116
middleware for, 114–123
Odyssey as application-aware, 117–119
proxies for performing, 14–16
and resource monitoring, 114, 115
site for performance of, 12–13
types of, 114, 115
varying data quality as mechanism for,

9–11
Adaptation controller, 123
Adaptation policy language, 123
ADC (analog-to-digital converter), 172
Address Resolution Protocol (ARP), 294,

297
Advanced Configuration and Power

Interface (ACPI), 114
Advanced Encryption Standard (AES),

332, 340
Advertisement, service (see Service

advertisement)
AES (see Advanced Encryption Standard)
Agents, mobile (see Mobile agents)
Aggregation, message, 228–230
Agility, 10–11, 116–117
Aglets, 131, 132
AH (authentication header), 308
AI (artificial intelligence), 96
Algorithms, online vs. offline, 84
ALOHA, 59, 63, 218
Amazon, 297
Analog-to-digital converter (ADC), 172
Applets, 124
Application-aware adaptation, 6–7, 19,

114
APs (see Access points)
Ara, 132–133
Architecture-based mobile wireless

networks, 59
Architectureless mobile wireless

networks, 59, 60
Architectures:

coordination of middleware, 122
of mobile agent systems, 124

ARP (see Address Resolution Protocol)
ARP cache poisoning, 297
ARP spoofing, 294
ARQ (Automatic Repeat Request), 274

Artificial intelligence (AI), 96
AS (see Authentication server)
AS scheme (see Asynchronous Stateful

scheme)
Asleep mode, 80
Asymmetric (public key) encryption, 303
Asymmetric links, 23, 59–60
Asynchronous Stateful (AS) scheme, 73,

78–84
Asynchronous stateless invalidation-

based caching strategies, 73
Asynchronous Transfer Mode (ATM), 30
Atmel ATMEGA processor, 197
Attacks, 289–290, 297–299, 326–327,

337–339, 365–366
Augmentation, contextual, 98
Authentication:

in Bluetooth, 325
end-to-end, 9
in wired-equivalent privacy (WEP),

335–336
Authentication, authorization, and

auditing (AAA), 313–314
Authentication blocks (ABs), 165
Authentication header (AH), 308
Authentication protocols, 309–313
Authentication server (AS), 342–344
Authenticator, 342
Authorities (Telescript), 129
Autoconfiguration (ad hoc wireless sensor

networks), 213–221
and medium access control schedule

construction, 216–220
and neighborhood discovery, 214–215
and security protocol configuration,

220–221
and topology discovery, 215–216

Automatic contextual reconfiguration
applications, 100

Automatic Repeat Request (ARQ), 274
Availability, 288–290
Awake mode, 80

B
Bandwidth, 61, 62

in ad hoc wireless sensor networks,
216–217

spatial reuse of, 223, 224
Bar-Noy, A., 40
Basic service set (BSS), 330
Basing operations, 18
Batteries, 5, 194–195
Battery technology, 2–3, 114

390 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 390

Bluetooth, 317–327
authentication in, 325, 326
encryption in, 323–325
limitations of, 325–327
network terminology for, 318–319
security mechanisms in, 320
security modes in, 320–323
specifications, 317–318

Bluetooth attacks, 326–327
Bluetooth Service Discovery Protocol

(SDP), 145, 167
Broadcast downlink channel, 62, 64, 65
Broadcast scheduling (broadcast disk

scheduling), 65–67
Broadcast storm problem, 227
Broadcasting timestamp (BT) scheme, 75
Browsing, service, 141
BSS (basic service set), 330
BT (broadcasting timestamp) scheme, 75
Buffer-overflow attacks, 298–299

C
C language, 130, 143
C++ language, 130, 143
Cache, defined, 67–68
Cache consistency maintenance, 69–70
Cache maintenance schemes, 41

asynchronous stateful (AS), 78–84
and deciding which data to cache,

84–86
and disconnected operation, 77–78
invalidation-based, 73, 75–77
polling-every-time, 72
for push-based information

dissemination, 74–75
strong vs. weak consistency of, 72
TTL-based, 72–73

Cache miss, 68
Cache timestamp, 81–83
Caching, 9, 60

DNS, 50
importance of, 67–68
information, 57–59
performance and architectural issues

with, 70–72
per-user location, 40–44
in traditional distributed systems,

68–69
Web, 77, 86–88
in WebExpress, 18
(See also Cache maintenance schemes)

Caesar cipher, 302
Callback breaks, 70

Callbacks, 70, 78, 80
Call-to-mobility ratio (CMR), 39, 41
Card not present (CNP), 297
Care-of IP addresses, 51
Carnegie Mellon University, 10, 12, 115
Cartesian routing, 265, 267
Catalogs, service (see Service catalogs)
CBC-MAC Protocol (CCMP), 340, 342
CCK (complementary code keying), 332
CCMP (see CBC-MAC Protocol)
CDMA (see Code Division Multiple

Access)
Cell, 28
Cell residency time, 32
CERT/CC (Computer Emergency

Response Team Coordination
Center), 289

CGI (common graphic interface), 18
Chain of forwarding pointers, 37–38
Challenge Handshake Authentication

Protocol (CHAP), 310–312, 345
Channel allocation schemes, 29
Channel management, 29
CHAP (see Challenge Handshake

Authentication Protocol)
Checkpointing processes, 130–131
Checksums, 304–305
Clear-to-Send (CTS) packets, 282
Clients, 8, 9

and service discovery, 139
thin, 9
weakly-connected, 59

Client-server (CS) model, 8–9, 19, 61
as communication strategy, 132
extended, 9
and mobile agent systems, 124
and service discovery, 111
and system design, 138

Client-side intercepts (CSIs), 17
Closed networks, 346
Cluster heads, 247
Clustering, 232–235
CMR (see Call-to-mobility ratio)
CNN, 297
CNP (card not present), 297
COBRA, 132
Coda, 9, 12, 59, 77–78, 114
Code Division Multiple Access (CDMA),

29, 218, 359–360
Collision attacks, 337
Collision avoidance, 218–220
Combination key (Bluetooth), 322–323
Commerce (see Electronic commerce)

Index 391

Richard_Index.qxd 10/8/04 4:18 PM Page 391

Common graphic interface (CGI), 18
Communication:

among mobile agents, 131–133
energy-efficient, 221–235
group, 268–271
mobile, 1
multihop, 222–223
wireless, 196

Communication scheduling, 225–226
Compiled computer languages, 130
Complementary code keying (CCK), 332
Computational capacity (sensor nodes),

197–198, 201
Computer Emergency Response Team

Coordination Center (CERT/CC),
289

Computing:
disconnected, 77–78
mobile (see Mobile computing)
pervasive, 171
ubiquitous, 92–93
(See also Context-aware computing)

Computing context, 94
Concurrency, 117
Confidentiality, 288, 364
Conflicting adaptation, 122–123
Connections (Telescript), 129
Connectivity:

in ad hoc wireless sensor networks,
205–206

strong, 12
weak, 12, 59

Consistency, 10, 69–70, 208–209
Context, 94–97
Context history, 95
Context Toolkit, 104–105
Context-aware applications, 96–102

adaptation type of, 99
core capabilities needed in, 97–98
development of, 100–102
functional/service type of, 98
initiation type of, 99

Context-aware computing, 2, 91–107
and applications, 96–102
example of, 91–92
and meaning of context, 94–96
middleware support for, 102–106
as paradigm, 91
and ubiquitous computing, 92–93

Context-dependent data, 60
Context-triggered actions, 100–101
Contextual commands, 100
Contextual information applications, 99

Contextual Reminders, 101
Contextual selection, 99
Contextual selection applications, 99–100
Controlled flooding, 260
Controlled port, 343
Coordinate systems (for smart sensors),

251–252
CPUs, 57, 80, 172, 291
CRC (see Cyclic redundancy check)
Cryptographically secure hash, 305
CS model (see Client-server model)
CSIs (client-side intercepts), 17
CTS (Clear-to-Send) packets, 282
Cyclic redundancy check (CRC), 18, 87,

304–305

D
D’Agents, 132
DAs (directory agents), 156
Data:

context-dependent, 60
location-dependent, 60
read-only, 68
time-dependent, 60

Data adaptation, 9–11, 14
Data caching (see Caching)
Data encryption (see Encryption)
Data integrity, 287–288
Data loss, 206
Data Manipulation Interface (DMI), 121
Data Over Cable System Interface

Specification (DOCSIS), 350
Data streams, fidelity of, 116
DCS (dynamic channel selection), 332
DDOS (distributed denial-of-service)

attacks, 289
Dead sensor nodes, 278–279
Decryption, 335
Denial-of-service (DOS) attacks, 289–290,

297, 366
Department of Defense, 186–187
Destination-Sequenced Distance-Vector

(DSDV), 192
Detectability, 290–291
Development, application, 100–102
DHCP (see Dynamic Host Configuration

Protocol)
Differencing (WebExpress), 18, 87
Differential quadrature phase shift

keying (DQPSK), 359
Diffusion routing, 260–265
Digital Structure Algorithm (DSA), 165
Digital subscriber line (DSL), 289

392 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 392

Direct sequence spread spectrum (DSSS),
331, 332, 359

Directed diffusion, 261, 262
Directional routing, 265–268
Directional source aware routing, 267
Directory agents (DAs), 156
Disconnected computing (disconnected

operation), 77–78
Disconnections, 5–6

and mobile agents, 126
in Mowgli, 87
voluntary vs. involuntary, 59

Discovery, service (see Service discovery)
Distributed denial-of-service (DDOS)

attacks, 289
Distributed systems, 1, 68–69
DMI (Data Manipulation Interface), 121
DNS (see Domain Name Server; Domain

Name System)
DOCSIS (Data Over Cable System

Interface Specification), 350
Domain Name Server (DNS), 193
Domain Name System (DNS), 50, 141
DOS attacks (see Denial-of-service

attacks)
Downlink, 78
Downlink channels, 29, 62
Doze mode, 57, 80
DQPSK (differential quadrature phase

shift keying), 359
DSA (Digital Structure Algorithm), 165
DSDV (Destination-Sequenced Distance-

Vector), 192
DSL (digital subscriber line), 289
DSR (Dynamic Source Routing), 192
DSSS (see Direct sequence spread

spectrum)
Dual-radio scheduling, 230–231
Duplicate message suppression, 226–228
Dynamic allocation schemes, 85
Dynamic channel selection (DCS), 332
Dynamic Host Configuration Protocol

(DHCP), 52, 141, 154, 346
Dynamic Source Routing (DSR), 192
Dynamic update schemes, 33
Dynamic updates, 39–40, 141

E
Eager cache maintenance scheme, 41
EAP (see Extensible Authentication

Protocol)
eBay, 297
Electronic commerce, 295–297

Emotional context, 95
Emulating state (Coda), 12
Encapsulating security payload (ESP),

308, 309
Encapsulation, 51
Encryption, 9, 220, 302–304, 353, 363,

365
in Bluetooth, 323–325
in wired-equivalent privacy (WEP),

334, 335
End-to-end authentication, 9
Energy efficiency (ad hoc wireless

networks), 221–235, 279–284
performance and, 283–284
via clustering, 232–235
via communication scheduling,

225–226
via dual-radio scheduling, 230–231
via duplicate message suppression,

226–228
via message aggregation, 228–230
via multihop routing, 222–225
via sleep-mode scheduling, 232

Energy requirements, 5, 57, 59
Enumeration-based context, 94–96
Environment(s):

hostile, 295
mobile computing, 5

Environmental applications, 187–188
Environmental context, 95
Environmental state, 11
ESP (see Encapsulating security payload)
ESS (extended service set), 330
Ethernet, 301
eTrade, 297
Event-driven routing, 253–254
Eventing, 141, 159–163
Expanded ring search, 33
Expensive links, 23
Export driver, 121
Exposed terminal problem (sensor nodes),

218–219
Extended CS model, 9
Extended service set (ESS), 330
Extensible Authentication Protocol (EAP),

309, 312–313, 345

F
Failure transparency, 5
Failures, 3
FAs (foreign agents), 51
Fault tolerance, 130–131
Faulty sensor nodes, 278–279

Index 393

Richard_Index.qxd 10/8/04 4:18 PM Page 393

FDMA (see Frequency division medium
access)

FEC (see Forward Error Correction)
FHSS (frequency-hopping spread

spectrum), 331
Fidelity, 115-116

defined, 9
dimensions of, 10
of xanim video player, 119, 120

File sharing, 58–59
Fire sensors, 188
Firewall protection, 345–346
Flat organization (registration area-

based location management),
45–47

Flooding, controlled, 260
Foreign agents (FAs), 51
Foreign network, 51
Forgery attacks, 338
Forward Error Correction (FEC), 196,

274
Forwarding pointers, 36–38
Fraud, 296–297
Frequency division medium access

(FDMA), 216–218, 359
Frequency hopping, 315
Frequency-hopping spread spectrum

(FHSS), 331
Functional context, 95
Functionality, adapting, 8–9

G
Garbage collection, by service discovery

frameworks, 141–142, 156–159
General Event Notification Architecture

(GENA), 159–160
Georgia Tech, 104
Global Positioning System (GPS), 250,

252, 292
Global service discovery, 155
Global System for Mobile (GSM), 28, 33,

34
Global systems for mobile

communications (GSM), 360–364
GPS (see Global Positioning System)
Granularity, 28
Graphic user interfaces (GUIs), 104
Group communication, 268–271
Group keys, 343
GSM (see Global System for Mobile;

Global systems for mobile
communications)

GUIs (graphic user interfaces), 104

H
HA (see Home agent)
Habitat monitoring, 173, 187–188
Handoff, 29
Hard state information, 8
Hash functions, 305
Header, packet, 306, 308
Hidden terminal problem (sensor nodes),

218, 219
Hierarchical organization (registration

area-based location management),
47–48

High-level context, 96
Hit ratio, 74–75
HLC (see Home location cache)
HLRs (see Home location registrars)
Hoard walking, 78
Hoarding (Coda), 12, 77–78
Hold mode (Bluetooth), 319
Home agent (HA), 51, 78, 80–83
Home location cache (HLC), 73, 78, 80–83
Home location registrars (HLRs), 30,

32–34, 36, 37, 49–50
Home network, 51
Hostile environment, 295
Hot data items (hot items), 57, 62, 65
HTTP (see Hyper-Text Transfer Protocol)
Hyper-Text Transfer Protocol (HTTP),

17–19, 61, 87–88, 160, 163

I
IBM, 14, 17
IBSS (independent basic service set), 330
ICMP (Internet Control Message

Protocol), 289
ICP (Internet Caching Protocol), 61
ICV (see Integrity check value)
IDS (intrusion detection system), 347
IEEE 802, 330
IEEE 802.1x, 342–344
IEEE 802.11, 331–333
IGMP (Internet Group Management

Protocol), 8
IKE (Internet Key Exchange), 308
IMEI (international mobile equipment

identity), 365
Import driver, 121
Impulse-down strategy, 119
Impulse-up strategy, 119
IMSI (international mobile subscriber

identity), 364
Independent basic service set (IBSS), 330
Industrial applications, 186–187

394 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 394

Information caching, 57–59
Information sources, 55
Initialization key (Bluetooth), 322
Integrity, 287–288
Integrity check value (ICV), 308, 334,

335, 338
Integrity codes, 304–308
Intercept model, 18
Interceptor, 117
Intercepts, 17
International mobile equipment identity

(IMEI), 365
International mobile subscriber identity

(IMSI), 364
Internet, 50, 175, 192
Internet Caching Protocol (ICP), 61
Internet Control Message Protocol

(ICMP), 289
Internet Group Management Protocol

(IGMP), 8
Internet Key Exchange (IKE), 308
Internet Protocol (IP), 4, 28, 193, 289,

308, 359
Interoperability, 166–167
Intrusion detection system (IDS), 347
Invalidation reports, 75–77
Invalidation-based caching strategies, 73,

75–77
Involuntary disconnections, 59
IP (see Internet Protocol)
IP address, 50–53, 151
IP Security (IPSec), 308
IP tunneling, 51

J
Java, 130, 132, 133, 143, 163, 165, 167,

299
Java Native Interface (JNI), 143
JavaSpaces, 133
Jini, 138, 143, 149–157, 163–164, 166,

167
JNI (Java Native Interface), 143
JPEG file format, 119–121

K
Kernel, OS, 117, 118
Key distribution protocols, 220–221
Keys:

group vs. session, 343
pairwise master, 344
and security protocol configuration,

248–249
in wireless sensor nodes, 200–202

L
LANs (see Local area networks)
Laptops, 2
LAs (location areas), 34
Lazy cache maintenance scheme, 41
LEACH protocol, 247, 249, 256, 260,

280–281
LEAP (Lightweight Extensible

Authentication Protocol), 309
Leasing (service discovery frameworks),

156–158
Least-recently used (LRU) algorithm, 18,

68
LEDs (light-emitting diodes), 199
Lessee, 156
Lessor, 156
Liability, with electronic commerce, 296
Light-emitting diodes (LEDs), 199
Lightweight Extensible Authentication

Protocol (LEAP), 309
Line Printer Daemon Protocol (LPD), 145
Links:

asymmetric, 23, 59–60
expensive, 23

Linux, 117
LIS (see Location information system)
Lisp, 299
Load balancing, 131
Local area networks (LANs), 11, 27
Local coordinate systems (for smart

sensors), 251–252
Local location registrar, 34
Locality, temporal vs. spatial, 132
Location areas (LAs), 34
Location information system (LIS),

105–106
Location management:

case studies, 48–53
defined, 28
registration area-based, 33–48
search operation of, 28
update operation of, 28

Location management optimization,
38–39

Location pointers, 36
Location registrars, 28, 30, 34, 49–50
Location transparency, 4
Location-dependent data, 60
Low-level context, 95–96
LPD (Line Printer Daemon) Protocol,

145
LRU algorithm (see Least-recently used

algorithm)

Index 395

Richard_Index.qxd 10/8/04 4:18 PM Page 395

M
MAC addresses (see Media Access Control

addresses)
MAC layer, 332
MAC layer protocols, 282–283
MACs (see Message authentication codes)
“Man in the middle” attacks, 297
MANETs (see Mobile ad hoc networks)
MANs (see Metropolitan area networks)
MARS (Mobile Agent Reactive Spaces),

133
Mars Exploration Rovers, 174
MASIF (Mobile Agents System

Interoperability Facility), 126
Master (Bluetooth), 318
Master key (Bluetooth), 323
MCE (mobile computing environment), 5
MCHO (mobile-controlled handoff), 29
Media Access Control (MAC) addresses,

143–144, 344
Medical applications, 185–186
Meeting places, 132–133
Meetings (Telescript), 129
Memory, shared, 68
Memory hierarchy, 68
Message aggregation, 228–230
Message authentication codes (MACs),

305–308
Metropolitan area networks (MANs), 349

security in, 350–354
standards for, 350

MHTTP, 88
Mica, 197, 198
Microsoft PowerPoint, 120, 121, 123
Microsoft Windows, 117, 138, 164
Middleware:

for adaptation, 114–123
agility of, 116–117
for context-aware applications,

102–106
and coordination of architectures, 122
defined, 109
fidelity of, 115–116
mobile agents as, 123–133
service discovery (see Service discovery

frameworks)
Middleware layer, 3
Migration of mobile agents, 130–131
Military applications, 182, 185
MIME (Multipurpose Internet Mail

Extensions), 19
MIT, 106

Mobile ad hoc networks (MANETs),
60–61, 173

Mobile Agent Reactive Spaces (MARS),
133

Mobile agents, 109, 111, 123–133
advantages of, 125–126
applets vs., 124
and application customization, 126
communication strategies for, 131–133
disadvantages of, 126–127
and dynamic CS architecture, 124
and dynamic expansion of server

functionality, 111
meeting places for, 132–133
migration strategies for, 130–131
and process checkpointing, 130–131
and security, 127
security with, 127
for sets of applications, 125
standardization issues with, 126
in Telescript, 127–130

Mobile Agents System Interoperability
Facility (MASIF), 126

Mobile communication, 1
Mobile computing, 1

adaptability as key to, 3–7
constraints of, 5–6
mobile communications vs., 1
scope of, 1–3
vision of, 4

Mobile computing environment (MCE), 5
Mobile computing systems, 1
Mobile data caching (see under Caching)
Mobile Internet Protocol (Mobile IP), 28,

50–53, 78
Mobile Web caching, 86–88
Mobile-controlled handoff (MCHO), 29
Mobility:

of ad hoc wireless network nodes,
235–240

increases in, 27
and security, 293

Mobility binding, 32, 51
Mobility management, 27–30 (See also

Location management)
Moore’s law, 3, 5, 194
Motivating context, 95
Movement detection (ad hoc wireless

sensor networks), 235–237
Mowgli, 86–88
MTCP, 87
Multicast discovery, 151–153

396 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 396

Multihop routing, 222–225, 294
Multipurpose Internet Mail Extensions

(MIME), 19

N
Name transparency, 4–5
NAT (see Network Address Translation;

Network address translator)
National Institute of Standards and

Technology (NIST), 165
National Security Agency (NSA), 165
NCHO (network-controlled handoff), 29
Neighborhood discovery (ad hoc wireless

sensor networks), 214–215
NetBSD, 117
Network Address Translation (NAT), 346,

347
Network address translator (NAT), 14
Network File System (NFS), 69
Network interface cards (NICs), 59
Network Time Protocol, 272
Network-controlled handoff (NCHO), 29
Networks, 1

foreign, 51
home, 51

NFS (Network File System), 69
NICs (network interface cards), 59
Ninja, 145, 165
NIST (National Institute of Standards

and Technology), 165
NLANR, 61
Nodes (IP networks), 50
Nonce, 298
Nonrepudiation, 288
NSA (National Security Agency), 165

O
Odyssey, 10, 11, 19–22, 115

as application-aware adaptation,
117–119

sample video player application,
119–120

OFDM (see Orthogonal frequency division
multiplexing)

Offline algorithms, 84
On-demand downlink channel, 62, 63
On-demand mode, 55, 57, 61
Online algorithms, 84
Open Systems Interconnect (OSI)

standard, 195
Operating systems (OSs):

and adaptation, 114
for PDAs, 117

Optimization:
location management, 38–39
protocol, 87–88

Orthogonal frequency division
multiplexing (OFDM), 331, 332

OSI (Open Systems Interconnect)
standard, 195

OSs (see Operating systems)

P
P2P networks (see Peer-to-peer

networks)
Paging, 28
Pairwise master key (PMK), 344
Palm OS, 117
ParcTabs, 101
Parity bits, 304
Park mode (Bluetooth), 319
Passive context, 96
Passive power sources, 194
Passwords, 314, 346
Payload, packet, 306–308
PCS networks (see Personal

communication service networks)
PDAs (see Personal digital assistants)
PDU (protocol data unit), 334
PEAP (Protected EAP), 313
Peer-to-peer (P2P) networks, 61, 71
PEGASIS, 228–229, 256, 257, 259, 260,

280–281
Perl, 299
Permanent IP addresses, 51
Permits (Telescript), 129–130
Personal communication service (PCS)

network(s), 33, 39
location management scheme for, 49–50
service area of, 33–34

Personal digital assistants (PDAs), 2, 101,
102, 112, 317

and concurrency, 117
and mobile agents, 126
mobility of, 203

Personalized mobile applications, 125
Per-user location caching, 40–44
Pervasive computing, 171
PGP (Pretty Good Privacy), 304
Physical context, 94
Physical intercept (of signal), 291,

301–302
Piconet (Bluetooth), 319
PIF (see Puppeteer Intermediate Format)
“Ping of death” attack, 289
PIX metric, 75

Index 397

Richard_Index.qxd 10/8/04 4:18 PM Page 397

PKM (see Privacy Key Management)
Places (Telescript), 127, 128
“Plug and play” technologies, 138, 141
PMK (pairwise master key), 344
Pointers, location, 36
Point-to-Point Protocol (PPP), 167, 309
Polling-every-time-based caching

strategies, 72
Ports, controlled vs. uncontrolled, 343
Power conservation (see Energy

efficiency)
PPP (see Point-to-Point Protocol)
Prefetching, 9, 60, 68
Prekeying, 294–295
Pretty Good Privacy (PGP), 304
Privacy Key Management (PKM),

350–352
Private key (symmetric) encryption,

302–303
Probe messages, 81
Process checkpointing, 130–131
Processor technology, 3
Protected EAP (PEAP), 313
Protection, 334
Protocol data unit (PDU), 334
Protocol optimization, 87–88
Proxies, 13

client-side, 17
server-side, 17
transcoding, 14–16

Proximity selection, 99
PSTN (Public Switched Telephone

Network), 30
Public key (asymmetric) encryption, 303
Public Switched Telephone Network

(PSTN), 30
Publishing mode (see Push mode)
Publish-subscribe mode (see Push mode)
Pull mode, 55, 61
Puppeteer, 120–122
Puppeteer Intermediate Format (PIF),

121, 122
Push mode (publishing mode, publish-

subscribe mode), 55–57
advantages of, 61, 62
bandwidth allocation for, 63–65
broadcast disk scheduling in, 65–67
cache maintenance schemes for, 74–75

Q
QoS (see Quality of service)
QRPCs (see Queued remote procedure

calls)

Quality of service (QoS), 2, 30, 110, 206,
215

Queries (see Uplink requests)
Queued remote procedure calls (QRPCs),

22, 23

R
Radio frequency ID (RFID), 186–187
RADIUS, 313, 343
Random deployment of (of sensors), 246
RAs (registration areas), 34
RBS (Reference Broadcast

Synchronization) protocol, 272
RCMR (regional call-to-mobility ratio),

41
RDOs (see Relocatable dynamic objects)
Read-only data, 68
Rebasing, 18
Recharging, 5
Reconfiguring, 295
Reference Broadcast Synchronization

(RBS) protocol, 272
Reference copy, 10, 115
Reference waveforms, 11
Regional call-to-mobility ratio (RCMR),

41
Registrars, single-location, 30
Registration area-based location

management, 33–48
and dynamic updates, 39–40
flat organization, 45–47
and forwarding pointers, 36–38
hierarchical organization, 47–48
and location management optimization,

38–39
and per-user location caching, 40–44
and replication of location information,

44–45
Registration areas (RAs), 34
Registration operation, 28
Registry, 123
Reintegration state (Coda), 12
Relocatable dynamic objects (RDOs),

22–23
Remote location registrar, 34
Remote Method Invocation (RMI), 132,

149, 150
Remote procedure calls (RPCs), 22–24,

309
Replay attacks, 298, 338
Reports, invalidation, 75–77
Request-to-Send (RTS) packets, 218, 282
Resilient systems, 3

398 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 398

Resource discovery, contextual, 98
Resource monitoring, 114, 115
Resource paucity (resource constraints),

6, 59, 110
in ad hoc wireless sensor networks,

191–200
and security, 291
(See also Energy efficiency)

Resource Reservation Protocol (RSVP), 8
Resynchronization (ad hoc wireless sensor

networks), 239–240
RFC 1179, 145
RFID (see Radio frequency ID)
Richness, 140
RMI (see Remote Method Invocation)
Role-based context, 96
Route aggregation, 50
Routing, 192, 220

diffusion, 260–265
directional, 265–268
event-driven, 253–254
and group communication, 268–271
multihop, 222–225
and periodic sensor readings, 254–260
and security, 294
in wireless sensor networks, 252–272

Rover, 22–24
RPCs (see Remote procedure calls)
RSVP (Resource Reservation Protocol), 8
RTS packets (see Request-to-Send

packets)

S
SA-always, 84–86
Salutation, 138, 145, 167
SA-never, 84–86
Sanyo, Inc., 143
Sapphire/Slammer SQL worm, 290
SAs (see Security associations; Service

agents)
Scalability, of sensors, 246
Scatternet (Bluetooth), 319
Scheduling:

in ad hoc wireless sensor networks,
216–217

broadcast, 65–67
communication, 225–226
dual-radio, 230–231
sleep-mode, 232

Scheme, 130
Scoping, by service discovery frameworks,

142

SCPD (service control protocol
description), 147

SDP (see Service Discovery Protocol)
Search engines, 1–2
Searching, 28
Secure Hash Algorithm 1 (SHA-1), 165
Security, 3, 5, 287–299, 301–315

in ad hoc wireless sensor networks,
200–203, 293–295

and attacks, 297–299
and availability, 288–290
for commerce, 295–297
and confidentiality, 288
and detectability, 290–291
general guidelines for, 344–347
and integrity, 287–288
with mobile agents, 127
and mobility, 293
and nonrepudiation, 288
and physical intercept of signal, 291
and resource depletion/exhaustion, 291
in service discovery frameworks,

163–165
and theft of service, 291–292
via AAA, 313–314
via authentication protocols, 309–313
via encryption, 302–304
via integrity codes, 304–308
via IPSec, 308–309
via signal limitation, 301–302
via special hardware, 315
and war driving/walking/chalking,

292–293
in wide area networks (WANs),

357–367
in wireless local area networks

(WLANs), 329–348
in wireless metropolitan area networks

(MANs), 349–354
in wireless personal area networks

(WPANs), 317–327
Security associations (SAs), 351–353
Security protocols (ad hoc wireless

networks), 220–221
SEKEN protocol, 248–249
Self-organization (ad hoc wireless sensor

networks), 247–249
Sensing, contextual, 98
Sensors (see Smart sensors)
Serendipity, 106–107
Servers, 8, 9, 68
Server-side intercepts (SSIs), 17

Index 399

Richard_Index.qxd 10/8/04 4:18 PM Page 399

Service advertisement, 139–141, 153–155,
158–159

Service agents (SAs), 164
Service area (of PCS network), 33–34
Service browsing, 141
Service catalogs, 141, 155–156
Service control protocol description

(SCPD), 147
Service discovery, 111–112

defined, 113
global, 155

Service discovery frameworks, 137–168
benefits of, 137–138
catalogs, service, 155–156
common features of, 138–142
and CS system design, 138
defined, 138
eventing in, 159–163
garbage collection in, 156–159
interface definition by, 149–150
interoperability of, 166–167
leasing by, 156–158
multicast discovery, 151–155
and security, 163–165
security in, 163–165
and service advertisement, 139
standardization process in, 144–145
textual descriptions used by, 145–149
unicast discovery, 150–151
universally unique identifiers in,

142–144
Service Discovery Protocol (SDP), 145,

167
Service Location Protocol (SLP), 145, 148,

154–156, 164–167
Service points (Ara), 132–133
Service set identifier (SSID), 331, 346
Service subtyping, 140
ServiceRegistrar, 151
Services:

contextual, 103–104
in service discovery frameworks,

139–141
Session keys, 343
SGML (Standard Generalized Markup

Language), 102
SHA-1 (Secure Hash Algorithm 1),

165
Shared memory, 68
Signal limitation, 301–302
Signal-to-noise ratio (SNR), 29, 222
Simple Mail Transfer Protocol (SMTP),

298

Simple Object Access Protocol (SOAP),
147

Simple Service Discovery Protocol
(SSDP), 159

Single-hop, 294–295
Single-location registrars, 30
Slave (Bluetooth), 318
Sleep-mode scheduling, 232
Sliding window, 43
Sliding-window dynamic data allocation

scheme, 84–86
SLP (see Service Location Protocol)
S-MAC, 218
“Smart” batteries, 114
Smart Dust research group, 180
Smart sensors (sensor nodes, sensors),

171–172, 179
agreement among, 274–278
and autoconfiguration, 213–214
collaboration among, 271–272
dead/faulty, 278–279
deployment/configuration of, 245–252
and group communication, 207–208
limited computational capacity of,

197–198, 201
limited input/output options with,

199–200
limited resources available to, 180–181,

193–196
limited storage capacity of, 198
location determination for, 249–252
loss of connectivity between, 205–206
mobility of, 235–240
neighborhood discovery by, 214–215
periodic readings of, 254–260
power management of, 281–282
random deployment of, 246
reconfiguration/redeployment of, 249
scalability of, 246
small size of, 181
as special-purpose devices, 179–180

Smartcards, 315
SMTP (Simple Mail Transfer Protocol),

298
“Smurf ” attack, 289
Sniff mode (Bluetooth), 319
SNR (see Signal-to-noise ratio)
SOAP (Simple Object Access Protocol),

147
Social context, 95
Sockets, virtual, 18–19
Soft state, 261
Soft state information, 8

400 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 400

Solar power, 194
Spatial locality, 132
Spatial reuse, 223, 224
Split-phase operation, 22
Spoofing, 294
Spread-spectrum technology, 315
SSDP (Simple Service Discovery

Protocol), 159
SSID (see Service set identifier)
SSIs (server-side intercepts), 17
Staleness, 116
Standard Generalized Markup Language

(SGML), 102
Standardization, of service discovery

frameworks, 144–150
State information, 8
Stateful invalidation-based caching

strategies, 73
Stateless invalidation-based caching

strategies, 73
Static allocation schemes, 84
Static update schemes, 33
Step-down strategy, 119
Step-up strategy, 119
Stick-E Note, 101–102
Strong cache consistency, 69, 72
Strong connectivity, 12
Suboptimal system operation, 122
Subtyping, service, 140
Supplicant, 342
SWIM project, 187
Symmetric (private key) encryption,

302–303
“Syn flood” attack, 289
Synchronization, 271–272
Synchronous stateless invalidation-based

caching strategies, 73
System operation, suboptimal, 122

T
Tacoma project, 126
Tapping, 301
TCL, 130
TCP (see Transmission Control Protocol)
TCP/IP (see Transmission Control

Protocol/Internet Protocol)
TDMA (see Time division multiple access)
“Teardrop” attack, 289
Telescript, 127–130
TEMPEST, 315
Temporal context, 94, 95
Temporal Key Integrity Protocol (TKIP),

340–342

Temporal locality, 132
Temporary mobile subscriber identity

(TMSI), 364
Theft of service, 291–292
Thin clients, 9
Third Generation Partnership Project

(3GPP), 365
Time division multiple access (TDMA),

217–218, 225, 226, 250, 271,
282–283, 359

Time-based updates, 33, 39
Time-dependent data, 60
Timestamp, cache, 81–83
Time-to-live (ttl), 32, 51
Timing-Sync Protocol for Sensor

Networks (TPSN), 272
TinyOS, 198
T.J. Watson Research Center, 14
TKIP (see Temporal Key Integrity

Protocol)
TLS (Transport Layer Security), 312
TMSI (temporary mobile subscriber

identity), 364
Topology discovery, 215–216
TPC (transmit power control), 332
TPSN (Timing-Sync Protocol for Sensor

Networks), 272
Traffic analysis, 298, 308
Trajectory-based forwarding, 267
Transcoding proxies, 14–16
Transcoding threshold, 14, 16
Transmission Control Protocol (TCP), 11,

30, 87, 148–149, 151, 160, 192, 196,
273, 289

Transmission Control Protocol/Internet
Protocol (TCP/IP), 87, 132, 150, 289

Transmit power control (TPC), 332
Transparency, 4–5, 59
Transport Layer Security (TLS), 312
Transport mode, 309, 310
Travel (Telescript), 128–129
ttl (see time-to-live)
TTL-based caching strategies, 72–73, 86
Tunnel mode, 308–310
Tuple spaces, 133

U
UAs (user agents), 164
Ubiquitous computing, 92–93
UDP (Unicast Discovery Protocol), 152
Uncontrolled port, 343
Unicast discovery, 150–151
Unicast Discovery Protocol (UDP), 152

Index 401

Richard_Index.qxd 10/8/04 4:18 PM Page 401

Unit key (Bluetooth), 322
Universal Plug and Play (UPnP), 138,

145–148, 150, 155, 158–163,
166–167

Universally unique identifiers (UUIDs),
142–144, 152

Update lists, 41
Update schemes, 33
Updates:

dynamic, 39–40, 141
time-based, 33, 39

Updating, 28
Uplink channels, 29
Uplink request channel, 62, 63
Uplink requests (queries), 78, 79
UPnP (see Universal Plug and Play)
User agents (UAs), 164
User context, 94
User mobility, 5
User needs, prediction of, 123
UUIDs (see Universally unique

identifiers)

V
Validity checks, 70
Venus (Coda file system), 12
VFS (Virtual File System), 117
Vibration energy, 194
Viceroy (Odyssey), 20–22, 117, 119
Video, fidelity of, 115–116
Video streaming, 2, 4
Virtual File System (VFS), 117
Virtual private networks (VPNs), 345
Virtual sockets, 18–19
Visitor location registrars (VLRs), 36, 49
Voluntary disconnections, 59
VPNs (virtual private networks), 345

W
Wakeup, 80
Wal-Mart, 187
WANs (see Wide area networks)
War chalking, 293
War dialing, 292
War driving, 292
War walking, 292
Wardens (Odyssey), 20–22, 117, 119
Waveforms, reference, 11
Weak cache consistency, 72
Weak connectivity, 12, 59
Weak key attacks, 338
Weakly-connected ad hoc networks, 60
Web caching, 77, 86–88

WebExpress, 17–19, 86
WEP (see Wired Equivalent Privacy)
WEPplus, 345
Wide area networks (WANs):

about, 357–359
security in, 359–367

Wi-Fi protected access (WPA), 340, 345
Wire integrity, 301
Wired Equivalent Privacy (WEP), 293,

332–340, 345
authentication in, 335–336
data frame, 334, 335
decryption in, 335
drawbacks of, 336–338
encryption in, 334, 335
fixes for, 338–340
goals of, 333, 334

Wireless ad hoc sensor networks (see Ad
hoc wireless sensor networks)

Wireless information systems, 56–57
Wireless local area networks (WLANs),

27, 329–331
and 802.11 protocols, 331–333,

340–344
security guidelines for, 344–347
and WEP security scheme, 333–340
and Wi-Fi protected access (WPA),

340
Wireless personal area networks

(WPANs), 317–327 (See also
Bluetooth)

Wireless station (WS), 330, 336
WLANs (see Wireless local area networks)
Working sets, 43
Working-set approach, 43
World Wide Web (WWW), 69, 70
WPA (see Wi-Fi protected access)
WPANs (see Wireless personal area

networks)
Write-disconnected state (Coda), 12
WS (see Wireless station)
WWW (see World Wide Web)

X
Xanim video player, 119–120
XML, 145–146, 152, 159–160, 165

Y
Yahoo, 297

Z
ZebraNet project, 187
Zombies, 289–290

402 Index

Richard_Index.qxd 10/8/04 4:18 PM Page 402

	BookCover
	Fundamentals-Mobile-Pervasive-Computing
	fundamentals-FM
	fundamentals-Ch01
	fundamentals-Ch02
	fundamentals-Ch03
	fundamentals-Ch04
	fundamentals-CH05
	fundamentals-Ch06
	fundamentals-CH07
	fundamentals-CH08
	fundamentals-CH09
	fundamentals-CH10
	fundamentals-CH11
	fundamentals-Ch12
	fundamentals-Ch13
	fundamentals-Ch14
	fundamentals-Ch15
	fundamentals-Ch16
	fundamentals-Ch17
	fundamentals-appA
	fundamentals-appB
	fundamentals-Index

