
NS by Example
● Purpose

● Overview

● Basics

OTcl: The User Language❍

Simple Simulation Example❍

Event Scheduler❍

Network Components❍

Packet❍

● Post Simulation

Trace Analysis Example❍

RED Queue Monitor
Example

❍

Example Utilities❍

● Extending NS

Where to Find What?❍

OTcl Linkage❍

Add New Application and
Agent

❍

Add New Queue❍

● More Examples

LAN❍

Multicasting❍

Web Server❍

SRM Example❍

● NS@WPI FAQ

● Hot Links

● Contributions

NS by Example

Jae Chung
and
Mark Claypool

Purpose

NS (version 2) is an object-oriented, discrete event
driven network simulator developed at UC Berkely
written in C++ and OTcl. NS is primarily useful for
simulating local and wide area networks. Although
NS is fairly easy to use once you get to know the
simulator, it is quite difficult for a first time user,
because there are few user-friendly manuals. Even
though there is a lot of documentation written by the
developers which has in depth explanation of the
simulator, it is written with the depth of a skilled NS
user. The purpose of this project is to give a new
user some basic idea of how the simultor works,
how to setup simulation networks, where to look for
further information about network components in
simulator codes, how to create new network
components, etc., mainly by giving simple examples
and brief explanations based on our experiences.
Although all the usage of the simulator or possible
network simulation setups may not be covered in
this project, the project should help a new user to
get started quickly.

NS by Example

http://nile.wpi.edu/NS/ [08/01/2002 9.09.25]

http://nile.wpi.edu/NS/contributions.html
http://www.wpi.edu/
http://www.cs.wpi.edu/
http://perform.wpi.edu/
http://www.wpi.edu/
http://www.cs.wpi.edu/
mailto:goos@wpi.edu
mailto:claypool@cs.wpi.edu

NS by Example

Jae Chung
and
Mark Claypool

Purpose

NS (version 2) is an object-oriented, discrete event driven network simulator
developed at UC Berkely written in C++ and OTcl. NS is primarily useful for
simulating local and wide area networks. Although NS is fairly easy to use once
you get to know the simulator, it is quite difficult for a first time user, because there
are few user-friendly manuals. Even though there is a lot of documentation written
by the developers which has in depth explanation of the simulator, it is written with
the depth of a skilled NS user. The purpose of this project is to give a new user
some basic idea of how the simultor works, how to setup simulation networks,
where to look for further information about network components in simulator
codes, how to create new network components, etc., mainly by giving simple
examples and brief explanations based on our experiences. Although all the usage
of the simulator or possible network simulation setups may not be covered in this
project, the project should help a new user to get started quickly.

NS by Example - Proposal

http://nile.wpi.edu/NS/purpose.html [08/01/2002 9.09.27]

http://www.wpi.edu/
http://www.cs.wpi.edu/
mailto:goos@wpi.edu
mailto:claypool@cs.wpi.edu

Overview

NS is an event driven network simulator developed at UC Berkeley that simulates variety of IP networks.
It implements network protocols such as TCP and UPD, traffic source behavior such as FTP, Telnet,
Web, CBR and VBR, router queue management mechanism such as Drop Tail, RED and CBQ, routing
algorithms such as Dijkstra, and more. NS also implements multicasting and some of the MAC layer
protocols for LAN simulations. The NS project is now a part of the VINT project that develops tools for
simulation results display, analysis and converters that convert network topologies generated by
well-known generators to NS formats. Currently, NS (version 2) written in C++ and OTcl (Tcl script
language with Object-oriented extensions developed at MIT) is available. This document talks briefly
about the basic structure of NS, and explains in detail how to use NS mostly by giving examples. Most of
the figures that are used in describing the NS basic structure and network components are from the 5th
VINT/NS Simulator Tutorial/Workshop slides and the NS Manual (formerly called "NS Notes and
Documentation"), modified little bit as needed. For more information about NS and the related tools,
visit the VINT project home page.

Figure 1. Simplified User's View of NS

As shown in Figure 1, in a simplified user's view, NS is Object-oriented Tcl (OTcl) script interpreter that
has a simulation event scheduler and network component object libraries, and network setup (plumbing)
module libraries (actually, plumbing modules are implemented as member functions of the base
simulator object). In other words, to use NS, you program in OTcl script language. To setup and run a
simulation network, a user should write an OTcl script that initiates an event scheduler, sets up the
network topology using the network objects and the plumbing functions in the library, and tells traffic
sources when to start and stop transmitting packets through the event scheduler. The term "plumbing" is
used for a network setup, because setting up a network is plumbing possible data paths among network
objects by setting the "neighbor" pointer of an object to the address of an appropriate object. When a user

Overview

http://nile.wpi.edu/NS/overview.html (1 di 3) [08/01/2002 9.09.29]

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/vint
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/index.html
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/vint

wants to make a new network object, he or she can easily make an object either by writing a new object
or by making a compound object from the object library, and plumb the data path through the object.
This may sound like complicated job, but the plumbing OTcl modules actually make the job very easy.
The power of NS comes from this plumbing.

Another major component of NS beside network objects is the event scheduler. An event in NS is a
packet ID that is unique for a packet with scheduled time and the pointer to an object that handles the
event. In NS, an event scheduler keeps track of simulation time and fires all the events in the event queue
scheduled for the current time by invoking appropriate network components, which usually are the ones
who issued the events, and let them do the appropriate action associated with packet pointed by the
event. Network components communicate with one another passing packets, however this does not
consume actual simulation time. All the network components that need to spend some simulation time
handling a packet (i.e. need a delay) use the event scheduler by issuing an event for the packet and
waiting for the event to be fired to itself before doing further action handling the packet. For example, a
network switch component that simulates a switch with 20 microseconds of switching delay issues an
event for a packet to be switched to the scheduler as an event 20 microsecond later. The scheduler after
20 microsecond dequeues the event and fires it to the switch component, which then passes the packet to
an appropriate output link component. Another use of an event scheduler is timer. For example, TCP
needs a timer to keep track of a packet transmission time out for retransmission (transmission of a packet
with the same TCP packet number but different NS packet ID). Timers use event schedulers in a similar
manner that delay does. The only difference is that timer measures a time value associated with a packet
and does an appropriate action related to that packet after a certain time goes by, and does not simulate a
delay.

NS is written not only in OTcl but in C++ also. For efficiency reason, NS separates the data path
implementation from control path implementations. In order to reduce packet and event processing time
(not simulation time), the event scheduler and the basic network component objects in the data path are
written and compiled using C++. These compiled objects are made available to the OTcl interpreter
through an OTcl linkage that creates a matching OTcl object for each of the C++ objects and makes the
control functions and the configurable variables specified by the C++ object act as member functions and
member variables of the corresponding OTcl object. In this way, the controls of the C++ objects are
given to OTcl. It is also possible to add member functions and variables to a C++ linked OTcl object.
The objects in C++ that do not need to be controlled in a simulation or internally used by another object
do not need to be linked to OTcl. Likewise, an object (not in the data path) can be entirely implemented
in OTcl. Figure 2 shows an object hierarchy example in C++ and OTcl. One thing to note in the figure is
that for C++ objects that have an OTcl linkage forming a hierarchy, there is a matching OTcl object
hierarchy very similar to that of C++.

Overview

http://nile.wpi.edu/NS/overview.html (2 di 3) [08/01/2002 9.09.29]

Figure 2. C++ and OTcl: The Duality

Figure 3. Architectural View of NS

Figure 3 shows the general architecture of NS. In this figure a general user (not an NS developer) can be
thought of standing at the left bottom corner, designing and running simulations in Tcl using the
simulator objects in the OTcl library. The event schedulers and most of the network components are
implemented in C++ and available to OTcl through an OTcl linkage that is implemented using tclcl. The
whole thing together makes NS, which is a OO extended Tcl interpreter with network simulator libraries.

This section briefly examined the general structure and architecture of NS. At this point, one might be
wondering about how to obtain NS simulation results. As shown in Figure 1, when a simulation is
finished, NS produces one or more text-based output files that contain detailed simulation data, if
specified to do so in the input Tcl (or more specifically, OTcl) script. The data can be used for simulation
analysis (two simulation result analysis examples are presented in later sections) or as an input to a
graphical simulation display tool called Network Animator (NAM) that is developed as a part of VINT
project. NAM has a nice graphical user interface similar to that of a CD player (play, fast forward,
rewind, pause and so on), and also has a display speed controller. Furthermore, it can graphically present
information such as throughput and number of packet drops at each link, although the graphical
information cannot be used for accurate simulation analysis.

Overview

http://nile.wpi.edu/NS/overview.html (3 di 3) [08/01/2002 9.09.29]

http://www.isi.edu/nsnam/nam/

OTcl: The User Language

As mentioned in the overview section, NS is basically an OTcl interpreter with network simulation object
libraries. It is very useful to know how to program in OTcl to use NS. This section shows an example Tcl
and OTcl script, from which one can get the basic idea of programming in OTcl. These examples are
from the 5th VINT/NS Simulation Tutorial/Workshop. This section and the sections after assumes that
the reader installed NS, and is familiar with C and C++.

Example 1 is a general Tcl script that shows how to create a procedure and call it, how to assign values to
variables, and how to make a loop. Knowing that OTcl is Object-orieneted extension of Tcl, it is obvious
that all Tcl commands work on OTcl - the relationship between Tcl and Otcl is just same as C and C++.
To run this script you should download ex-tcl.tcl, and type "ns ex-tcl.tcl" at your shell prompt - the
command "ns" starts the NS (an OTcl interpreter). You will also get the same results if you type "tcl
ex-tcl.tcl", if tcl8.0 is installed in your machine.

Example 1. A Sample Tcl Script

In Tcl, the keyword proc is used to define a procedure, followed by an procedure name and arguments in
curly brackets. The keyword set is used to assign a value to a variable. [expr ...] is to make the
interpreter calculate the value of expression within the bracket after the keyword. One thing to note is
that to get the value assigned to a variable, $ is used with the variable name. The keyword puts prints out
the following string within double quotation marks. The following shows the result of Example 1.

OTcl: The User Language

http://nile.wpi.edu/NS/otcl.html (1 di 3) [08/01/2002 9.09.31]

http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl
http://www.isi.edu/nsnam/ns/ns-build.html
http://nile.wpi.edu/NS/Example/ex-tcl.tcl
http://nile.wpi.edu/NS/Example/ex-tcl.tcl

The next example is an object-oriented programming example in OTcl. This example is very simple, but
shows the way which an object is created and used in OTcl. As an ordinary NS user, the chances that you
will write your own object might be rare. However, since all of the NS objects that you will use in a NS
simulation programming, whether or not they are written in C++ and made available to OTcl via the
linkage or written only in OTcl, are essentially OTcl objects, understanding OTcl object is helpful.

Example 2. A Sample OTcl Script

OTcl: The User Language

http://nile.wpi.edu/NS/otcl.html (2 di 3) [08/01/2002 9.09.31]

http://nile.wpi.edu/NS/Example/ex-otcl.tcl

Example 2 is an OTcl script that defines two object classes, "mom" and "kid", where "kid" is the child
class of "mom", and a member function called "greet" for each class. After the class definitions, each
object instance is declared, the "age" variable of each instance is set to 45 (for mom) and 15 (for kid),
and the "greet" member function of each object instance is called. The keyword Class is to create an
object class and instproc is to define a member function to an object class. Class inheritance is specified
using the keyword -superclass. In defining member functions, $self acts same as the "this" pointer in
C++, and instvar checks if the following variable name is already declared in its class or in its
superclass. If the variable name given is already declared, the variable is referenced, if not a new one is
declared. Finally, to create an object instance, the keyword new is used as shown in the example.
Downloading ex-otcl.tcl and executing "ns ex-otcl.tcl" will give you the following result:

OTcl: The User Language

http://nile.wpi.edu/NS/otcl.html (3 di 3) [08/01/2002 9.09.31]

http://nile.wpi.edu/NS/Example/ex-otcl.tcl

Simple Simulation Example

This section shows a simple NS simulation script and explains what each line does. Example 3 is an
OTcl script that creates the simple network configuration and runs the simulation scenario in Figure 4.
To run this simulation, download "ns-simple.tcl" and type "ns ns-simple.tcl" at your shell prompt.

Figure 4. A Simple Network Topology and Simulation Scenario

This network consists of 4 nodes (n0, n1, n2, n3) as shown in above figure. The duplex links between n0
and n2, and n1 and n2 have 2 Mbps of bandwidth and 10 ms of delay. The duplex link between n2 and n3
has 1.7 Mbps of bandwidth and 20 ms of delay. Each node uses a DropTail queue, of which the
maximum size is 10. A "tcp" agent is attached to n0, and a connection is established to a tcp "sink" agent
attached to n3. As default, the maximum size of a packet that a "tcp" agent can generate is 1KByte. A tcp
"sink" agent generates and sends ACK packets to the sender (tcp agent) and frees the received packets. A
"udp" agent that is attached to n1 is connected to a "null" agent attached to n3. A "null" agent just frees
the packets received. A "ftp" and a "cbr" traffic generator are attached to "tcp" and "udp" agents

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (1 di 6) [08/01/2002 9.09.33]

http://nile.wpi.edu/NS/Example/ns-simple.tcl

respectively, and the "cbr" is configured to generate 1 KByte packets at the rate of 1 Mbps. The "cbr" is
set to start at 0.1 sec and stop at 4.5 sec, and "ftp" is set to start at 1.0 sec and stop at 4.0 sec.

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (2 di 6) [08/01/2002 9.09.33]

http://nile.wpi.edu/NS/Example/ns-simple.tcl

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (3 di 6) [08/01/2002 9.09.33]

http://nile.wpi.edu/NS/Example/ns-simple.tcl

Example 3. A Simple NS Simulation Script

The following is the explanation of the script above. In general, an NS script starts with making a
Simulator object instance.

set ns [new Simulator]: generates an NS simulator object instance, and assigns it to variable ns
(italics is used for variables and values in this section). What this line does is the following:

Initialize the packet format (ignore this for now)❍

Create a scheduler (default is calendar scheduler)❍

Select the default address format (ignore this for now)

❍

The "Simulator" object has member functions that do the following:

Create compound objects such as nodes and links (described later)❍

Connect network component objects created (ex. attach-agent)❍

Set network component parameters (mostly for compound objects)❍

Create connections between agents (ex. make connection between a "tcp" and "sink")❍

Specify NAM display options❍

Etc.

❍

Most of member functions are for simulation setup (referred to as plumbing functions in the
Overview section) and scheduling, however some of them are for the NAM display. The
"Simulator" object member function implementations are located in the "ns-2/tcl/lib/ns-lib.tcl" file.

●

$ns color fid color: is to set color of the packets for a flow specified by the flow id (fid). This
member function of "Simulator" object is for the NAM display, and has no effect on the actual
simulation.

●

$ns namtrace-all file-descriptor: This member function tells the simulator to record simulation
traces in NAM input format. It also gives the file name that the trace will be written to later by the
command $ns flush-trace. Similarly, the member function trace-all is for recording the simulation
trace in a general format.

●

proc finish {}: is called after this simulation is over by the command $ns at 5.0 "finish". In this
function, post-simulation processes are specified.

●

set n0 [$ns node]: The member function node creates a node. A node in NS is compound object
made of address and port classifiers (described in a later section). Users can create a node by
separately creating an address and a port classifier objects and connecting them together. However,
this member function of Simulator object makes the job easier. To see how a node is created, look

●

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (4 di 6) [08/01/2002 9.09.33]

http://nile.wpi.edu/NS/Example/ns-simple.tcl

at the files: "ns-2/tcl/libs/ns-lib.tcl" and "ns-2/tcl/libs/ns-node.tcl".

$ns duplex-link node1 node2 bandwidth delay queue-type: creates two simplex links of specified
bandwidth and delay, and connects the two specified nodes. In NS, the output queue of a node is
implemented as a part of a link, therefore users should specify the queue-type when creating links.
In the above simulation script, DropTail queue is used. If the reader wants to use a RED queue,
simply replace the word DropTail with RED. The NS implementation of a link is shown in a later
section. Like a node, a link is a compound object, and users can create its sub-objects and connect
them and the nodes. Link source codes can be found in "ns-2/tcl/libs/ns-lib.tcl" and
"ns-2/tcl/libs/ns-link.tcl" files. One thing to note is that you can insert error modules in a link
component to simulate a lossy link (actually users can make and insert any network objects). Refer
to the NS documentation to find out how to do this.

●

$ns queue-limit node1 node2 number: This line sets the queue limit of the two simplex links that
connect node1 and node2 to the number specified. At this point, the authors do not know how
many of these kinds of member functions of Simulator objects are available and what they are.
Please take a look at "ns-2/tcl/libs/ns-lib.tcl" and "ns-2/tcl/libs/ns-link.tcl", or NS documentation
for more information.

●

$ns duplex-link-op node1 node2 ...: The next couple of lines are used for the NAM display. To see
the effects of these lines, users can comment these lines out and try the simulation.

●

Now that the basic network setup is done, the next thing to do is to setup traffic agents such as TCP and
UDP, traffic sources such as FTP and CBR, and attach them to nodes and agents respectively.

set tcp [new Agent/TCP]: This line shows how to create a TCP agent. But in general, users can
create any agent or traffic sources in this way. Agents and traffic sources are in fact basic objects
(not compound objects), mostly implemented in C++ and linked to OTcl. Therefore, there are no
specific Simulator object member functions that create these object instances. To create agents or
traffic sources, a user should know the class names these objects (Agent/TCP, Agnet/TCPSink,
Application/FTP and so on). This information can be found in the NS documentation or partly in
this documentation. But one shortcut is to look at the "ns-2/tcl/libs/ns-default.tcl" file. This file
contains the default configurable parameter value settings for available network objects. Therefore,
it works as a good indicator of what kind of network objects are available in NS and what are the
configurable parameters.

●

$ns attach-agent node agent: The attach-agent member function attaches an agent object created to
a node object. Actually, what this function does is call the attach member function of specified
node, which attaches the given agent to itself. Therefore, a user can do the same thing by, for
example, $n0 attach $tcp. Similarly, each agent object has a member function attach-agent that
attaches a traffic source object to itself.

●

$ns connect agent1 agent2: After two agents that will communicate with each other are created,
the next thing is to establish a logical network connection between them. This line establishes a
network connection by setting the destination address to each others' network and port address

●

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (5 di 6) [08/01/2002 9.09.33]

pair.

Assuming that all the network configuration is done, the next thing to do is write a simulation scenario
(i.e. simulation scheduling). The Simulator object has many scheduling member functions. However, the
one that is mostly used is the following:

$ns at time "string": This member function of a Simulator object makes the scheduler (scheduler_
is the variable that points the scheduler object created by [new Scheduler] command at the
beginning of the script) to schedule the execution of the specified string at given simulation time.
For example, $ns at 0.1 "$cbr start" will make the scheduler call a start member function of the
CBR traffic source object, which starts the CBR to transmit data. In NS, usually a traffic source
does not transmit actual data, but it notifies the underlying agent that it has some amount of data to
transmit, and the agent, just knowing how much of the data to transfer, creates packets and sends
them.

●

After all network configuration, scheduling and post-simulation procedure specifications are done, the
only thing left is to run the simulation. This is done by $ns run.

Simple Simulation Example

http://nile.wpi.edu/NS/simple_ns.html (6 di 6) [08/01/2002 9.09.33]

Event Scheduler

This section talks about the discrete event schedulers of NS. As described in the Overview section, the
main users of an event scheduler are network components that simulate packet-handling delay or that
need timers. Figure 5 shows each network object using an event scheduler. Note that a network object
that issues an event is the one who handles the event later at scheduled time. Also note that the data path
between network objects is different from the event path. Actually, packets are handed from one network
object to another using send(Packet* p) {target_->recv(p)}; method of the sender and recv(Packet*,
Handler* h = 0) method of the receiver.

Figure 5. Discrete Event Scheduler

NS has two different types of event scheduler implemented. These are real-time and non-real-time
schedulers. For a non-real-time scheduler, three implementations (List, Heap and Calendar) are available,
even though they are all logically perform the same. This is because of backward compatibility: some
early implementation of network components added by a user (not the original ones included in a
package) may use a specific type of scheduler not through public functions but hacking around the
internals. The Calendar non-real-time scheduler is set as the default. The real-time scheduler is for
emulation, which allow the simulator to interact with a real network. Currently, emulation is under
development although an experimental version is available. The following is an example of selecting a
specific event scheduler:

Event Scheduler

http://nile.wpi.edu/NS/scheduler.html (1 di 2) [08/01/2002 9.09.35]

. . .
set ns [new Simulator]
$ns use-scheduler Heap
. . .

Another use of an event scheduler is to schedule simulation events, such as when to start an FTP
application, when to finish a simulation, or for simulation scenario generation prior to a simulation run.
An event scheduler object itself has simulation scheduling member functions such as at time "string" that
issue a special event called AtEvent at a specified simulation time. An "AtEvent" is actually a child class
of "Event", which has an additional variable to hold the given string. However, it is treated the same as a
normal (packet related) event within the event scheduler. When a simulation is started, and as the
scheduled time for an AtEvent in the event queue comes, the AtEvent is passed to an "AtEvent handler"
that is created once and handles all AtEvents, and the OTcl command specified by the string field of the
AtEvent is executed. The following is a simulation event scheduling line added version of the above
example.

. . .
set ns [new Simulator]
$ns use-scheduler Heap
$ns at 300.5 "complete_sim"
. . .

proc complete_sim {} {
. . .
}

You might noticed from the above example that at time "string" is a member function of the Simulator
object (set ns [new Simulator]). But remember that the Simulator object just acts as a user interface, and
it actually calls the member functions of network objects or a scheduler object that does the real job.
Followings are a partial list and brief description of Simulator object member functions that interface
with scheduler member functions:

Simulator instproc now # return scheduler's notion of current time
Simulator instproc at args # schedule execution of code at specified time
Simulator instproc at-now args # schedule execution of code at now
Simulator instproc after n args # schedule execution of code after n secs
Simulator instproc run args # start scheduler
Simulator instproc halt # stop (pause) scheduler

Event Scheduler

http://nile.wpi.edu/NS/scheduler.html (2 di 2) [08/01/2002 9.09.35]

Network Components

This section talks about the NS components, mostly compound network components. Figure 6 shows a partial OTcl class
hierarchy of NS, which will help understanding the basic network components. For a complete NS class hierarchy, visit
http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns.

Figure 6. Class Hierarchy (Partial)

The root of the hierarchy is the TclObject class that is the superclass of all OTcl library objects (scheduler, network
components, timers and the other objects including NAM related ones). As an ancestor class of TclObject, NsObject class
is the superclass of all basic network component objects that handle packets, which may compose compound network
objects such as nodes and links. The basic network components are further divided into two subclasses, Connector and
Classifier, based on the number of the possible output data paths. The basic network objects that have only one output
data path are under the Connector class, and switching objects that have possible multiple output data paths are under the
Classifier class.

● Node and Routing

A node is a compound object composed of a node entry object and classifiers as shown in Figure 7. There are two types
of nodes in NS. A unicast node has an address classifier that does unicast routing and a port classifier. A multicast node,
in addition, has a classifier that classify multicast packets from unicast packets and a multicast classifier that performs
multicast routing.

Network Components

http://nile.wpi.edu/NS/components.html (1 di 4) [08/01/2002 9.09.41]

http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns

Figure 7. Node (Unicast and Multicast)

In NS, Unicast nodes are the default nodes. To create Multicast nodes the user must explicitly notify in the input OTcl
script, right after creating a scheduler object, that all the nodes that will be created are multicast nodes. After specifying
the node type, the user can also select a specific routing protocol other than using a default one.

Unicast
- $ns rtproto type
- type: Static, Session, DB, cost, multi-path

❍

Multicast
- $ns multicast (right after set $ns [new Scheduler])
- $ns mrtproto type
- type: CtrMcast, DM, ST, BST

❍

For more information about routing, refer to the NS Manual located at
http://www.isi.edu/nsnam/ns/ns-documentation.html. The documentation has chapters talk about unicast and multicast
routing.

● Link

A link is another major compound object in NS. When a user creates a link using a duplex-link member function of a
Simulator object, two simplex links in both directions are created as shown in Figure 8.

Figure 8. Link

Network Components

http://nile.wpi.edu/NS/components.html (2 di 4) [08/01/2002 9.09.41]

http://www.isi.edu/nsnam/ns/ns-documentation.html

One thing to note is that an output queue of a node is actually implemented as a part of simplex link object. Packets
dequeued from a queue are passed to the Delay object that simulates the link delay, and packets dropped at a queue are
sent to a Null Agent and are freed there. Finally, the TTL object calculates Time To Live parameters for each packet
received and updates the TTL field of the packet.

Tracing

In NS, network activities are traced around simplex links. If the simulator is directed to trace network activities
(specified using $ns trace-all file or $ns namtrace-all file), the links created after the command will have the
following trace objects inserted as shown in Figure 9. Users can also specifically create a trace object of type type
between the given src and dst nodes using the create-trace {type file src dst} command.

❍

Figure 9. Inserting Trace Objects

When each inserted trace object (i.e. EnqT, DeqT, DrpT and RecvT) receives a packet, it writes to the specified
trace file without consuming any simulation time, and passes the packet to the next network object. The trace
format will be examined in the General Analysis Example section.

Queue Monitor

Basically, tracing objects are designed to record packet arrival time at which they are located. Although a user gets
enough information from the trace, he or she might be interested in what is going on inside a specific output queue.
For example, a user interested in RED queue behavior may want to measure the dynamics of average queue size
and current queue size of a specific RED queue (i.e. need for queue monitoring). Queue monitoring can be
achieved using queue monitor objects and snoop queue objects as shown in Figure 10.

❍

Figure 10. Monitoring Queue

When a packet arrives, a snoop queue object notifies the queue monitor object of this event. The queue monitor
using this information monitors the queue. A RED queue monitoring example is shown in the RED Queue Monitor
Example section. Note that snoop queue objects can be used in parallel with tracing objects even though it is not
shown in the above figure.

● Packet Flow Example

Until now, the two most important network components (node and link) were examined. Figure 11 shows internals of an
example simulation network setup and packet flow. The network consist of two nodes (n0 and n1) of which the network
addresses are 0 and 1 respectively. A TCP agent attached to n0 using port 0 communicates with a TCP sink object

Network Components

http://nile.wpi.edu/NS/components.html (3 di 4) [08/01/2002 9.09.41]

attached to n1 port 0. Finally, an FTP application (or traffic source) is attached to the TCP agent, asking to send some
amount of data.

Figure 11. Packet Flow Example

Note that the above figure does not show the exact behavior of a FTP over TCP. It only shows the detailed internals of
simulation network setup and a packet flow.

Network Components

http://nile.wpi.edu/NS/components.html (4 di 4) [08/01/2002 9.09.41]

Packet

A NS packet is composed of a stack of headers, and an optional data space (see Figure 12). As briefly
mentioned in the "Simple Simulation Example" section, a packet header format is initialized when a
Simulator object is created, where a stack of all registered (or possibly useable) headers, such as the
common header that is commonly used by any objects as needed, IP header, TCP header, RTP header (UDP
uses RTP header) and trace header, is defined, and the offset of each header in the stack is recorded. What
this means is that whether or not a specific header is used, a stack composed of all registered headers is
created when a packet is allocated by an agent, and a network object can access any header in the stack of a
packet it processes using the corresponding offset value.

Figure 12. NS Packet Format

Usually, a packet only has the header stack (and a data space pointer that is null). Although a packet can
carry actual data (from an application) by allocating a data space, very few application and agent
implementations support this. This is because it is meaningless to carry data around in a non-real-time
simulation. However, if you want to implement an application that talks to another application cross the
network, you might want to use this feature with a little modification in the underlying agent
implementation. Another possible approach would be creating a new header for the application and
modifying the underlying agent to write data received from the application to the new header. The second
approach is shown as an example in a later section called "Add New Application and Agent".

Packet

http://nile.wpi.edu/NS/packet.html [08/01/2002 9.09.43]

Trace Analysis Example

This section shows a trace analysis example. Example 4 is the same OTcl script as the one in the "Simple
Simulation Example" section with a few lines added to open a trace file and write traces to it. For the
network topology it generates and the simulation scenario, refer to Figure 4 in the "Simple Simulation
Example" section. To run this script download "ns-simple-trace.tcl" and type "ns ns-simple-trace.tcl" at
your shell prompt.

Example 4. Trace Enabled Simple NS Simulation Script (modified from Example 3)

Running the above script generates a NAM trace file that is going to be used as an input to NAM and a
trace file called "out.tr" that will be used for our simulation analysis. Figure 13 shows the trace format and
example trace data from "out.tr".

Trace Analysis Example

http://nile.wpi.edu/NS/analysis.html (1 di 3) [08/01/2002 9.09.45]

http://nile.wpi.edu/NS/Example/ns-simple-trace.tcl
http://nile.wpi.edu/NS/Example/ns-simple-trace.tcl

Figure 13. Trace Format Example

Each trace line starts with an event (+, -, d, r) descriptor followed by the simulation time (in seconds) of
that event, and from and to node, which identify the link on which the event occurred. Look at Figure 9 in
the "Network Components" section to see where in a link each type of event is traced. The next
information in the line before flags (appeared as "------" since no flag is set) is packet type and size (in
Bytes). Currently, NS implements only the Explicit Congestion Notification (ECN) bit, and the remaining
bits are not used. The next field is flow id (fid) of IPv6 that a user can set for each flow at the input OTcl
script. Even though fid field may not used in a simulation, users can use this field for analysis purposes.
The fid field is also used when specifying stream color for the NAM display. The next two fields are
source and destination address in forms of "node.port". The next field shows the network layer protocol's
packet sequence number. Note that even though UDP implementations do not use sequence number, NS
keeps track of UDP packet sequence number for analysis purposes. The last field shows the unique id of
the packet.

Having simulation trace data at hand, all one has to do is to transform a subset of the data of interest into a
comprehensible information and analyze it. Down below is a small data transformation example. This
example uses a command written in perl called "column" that selects columns of given input. To make the
example work on your machine, you should download "column" and make it executable (i.e. "chmod 755
column"). Following is a tunneled shell command combined with awk, which calculates CBR traffic jitter
at receiver node (n3) using data in "out.tr", and stores the resulting data in "jitter.txt".
cat out.tr | grep " 2 3 cbr " | grep ^r | column 1 10 | awk '{dif = $2 - old2;
if(dif==0) dif = 1; if(dif > 0) {printf("%d\t%f\n", $2, ($1 - old1) / dif);
old1 = $1; old2 = $2}}' > jitter.txt

This shell command selects the "CBR packet receive" event at n3, selects time (column 1) and sequence
number (column 10), and calculates the difference from last packet receive time divided by difference in
sequence number (for loss packets) for each sequence number. The following is the corresponding jitter

Trace Analysis Example

http://nile.wpi.edu/NS/analysis.html (2 di 3) [08/01/2002 9.09.45]

http://nile.wpi.edu/NS/Example/column
http://www.canberra.edu.au/~sam/whp/awk-guide.html

graph that is generated using gnuplot. The X axis show the packet sequence number and the Y axis shows
simulation time in seconds.

Figure 14. CBR Jitter at The Receiving Node (n3)

You might also check for more utilities in the Example Utilities section.

This section showed an example of how to generate traces in NS, how to interpret them, and how to get
useful information out from the traces. In this example, the post simulation processes are done in a shell
prompt after the simulation. However, these processes can be included in the input OTcl script, which is
shown in the next section.

Trace Analysis Example

http://nile.wpi.edu/NS/analysis.html (3 di 3) [08/01/2002 9.09.45]

http://shazam.econ.ubc.ca/gnuplot.html

RED Queue Monitor Example

This section shows a RED queue monitoring example. Example 5 is an OTcl script written by Polly Huang,
which sets up the network topology and runs the simulation scenario shown in Figure 15. Note that a RED
queue that can hold up to 25 packets is used for the link r1-r2, and we want to see how the RED queue
works by measuring the dynamics of current and average queue size. To run this script, download "red.tcl"
and type "ns red.tcl" at your shell prompt.

Figure 15. RED Queue Monitor Example Setup

RED Queue Monitor Example

http://nile.wpi.edu/NS/queuemon.html (1 di 3) [08/01/2002 9.09.47]

http://netweb.usc.edu/huang/
http://nile.wpi.edu/NS/Example/red.tcl
http://nile.wpi.edu/NS/Example/red.tcl

RED Queue Monitor Example

http://nile.wpi.edu/NS/queuemon.html (2 di 3) [08/01/2002 9.09.47]

http://nile.wpi.edu/NS/Example/red.tcl

Example 5. RED Queue Monitor Simulation Script

There are couple of things to note in the above script. First, more advanced Simulator object member
function create-connection is used to create TCP connections. Second, take a good look at queue tracing
(monitoring) part of the script. These lines make a variable to point the RED queue object, call its member
function trace to monitor the current queue size (curq_) and average queue size (avg_), and make them
write the results to the file "all.q". Following are the two queue trace output formats for average queue size
and current queue size.
a time avg_q_size
Q time crnt_q_size

Now that the all commands needed for RED queue monitoring is done except closing the "all.q" file when
the simulation is done, the remaining work designs a post-simulation process. This script, using awk, does
this process of transforming the monitored information into XGraph (a plotter) input format, and launches it
to draw the given information (see Figure 16).

Figure 16. Red Queue Trace Graph

RED Queue Monitor Example

http://nile.wpi.edu/NS/queuemon.html (3 di 3) [08/01/2002 9.09.47]

http://nile.wpi.edu/NS/Example/red.tcl
http://www.canberra.edu.au/~sam/whp/awk-guide.html
http://jean-luc.ncsa.uiuc.edu/Codes/xgraph

Trace Analysis Utilities

Here is a collection of trace analysis utilities that have been useful:

Much parsing is easy if you can extract columns. Here is a helper-perl utility called "column" that
breaks a text output into columns, separated by whitespace. It is used by many of the scripts
below.

❍

Here is a simple perl called stats.pl script that prints some stats along the bottleneck link (node 1 to
node 2, in this case) of an output file stats.tr. Run it with the command:
stats.pl -l1 1 -l2 2 -max 1.5 stats.tr.

❍

Here is a tunneled shell command called jitter.sh combined with awk, which calculates CBR
traffic jitter at receiver node (n3) using data in "out.tr", and stores the resulting data in "jitter.txt".
This shell command selects the "CBR packet receive" event at n3, selects time (column 1) and
sequence number (column 10), and calculates the difference from last packet receive time divided
by difference in sequence number (for loss packets) for each sequence number.

❍

Trace Analysis Utilities

http://nile.wpi.edu/NS/utilities/ [08/01/2002 9.09.47]

http://nile.wpi.edu/NS/Example/column
http://nile.wpi.edu/NS/utilities/stats.pl
http://nile.wpi.edu/NS/utilities/stats.tr
http://nile.wpi.edu/NS/utilities/jitter.sh
http://www.canberra.edu.au/~sam/whp/awk-guide.html

Where to Find What?

Before going into a discussion of how to extend NS, let's briefly examine what information is stored in
which directory or file. Figure 17 shows a part of the directory structure of the simulator if you installed
it using the ns-allinone-2.1b package.

Figure 17. NS Directory Structure

Among the sub-directories of ns-allinone-2.1b, ns-2 is the place that has all of the simulator
implementations (either in C++ or in OTcl), validation test OTcl scripts and example OTcl scripts.
Within this directory, all OTcl codes and test/example scripts are located under a sub-directory called tcl,
and most of C++ code, which implements event scheduler and basic network component object classes,
except the WWW related ones, are located in the main level. For example, if you want to see the
implementation of the UDP agent, you should go to "ns-allinone-2.1b/ns-2" directory, and open up
"udp.h", "udp.cc" and the files that contain the implementation of ancestor classes of UDP as needed. For
the class hierarchy of network components, refer to Figure 6 in the "Network Components" section. From
now on, it is assumed that you are already in "ns-allinone-2.1b" directory.

The tcl directory has sub-directories, among which the lib directory that contains OTcl source codes for
the most basic and essential parts of the NS implementation (agent, node, link, packet, address, routing,
and etc.) is the place one as a user or as a developer will visit the most. Note that the OTcl source codes
for LAN, Web, and Multicast implementations are located in separate subdirectories of tcl. Following is

Where to Find What?

http://nile.wpi.edu/NS/infoseek.html (1 di 2) [08/01/2002 9.09.48]

a partial list of files in "ns-2/tcl/lib" directory.

ns-lib.tcl: The simulator class and most of its member function definitions except for LAN, Web,
and Multicast related ones are located here. If you want to know which member functions of the
Simulator object class are available and how they work, this is a place to look.

●

ns-default.tcl: The default values for configurable parameters for various network components are
located here. Since most of network components are implemented in C++, the configurable
parameters are actually C++ variables made available to OTcl via an OTcl linkage function,
bind(C++_variable_name, OTcl_variable_name). How to make OTcl linkages from C++ code is
described in the next section.

●

ns-packet.tcl: The packet header format initialization implementation is located here. When you
create a new packet header, you should register the header in this file to make the packet header
initialization process to include your header into the header stack format and give you the offset of
your header in the stack. A new header creating example is shown in "Add New Application and
Agent" section.

●

other OTcl files: Other OTcl files in this directory, contain OTcl implementation of compound
network objects or the front end (control part) of network objects in C++. The FTP application is
entirely implemented in OTcl and the source code is located in "ns-source.tcl".

●

Two sub-directories of tcl that might be interesting for a user who wants to know how to design a
specific simulation are ex and test. The former directory contains various example simulation scripts and
the latter contains simulation scripts that validate the NS installed in your machine by running various
simulations and comparing the results with the expected results.

Where to Find What?

http://nile.wpi.edu/NS/infoseek.html (2 di 2) [08/01/2002 9.09.48]

OTcl Linkage

Extending NS by adding a new basic network object usually involves working around making OTcl
linkage from C++ code, since the object class in the data path should be written in C++ for efficiency
reason. This section introduces C++/OTcl linkages available in NS by giving an example of creating a
simple and dull agent called "MyAgent" that has no behavior of an agent (i.e. no packet creation and
transmission). Figures 18 to 21 show parts of the C++ source file for "MyAgent", together which makes
a complete implementation (with 3 extra header lines). Also, an OTcl script with which you can test
"MyAgent" is presented at the end of this section.

● Export C++ class to OTcl

Suppose that you created a new network object class in C++, say "MyAgent" that is derived from the
"Agent" class, and want to make it possible to create an instance of this object in OTcl. To do this you
have to define a linkage object, say "MyAgentClass", which should be derived from "TclClass". This
linkage object creates an OTcl object of specified name ("Agent/MyAgentOtcl" in this example), and
creates a linkage between the OTcl object and the C++ object ("MyAgent" in this example), of which the
instance launching procedure is specified in the "create" member function. Figure 18 shows the
"MyAgent" class definition and the linkage class definition.

OTcl Linkage

http://nile.wpi.edu/NS/linkage.html (1 di 4) [08/01/2002 9.09.51]

http://nile.wpi.edu/NS/Example/ex-linkage.cc

Figure 18. Example C++ Network Component and The Linkage Object

When NS is first started, it executes the constructor for the static variable "class_my_agent", and thus an
instance of "MyAgentClass" is created. In this process, the "Agent/MyAgentOtcl" class and its
appropriate methods (member functions) are created in OTcl space. Whenever a user in OTcl space tries
to create an instance of this object using the command "new Agent/MyAgentOtcl", it invokes
"MyAgentClass::create" that creates an instance of "MyAgent" and returns the address. Note that
creating a C++ object instance from OTcl does not mean that you can invoke member functions or access
member variables of the C++ object instance from OTcl.

● Export C++ class variables to OTcl

Suppose your new C++ object, "MyAgent", has two parameter variables, say "my_var1" and
"my_var2", that you want to configure (or change) easily from OTcl using the input simulation script.
To do this you should use a binding function for each of the C++ class variables you want to export. A
binding function creates a new member variable of given name (first argument) in the matching OTcl
object class ("Agent/MyAgentOtcl"), and create bi-directonal bindings between the OTcl class variable
and the C++ variable whose address is specified as the second variable. Figure 19 shows how to make
bindings for "my_var1" and "my_var2" shown in Figure 18.

Figure 19. Variable Binding Creation Example

Note that the binding functions are placed in the "MyAgent" constructor function to establish the
bindings when an instance of this object is created. NS support four different binding functions for five
different variable types as follows:
- bind(): real or integer variables
- bind_time(): time variable
- bind_bw(): bandwidth variable
- bind_bool(): boolean variable

In this way, a user designing and running a simulation using an OTcl script can change or access
configurable parameters (or variable values) of network components implemented in C++. Note that
whenever you export a C++ variable, it is recommended that you also set the default value for that
variable in the "ns-2/tcl/lib/ns-lib.tcl" file. Otherwise, you will get a warning message when you create an
instant of your new object.

● Export C++ Object Control Commands to OTcl.

In addition to exporting some of your C++ object variables, you may also want to give the control of
your C++ object to OTcl. This is done by defining a "command" member function of your C++ object
("MyAgent"), which works as an OTcl command interpreter. As a matter of fact, an OTcl command

OTcl Linkage

http://nile.wpi.edu/NS/linkage.html (2 di 4) [08/01/2002 9.09.51]

defined in a "command" member function of a C++ object looks the same as a member function of the
matching OTcl object to a user. Figure 20 shows an example "command" member function definition for
the "MyAgent" object in Figure 18.

Figure 20. Example OTcl command interpreter

When an instance of the shadow OTcl that matches the "MyAgent" object is created in OTcl space (i.e.
set myagent [new Agent/MyAgentOtcl]), and the user tries to call a member function of that
object (i.e. $myagent call-my-priv-func), OTcl searches for the given member function name
in the OTcl object. If the given member function name cannot be found, then it invokes the
"MyAgent::command" passing the invoked OTcl member function name and arguments in argc/argv
format. If there is an action defined for the invoked OTcl member function name in the "command"
member function, it carries out what is asked and returns the result. If not, the "command" function for its
ancestor object is recursively called until the name is found. If the name cannot be found in any of the
ancestors, an error message is return to the OTcl object, and the OTcl object gives an error message to
the user. In this way, an user in OTcl space can control a C++ object's behavior.

● Execute an OTcl command from C++.

As you implement a new network object in C++, you might want to execute an OTcl command from the
C++ object. Figure 21 shows the implementation of "MyPrivFunc" member function of "MyAgent" in
Figure 18, which makes an OTcl interpreter print out the value in "my_var1" and "my_var2" private
member variables.

Figure 21. Execute OTcl command from a C++ Object

To execute an OTcl command from C++, you should get a reference to "Tcl::instance()" that is declared
as a static member variable. This offers you a couple of functions with which you can pass an OTcl
command to the interpreter (the first line of "MyPrivFunc" does this). This example shows two ways to

OTcl Linkage

http://nile.wpi.edu/NS/linkage.html (3 di 4) [08/01/2002 9.09.51]

pass an OTcl command to the interpreter. For a complete list of OTcl command passing functions, refer
to the NS documentation.

● Compile, run and test "MyAgent"

Until now, we examined the essential OTcl linkages available in NS using the "MyAgent" example.
Assuming that running and testing this example would help the reader's understanding further, we
present a procedure that helps you to compile, run and test "MyAgent".

Download "ex-linkage.cc" file, and save it under the "ns-2" directory.1.

Open "Makefile", add "ex-linkage.o" at the end of object file list.2.

Re-compile NS using the "make" command.3.

Download the "ex-linkage.tcl" file that contains "MyAgent" testing OTcl commands. (see Figure
22 for the input script and the result)

4.

Run the OTcl script using command "ns ex-linkage.tcl".5.

Figure 22. Test OTcl Script and The Result

OTcl Linkage

http://nile.wpi.edu/NS/linkage.html (4 di 4) [08/01/2002 9.09.51]

http://nile.wpi.edu/NS/Example/ex-linkage.cc
http://nile.wpi.edu/NS/Example/ex-linkage.tcl
http://nile.wpi.edu/NS/Example/ex-linkage.tcl

Add New Application and Agent

(work with ns-2.1b8a)

● Objective

We want to build a multimedia application that runs over a UDP connection, which simulates the behavior of an
imaginary multimedia application that implements "five rate media scaling" that can respond to network
congestion to some extent by changing encoding and transmission policy pairs associated with scale parameter
values.

● Application Description

In this implementation, it is assumed that when a connection is established, the sender and the receiver agree on 5
different sets of encoding and transmission policy pairs, and associate them with 5 scale values (0-4). For
simplicity reasons, it is also assumed that a constant transmission rate is determined for each of the encoding and
transmission policy pairs, and every pair uses packets of the same size regardless of the encoding scheme.

Basically, "five rate media scaling" works as follow. The sender starts with transmission rate associated with scale
0, and changes transmission rates according to the scale value that the receiver notifies. The receiver is responsible
for monitoring network congestion and determining the scale factor. For congestion monitoring, a simple
periodical (for every RTT second) packet loss monitoring is used, and even a single packet loss for each period is
regarded as network congestion. If congestion is detected, the receiver reduces the scale parameter value to half
and notifies the sender of this value. If no packet loss is detected, the receiver increases the value by one and
notifies the sender.

● Problem Analysis

Before implementing this application, the UDP agent implementation is examined and one major problem is
found. Since a UDP agent allocates and sends network packets, all the information needed for application level
communication should be handed to the UDP agent as a data stream. However, the UDP implementation allocates
packets that only have a header stack. Therefore, we need to modify the UDP implementation to add a mechanism
to send the data received from the application. It is also noted that we might want to use this application for further
research on IP router queue management mechanisms. Therefore, we need a way to distinguish this type of
multimedia stream from other types of streams. That is, we also need to modify UDP agent to record data type in
one of IP header fields that is currently not used.

● Design and Implementation

For the application, we decided to take the CBR implementation and modify it to have the "five level media
scaling" feature. We examined the C++ class hierarchy, and decided to name the class of this application as
"MmApp" and implement as a child class of "Application". The matching OTcl hierarchy name is
"Application/MmApp". The sender and receiver behavior of the application is implemented together in "MmApp".
For the modified UDP agent that supports "MmApp", we decided to name it "UdpMmAgent" and implement it as
a child class of "UdpAgent". The matching OTcl hierarchy name is "Agent/UDP/UDPmm"

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (1 di 8) [08/01/2002 9.09.54]

MmApp Header: For the application level communication, we decided to define a header of which the
structure named in C++ "hdr_mm". Whenever the application has information to transmit, it will hand it to
"UdpMmAgent" in the "hdr_mm" structure format. Then, "UdpMmAgent" allocates one or more packets
(depending on the simulated data packet size) and writes the data to the multimedia header of each packet.
Figure 23 shows the header definition, in which a structure for the header and a header class object,
"MultimediaHeaderClass" that should be derived from "PacketHeaderCalss" is defined. In defining this
class, the OTcl name for the header ("PacketHeader/Multimedia") and the size of the header structure
defined are presented. Notice that bind_offset() must be called in the constructor of this class.

Figure 23. MM Header Structure & Class (in "udp-mm.h" & "udp-mm.cc")

●

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (2 di 8) [08/01/2002 9.09.54]

Figure 24 (a). Add to the "packet.h" file (C++)

Figure 24 (b). Add to the "ns-packet.tcl" file (Otcl)

We also add lines to packets.h and ns-packet.tcl as shown in Figure 24 (a) and (b) to add our "Mulltimedia"
header to the header stack. At this point, the header creation process is finished, and "UdpMmAgent" will
access the new header via hdr_mm::access() member function. Please refer to NS Manual for detailed
information on header creation and access methods. For the rest of the application and the modified UDP
agent description, refer directly to "mm-app.h", "mm-app.cc", "udp-mm.h" and "udp-mm.cc" files as
needed.

MmApp Sender: The sender uses a timer for scheduling the next application data packet transmission. We
defined the "SendTimer" class derived from the "TimerHandler" class, and wrote its "expire()" member
function to call "send_mm_pkt()" member function of the "MmApp" object. Then, we included an instance
of this object as a private member of "MmApp" object referred to as "snd_timer_". Figure 25 shows the
"SendTimer" implementation.

●

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (3 di 8) [08/01/2002 9.09.54]

http://www.isi.edu/nsnam/ns/ns-documentation.html
http://nile.wpi.edu/NS/Example/mm-app.h
http://nile.wpi.edu/NS/Example/mm-app.cc
http://nile.wpi.edu/NS/Example/udp-mm.h
http://nile.wpi.edu/NS/Example/udp-mm.cc

Figure 25. SendTimer Implementation.

Before setting this timer, "MmApp" re-calculates the next transmission time using the transmission rate
associated with the current scale value and the size of application data packet that is given in the input
simulation script (or use the default size). The "MmApp" sender, when an ACK application packet arrives
from the receiver side, updates the scale parameter.

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (4 di 8) [08/01/2002 9.09.54]

MmApp Receiver: The receiver uses a timer, named "ack_timer_", to schedule the next application ACK
packet transmission of which the interval is equal to the mean RTT. When receiving an application data
packet from the sender, the receiver counts the number of received packets and also counts the number of
lost packets using the packet sequence number. When the "ack_timer_" expires, it invokes the
"send_ack_pkt" member function of "MmApp", which adjusts the scale value looking at the received and
lost packet accounting information, resets the received and lost count to 0, and sends an ACK packet with
the adjusted scale value. Note that the receiver doesn't have any connection establishment or closing
methods. Therefore, starting from the first packet arrival, the receiver periodically sends ACK packets and
never stops (this is a bug).

●

UdpMmAgent: The "UdpMmAgent" is modified from the "UdpAgent" to have the following additional
features: (1) writing to the sending data packet MM header the information received from a "MmApp" (or
reading information from the received data packet MM header and handing it to the "MmApp"), (2)
segmentation and re-assembly ("UdpAgent" only implements segmentation), and (3) setting the priority bit
(IPv6) to 15 (max priority) for the "MmApp" packets.

●

Modify "agent.h": To make the new application and agent running with your NS distribution, you should
add two methods to "Agent" class as public. In the "command" member function of the "MmApp" class,
there defined an "attach-agent" OTcl command. When this command is received from OTcl, "MmApp" tries
to attach itself to the underlying agent. Before the attachment, it invokes the "supportMM()" member
function of the underlying agent to check if the underlying agent support for multimedia transmission (i.e.
can it carry data from application to application), and invokes "enableMM()" if it does. Even though these
two member functions are defined in the "UdpMmAgnet" class, it is not defined in its base ancestor "Agent"
class, and the two member functions of the general "Agent" class are called. Therefore, when trying to
compile the code, it will give an error message. Inserting the two methods as public member functions of
the "Agent" class (in "agent.h") as follows will solve this problem.

Figure 26 (a). Add two member functions to "Agent" class.

●

Modify "app.h": You also need to add an additional member function "recv_msg(int nbytes, const char
*msg)" to "Application" class as shown in Figure 26 (b). This member function, which was included in the
"Application" class in the old versions of NS (ns-2.1b4a for sure), is removed from the class in the latest
versions (ns-2.1b8a for sure). Our multimedia application was initially written for the ns-2.1.b4a, and
therefore requires "Application::recv_msg()" member function for ns-2.1b8a or later versions.

●

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (5 di 8) [08/01/2002 9.09.54]

Figure 26 (b). Add a member function to "Application" class.

Set default values for new parameter in the "ns-default.tcl": After implementing all the parts of the
application and agent, the last thing to do is to set default values for the newly introduced configurable
parameters in the "ns-default.tcl" file. Figure 26 shows an example of setting the default values for
configurable parameters introduced by "MmApp".

Figure 27. Default parameter value settings

●

● Download and Compile

Here is a checklist that should be done before recompiling your NS.

Download "mm-app.h", "mm-app.cc", "udp-mm.h" and "udp-mm.cc") to the "ns-2" directory.1.

Make sure you registered the new application header by modifying "packet.h" and "ns-packet.tcl" as shown
in Figure 24 (a) and (b).

2.

Add supportMM() and enableMM() methods to the "Agent" class in "agent.h" as shown in Figure 26 (a).3.

Add recv_msg() method to the "Application" class in "app.h" as shown in Figure 26 (b).4.

Set default values for the newly introduced configurable parameters in "ns-default.tcl" as described in
Figure 27.

5.

After you've done all things in the checklist, modify your "Makefile" as needed (include "mm-app.o" and
"udp-mm.o" in the object file list) and re-compile your NS. It is generally a good practice to do "make depend"
after you make changes in "Makefile" before a re-compile.

● Test Simulation

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (6 di 8) [08/01/2002 9.09.54]

http://nile.wpi.edu/NS/Example/mm-app.h
http://nile.wpi.edu/NS/Example/mm-app.cc
http://nile.wpi.edu/NS/Example/udp-mm.h
http://nile.wpi.edu/NS/Example/udp-mm.cc

Figure 28 shows a simulation topology and scenario that is used to test "MmApp", and Figure 29 shows the test
simulation script. Download this script and test the newly added components.

Figure 28. Test Simulation Topology and Scenario

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (7 di 8) [08/01/2002 9.09.54]

http://nile.wpi.edu/NS/Example/ex-mm-app.tcl
http://nile.wpi.edu/NS/Example/ex-mm-app.tcl
http://nile.wpi.edu/NS/Example/ex-mm-app.tcl

Figure 29. "MmApp" Test Simulation Script

Add New Application and Agent

http://nile.wpi.edu/NS/new_app_agent.html (8 di 8) [08/01/2002 9.09.54]

http://nile.wpi.edu/NS/Example/ex-mm-app.tcl

Add New Queue

(work with ns-2.1b8a)

● Objective

To build a simple drop-tail router output queue that uses a round-robin dequeue scheduling for priority
15 packets (from a "MmApp" over "UDPmm") and the other packets in the queue. That is, while priority
15 packets and other packets coexist in the queue, it dequeues the oldest packets of each type one by one
in turn.

● Design

The queue has two logical FIFO queues, say LQ1 and LQ2, of which the total size is equal to the size of
physical queue (PQ), i.e. LQ1 + LQ2 = PQ. To implement a normal drop-tail enqueue behavior, when a
packet is to be enqueued, the enqueue manager checks if size of LQ1 + LQ2 is less than maximum
allowed PQ size. If so, the packet will be enqueued to an appropriate logical queue. To implement the
round-robin dequeue scheduling, the dequeue manager tries to dequeue one packet from a logical queue
and the next one from the other logical queue in turn. I.e. packets in the two logical queues are dequeued
at 1:1 ratio if both queues have packets.

● Implementation

We named the C++ name for this queue object "DtRrQueue" (Drop-Tail Round-Robin Queue) that is
derived from "Queue" class. The matching OTcl name is "Queue/DTRR". When the "recv" member
function that is implemented in the "Queue" class (in "queue.cc") receives a packet, it invokes the
"enqueue" member function of the queue object and invokes "dequeue" if the link object is not blocked.
When the link came from a blocked state, it also calls the "dequeue" member function of its queue object.
Therefore, we needed to write "enqueue" and "dequeue" member functions of the "DtRrQueue" object
class. Figure 30 shows the "DtRrQueue" class definition and its "enqueue" and "dequeue" member
functions. For the complete implementation, refer to "dtrr-queue.h" and "dtrr-queue.cc" files. Since the
codes are really easy to understand, no further explanation is given.

Add New Queue

http://nile.wpi.edu/NS/new_queue.html (1 di 3) [08/01/2002 9.09.56]

http://nile.wpi.edu/NS/Example/dtrr-queue.h
http://nile.wpi.edu/NS/Example/dtrr-queue.cc

Add New Queue

http://nile.wpi.edu/NS/new_queue.html (2 di 3) [08/01/2002 9.09.56]

Figure 30. "DtRrQueue" class implementation

● Test Simulation

We used the simulation script used for testing "MmApp" over "UDPmm" in the previous section with
changing the RED queue to DTRR queue for the link r1-r2. The changes to the script are show in Figure
31. Download this script and test your newly added queue components.

Figure 31. "DtRrQueue" test simulation script

Add New Queue

http://nile.wpi.edu/NS/new_queue.html (3 di 3) [08/01/2002 9.09.56]

http://nile.wpi.edu/NS/Example/ex-dtrr-queue.tcl
http://nile.wpi.edu/NS/Example/ex-dtrr-queue.tcl

LAN Example

(Obsolete: work with ns-2.1b4a)

This section contains a pointer to an example LAN simulation script and shows its network topology and
simulation scenario. Download "ex-lan.tcl" file that is modified a little bit from "ns-2/tcl/ex/lantest.tcl"
and examine it yourself.

Figure 32. LAN simulation network topology and scenario

LAN Examples

http://nile.wpi.edu/NS/example_lan.html [08/01/2002 9.09.58]

http://nile.wpi.edu/NS/Example/ex-lan.tcl

Multicasting Example

(Obsolete: work with ns-2.1b4a)

This section contains a pointer to an example multicasting simulation script and shows the NAM screen
capture of the simulation. Download "ex-mcast.tcl" file and examine it yourself. This example is from
the 5th VINT/NS Simulator Tutorial/Workshop.

Figure 33. The NAM screen capture of the multicasting simulation

Multicasting Examples

http://nile.wpi.edu/NS/example_mcast.html [08/01/2002 9.09.59]

http://nile.wpi.edu/NS/Example/ex-mcast.tcl

Web Server Example

(Obsolete: work with ns-2.1b4a)

This section contains a pointer to an example Web Server simulation script and shows its network
topology. Download "ex-web.tcl" and "dumbbell.tcl" files and examine them yourself. This example is
from the 5th VINT/NS Simulator Tutorial/Workshop. Note that you should change the path for
"http-mod.tcl" at the begining of the script to an appropriate one to make it run on your machine.

Figure 34. Web server simulation network topology

Web Server Examples

http://nile.wpi.edu/NS/example_web.html [08/01/2002 9.10.01]

http://nile.wpi.edu/NS/Example/ex-web.tcl
http://nile.wpi.edu/NS/Example/dumbbell.tcl

SRM using NS-2

This section gives an overview of the implementation of SRM in NS. Running an SRM simulation
requires

creating and configuring the agent,●

attaching an application level data source (a traffic generator), and●

starting the agent and the traffic generator.●

The key steps in configuring a virgin SRM agent are to assign its multicast group and attach it to a node.
Other useful configuration parameters are to assign a separate flow id to traffic originating from this
agent, to open log file for statistics, and a trace file for trace data. The agent does not generate any
application data on its own; instead the simulation user can connect any traffic generation module to any
SRM agent to generate data. The user can attach any traffic generator to n SRM agent. The SRM agent
will add the SRM headers, set the destination address to the multicast group and deliver the packet to its
target. SRM header contains the type of message, identity of the sender, the sequence number of the
message, the round for which this message is being sent.Each data unit in SRM is identified as <
sender’s id, message sequence number >. The SRM agent does not generate its own data; it does not also
keep track of the data sent except to record the sequence numbers of messages received in the event that
it has to do error recovery. Since the agent has no actual record of the past data, it needs to know what
packet size to use for each repair message. The agent and the traffic generator must be started separately
using : $srm start and $exp0 start

At start, the agent joins the multicast group and starts generating the session messages.

Each agent tracks two sets of statistics: statistics to measure the response to data loss and overall
statistics for each request/repair.

Data Loss:

The statistics to measure the response to data losses track the duplicate request (and repair), and the
average request (and repair) delay. Each new request (or repair) starts a new request (or repair) period.
During the request (or repair) period, the agent measures the number of first round duplicate requests (or
repair) until the round terminates either due to receiving a request (or repair) or due to the agent sending
one.

Overall Statistics:

In addition, each loss recovery and session object keeps a track of times and statistics. In particular, each
object records its startTime. ServiceTime, distance, are relevant to the object; startTime is the time that
this object was created, serviceTime is the time for this object to complete its task, and the distance is the
one-way time to reach the remote peer.

For request objects, startTime is the time a packet loss is detected, serviceTime is the time to finally

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (1 di 8) [08/01/2002 9.10.03]

receive that packet and the distance is the distance to the original sender of the packet. For repair objects,
startTime is the time that a request for retransmission is received, serviceTime is the time to send a repair
and the distance is the distance to the original requester. For both types of objects, the serviceTime is
normalized by distance. For the session object, startTime is the time that the agent joins the multicast
group, serviceTime and distance are not relevant.

Each object also maintains statistics particular to that type of object. Request objects track the number of
duplicate requests and repairs received, the number of requests sent, and the number of times that this
object had to backoff before finally receiving the data. Repair objects track the number of duplicate
requests and repairs, as well as whether or not this object for this agent sent the repair. Session objects
simply record the number of session messages sent.

The values of timers and the statistics for each object are written to the log file every time an object
completes the error recovery function it was tasked to do.

Tracing :

Each object writes out trace information that can be used to track the progress of the object in its error
recovery. Each trace entry is of the form:

<prefix> <tag> <type of entry> <values>

The prefix is as described in the previous section for statistics. The tag is Q for requets objects, P for
repair objects, and S for session objects.

Architecture and Internals:

The SRM agent implementation splits the protocol functions into packet handling, loss recovery, and
session message activity.

Packet handling consists of forwarding application data messages, sending and receipt of control
messages. These activities are executed by C++ methods.

●

Error detection done in C++ due to receipt of error messages. However, loss recovery is entirely
done through instance procedures in Otcl.

●

The sending and processing of messages is accomplished in C++; the policy about when these
messages should be sent is decided by instance procedures in Otcl

●

Packet Handling: Processing received messages.

The recv() method can receive 4 types of messages: data, request, repair and session messages.

Data Packets

The agent does not generate any data messages. The user has to specify an external agent to generate
traffic. The recv() method must distinguish between locally originated data, that must be sent to the
multicast group, and the data received from the multicast group that must be processed. Therefore, the
application agent must set the packet's destination address to zero.

For locally originated data, the agent adds the appropriate SRM headers, sets the destination address to
the multicast group and forwards the packet to its target.

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (2 di 8) [08/01/2002 9.10.03]

On receiving a data message from the group, the recv_data(sender, msgid) will update its state marking
message <sender, msgid> received, and possibly trigger requests if it detects losses. In addition, if the
message was an older message received out of order, then there must be a pending request or repair that
must be cleared. In that case, the compiled object invokes the Otcl instance procedure, recv-data
{sender,msgid}.

Currently, there is no provision for receivers to actually receive any application data. The agent does not
also store any of the user data. It only generates repair messages of the appropriate size, defined by
instance variable packetSize_. However, the agent assumes that any application data is placed in the data
portion of the packet, pointed to by

packet->accessdata().

Request Packets :

On receiving a request, recv_rqst(sender, msgid) will check whether it needs to schedule requests for
other missing data. If it has received this request before it was aware that the source had generated this
data message(i.e the sequence no. of this message is higher than the last known sequence no. of data
from this source), then the agent can infer that it is missing this, as well as data from the last known
sequence no. onwards; it schedules requests for all of the missing data and returns. On the other hand, if
the seuqence no. of the request is less than the last know sequence no. from the source, then the agent can
be in one of the three states: a) it does not have this data, and has a requets pending for it, b) it has the
data, and has seen an earlier request, upon which it has a repair pending for it, or c) it has the data, and it
should instantiate a repair. All of these error recovery mechanisms are done in OTcl; recv_rqst() invokes
the instance procedure recv-rqst{sender, msgid, requester} for futher processing.

Repair Packets :

On receiving a repair packet, recv_repr(sender, msgid) will check whether it needs to schedule requests
for other missing data. If it has received this repair before it was aware that the source had generated this
data message(i.e. the sequence no. of the repair is higher than the last known sequence no. from this
source), then the agent can infer that it is missing all data between the last known sequence no. and that
on the repair; it schedules requests for all of this data, marks this message as received, and returns. On
the other hand, if the sequence no. of the request is lesser than the last known sequence no. from the
source, then the agent can be in one of the 3 states; a) it does not have the data. and has a request pending
for it, b) it has the data, and has seen an earlier request, upon which it has a repair pending for it, or c) it
has the data, and probably scheduled a repair for it at some time; after recovery it holds down its timer
(equal to three times its distance to some requester)expired, at which time the pending object was
cleared. In this last situation, the agent will simply ignore the repair, for lack of being able to do anything
meaningful. All of these error recovery mechanisms are done in OTcl; recv_repr() invokes the instance
procedure recv-repr{sender, msgid} to complete the loss recovery phase for the particular message.

Session Packets :

On receiving a session message, the agent updates its sequence numbers for all the active sources, and
computes its instantaneous distance to the sending agent if possible. This agent will ignore earlier session
messages from a group member, if it has received a later one out of order.

Session message processing is done in recv_sess(). The format of the session message is:<count of tuples

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (3 di 8) [08/01/2002 9.10.03]

in this message, list of tuples>, where each tuple indicates the <sender id, last sequence no. from the
source, time the last session message was received from this sender, time that the message was sent>.
The first tuple is the information about the local agent.

It is possible to trivially obtain two flavors of SRM based on whether the agents use probabilistic or
deterministic suppression. The default request and repair timer parameter for each SRM agent are

Agent/ SRM set C1_ 2.0

Agent/ SRM set C2_ 2.0

Agent/ SRM set D!_ 1.0

Agent/ SRM set D2_ 1.0

Deterministic Suppressions:

Class Agent/ SRM/ Deterministic – superclass Agent / SRM

Agent/SRM/ deterministic sets C2_ 0.0

Agent /SRM/ deterministic sets D2_ 0.0

Probabilistic Suppressions:

Class Agent/ SRM/ Probabilistic – superclass Agent / SRM

Agent/SRM/ Probabilistic sets C1_ 0.0

Agent /SRM Probabilistic sets D1_ 0.0

Loss Detection:

The SRM agent implementation splits the protocol functions into

Packet handling,●

Loss recovery, and●

Session message activity.●

Packet handling consists of forwarding application data messages, sending and receipt of control
messages. These applications are executed by C++ methods.

Error detection is done in C++ due to receipt of messages. However, the loss recovery is entirely done
through instance procedures in OTcl.

Sending and processing of messages is accomplished through C++; the policy about when these
messages should be sent is decided by instance procedures in OTcl.

A very small encapsulating class, entirely in C++, tracks a number of assorted state information. Each
member of a group, ni, uses one SRMinfo block for every other member of the group. An SRMinfo
object about group member nj at ni, contains information about session messages received by ni from nj.

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (4 di 8) [08/01/2002 9.10.03]

Ni can use this information to compute its distance to nj. If nj, sends is active in sending data traffic, then
the SRMinfo object will also contain information about the received data, including a bit vector
indicating all packets received from nj.

The agent keeps a list of SRMinfo objects, one per group member, in its member variable, sip_. Its
method get_state(int sender) will return the object corresponding to that sender, possibly creating that
object, if it did not already exist. The class SRMinfo has two methods to access and set the bit vector, i.e.

IfReceived(int id) indicates whether the particular message from the appropriate sender, with id id was
received at ni.

SetReceived(int id) to set the bit to indicate that the particlar message from the appropriate sender, with
id id was received at ni.

The session message variables to access timing information are public; no encapsulating methods are
provided. These are:

Int lsess_; /* # of last session msg. Received */
Int sendTime_; /* Time session msg. # sent */
Int recvTime_; /* Time session message # received */
Double distance_; /* Delay between nodes */
int ldata_; /* Data Messages */

Loss Recovery Objects:

Timers are used to control when any particular control message is to be sent. The SRM agent uses a
separate class SRM to do the timer based processing. Class SRM is used for sending periodic session
messages. An SRM agent will instantiate one object to recover from one lost data packet. Agents that
detect the loss will instantiate an object in the class SRM/request; agents that receive a request and have
the required data will instantiate an object in the class SRM/ repair.

Request Mechanisms :

SRM agents detect loss when they receive a message, and infer the loss based on the sequence number
on the message received. Since packet reception is handled entirely by the compiled object, loss
detection occurs in the C++ methods. Loss recovery, however, is handled by instance procedures of the
corresponding object in OTcl.

Repair Mechanisms:

The agent will initiate a repair if it receives a request for a packet, and it does not have a request object
pending_ for that packet. The default repair object belongs to the class SRM/repair. Barring minor
differences, the sequence of events and the instance procedures in this class are identical to those for
SRM/request.

 Sample Code :

 # STAR TOPOLOGY

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (5 di 8) [08/01/2002 9.10.03]

source /usr/lib/ns-allinone-2.1b4/ns-2/tcl/mcast/srm-nam.tcl ;# to separate $
source /usr/lib/ns-allinone-2.1b4/ns-2/tcl/mcast/srm-debug.tcl ;# to trace del$
Simulator set NumberInterfaces_ 1
set ns [new Simulator]
Simulator set EnableMcast_ 1
$ns trace-all [open out.tr w]
$ns namtrace-all [open out.nam w]
set srmSimType Probabilistic
$ns color 0 red ;#data source
$ns color 40 blue ;#session
$ns color 41 green ;#request
$ns color 42 white ;#repair
$ns color 4 red ;#source node

Creating The Nodes
set nmax 8
for {set i 0} {$i <= $nmax} {incr i} {
 set n($i) [$ns node]
}
$n(1) color "red"

Creating The Links
for {set i 1} {$i <= $nmax} {incr i} {
 $ns duplex-link $n($i) $n(0) 1.5Mb 10ms DropTail
}

Orienting The Links
$ns duplex-link-op $n(0) $n(1) orient right
$ns duplex-link-op $n(0) $n(2) orient right-up
$ns duplex-link-op $n(0) $n(3) orient up
$ns duplex-link-op $n(0) $n(4) orient left-up
$ns duplex-link-op $n(0) $n(5) orient left
$ns duplex-link-op $n(0) $n(6) orient left-down
$ns duplex-link-op $n(0) $n(7) orient down
$ns duplex-link-op $n(0) $n(8) orient right-down
set group 0x8000
set cmc [$ns mrtproto CtrMcast {}]
$ns at 0.3 "$cmc switch-treetype $group"

SRM TRACE EVENTS
set srmStats [open srmStats.tr w]
set srmEvents [open srmEvents.tr w]
set fid 0
for {set i 1} {$i <= $nmax} {incr i} {
 set srm($i) [new Agent/SRM/$srmSimType]
 $srm($i) set dst_ $group

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (6 di 8) [08/01/2002 9.10.03]

 $srm($i) set fid_ [incr fid]
 $srm($i) log $srmStats
 $srm($i) trace $srmEvents
 $ns at 0.5 "$srm($i) start"
 $ns attach-agent $n($i) $srm($i)
}

Attach a CBR Agent to srm(1)
set packetSize 800
set s [new Application/Traffic/CBR]
$s set packet_size_ $packetSize
$s set interval_ 0.02
$s attach-agent $srm(1)
$srm(1) set tg_ $s
$srm(1) set app_fid_ 0
$srm(1) set packetSize_ $packetSize
$ns at 2.0 "$srm(1) start-source"
set loss_module [new SRMErrorModel]
$loss_module drop-packet 2 10 1
$loss_module drop-target [$ns set nullAgent_]
$ns at 0.75 "$ns lossmodel $loss_module $n(1) $n(0)"
$ns at 4.0 "finish $s" proc distDump interval {
 global ns srm
 foreach i [array names srm] {
 set dist [$srm($i) distances?]
 if {$dist != ""} {
 puts "[format %7.4f [$ns now]] distances $dist"
 }
 }
 $ns at [expr [$ns now] + $interval] "distDump $interval"
}
proc finish src {
 global prog ns env srmStats srmEvents srm nmax
 $src stop
 $ns flush-trace
 close $srmStats
 close $srmEvents
 puts "converting output to nam format..."
 if [info exists env(DISPLAY)] {
 puts "running nam..."
 exec nam out.nam &
 } else {
 exec cat srmStats.tr >@stdout
 }
 exit 0
}

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (7 di 8) [08/01/2002 9.10.03]

$ns run

SRM using NS-2:

http://nile.wpi.edu/NS/example_srm.html (8 di 8) [08/01/2002 9.10.03]

NS@WPI FAQ

Is there an NS tutorial somplace?

Try: http://www.isi.edu/nsnam/ns/tutorial/

1.

How do setup to use NS on nile?

Add /users/ns/bin is in your path:

 set path=(/users/ns/bin $path) # for csh/tcsh

Make a working directory for your scripts:

 cd /users/claypool
 mkdir my-sim

Then, make sims and run normally.

2.

How do setup to modify NS (edit the simulator) on nile?

Check that you are part of the "ns" group:

 groups (if you don't see "ns" send email to claypool@cs)

Set your CVSROOT variable (for tcsh):

 setenv CVSROOT /users/cvsroot (put in your .tcshrc)

Make a working directory:

 cd /users/claypool
 mkdir my-ns

Check out ns-2:

 cd /users/claypool/my-ns
 cvs co ns-2

Link in supporting directories:

3.

NS@WPI FAQ

http://nile.wpi.edu/NS/FAQ.html (1 di 4) [08/01/2002 9.10.04]

http://www.wpi.edu/
http://www.cs.wpi.edu/
http://www.isi.edu/nsnam/ns/tutorial/

 cd /users/claypool/my-ns
 ln -s /users/ns/* .
 (will give error for ns-2 link, but that's ok)

Compile ns:

 cd /users/claypool/my-ns/ns-2
 make

Make sure your scripts now use your NEW ns under /users/claypool/my-ns/ns-2/ns! Then, make
sims and run normally.

To edit a file:

 cd /users/claypool/my-ns/ns-2
 (edit file)
 (compile, debug, test, compile, debug test...)
 (MAKE SURE YOUR CODE COMPILES AND WORKS BEFORE SUBMITTING)
 cvs commit

To add a file:

 cd /users/claypool/my-ns/ns-2
 (edit new file)
 (compile, debug, test, compile, debug test...)
 (MAKE SURE YOUR CODE COMPILES AND WORKS BEFORE SUBMITTING)
 cvs add
 cvs commit

Where are some sample scripts I can start from?

Many sample scripts can be found in the NS distribution in /users/ns-2/ns-2/tcl/ex and
/users/ns/ns-2/tcl/test. You might also try /users/ns/ns-2/tcl/ns-tutorial/.

4.

Entering flows by hand is a pain. How do you "generate", say, 200 flows automatically?

You can do so with a for loop. Here is an example:

 #######################
 # Creat Network Topology #
 #######################

 #Set number of TCP connections
 set tcp_num 50

 #Making two network nodes
 set n(1) [$ns node]
 set n(2) [$ns node]

 #Making edge nodes

5.

NS@WPI FAQ

http://nile.wpi.edu/NS/FAQ.html (2 di 4) [08/01/2002 9.10.04]

 for {set i 1} {$i <= $tcp_num} {incr i} {
 set s($i) [$ns node]
 set r($i) [$ns node]
 }

 #Creating the network link
 $ns duplex-link $n(1) $n(2) 20Mb 20ms DropTail

 #Creating edge links
 for {set i 1} {$i <= $tcp_num} {incr i} {
 $ns duplex-link $s($i) $n(1) 20Mb 5ms DropTail
 $ns duplex-link $n(2) $r($i) 20Mb 5ms DropTail
 }

 #########################
 # Setup FTP-TCP connections #
 #########################

 #Setup TCP
 for {set i 1} {$i <= $tcp_num} {incr i} {
 set tcp($i) [new Agent/TCP/Reno]
 set sink($i) [new Agent/TCPSink]
 $ns attach-agent $s($i) $tcp($i)
 $ns attach-agent $r($i) $sink($i)
 $ns connect $tcp($i) $sink($i)

 $tcp($i) set ecn_ true
 $tcp($i) set fid_ $i
 $tcp($i) set window_ 20
 $tcp($i) set packetSize_ 1000
 }

 #Setup FTP Applications
 for {set i 1} {$i <= $tcp_num} {incr i} {
 set ftp($i) [new Application/FTP]
 $ftp($i) attach-agent $tcp($i)
 $ftp($i) set type_ FTP
 }

 ##########################
 # Start FTP Applications #
 ##########################
 for {set i 1} {$i <= $tcp_num} {incr i} {
 $ns at 0 "$ftp($i) start"
 $ns at 80 "$ftp($i) stop"
 }

 $ns run

How do I measure things like packet loss, throughput, etc?6.

NS@WPI FAQ

http://nile.wpi.edu/NS/FAQ.html (3 di 4) [08/01/2002 9.10.04]

You pull data you need from the trace file NS produces. That file is in text format, so you can parse it by
whatever tools you would like. For example, to calculate throughput you'd look for how many packets arrived
per second at a node coming from another node maybe with the protocol TCP.

Where are the defaults kept for the NS objects?

/users/ns/ns-2/tcl/lib

7.

Are there some tools somewhere that do some things I would like?

Not as many as we'd like. But there is a start in: /users/ns/tools

8.

Does NS simulate the 3-way TCP handshake?

Yes. You set the syn_ variable to TRUE in Agent/TCP in order to simulate the 3-way handshake. In
ns-2.1b7a, syn_ is set to FALSE by default. However since ns-2.1b8, the default setting for syn_ has been
changed to TRUE.

9.

I get the exact same drops every time with my RED router. Is there a way to "seed" the NS random
number generator?

You do it with the RNG class from OTcl. For example, a new RNG is created and seeded with:

 set rng [new RNG]
 $rng seed 0 # seeds the RNG heuristically;
 $rng seed n # seeds the RNG with value n;

Other uses could be:

 $rng next-random # return the next random number;
 $rng uniform a b # return a number uniformly distributed on [a, b];
 $rng integer k # return an integer uniformly distributed on [0, (k-1)];
 $rng exponential # return a number from an exponential distribution
 # with average 1.;

Currently there is no way to select predefined seeds from OTcl.

10.

NS@WPI FAQ

http://nile.wpi.edu/NS/FAQ.html (4 di 4) [08/01/2002 9.10.04]

Hot Links

Congestion Control Research Group: http://perform.wpi.edu/cc/●

VINT Project Home Page: http://www.isi.edu/nsnam/vint/●

NS Home Page: http://www.isi.edu/nsnam/ns/●

NS Installation: http://www.isi.edu/nsnam/ns/ns-build.html●

NS Documentation: http://www.isi.edu/nsnam/ns/ns-documentation.html●

NS Manual Page (very out of date): http://www.isi.edu/nsnam/ns/ns-man.html●

NS CVS history (directory structure): http://www.isi.edu/cgi-bin/nsnam/cvsweb●

NS Class Hierarchy: http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns●

5th VINT/NS Simulator Tutorial/Workshop:
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html

●

Tcl/Tk Quick Reference Guide: http://www.slac.stanford.edu/~raines/tkref.html●

OTcl Tutorial (Berkeley Version): http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl●

OTcl Tutorial (MIT Version): ftp://ftp.tns.lcs.mit.edu/pub/otcl/README.html●

Guide to awk: http://www.canberra.edu.au/~sam/whp/awk-guide.html●

GNU Plot: http://shazam.econ.ubc.ca/gnuplot.html●

XGraph: http://jean-luc.ncsa.uiuc.edu/Codes/xgraph●

Network Animator (NAM): http://www.isi.edu/nsnam/nam/●

Hot Links

http://nile.wpi.edu/NS/hot_links.html [08/01/2002 9.10.05]

http://perform.wpi.edu/cc/
http://www.isi.edu/nsnam/vint/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/ns-build.html
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.isi.edu/nsnam/ns/ns-man.html
http://www.isi.edu/cgi-bin/nsnam/cvsweb
http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html
http://www.slac.stanford.edu/~raines/tkref.html
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl
ftp://ftp.tns.lcs.mit.edu/pub/otcl/README.html
http://www.canberra.edu.au/~sam/whp/awk-guide.html
http://shazam.econ.ubc.ca/gnuplot.html
http://jean-luc.ncsa.uiuc.edu/Codes/xgraph
http://www.isi.edu/nsnam/nam/

	wpi.edu
	NS by Example
	NS by Example - Proposal
	Overview
	OTcl: The User Language
	Simple Simulation Example
	Event Scheduler
	Network Components
	Packet
	Trace Analysis Example
	RED Queue Monitor Example
	Trace Analysis Utilities
	Where to Find What?
	OTcl Linkage
	Add New Application and Agent
	Add New Queue
	LAN Examples
	Multicasting Examples
	Web Server Examples
	SRM using NS-2:
	NS@WPI FAQ
	Hot Links
	Hot Links
	Worcester Polytechnic Institute (WPI)
	WPI Computer Science Department
	Perform Home Page

