Transportation Method

Transportation Method of Planning

- Each row in transportation table represents a production period
- Each column in the table represents a demand period
- Each cell in the table represents cost of production and inventory holding cost.

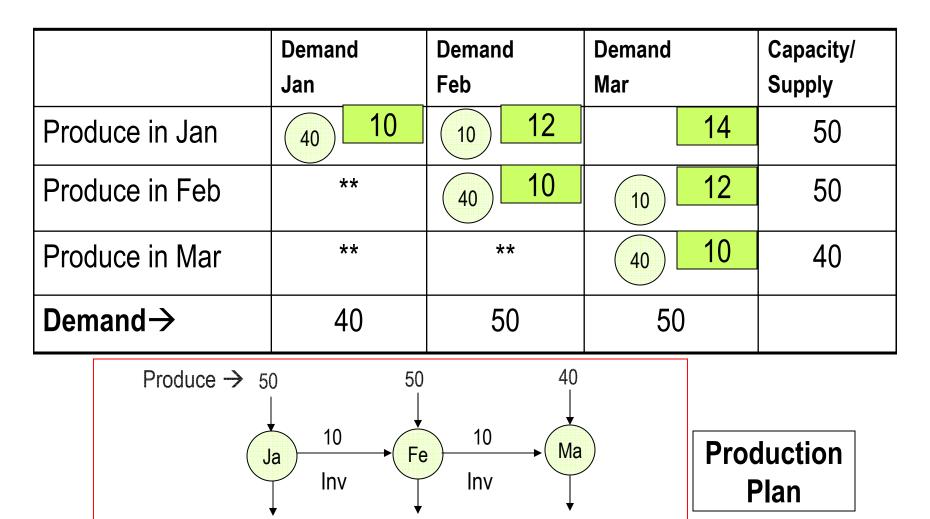
	Demand	Demand	Demand	Capacity/
	Period 1	Period 2	Period 3	Supply
Production	C ₁₁	C ₁₂	C ₁₃	P ₁
Period 1				
Production	**	C ₂₂	C ₂₃	P ₂
Period 2				
Production	**	**	C ₃₃	P ₃
Period 3				
$Demand \rightarrow$	D ₁	D ₂	D ₃	

Transportation Method of Planning

 Suppose we have three month planning problem: { Jan , Feb , Mar } Demands for Jan, Feb and Mar are : { 40,50,50} Production capacity for Jan, Feb and Mar are : { 50,50,40} Production cost = \$10/unit. Inventory holding cost = \$2/unit/period c₁₁ = c₂₂ = c₃₃ = \$10, c₁₂ = 10 + 2 = \$12, c₁₃ = 10 + 2 + 2 = \$14

$$c_{23} = 10 + 2 = $12.$$

Entering the data; Transportation Table will look like as follows:


	Demar Jan	ıd	Deman Feb	d	Demand Mar		Capacity/ Supply
Produce in Jan		10		12		14	70
Produce in Feb	**			10		12	70
Produce in Mar	**		*	:*		10	70
Demand→	3	30	5	60	4	0	

Transportation Method of Planning

Least cost solution;

Demand \rightarrow

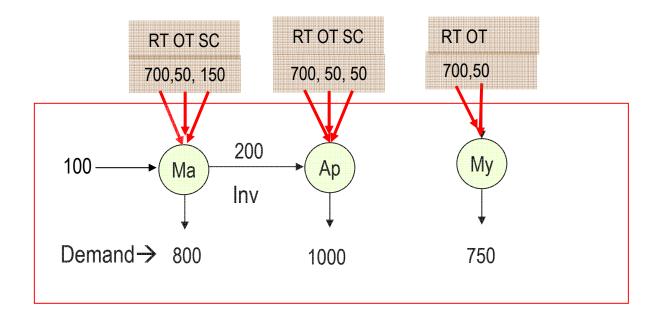
40

50

50

Multiple Production Source Problem

Solve three month planning problem: { Mar, Apr, May } Demands for Mar, Apr and May are : { 800,1000,750} Production is to be carried out in Mar, Apr and May. There are three sources of Production in each month. Regular Time, Overtime and Subcontract Capacity for each source in each month is : Regular time = 700 units Overtime = 50 units Subcontract = 150 units Production cost in each month: Regular Time = \$40/unit. Overtime = \$50/unit Subcontract = \$70/unit Inventory holding cost = \$2/unit/period There are 100 units in inventory at the beginning of Mar. Use Transportation Problem and develop a Production Plan.


Transportation Table

		Period 1	Period 2	Period 3	Unused Capacity	Total Capacity Available
		(Mar)	(Apr)	(May)	(Dummy)	(Supply)
	Beginning Inventory	0	2	4	0	
	Inventory	100				100
(Regular	40	42	44	0	
		700				700
Period 1	Overtime	50	52	54	0	
G	• • • • • • • •		50			50
	Subcontract	70	72	74	0	
	Caboontraot		150			150
ſ	Regular	Х	40	42	0	
2	-		700			700
by	Overtime		50	52	0	
Period 2	Overtime	X	50			50
٩	Subcontract		70	72	0	
l	Cubcontract	X	50		100	150
ſ	Regular			40	0	
S	C	X	Х	700		700
pg	Overtime			50	0	
Perjod 3	ovortimo	X	Х	50		50
Ъ	Subcontract			70	0	
	Cuboonitaot	X	х		150	150
,	Total Demand	800	1000	750	250	2800

Transportation Table

		Period 1	Period 2	Period 3	Unused Capacity	Total Capacity Available
		(Mar)	(Apr)	(May)	(Dummy)	(Supply)
	Beginning Inventory	0	2	4	0	
	Inventory	100				100
(Regular	40	42	44	0	
а Т		700				700
Period 1	Overtime	50	52	54	0	
G			50			50
	Subcontract	70	72	74	0	
			150			150
(Regular	X	40	42	0	
7			700			700
Period 2	Overtime		50	52	0	
er		Х	50			50
٩	Subcontract		70	72	0	
Ĺ		Х	50		100	150
ſ	Regular			40	0	
З		Х	Х	700		700
Perjod 3	Overtime			50	0	
eri		Х	Х	50		50
ď	Subcontract			70		
		Х	Х		150	150
	Total Demand	800	1000	750	250	2800

Cost of solution: 700*40+52*50+150*72+700*40+50*50+70*50+40*700+50*50=\$105,900

Solution by Transportation Model

Comparison of Three Major Aggregate Planning Methods

Techniques	Approaches	Aspects
Charting/graphical methods	Trial and error	Simple to understand, easy to use. Many solutions; one chosen may not be optimal
Transportation method	Optimization	LP software available;permits sensitivity analysis and constraints. Linear function may not be realistic
Management coefficient model	Heuristic	Simple, easy to implement; tries to mimic manager's decision process; uses regression